1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/Type.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/AlignedAllocation.h"
27 #include "clang/Basic/DiagnosticSema.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Basic/TokenKinds.h"
31 #include "clang/Basic/TypeTraits.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "clang/Sema/SemaLambda.h"
41 #include "clang/Sema/Template.h"
42 #include "clang/Sema/TemplateDeduction.h"
43 #include "llvm/ADT/APInt.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TypeSize.h"
47 #include <optional>
48 using namespace clang;
49 using namespace sema;
50
51 /// Handle the result of the special case name lookup for inheriting
52 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
53 /// constructor names in member using declarations, even if 'X' is not the
54 /// name of the corresponding type.
getInheritingConstructorName(CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo & Name)55 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
56 SourceLocation NameLoc,
57 IdentifierInfo &Name) {
58 NestedNameSpecifier *NNS = SS.getScopeRep();
59
60 // Convert the nested-name-specifier into a type.
61 QualType Type;
62 switch (NNS->getKind()) {
63 case NestedNameSpecifier::TypeSpec:
64 case NestedNameSpecifier::TypeSpecWithTemplate:
65 Type = QualType(NNS->getAsType(), 0);
66 break;
67
68 case NestedNameSpecifier::Identifier:
69 // Strip off the last layer of the nested-name-specifier and build a
70 // typename type for it.
71 assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
72 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
73 NNS->getAsIdentifier());
74 break;
75
76 case NestedNameSpecifier::Global:
77 case NestedNameSpecifier::Super:
78 case NestedNameSpecifier::Namespace:
79 case NestedNameSpecifier::NamespaceAlias:
80 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
81 }
82
83 // This reference to the type is located entirely at the location of the
84 // final identifier in the qualified-id.
85 return CreateParsedType(Type,
86 Context.getTrivialTypeSourceInfo(Type, NameLoc));
87 }
88
getConstructorName(IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,bool EnteringContext)89 ParsedType Sema::getConstructorName(IdentifierInfo &II,
90 SourceLocation NameLoc,
91 Scope *S, CXXScopeSpec &SS,
92 bool EnteringContext) {
93 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
94 assert(CurClass && &II == CurClass->getIdentifier() &&
95 "not a constructor name");
96
97 // When naming a constructor as a member of a dependent context (eg, in a
98 // friend declaration or an inherited constructor declaration), form an
99 // unresolved "typename" type.
100 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
101 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
102 return ParsedType::make(T);
103 }
104
105 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
106 return ParsedType();
107
108 // Find the injected-class-name declaration. Note that we make no attempt to
109 // diagnose cases where the injected-class-name is shadowed: the only
110 // declaration that can validly shadow the injected-class-name is a
111 // non-static data member, and if the class contains both a non-static data
112 // member and a constructor then it is ill-formed (we check that in
113 // CheckCompletedCXXClass).
114 CXXRecordDecl *InjectedClassName = nullptr;
115 for (NamedDecl *ND : CurClass->lookup(&II)) {
116 auto *RD = dyn_cast<CXXRecordDecl>(ND);
117 if (RD && RD->isInjectedClassName()) {
118 InjectedClassName = RD;
119 break;
120 }
121 }
122 if (!InjectedClassName) {
123 if (!CurClass->isInvalidDecl()) {
124 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
125 // properly. Work around it here for now.
126 Diag(SS.getLastQualifierNameLoc(),
127 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
128 }
129 return ParsedType();
130 }
131
132 QualType T = Context.getTypeDeclType(InjectedClassName);
133 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
134 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
135
136 return ParsedType::make(T);
137 }
138
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)139 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
140 IdentifierInfo &II,
141 SourceLocation NameLoc,
142 Scope *S, CXXScopeSpec &SS,
143 ParsedType ObjectTypePtr,
144 bool EnteringContext) {
145 // Determine where to perform name lookup.
146
147 // FIXME: This area of the standard is very messy, and the current
148 // wording is rather unclear about which scopes we search for the
149 // destructor name; see core issues 399 and 555. Issue 399 in
150 // particular shows where the current description of destructor name
151 // lookup is completely out of line with existing practice, e.g.,
152 // this appears to be ill-formed:
153 //
154 // namespace N {
155 // template <typename T> struct S {
156 // ~S();
157 // };
158 // }
159 //
160 // void f(N::S<int>* s) {
161 // s->N::S<int>::~S();
162 // }
163 //
164 // See also PR6358 and PR6359.
165 //
166 // For now, we accept all the cases in which the name given could plausibly
167 // be interpreted as a correct destructor name, issuing off-by-default
168 // extension diagnostics on the cases that don't strictly conform to the
169 // C++20 rules. This basically means we always consider looking in the
170 // nested-name-specifier prefix, the complete nested-name-specifier, and
171 // the scope, and accept if we find the expected type in any of the three
172 // places.
173
174 if (SS.isInvalid())
175 return nullptr;
176
177 // Whether we've failed with a diagnostic already.
178 bool Failed = false;
179
180 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
181 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
182
183 // If we have an object type, it's because we are in a
184 // pseudo-destructor-expression or a member access expression, and
185 // we know what type we're looking for.
186 QualType SearchType =
187 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
188
189 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
190 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
191 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
192 if (!Type)
193 return false;
194
195 if (SearchType.isNull() || SearchType->isDependentType())
196 return true;
197
198 QualType T = Context.getTypeDeclType(Type);
199 return Context.hasSameUnqualifiedType(T, SearchType);
200 };
201
202 unsigned NumAcceptableResults = 0;
203 for (NamedDecl *D : Found) {
204 if (IsAcceptableResult(D))
205 ++NumAcceptableResults;
206
207 // Don't list a class twice in the lookup failure diagnostic if it's
208 // found by both its injected-class-name and by the name in the enclosing
209 // scope.
210 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
211 if (RD->isInjectedClassName())
212 D = cast<NamedDecl>(RD->getParent());
213
214 if (FoundDeclSet.insert(D).second)
215 FoundDecls.push_back(D);
216 }
217
218 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
219 // results, and all non-matching results if we have a search type. It's not
220 // clear what the right behavior is if destructor lookup hits an ambiguity,
221 // but other compilers do generally accept at least some kinds of
222 // ambiguity.
223 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
224 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
225 LookupResult::Filter F = Found.makeFilter();
226 while (F.hasNext()) {
227 NamedDecl *D = F.next();
228 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
229 Diag(D->getLocation(), diag::note_destructor_type_here)
230 << Context.getTypeDeclType(TD);
231 else
232 Diag(D->getLocation(), diag::note_destructor_nontype_here);
233
234 if (!IsAcceptableResult(D))
235 F.erase();
236 }
237 F.done();
238 }
239
240 if (Found.isAmbiguous())
241 Failed = true;
242
243 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
244 if (IsAcceptableResult(Type)) {
245 QualType T = Context.getTypeDeclType(Type);
246 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
247 return CreateParsedType(Context.getElaboratedType(ETK_None, nullptr, T),
248 Context.getTrivialTypeSourceInfo(T, NameLoc));
249 }
250 }
251
252 return nullptr;
253 };
254
255 bool IsDependent = false;
256
257 auto LookupInObjectType = [&]() -> ParsedType {
258 if (Failed || SearchType.isNull())
259 return nullptr;
260
261 IsDependent |= SearchType->isDependentType();
262
263 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
264 DeclContext *LookupCtx = computeDeclContext(SearchType);
265 if (!LookupCtx)
266 return nullptr;
267 LookupQualifiedName(Found, LookupCtx);
268 return CheckLookupResult(Found);
269 };
270
271 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
272 if (Failed)
273 return nullptr;
274
275 IsDependent |= isDependentScopeSpecifier(LookupSS);
276 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
277 if (!LookupCtx)
278 return nullptr;
279
280 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
281 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
282 Failed = true;
283 return nullptr;
284 }
285 LookupQualifiedName(Found, LookupCtx);
286 return CheckLookupResult(Found);
287 };
288
289 auto LookupInScope = [&]() -> ParsedType {
290 if (Failed || !S)
291 return nullptr;
292
293 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
294 LookupName(Found, S);
295 return CheckLookupResult(Found);
296 };
297
298 // C++2a [basic.lookup.qual]p6:
299 // In a qualified-id of the form
300 //
301 // nested-name-specifier[opt] type-name :: ~ type-name
302 //
303 // the second type-name is looked up in the same scope as the first.
304 //
305 // We interpret this as meaning that if you do a dual-scope lookup for the
306 // first name, you also do a dual-scope lookup for the second name, per
307 // C++ [basic.lookup.classref]p4:
308 //
309 // If the id-expression in a class member access is a qualified-id of the
310 // form
311 //
312 // class-name-or-namespace-name :: ...
313 //
314 // the class-name-or-namespace-name following the . or -> is first looked
315 // up in the class of the object expression and the name, if found, is used.
316 // Otherwise, it is looked up in the context of the entire
317 // postfix-expression.
318 //
319 // This looks in the same scopes as for an unqualified destructor name:
320 //
321 // C++ [basic.lookup.classref]p3:
322 // If the unqualified-id is ~ type-name, the type-name is looked up
323 // in the context of the entire postfix-expression. If the type T
324 // of the object expression is of a class type C, the type-name is
325 // also looked up in the scope of class C. At least one of the
326 // lookups shall find a name that refers to cv T.
327 //
328 // FIXME: The intent is unclear here. Should type-name::~type-name look in
329 // the scope anyway if it finds a non-matching name declared in the class?
330 // If both lookups succeed and find a dependent result, which result should
331 // we retain? (Same question for p->~type-name().)
332
333 if (NestedNameSpecifier *Prefix =
334 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
335 // This is
336 //
337 // nested-name-specifier type-name :: ~ type-name
338 //
339 // Look for the second type-name in the nested-name-specifier.
340 CXXScopeSpec PrefixSS;
341 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
342 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
343 return T;
344 } else {
345 // This is one of
346 //
347 // type-name :: ~ type-name
348 // ~ type-name
349 //
350 // Look in the scope and (if any) the object type.
351 if (ParsedType T = LookupInScope())
352 return T;
353 if (ParsedType T = LookupInObjectType())
354 return T;
355 }
356
357 if (Failed)
358 return nullptr;
359
360 if (IsDependent) {
361 // We didn't find our type, but that's OK: it's dependent anyway.
362
363 // FIXME: What if we have no nested-name-specifier?
364 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
365 SS.getWithLocInContext(Context),
366 II, NameLoc);
367 return ParsedType::make(T);
368 }
369
370 // The remaining cases are all non-standard extensions imitating the behavior
371 // of various other compilers.
372 unsigned NumNonExtensionDecls = FoundDecls.size();
373
374 if (SS.isSet()) {
375 // For compatibility with older broken C++ rules and existing code,
376 //
377 // nested-name-specifier :: ~ type-name
378 //
379 // also looks for type-name within the nested-name-specifier.
380 if (ParsedType T = LookupInNestedNameSpec(SS)) {
381 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
382 << SS.getRange()
383 << FixItHint::CreateInsertion(SS.getEndLoc(),
384 ("::" + II.getName()).str());
385 return T;
386 }
387
388 // For compatibility with other compilers and older versions of Clang,
389 //
390 // nested-name-specifier type-name :: ~ type-name
391 //
392 // also looks for type-name in the scope. Unfortunately, we can't
393 // reasonably apply this fallback for dependent nested-name-specifiers.
394 if (SS.getScopeRep()->getPrefix()) {
395 if (ParsedType T = LookupInScope()) {
396 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
397 << FixItHint::CreateRemoval(SS.getRange());
398 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
399 << GetTypeFromParser(T);
400 return T;
401 }
402 }
403 }
404
405 // We didn't find anything matching; tell the user what we did find (if
406 // anything).
407
408 // Don't tell the user about declarations we shouldn't have found.
409 FoundDecls.resize(NumNonExtensionDecls);
410
411 // List types before non-types.
412 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
413 [](NamedDecl *A, NamedDecl *B) {
414 return isa<TypeDecl>(A->getUnderlyingDecl()) >
415 isa<TypeDecl>(B->getUnderlyingDecl());
416 });
417
418 // Suggest a fixit to properly name the destroyed type.
419 auto MakeFixItHint = [&]{
420 const CXXRecordDecl *Destroyed = nullptr;
421 // FIXME: If we have a scope specifier, suggest its last component?
422 if (!SearchType.isNull())
423 Destroyed = SearchType->getAsCXXRecordDecl();
424 else if (S)
425 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
426 if (Destroyed)
427 return FixItHint::CreateReplacement(SourceRange(NameLoc),
428 Destroyed->getNameAsString());
429 return FixItHint();
430 };
431
432 if (FoundDecls.empty()) {
433 // FIXME: Attempt typo-correction?
434 Diag(NameLoc, diag::err_undeclared_destructor_name)
435 << &II << MakeFixItHint();
436 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
437 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
438 assert(!SearchType.isNull() &&
439 "should only reject a type result if we have a search type");
440 QualType T = Context.getTypeDeclType(TD);
441 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
442 << T << SearchType << MakeFixItHint();
443 } else {
444 Diag(NameLoc, diag::err_destructor_expr_nontype)
445 << &II << MakeFixItHint();
446 }
447 } else {
448 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
449 : diag::err_destructor_expr_mismatch)
450 << &II << SearchType << MakeFixItHint();
451 }
452
453 for (NamedDecl *FoundD : FoundDecls) {
454 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
455 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
456 << Context.getTypeDeclType(TD);
457 else
458 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
459 << FoundD;
460 }
461
462 return nullptr;
463 }
464
getDestructorTypeForDecltype(const DeclSpec & DS,ParsedType ObjectType)465 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
466 ParsedType ObjectType) {
467 if (DS.getTypeSpecType() == DeclSpec::TST_error)
468 return nullptr;
469
470 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
471 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
472 return nullptr;
473 }
474
475 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
476 "unexpected type in getDestructorType");
477 QualType T = BuildDecltypeType(DS.getRepAsExpr());
478
479 // If we know the type of the object, check that the correct destructor
480 // type was named now; we can give better diagnostics this way.
481 QualType SearchType = GetTypeFromParser(ObjectType);
482 if (!SearchType.isNull() && !SearchType->isDependentType() &&
483 !Context.hasSameUnqualifiedType(T, SearchType)) {
484 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
485 << T << SearchType;
486 return nullptr;
487 }
488
489 return ParsedType::make(T);
490 }
491
checkLiteralOperatorId(const CXXScopeSpec & SS,const UnqualifiedId & Name,bool IsUDSuffix)492 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
493 const UnqualifiedId &Name, bool IsUDSuffix) {
494 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
495 if (!IsUDSuffix) {
496 // [over.literal] p8
497 //
498 // double operator""_Bq(long double); // OK: not a reserved identifier
499 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
500 IdentifierInfo *II = Name.Identifier;
501 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
502 SourceLocation Loc = Name.getEndLoc();
503 if (isReservedInAllContexts(Status) &&
504 !PP.getSourceManager().isInSystemHeader(Loc)) {
505 Diag(Loc, diag::warn_reserved_extern_symbol)
506 << II << static_cast<int>(Status)
507 << FixItHint::CreateReplacement(
508 Name.getSourceRange(),
509 (StringRef("operator\"\"") + II->getName()).str());
510 }
511 }
512
513 if (!SS.isValid())
514 return false;
515
516 switch (SS.getScopeRep()->getKind()) {
517 case NestedNameSpecifier::Identifier:
518 case NestedNameSpecifier::TypeSpec:
519 case NestedNameSpecifier::TypeSpecWithTemplate:
520 // Per C++11 [over.literal]p2, literal operators can only be declared at
521 // namespace scope. Therefore, this unqualified-id cannot name anything.
522 // Reject it early, because we have no AST representation for this in the
523 // case where the scope is dependent.
524 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
525 << SS.getScopeRep();
526 return true;
527
528 case NestedNameSpecifier::Global:
529 case NestedNameSpecifier::Super:
530 case NestedNameSpecifier::Namespace:
531 case NestedNameSpecifier::NamespaceAlias:
532 return false;
533 }
534
535 llvm_unreachable("unknown nested name specifier kind");
536 }
537
538 /// Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)539 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
540 SourceLocation TypeidLoc,
541 TypeSourceInfo *Operand,
542 SourceLocation RParenLoc) {
543 // C++ [expr.typeid]p4:
544 // The top-level cv-qualifiers of the lvalue expression or the type-id
545 // that is the operand of typeid are always ignored.
546 // If the type of the type-id is a class type or a reference to a class
547 // type, the class shall be completely-defined.
548 Qualifiers Quals;
549 QualType T
550 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
551 Quals);
552 if (T->getAs<RecordType>() &&
553 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
554 return ExprError();
555
556 if (T->isVariablyModifiedType())
557 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
558
559 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
560 return ExprError();
561
562 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
563 SourceRange(TypeidLoc, RParenLoc));
564 }
565
566 /// Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)567 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
568 SourceLocation TypeidLoc,
569 Expr *E,
570 SourceLocation RParenLoc) {
571 bool WasEvaluated = false;
572 if (E && !E->isTypeDependent()) {
573 if (E->hasPlaceholderType()) {
574 ExprResult result = CheckPlaceholderExpr(E);
575 if (result.isInvalid()) return ExprError();
576 E = result.get();
577 }
578
579 QualType T = E->getType();
580 if (const RecordType *RecordT = T->getAs<RecordType>()) {
581 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
582 // C++ [expr.typeid]p3:
583 // [...] If the type of the expression is a class type, the class
584 // shall be completely-defined.
585 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
586 return ExprError();
587
588 // C++ [expr.typeid]p3:
589 // When typeid is applied to an expression other than an glvalue of a
590 // polymorphic class type [...] [the] expression is an unevaluated
591 // operand. [...]
592 if (RecordD->isPolymorphic() && E->isGLValue()) {
593 if (isUnevaluatedContext()) {
594 // The operand was processed in unevaluated context, switch the
595 // context and recheck the subexpression.
596 ExprResult Result = TransformToPotentiallyEvaluated(E);
597 if (Result.isInvalid())
598 return ExprError();
599 E = Result.get();
600 }
601
602 // We require a vtable to query the type at run time.
603 MarkVTableUsed(TypeidLoc, RecordD);
604 WasEvaluated = true;
605 }
606 }
607
608 ExprResult Result = CheckUnevaluatedOperand(E);
609 if (Result.isInvalid())
610 return ExprError();
611 E = Result.get();
612
613 // C++ [expr.typeid]p4:
614 // [...] If the type of the type-id is a reference to a possibly
615 // cv-qualified type, the result of the typeid expression refers to a
616 // std::type_info object representing the cv-unqualified referenced
617 // type.
618 Qualifiers Quals;
619 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
620 if (!Context.hasSameType(T, UnqualT)) {
621 T = UnqualT;
622 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
623 }
624 }
625
626 if (E->getType()->isVariablyModifiedType())
627 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
628 << E->getType());
629 else if (!inTemplateInstantiation() &&
630 E->HasSideEffects(Context, WasEvaluated)) {
631 // The expression operand for typeid is in an unevaluated expression
632 // context, so side effects could result in unintended consequences.
633 Diag(E->getExprLoc(), WasEvaluated
634 ? diag::warn_side_effects_typeid
635 : diag::warn_side_effects_unevaluated_context);
636 }
637
638 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
639 SourceRange(TypeidLoc, RParenLoc));
640 }
641
642 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
643 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)644 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
645 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
646 // typeid is not supported in OpenCL.
647 if (getLangOpts().OpenCLCPlusPlus) {
648 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
649 << "typeid");
650 }
651
652 // Find the std::type_info type.
653 if (!getStdNamespace())
654 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
655
656 if (!CXXTypeInfoDecl) {
657 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
658 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
659 LookupQualifiedName(R, getStdNamespace());
660 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
661 // Microsoft's typeinfo doesn't have type_info in std but in the global
662 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
663 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
664 LookupQualifiedName(R, Context.getTranslationUnitDecl());
665 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
666 }
667 if (!CXXTypeInfoDecl)
668 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
669 }
670
671 if (!getLangOpts().RTTI) {
672 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
673 }
674
675 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
676
677 if (isType) {
678 // The operand is a type; handle it as such.
679 TypeSourceInfo *TInfo = nullptr;
680 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
681 &TInfo);
682 if (T.isNull())
683 return ExprError();
684
685 if (!TInfo)
686 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
687
688 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
689 }
690
691 // The operand is an expression.
692 ExprResult Result =
693 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
694
695 if (!getLangOpts().RTTIData && !Result.isInvalid())
696 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
697 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
698 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
699 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
700 DiagnosticOptions::MSVC);
701 return Result;
702 }
703
704 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
705 /// a single GUID.
706 static void
getUuidAttrOfType(Sema & SemaRef,QualType QT,llvm::SmallSetVector<const UuidAttr *,1> & UuidAttrs)707 getUuidAttrOfType(Sema &SemaRef, QualType QT,
708 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
709 // Optionally remove one level of pointer, reference or array indirection.
710 const Type *Ty = QT.getTypePtr();
711 if (QT->isPointerType() || QT->isReferenceType())
712 Ty = QT->getPointeeType().getTypePtr();
713 else if (QT->isArrayType())
714 Ty = Ty->getBaseElementTypeUnsafe();
715
716 const auto *TD = Ty->getAsTagDecl();
717 if (!TD)
718 return;
719
720 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
721 UuidAttrs.insert(Uuid);
722 return;
723 }
724
725 // __uuidof can grab UUIDs from template arguments.
726 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
727 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
728 for (const TemplateArgument &TA : TAL.asArray()) {
729 const UuidAttr *UuidForTA = nullptr;
730 if (TA.getKind() == TemplateArgument::Type)
731 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
732 else if (TA.getKind() == TemplateArgument::Declaration)
733 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
734
735 if (UuidForTA)
736 UuidAttrs.insert(UuidForTA);
737 }
738 }
739 }
740
741 /// Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType Type,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)742 ExprResult Sema::BuildCXXUuidof(QualType Type,
743 SourceLocation TypeidLoc,
744 TypeSourceInfo *Operand,
745 SourceLocation RParenLoc) {
746 MSGuidDecl *Guid = nullptr;
747 if (!Operand->getType()->isDependentType()) {
748 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
749 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
750 if (UuidAttrs.empty())
751 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
752 if (UuidAttrs.size() > 1)
753 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
754 Guid = UuidAttrs.back()->getGuidDecl();
755 }
756
757 return new (Context)
758 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
759 }
760
761 /// Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType Type,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)762 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
763 Expr *E, SourceLocation RParenLoc) {
764 MSGuidDecl *Guid = nullptr;
765 if (!E->getType()->isDependentType()) {
766 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
767 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
768 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
769 } else {
770 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
771 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
772 if (UuidAttrs.empty())
773 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
774 if (UuidAttrs.size() > 1)
775 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
776 Guid = UuidAttrs.back()->getGuidDecl();
777 }
778 }
779
780 return new (Context)
781 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
782 }
783
784 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
785 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)786 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
787 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
788 QualType GuidType = Context.getMSGuidType();
789 GuidType.addConst();
790
791 if (isType) {
792 // The operand is a type; handle it as such.
793 TypeSourceInfo *TInfo = nullptr;
794 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
795 &TInfo);
796 if (T.isNull())
797 return ExprError();
798
799 if (!TInfo)
800 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
801
802 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
803 }
804
805 // The operand is an expression.
806 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
807 }
808
809 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
810 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)811 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
812 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
813 "Unknown C++ Boolean value!");
814 return new (Context)
815 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
816 }
817
818 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
819 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)820 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
821 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
822 }
823
824 /// ActOnCXXThrow - Parse throw expressions.
825 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)826 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
827 bool IsThrownVarInScope = false;
828 if (Ex) {
829 // C++0x [class.copymove]p31:
830 // When certain criteria are met, an implementation is allowed to omit the
831 // copy/move construction of a class object [...]
832 //
833 // - in a throw-expression, when the operand is the name of a
834 // non-volatile automatic object (other than a function or catch-
835 // clause parameter) whose scope does not extend beyond the end of the
836 // innermost enclosing try-block (if there is one), the copy/move
837 // operation from the operand to the exception object (15.1) can be
838 // omitted by constructing the automatic object directly into the
839 // exception object
840 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
841 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
842 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
843 for( ; S; S = S->getParent()) {
844 if (S->isDeclScope(Var)) {
845 IsThrownVarInScope = true;
846 break;
847 }
848
849 // FIXME: Many of the scope checks here seem incorrect.
850 if (S->getFlags() &
851 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
852 Scope::ObjCMethodScope | Scope::TryScope))
853 break;
854 }
855 }
856 }
857 }
858
859 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
860 }
861
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)862 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
863 bool IsThrownVarInScope) {
864 // Don't report an error if 'throw' is used in system headers.
865 if (!getLangOpts().CXXExceptions &&
866 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
867 // Delay error emission for the OpenMP device code.
868 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
869 }
870
871 // Exceptions aren't allowed in CUDA device code.
872 if (getLangOpts().CUDA)
873 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
874 << "throw" << CurrentCUDATarget();
875
876 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
877 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
878
879 if (Ex && !Ex->isTypeDependent()) {
880 // Initialize the exception result. This implicitly weeds out
881 // abstract types or types with inaccessible copy constructors.
882
883 // C++0x [class.copymove]p31:
884 // When certain criteria are met, an implementation is allowed to omit the
885 // copy/move construction of a class object [...]
886 //
887 // - in a throw-expression, when the operand is the name of a
888 // non-volatile automatic object (other than a function or
889 // catch-clause
890 // parameter) whose scope does not extend beyond the end of the
891 // innermost enclosing try-block (if there is one), the copy/move
892 // operation from the operand to the exception object (15.1) can be
893 // omitted by constructing the automatic object directly into the
894 // exception object
895 NamedReturnInfo NRInfo =
896 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
897
898 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
899 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
900 return ExprError();
901
902 InitializedEntity Entity =
903 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
904 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
905 if (Res.isInvalid())
906 return ExprError();
907 Ex = Res.get();
908 }
909
910 // PPC MMA non-pointer types are not allowed as throw expr types.
911 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
912 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
913
914 return new (Context)
915 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
916 }
917
918 static void
collectPublicBases(CXXRecordDecl * RD,llvm::DenseMap<CXXRecordDecl *,unsigned> & SubobjectsSeen,llvm::SmallPtrSetImpl<CXXRecordDecl * > & VBases,llvm::SetVector<CXXRecordDecl * > & PublicSubobjectsSeen,bool ParentIsPublic)919 collectPublicBases(CXXRecordDecl *RD,
920 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
921 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
922 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
923 bool ParentIsPublic) {
924 for (const CXXBaseSpecifier &BS : RD->bases()) {
925 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
926 bool NewSubobject;
927 // Virtual bases constitute the same subobject. Non-virtual bases are
928 // always distinct subobjects.
929 if (BS.isVirtual())
930 NewSubobject = VBases.insert(BaseDecl).second;
931 else
932 NewSubobject = true;
933
934 if (NewSubobject)
935 ++SubobjectsSeen[BaseDecl];
936
937 // Only add subobjects which have public access throughout the entire chain.
938 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
939 if (PublicPath)
940 PublicSubobjectsSeen.insert(BaseDecl);
941
942 // Recurse on to each base subobject.
943 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
944 PublicPath);
945 }
946 }
947
getUnambiguousPublicSubobjects(CXXRecordDecl * RD,llvm::SmallVectorImpl<CXXRecordDecl * > & Objects)948 static void getUnambiguousPublicSubobjects(
949 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
950 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
951 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
952 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
953 SubobjectsSeen[RD] = 1;
954 PublicSubobjectsSeen.insert(RD);
955 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
956 /*ParentIsPublic=*/true);
957
958 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
959 // Skip ambiguous objects.
960 if (SubobjectsSeen[PublicSubobject] > 1)
961 continue;
962
963 Objects.push_back(PublicSubobject);
964 }
965 }
966
967 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,QualType ExceptionObjectTy,Expr * E)968 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
969 QualType ExceptionObjectTy, Expr *E) {
970 // If the type of the exception would be an incomplete type or a pointer
971 // to an incomplete type other than (cv) void the program is ill-formed.
972 QualType Ty = ExceptionObjectTy;
973 bool isPointer = false;
974 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
975 Ty = Ptr->getPointeeType();
976 isPointer = true;
977 }
978 if (!isPointer || !Ty->isVoidType()) {
979 if (RequireCompleteType(ThrowLoc, Ty,
980 isPointer ? diag::err_throw_incomplete_ptr
981 : diag::err_throw_incomplete,
982 E->getSourceRange()))
983 return true;
984
985 if (!isPointer && Ty->isSizelessType()) {
986 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
987 return true;
988 }
989
990 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
991 diag::err_throw_abstract_type, E))
992 return true;
993 }
994
995 // If the exception has class type, we need additional handling.
996 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
997 if (!RD)
998 return false;
999
1000 // If we are throwing a polymorphic class type or pointer thereof,
1001 // exception handling will make use of the vtable.
1002 MarkVTableUsed(ThrowLoc, RD);
1003
1004 // If a pointer is thrown, the referenced object will not be destroyed.
1005 if (isPointer)
1006 return false;
1007
1008 // If the class has a destructor, we must be able to call it.
1009 if (!RD->hasIrrelevantDestructor()) {
1010 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1011 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1012 CheckDestructorAccess(E->getExprLoc(), Destructor,
1013 PDiag(diag::err_access_dtor_exception) << Ty);
1014 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1015 return true;
1016 }
1017 }
1018
1019 // The MSVC ABI creates a list of all types which can catch the exception
1020 // object. This list also references the appropriate copy constructor to call
1021 // if the object is caught by value and has a non-trivial copy constructor.
1022 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1023 // We are only interested in the public, unambiguous bases contained within
1024 // the exception object. Bases which are ambiguous or otherwise
1025 // inaccessible are not catchable types.
1026 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1027 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1028
1029 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1030 // Attempt to lookup the copy constructor. Various pieces of machinery
1031 // will spring into action, like template instantiation, which means this
1032 // cannot be a simple walk of the class's decls. Instead, we must perform
1033 // lookup and overload resolution.
1034 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1035 if (!CD || CD->isDeleted())
1036 continue;
1037
1038 // Mark the constructor referenced as it is used by this throw expression.
1039 MarkFunctionReferenced(E->getExprLoc(), CD);
1040
1041 // Skip this copy constructor if it is trivial, we don't need to record it
1042 // in the catchable type data.
1043 if (CD->isTrivial())
1044 continue;
1045
1046 // The copy constructor is non-trivial, create a mapping from this class
1047 // type to this constructor.
1048 // N.B. The selection of copy constructor is not sensitive to this
1049 // particular throw-site. Lookup will be performed at the catch-site to
1050 // ensure that the copy constructor is, in fact, accessible (via
1051 // friendship or any other means).
1052 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1053
1054 // We don't keep the instantiated default argument expressions around so
1055 // we must rebuild them here.
1056 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1057 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1058 return true;
1059 }
1060 }
1061 }
1062
1063 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1064 // the runtime with no ability for the compiler to request additional
1065 // alignment. Warn if the exception type requires alignment beyond the minimum
1066 // guaranteed by the target C++ runtime.
1067 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1068 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1069 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1070 if (ExnObjAlign < TypeAlign) {
1071 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1072 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1073 << Ty << (unsigned)TypeAlign.getQuantity()
1074 << (unsigned)ExnObjAlign.getQuantity();
1075 }
1076 }
1077
1078 return false;
1079 }
1080
adjustCVQualifiersForCXXThisWithinLambda(ArrayRef<FunctionScopeInfo * > FunctionScopes,QualType ThisTy,DeclContext * CurSemaContext,ASTContext & ASTCtx)1081 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1082 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1083 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1084
1085 QualType ClassType = ThisTy->getPointeeType();
1086 LambdaScopeInfo *CurLSI = nullptr;
1087 DeclContext *CurDC = CurSemaContext;
1088
1089 // Iterate through the stack of lambdas starting from the innermost lambda to
1090 // the outermost lambda, checking if '*this' is ever captured by copy - since
1091 // that could change the cv-qualifiers of the '*this' object.
1092 // The object referred to by '*this' starts out with the cv-qualifiers of its
1093 // member function. We then start with the innermost lambda and iterate
1094 // outward checking to see if any lambda performs a by-copy capture of '*this'
1095 // - and if so, any nested lambda must respect the 'constness' of that
1096 // capturing lamdbda's call operator.
1097 //
1098
1099 // Since the FunctionScopeInfo stack is representative of the lexical
1100 // nesting of the lambda expressions during initial parsing (and is the best
1101 // place for querying information about captures about lambdas that are
1102 // partially processed) and perhaps during instantiation of function templates
1103 // that contain lambda expressions that need to be transformed BUT not
1104 // necessarily during instantiation of a nested generic lambda's function call
1105 // operator (which might even be instantiated at the end of the TU) - at which
1106 // time the DeclContext tree is mature enough to query capture information
1107 // reliably - we use a two pronged approach to walk through all the lexically
1108 // enclosing lambda expressions:
1109 //
1110 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1111 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1112 // enclosed by the call-operator of the LSI below it on the stack (while
1113 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1114 // the stack represents the innermost lambda.
1115 //
1116 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1117 // represents a lambda's call operator. If it does, we must be instantiating
1118 // a generic lambda's call operator (represented by the Current LSI, and
1119 // should be the only scenario where an inconsistency between the LSI and the
1120 // DeclContext should occur), so climb out the DeclContexts if they
1121 // represent lambdas, while querying the corresponding closure types
1122 // regarding capture information.
1123
1124 // 1) Climb down the function scope info stack.
1125 for (int I = FunctionScopes.size();
1126 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1127 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1128 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1129 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1130 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1131
1132 if (!CurLSI->isCXXThisCaptured())
1133 continue;
1134
1135 auto C = CurLSI->getCXXThisCapture();
1136
1137 if (C.isCopyCapture()) {
1138 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1139 if (CurLSI->CallOperator->isConst())
1140 ClassType.addConst();
1141 return ASTCtx.getPointerType(ClassType);
1142 }
1143 }
1144
1145 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1146 // can happen during instantiation of its nested generic lambda call
1147 // operator); 2. if we're in a lambda scope (lambda body).
1148 if (CurLSI && isLambdaCallOperator(CurDC)) {
1149 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1150 "While computing 'this' capture-type for a generic lambda, when we "
1151 "run out of enclosing LSI's, yet the enclosing DC is a "
1152 "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1153 "lambda call oeprator");
1154 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1155
1156 auto IsThisCaptured =
1157 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1158 IsConst = false;
1159 IsByCopy = false;
1160 for (auto &&C : Closure->captures()) {
1161 if (C.capturesThis()) {
1162 if (C.getCaptureKind() == LCK_StarThis)
1163 IsByCopy = true;
1164 if (Closure->getLambdaCallOperator()->isConst())
1165 IsConst = true;
1166 return true;
1167 }
1168 }
1169 return false;
1170 };
1171
1172 bool IsByCopyCapture = false;
1173 bool IsConstCapture = false;
1174 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1175 while (Closure &&
1176 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1177 if (IsByCopyCapture) {
1178 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1179 if (IsConstCapture)
1180 ClassType.addConst();
1181 return ASTCtx.getPointerType(ClassType);
1182 }
1183 Closure = isLambdaCallOperator(Closure->getParent())
1184 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1185 : nullptr;
1186 }
1187 }
1188 return ASTCtx.getPointerType(ClassType);
1189 }
1190
getCurrentThisType()1191 QualType Sema::getCurrentThisType() {
1192 DeclContext *DC = getFunctionLevelDeclContext();
1193 QualType ThisTy = CXXThisTypeOverride;
1194
1195 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1196 if (method && method->isInstance())
1197 ThisTy = method->getThisType();
1198 }
1199
1200 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1201 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1202
1203 // This is a lambda call operator that is being instantiated as a default
1204 // initializer. DC must point to the enclosing class type, so we can recover
1205 // the 'this' type from it.
1206 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1207 // There are no cv-qualifiers for 'this' within default initializers,
1208 // per [expr.prim.general]p4.
1209 ThisTy = Context.getPointerType(ClassTy);
1210 }
1211
1212 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1213 // might need to be adjusted if the lambda or any of its enclosing lambda's
1214 // captures '*this' by copy.
1215 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1216 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1217 CurContext, Context);
1218 return ThisTy;
1219 }
1220
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,Qualifiers CXXThisTypeQuals,bool Enabled)1221 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1222 Decl *ContextDecl,
1223 Qualifiers CXXThisTypeQuals,
1224 bool Enabled)
1225 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1226 {
1227 if (!Enabled || !ContextDecl)
1228 return;
1229
1230 CXXRecordDecl *Record = nullptr;
1231 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1232 Record = Template->getTemplatedDecl();
1233 else
1234 Record = cast<CXXRecordDecl>(ContextDecl);
1235
1236 QualType T = S.Context.getRecordType(Record);
1237 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1238
1239 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1240
1241 this->Enabled = true;
1242 }
1243
1244
~CXXThisScopeRAII()1245 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1246 if (Enabled) {
1247 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1248 }
1249 }
1250
buildLambdaThisCaptureFixit(Sema & Sema,LambdaScopeInfo * LSI)1251 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1252 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1253 assert(!LSI->isCXXThisCaptured());
1254 // [=, this] {}; // until C++20: Error: this when = is the default
1255 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1256 !Sema.getLangOpts().CPlusPlus20)
1257 return;
1258 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1259 << FixItHint::CreateInsertion(
1260 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1261 }
1262
CheckCXXThisCapture(SourceLocation Loc,const bool Explicit,bool BuildAndDiagnose,const unsigned * const FunctionScopeIndexToStopAt,const bool ByCopy)1263 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1264 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1265 const bool ByCopy) {
1266 // We don't need to capture this in an unevaluated context.
1267 if (isUnevaluatedContext() && !Explicit)
1268 return true;
1269
1270 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1271
1272 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1273 ? *FunctionScopeIndexToStopAt
1274 : FunctionScopes.size() - 1;
1275
1276 // Check that we can capture the *enclosing object* (referred to by '*this')
1277 // by the capturing-entity/closure (lambda/block/etc) at
1278 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1279
1280 // Note: The *enclosing object* can only be captured by-value by a
1281 // closure that is a lambda, using the explicit notation:
1282 // [*this] { ... }.
1283 // Every other capture of the *enclosing object* results in its by-reference
1284 // capture.
1285
1286 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1287 // stack), we can capture the *enclosing object* only if:
1288 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1289 // - or, 'L' has an implicit capture.
1290 // AND
1291 // -- there is no enclosing closure
1292 // -- or, there is some enclosing closure 'E' that has already captured the
1293 // *enclosing object*, and every intervening closure (if any) between 'E'
1294 // and 'L' can implicitly capture the *enclosing object*.
1295 // -- or, every enclosing closure can implicitly capture the
1296 // *enclosing object*
1297
1298
1299 unsigned NumCapturingClosures = 0;
1300 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1301 if (CapturingScopeInfo *CSI =
1302 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1303 if (CSI->CXXThisCaptureIndex != 0) {
1304 // 'this' is already being captured; there isn't anything more to do.
1305 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1306 break;
1307 }
1308 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1309 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1310 // This context can't implicitly capture 'this'; fail out.
1311 if (BuildAndDiagnose) {
1312 Diag(Loc, diag::err_this_capture)
1313 << (Explicit && idx == MaxFunctionScopesIndex);
1314 if (!Explicit)
1315 buildLambdaThisCaptureFixit(*this, LSI);
1316 }
1317 return true;
1318 }
1319 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1320 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1321 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1322 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1323 (Explicit && idx == MaxFunctionScopesIndex)) {
1324 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1325 // iteration through can be an explicit capture, all enclosing closures,
1326 // if any, must perform implicit captures.
1327
1328 // This closure can capture 'this'; continue looking upwards.
1329 NumCapturingClosures++;
1330 continue;
1331 }
1332 // This context can't implicitly capture 'this'; fail out.
1333 if (BuildAndDiagnose)
1334 Diag(Loc, diag::err_this_capture)
1335 << (Explicit && idx == MaxFunctionScopesIndex);
1336
1337 if (!Explicit)
1338 buildLambdaThisCaptureFixit(*this, LSI);
1339 return true;
1340 }
1341 break;
1342 }
1343 if (!BuildAndDiagnose) return false;
1344
1345 // If we got here, then the closure at MaxFunctionScopesIndex on the
1346 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1347 // (including implicit by-reference captures in any enclosing closures).
1348
1349 // In the loop below, respect the ByCopy flag only for the closure requesting
1350 // the capture (i.e. first iteration through the loop below). Ignore it for
1351 // all enclosing closure's up to NumCapturingClosures (since they must be
1352 // implicitly capturing the *enclosing object* by reference (see loop
1353 // above)).
1354 assert((!ByCopy ||
1355 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1356 "Only a lambda can capture the enclosing object (referred to by "
1357 "*this) by copy");
1358 QualType ThisTy = getCurrentThisType();
1359 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1360 --idx, --NumCapturingClosures) {
1361 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1362
1363 // The type of the corresponding data member (not a 'this' pointer if 'by
1364 // copy').
1365 QualType CaptureType = ThisTy;
1366 if (ByCopy) {
1367 // If we are capturing the object referred to by '*this' by copy, ignore
1368 // any cv qualifiers inherited from the type of the member function for
1369 // the type of the closure-type's corresponding data member and any use
1370 // of 'this'.
1371 CaptureType = ThisTy->getPointeeType();
1372 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1373 }
1374
1375 bool isNested = NumCapturingClosures > 1;
1376 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1377 }
1378 return false;
1379 }
1380
ActOnCXXThis(SourceLocation Loc)1381 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1382 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1383 /// is a non-lvalue expression whose value is the address of the object for
1384 /// which the function is called.
1385
1386 QualType ThisTy = getCurrentThisType();
1387 if (ThisTy.isNull())
1388 return Diag(Loc, diag::err_invalid_this_use);
1389 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1390 }
1391
BuildCXXThisExpr(SourceLocation Loc,QualType Type,bool IsImplicit)1392 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1393 bool IsImplicit) {
1394 if (getLangOpts().HLSL && Type.getTypePtr()->isPointerType()) {
1395 auto *This = new (Context)
1396 CXXThisExpr(Loc, Type.getTypePtr()->getPointeeType(), IsImplicit);
1397 This->setValueKind(ExprValueKind::VK_LValue);
1398 MarkThisReferenced(This);
1399 return This;
1400 }
1401 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1402 MarkThisReferenced(This);
1403 return This;
1404 }
1405
MarkThisReferenced(CXXThisExpr * This)1406 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1407 CheckCXXThisCapture(This->getExprLoc());
1408 }
1409
isThisOutsideMemberFunctionBody(QualType BaseType)1410 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1411 // If we're outside the body of a member function, then we'll have a specified
1412 // type for 'this'.
1413 if (CXXThisTypeOverride.isNull())
1414 return false;
1415
1416 // Determine whether we're looking into a class that's currently being
1417 // defined.
1418 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1419 return Class && Class->isBeingDefined();
1420 }
1421
1422 /// Parse construction of a specified type.
1423 /// Can be interpreted either as function-style casting ("int(x)")
1424 /// or class type construction ("ClassType(x,y,z)")
1425 /// or creation of a value-initialized type ("int()").
1426 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenOrBraceLoc,MultiExprArg exprs,SourceLocation RParenOrBraceLoc,bool ListInitialization)1427 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1428 SourceLocation LParenOrBraceLoc,
1429 MultiExprArg exprs,
1430 SourceLocation RParenOrBraceLoc,
1431 bool ListInitialization) {
1432 if (!TypeRep)
1433 return ExprError();
1434
1435 TypeSourceInfo *TInfo;
1436 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1437 if (!TInfo)
1438 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1439
1440 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1441 RParenOrBraceLoc, ListInitialization);
1442 // Avoid creating a non-type-dependent expression that contains typos.
1443 // Non-type-dependent expressions are liable to be discarded without
1444 // checking for embedded typos.
1445 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1446 !Result.get()->isTypeDependent())
1447 Result = CorrectDelayedTyposInExpr(Result.get());
1448 else if (Result.isInvalid())
1449 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1450 RParenOrBraceLoc, exprs, Ty);
1451 return Result;
1452 }
1453
1454 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenOrBraceLoc,MultiExprArg Exprs,SourceLocation RParenOrBraceLoc,bool ListInitialization)1455 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1456 SourceLocation LParenOrBraceLoc,
1457 MultiExprArg Exprs,
1458 SourceLocation RParenOrBraceLoc,
1459 bool ListInitialization) {
1460 QualType Ty = TInfo->getType();
1461 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1462
1463 assert((!ListInitialization || Exprs.size() == 1) &&
1464 "List initialization must have exactly one expression.");
1465 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1466
1467 InitializedEntity Entity =
1468 InitializedEntity::InitializeTemporary(Context, TInfo);
1469 InitializationKind Kind =
1470 Exprs.size()
1471 ? ListInitialization
1472 ? InitializationKind::CreateDirectList(
1473 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1474 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1475 RParenOrBraceLoc)
1476 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1477 RParenOrBraceLoc);
1478
1479 // C++1z [expr.type.conv]p1:
1480 // If the type is a placeholder for a deduced class type, [...perform class
1481 // template argument deduction...]
1482 // C++2b:
1483 // Otherwise, if the type contains a placeholder type, it is replaced by the
1484 // type determined by placeholder type deduction.
1485 DeducedType *Deduced = Ty->getContainedDeducedType();
1486 if (Deduced && !Deduced->isDeduced() &&
1487 isa<DeducedTemplateSpecializationType>(Deduced)) {
1488 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1489 Kind, Exprs);
1490 if (Ty.isNull())
1491 return ExprError();
1492 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1493 } else if (Deduced && !Deduced->isDeduced()) {
1494 MultiExprArg Inits = Exprs;
1495 if (ListInitialization) {
1496 auto *ILE = cast<InitListExpr>(Exprs[0]);
1497 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1498 }
1499
1500 if (Inits.empty())
1501 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1502 << Ty << FullRange);
1503 if (Inits.size() > 1) {
1504 Expr *FirstBad = Inits[1];
1505 return ExprError(Diag(FirstBad->getBeginLoc(),
1506 diag::err_auto_expr_init_multiple_expressions)
1507 << Ty << FullRange);
1508 }
1509 if (getLangOpts().CPlusPlus2b) {
1510 if (Ty->getAs<AutoType>())
1511 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1512 }
1513 Expr *Deduce = Inits[0];
1514 if (isa<InitListExpr>(Deduce))
1515 return ExprError(
1516 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1517 << ListInitialization << Ty << FullRange);
1518 QualType DeducedType;
1519 TemplateDeductionInfo Info(Deduce->getExprLoc());
1520 TemplateDeductionResult Result =
1521 DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1522 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
1523 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1524 << Ty << Deduce->getType() << FullRange
1525 << Deduce->getSourceRange());
1526 if (DeducedType.isNull()) {
1527 assert(Result == TDK_AlreadyDiagnosed);
1528 return ExprError();
1529 }
1530
1531 Ty = DeducedType;
1532 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1533 }
1534
1535 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1536 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1537 // directly. We work around this by dropping the locations of the braces.
1538 SourceRange Locs = ListInitialization
1539 ? SourceRange()
1540 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1541 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1542 TInfo, Locs.getBegin(), Exprs,
1543 Locs.getEnd());
1544 }
1545
1546 // C++ [expr.type.conv]p1:
1547 // If the expression list is a parenthesized single expression, the type
1548 // conversion expression is equivalent (in definedness, and if defined in
1549 // meaning) to the corresponding cast expression.
1550 if (Exprs.size() == 1 && !ListInitialization &&
1551 !isa<InitListExpr>(Exprs[0])) {
1552 Expr *Arg = Exprs[0];
1553 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1554 RParenOrBraceLoc);
1555 }
1556
1557 // For an expression of the form T(), T shall not be an array type.
1558 QualType ElemTy = Ty;
1559 if (Ty->isArrayType()) {
1560 if (!ListInitialization)
1561 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1562 << FullRange);
1563 ElemTy = Context.getBaseElementType(Ty);
1564 }
1565
1566 // Only construct objects with object types.
1567 // The standard doesn't explicitly forbid function types here, but that's an
1568 // obvious oversight, as there's no way to dynamically construct a function
1569 // in general.
1570 if (Ty->isFunctionType())
1571 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1572 << Ty << FullRange);
1573
1574 // C++17 [expr.type.conv]p2:
1575 // If the type is cv void and the initializer is (), the expression is a
1576 // prvalue of the specified type that performs no initialization.
1577 if (!Ty->isVoidType() &&
1578 RequireCompleteType(TyBeginLoc, ElemTy,
1579 diag::err_invalid_incomplete_type_use, FullRange))
1580 return ExprError();
1581
1582 // Otherwise, the expression is a prvalue of the specified type whose
1583 // result object is direct-initialized (11.6) with the initializer.
1584 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1585 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1586
1587 if (Result.isInvalid())
1588 return Result;
1589
1590 Expr *Inner = Result.get();
1591 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1592 Inner = BTE->getSubExpr();
1593 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1594 !isa<CXXScalarValueInitExpr>(Inner)) {
1595 // If we created a CXXTemporaryObjectExpr, that node also represents the
1596 // functional cast. Otherwise, create an explicit cast to represent
1597 // the syntactic form of a functional-style cast that was used here.
1598 //
1599 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1600 // would give a more consistent AST representation than using a
1601 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1602 // is sometimes handled by initialization and sometimes not.
1603 QualType ResultType = Result.get()->getType();
1604 SourceRange Locs = ListInitialization
1605 ? SourceRange()
1606 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1607 Result = CXXFunctionalCastExpr::Create(
1608 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1609 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1610 Locs.getBegin(), Locs.getEnd());
1611 }
1612
1613 return Result;
1614 }
1615
isUsualDeallocationFunction(const CXXMethodDecl * Method)1616 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1617 // [CUDA] Ignore this function, if we can't call it.
1618 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1619 if (getLangOpts().CUDA) {
1620 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1621 // If it's not callable at all, it's not the right function.
1622 if (CallPreference < CFP_WrongSide)
1623 return false;
1624 if (CallPreference == CFP_WrongSide) {
1625 // Maybe. We have to check if there are better alternatives.
1626 DeclContext::lookup_result R =
1627 Method->getDeclContext()->lookup(Method->getDeclName());
1628 for (const auto *D : R) {
1629 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1630 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1631 return false;
1632 }
1633 }
1634 // We've found no better variants.
1635 }
1636 }
1637
1638 SmallVector<const FunctionDecl*, 4> PreventedBy;
1639 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1640
1641 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1642 return Result;
1643
1644 // In case of CUDA, return true if none of the 1-argument deallocator
1645 // functions are actually callable.
1646 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1647 assert(FD->getNumParams() == 1 &&
1648 "Only single-operand functions should be in PreventedBy");
1649 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1650 });
1651 }
1652
1653 /// Determine whether the given function is a non-placement
1654 /// deallocation function.
isNonPlacementDeallocationFunction(Sema & S,FunctionDecl * FD)1655 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1656 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1657 return S.isUsualDeallocationFunction(Method);
1658
1659 if (FD->getOverloadedOperator() != OO_Delete &&
1660 FD->getOverloadedOperator() != OO_Array_Delete)
1661 return false;
1662
1663 unsigned UsualParams = 1;
1664
1665 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1666 S.Context.hasSameUnqualifiedType(
1667 FD->getParamDecl(UsualParams)->getType(),
1668 S.Context.getSizeType()))
1669 ++UsualParams;
1670
1671 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1672 S.Context.hasSameUnqualifiedType(
1673 FD->getParamDecl(UsualParams)->getType(),
1674 S.Context.getTypeDeclType(S.getStdAlignValT())))
1675 ++UsualParams;
1676
1677 return UsualParams == FD->getNumParams();
1678 }
1679
1680 namespace {
1681 struct UsualDeallocFnInfo {
UsualDeallocFnInfo__anon62a048340a11::UsualDeallocFnInfo1682 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
UsualDeallocFnInfo__anon62a048340a11::UsualDeallocFnInfo1683 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1684 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1685 Destroying(false), HasSizeT(false), HasAlignValT(false),
1686 CUDAPref(Sema::CFP_Native) {
1687 // A function template declaration is never a usual deallocation function.
1688 if (!FD)
1689 return;
1690 unsigned NumBaseParams = 1;
1691 if (FD->isDestroyingOperatorDelete()) {
1692 Destroying = true;
1693 ++NumBaseParams;
1694 }
1695
1696 if (NumBaseParams < FD->getNumParams() &&
1697 S.Context.hasSameUnqualifiedType(
1698 FD->getParamDecl(NumBaseParams)->getType(),
1699 S.Context.getSizeType())) {
1700 ++NumBaseParams;
1701 HasSizeT = true;
1702 }
1703
1704 if (NumBaseParams < FD->getNumParams() &&
1705 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1706 ++NumBaseParams;
1707 HasAlignValT = true;
1708 }
1709
1710 // In CUDA, determine how much we'd like / dislike to call this.
1711 if (S.getLangOpts().CUDA)
1712 if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true))
1713 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1714 }
1715
operator bool__anon62a048340a11::UsualDeallocFnInfo1716 explicit operator bool() const { return FD; }
1717
isBetterThan__anon62a048340a11::UsualDeallocFnInfo1718 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1719 bool WantAlign) const {
1720 // C++ P0722:
1721 // A destroying operator delete is preferred over a non-destroying
1722 // operator delete.
1723 if (Destroying != Other.Destroying)
1724 return Destroying;
1725
1726 // C++17 [expr.delete]p10:
1727 // If the type has new-extended alignment, a function with a parameter
1728 // of type std::align_val_t is preferred; otherwise a function without
1729 // such a parameter is preferred
1730 if (HasAlignValT != Other.HasAlignValT)
1731 return HasAlignValT == WantAlign;
1732
1733 if (HasSizeT != Other.HasSizeT)
1734 return HasSizeT == WantSize;
1735
1736 // Use CUDA call preference as a tiebreaker.
1737 return CUDAPref > Other.CUDAPref;
1738 }
1739
1740 DeclAccessPair Found;
1741 FunctionDecl *FD;
1742 bool Destroying, HasSizeT, HasAlignValT;
1743 Sema::CUDAFunctionPreference CUDAPref;
1744 };
1745 }
1746
1747 /// Determine whether a type has new-extended alignment. This may be called when
1748 /// the type is incomplete (for a delete-expression with an incomplete pointee
1749 /// type), in which case it will conservatively return false if the alignment is
1750 /// not known.
hasNewExtendedAlignment(Sema & S,QualType AllocType)1751 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1752 return S.getLangOpts().AlignedAllocation &&
1753 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1754 S.getASTContext().getTargetInfo().getNewAlign();
1755 }
1756
1757 /// Select the correct "usual" deallocation function to use from a selection of
1758 /// deallocation functions (either global or class-scope).
resolveDeallocationOverload(Sema & S,LookupResult & R,bool WantSize,bool WantAlign,llvm::SmallVectorImpl<UsualDeallocFnInfo> * BestFns=nullptr)1759 static UsualDeallocFnInfo resolveDeallocationOverload(
1760 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1761 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1762 UsualDeallocFnInfo Best;
1763
1764 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1765 UsualDeallocFnInfo Info(S, I.getPair());
1766 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1767 Info.CUDAPref == Sema::CFP_Never)
1768 continue;
1769
1770 if (!Best) {
1771 Best = Info;
1772 if (BestFns)
1773 BestFns->push_back(Info);
1774 continue;
1775 }
1776
1777 if (Best.isBetterThan(Info, WantSize, WantAlign))
1778 continue;
1779
1780 // If more than one preferred function is found, all non-preferred
1781 // functions are eliminated from further consideration.
1782 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1783 BestFns->clear();
1784
1785 Best = Info;
1786 if (BestFns)
1787 BestFns->push_back(Info);
1788 }
1789
1790 return Best;
1791 }
1792
1793 /// Determine whether a given type is a class for which 'delete[]' would call
1794 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1795 /// we need to store the array size (even if the type is
1796 /// trivially-destructible).
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)1797 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1798 QualType allocType) {
1799 const RecordType *record =
1800 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1801 if (!record) return false;
1802
1803 // Try to find an operator delete[] in class scope.
1804
1805 DeclarationName deleteName =
1806 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1807 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1808 S.LookupQualifiedName(ops, record->getDecl());
1809
1810 // We're just doing this for information.
1811 ops.suppressDiagnostics();
1812
1813 // Very likely: there's no operator delete[].
1814 if (ops.empty()) return false;
1815
1816 // If it's ambiguous, it should be illegal to call operator delete[]
1817 // on this thing, so it doesn't matter if we allocate extra space or not.
1818 if (ops.isAmbiguous()) return false;
1819
1820 // C++17 [expr.delete]p10:
1821 // If the deallocation functions have class scope, the one without a
1822 // parameter of type std::size_t is selected.
1823 auto Best = resolveDeallocationOverload(
1824 S, ops, /*WantSize*/false,
1825 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1826 return Best && Best.HasSizeT;
1827 }
1828
1829 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1830 ///
1831 /// E.g.:
1832 /// @code new (memory) int[size][4] @endcode
1833 /// or
1834 /// @code ::new Foo(23, "hello") @endcode
1835 ///
1836 /// \param StartLoc The first location of the expression.
1837 /// \param UseGlobal True if 'new' was prefixed with '::'.
1838 /// \param PlacementLParen Opening paren of the placement arguments.
1839 /// \param PlacementArgs Placement new arguments.
1840 /// \param PlacementRParen Closing paren of the placement arguments.
1841 /// \param TypeIdParens If the type is in parens, the source range.
1842 /// \param D The type to be allocated, as well as array dimensions.
1843 /// \param Initializer The initializing expression or initializer-list, or null
1844 /// if there is none.
1845 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)1846 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1847 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1848 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1849 Declarator &D, Expr *Initializer) {
1850 std::optional<Expr *> ArraySize;
1851 // If the specified type is an array, unwrap it and save the expression.
1852 if (D.getNumTypeObjects() > 0 &&
1853 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1854 DeclaratorChunk &Chunk = D.getTypeObject(0);
1855 if (D.getDeclSpec().hasAutoTypeSpec())
1856 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1857 << D.getSourceRange());
1858 if (Chunk.Arr.hasStatic)
1859 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1860 << D.getSourceRange());
1861 if (!Chunk.Arr.NumElts && !Initializer)
1862 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1863 << D.getSourceRange());
1864
1865 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1866 D.DropFirstTypeObject();
1867 }
1868
1869 // Every dimension shall be of constant size.
1870 if (ArraySize) {
1871 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1872 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1873 break;
1874
1875 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1876 if (Expr *NumElts = (Expr *)Array.NumElts) {
1877 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1878 // FIXME: GCC permits constant folding here. We should either do so consistently
1879 // or not do so at all, rather than changing behavior in C++14 onwards.
1880 if (getLangOpts().CPlusPlus14) {
1881 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1882 // shall be a converted constant expression (5.19) of type std::size_t
1883 // and shall evaluate to a strictly positive value.
1884 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1885 Array.NumElts
1886 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1887 CCEK_ArrayBound)
1888 .get();
1889 } else {
1890 Array.NumElts =
1891 VerifyIntegerConstantExpression(
1892 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1893 .get();
1894 }
1895 if (!Array.NumElts)
1896 return ExprError();
1897 }
1898 }
1899 }
1900 }
1901
1902 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1903 QualType AllocType = TInfo->getType();
1904 if (D.isInvalidType())
1905 return ExprError();
1906
1907 SourceRange DirectInitRange;
1908 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1909 DirectInitRange = List->getSourceRange();
1910
1911 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1912 PlacementLParen, PlacementArgs, PlacementRParen,
1913 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1914 Initializer);
1915 }
1916
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1917 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1918 Expr *Init) {
1919 if (!Init)
1920 return true;
1921 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1922 return PLE->getNumExprs() == 0;
1923 if (isa<ImplicitValueInitExpr>(Init))
1924 return true;
1925 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1926 return !CCE->isListInitialization() &&
1927 CCE->getConstructor()->isDefaultConstructor();
1928 else if (Style == CXXNewExpr::ListInit) {
1929 assert(isa<InitListExpr>(Init) &&
1930 "Shouldn't create list CXXConstructExprs for arrays.");
1931 return true;
1932 }
1933 return false;
1934 }
1935
1936 bool
isUnavailableAlignedAllocationFunction(const FunctionDecl & FD) const1937 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1938 if (!getLangOpts().AlignedAllocationUnavailable)
1939 return false;
1940 if (FD.isDefined())
1941 return false;
1942 std::optional<unsigned> AlignmentParam;
1943 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1944 AlignmentParam)
1945 return true;
1946 return false;
1947 }
1948
1949 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1950 // implemented in the standard library is selected.
diagnoseUnavailableAlignedAllocation(const FunctionDecl & FD,SourceLocation Loc)1951 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1952 SourceLocation Loc) {
1953 if (isUnavailableAlignedAllocationFunction(FD)) {
1954 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1955 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1956 getASTContext().getTargetInfo().getPlatformName());
1957 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1958
1959 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1960 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1961 Diag(Loc, diag::err_aligned_allocation_unavailable)
1962 << IsDelete << FD.getType().getAsString() << OSName
1963 << OSVersion.getAsString() << OSVersion.empty();
1964 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1965 }
1966 }
1967
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,std::optional<Expr * > ArraySize,SourceRange DirectInitRange,Expr * Initializer)1968 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1969 SourceLocation PlacementLParen,
1970 MultiExprArg PlacementArgs,
1971 SourceLocation PlacementRParen,
1972 SourceRange TypeIdParens, QualType AllocType,
1973 TypeSourceInfo *AllocTypeInfo,
1974 std::optional<Expr *> ArraySize,
1975 SourceRange DirectInitRange, Expr *Initializer) {
1976 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1977 SourceLocation StartLoc = Range.getBegin();
1978
1979 CXXNewExpr::InitializationStyle initStyle;
1980 if (DirectInitRange.isValid()) {
1981 assert(Initializer && "Have parens but no initializer.");
1982 initStyle = CXXNewExpr::CallInit;
1983 } else if (Initializer && isa<InitListExpr>(Initializer))
1984 initStyle = CXXNewExpr::ListInit;
1985 else {
1986 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1987 isa<CXXConstructExpr>(Initializer)) &&
1988 "Initializer expression that cannot have been implicitly created.");
1989 initStyle = CXXNewExpr::NoInit;
1990 }
1991
1992 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
1993 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1994 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1995 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
1996 }
1997
1998 // C++11 [expr.new]p15:
1999 // A new-expression that creates an object of type T initializes that
2000 // object as follows:
2001 InitializationKind Kind
2002 // - If the new-initializer is omitted, the object is default-
2003 // initialized (8.5); if no initialization is performed,
2004 // the object has indeterminate value
2005 = initStyle == CXXNewExpr::NoInit
2006 ? InitializationKind::CreateDefault(TypeRange.getBegin())
2007 // - Otherwise, the new-initializer is interpreted according to
2008 // the
2009 // initialization rules of 8.5 for direct-initialization.
2010 : initStyle == CXXNewExpr::ListInit
2011 ? InitializationKind::CreateDirectList(
2012 TypeRange.getBegin(), Initializer->getBeginLoc(),
2013 Initializer->getEndLoc())
2014 : InitializationKind::CreateDirect(TypeRange.getBegin(),
2015 DirectInitRange.getBegin(),
2016 DirectInitRange.getEnd());
2017
2018 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2019 auto *Deduced = AllocType->getContainedDeducedType();
2020 if (Deduced && !Deduced->isDeduced() &&
2021 isa<DeducedTemplateSpecializationType>(Deduced)) {
2022 if (ArraySize)
2023 return ExprError(
2024 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2025 diag::err_deduced_class_template_compound_type)
2026 << /*array*/ 2
2027 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2028
2029 InitializedEntity Entity
2030 = InitializedEntity::InitializeNew(StartLoc, AllocType);
2031 AllocType = DeduceTemplateSpecializationFromInitializer(
2032 AllocTypeInfo, Entity, Kind, Exprs);
2033 if (AllocType.isNull())
2034 return ExprError();
2035 } else if (Deduced && !Deduced->isDeduced()) {
2036 MultiExprArg Inits = Exprs;
2037 bool Braced = (initStyle == CXXNewExpr::ListInit);
2038 if (Braced) {
2039 auto *ILE = cast<InitListExpr>(Exprs[0]);
2040 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2041 }
2042
2043 if (initStyle == CXXNewExpr::NoInit || Inits.empty())
2044 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2045 << AllocType << TypeRange);
2046 if (Inits.size() > 1) {
2047 Expr *FirstBad = Inits[1];
2048 return ExprError(Diag(FirstBad->getBeginLoc(),
2049 diag::err_auto_new_ctor_multiple_expressions)
2050 << AllocType << TypeRange);
2051 }
2052 if (Braced && !getLangOpts().CPlusPlus17)
2053 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2054 << AllocType << TypeRange;
2055 Expr *Deduce = Inits[0];
2056 if (isa<InitListExpr>(Deduce))
2057 return ExprError(
2058 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2059 << Braced << AllocType << TypeRange);
2060 QualType DeducedType;
2061 TemplateDeductionInfo Info(Deduce->getExprLoc());
2062 TemplateDeductionResult Result =
2063 DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2064 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2065 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2066 << AllocType << Deduce->getType() << TypeRange
2067 << Deduce->getSourceRange());
2068 if (DeducedType.isNull()) {
2069 assert(Result == TDK_AlreadyDiagnosed);
2070 return ExprError();
2071 }
2072 AllocType = DeducedType;
2073 }
2074
2075 // Per C++0x [expr.new]p5, the type being constructed may be a
2076 // typedef of an array type.
2077 if (!ArraySize) {
2078 if (const ConstantArrayType *Array
2079 = Context.getAsConstantArrayType(AllocType)) {
2080 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2081 Context.getSizeType(),
2082 TypeRange.getEnd());
2083 AllocType = Array->getElementType();
2084 }
2085 }
2086
2087 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2088 return ExprError();
2089
2090 if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2091 return ExprError();
2092
2093 // In ARC, infer 'retaining' for the allocated
2094 if (getLangOpts().ObjCAutoRefCount &&
2095 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2096 AllocType->isObjCLifetimeType()) {
2097 AllocType = Context.getLifetimeQualifiedType(AllocType,
2098 AllocType->getObjCARCImplicitLifetime());
2099 }
2100
2101 QualType ResultType = Context.getPointerType(AllocType);
2102
2103 if (ArraySize && *ArraySize &&
2104 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2105 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2106 if (result.isInvalid()) return ExprError();
2107 ArraySize = result.get();
2108 }
2109 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2110 // integral or enumeration type with a non-negative value."
2111 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2112 // enumeration type, or a class type for which a single non-explicit
2113 // conversion function to integral or unscoped enumeration type exists.
2114 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2115 // std::size_t.
2116 std::optional<uint64_t> KnownArraySize;
2117 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2118 ExprResult ConvertedSize;
2119 if (getLangOpts().CPlusPlus14) {
2120 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2121
2122 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2123 AA_Converting);
2124
2125 if (!ConvertedSize.isInvalid() &&
2126 (*ArraySize)->getType()->getAs<RecordType>())
2127 // Diagnose the compatibility of this conversion.
2128 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2129 << (*ArraySize)->getType() << 0 << "'size_t'";
2130 } else {
2131 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2132 protected:
2133 Expr *ArraySize;
2134
2135 public:
2136 SizeConvertDiagnoser(Expr *ArraySize)
2137 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2138 ArraySize(ArraySize) {}
2139
2140 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2141 QualType T) override {
2142 return S.Diag(Loc, diag::err_array_size_not_integral)
2143 << S.getLangOpts().CPlusPlus11 << T;
2144 }
2145
2146 SemaDiagnosticBuilder diagnoseIncomplete(
2147 Sema &S, SourceLocation Loc, QualType T) override {
2148 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2149 << T << ArraySize->getSourceRange();
2150 }
2151
2152 SemaDiagnosticBuilder diagnoseExplicitConv(
2153 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2154 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2155 }
2156
2157 SemaDiagnosticBuilder noteExplicitConv(
2158 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2159 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2160 << ConvTy->isEnumeralType() << ConvTy;
2161 }
2162
2163 SemaDiagnosticBuilder diagnoseAmbiguous(
2164 Sema &S, SourceLocation Loc, QualType T) override {
2165 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2166 }
2167
2168 SemaDiagnosticBuilder noteAmbiguous(
2169 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2170 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2171 << ConvTy->isEnumeralType() << ConvTy;
2172 }
2173
2174 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2175 QualType T,
2176 QualType ConvTy) override {
2177 return S.Diag(Loc,
2178 S.getLangOpts().CPlusPlus11
2179 ? diag::warn_cxx98_compat_array_size_conversion
2180 : diag::ext_array_size_conversion)
2181 << T << ConvTy->isEnumeralType() << ConvTy;
2182 }
2183 } SizeDiagnoser(*ArraySize);
2184
2185 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2186 SizeDiagnoser);
2187 }
2188 if (ConvertedSize.isInvalid())
2189 return ExprError();
2190
2191 ArraySize = ConvertedSize.get();
2192 QualType SizeType = (*ArraySize)->getType();
2193
2194 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2195 return ExprError();
2196
2197 // C++98 [expr.new]p7:
2198 // The expression in a direct-new-declarator shall have integral type
2199 // with a non-negative value.
2200 //
2201 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2202 // per CWG1464. Otherwise, if it's not a constant, we must have an
2203 // unparenthesized array type.
2204
2205 // We've already performed any required implicit conversion to integer or
2206 // unscoped enumeration type.
2207 // FIXME: Per CWG1464, we are required to check the value prior to
2208 // converting to size_t. This will never find a negative array size in
2209 // C++14 onwards, because Value is always unsigned here!
2210 if (std::optional<llvm::APSInt> Value =
2211 (*ArraySize)->getIntegerConstantExpr(Context)) {
2212 if (Value->isSigned() && Value->isNegative()) {
2213 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2214 diag::err_typecheck_negative_array_size)
2215 << (*ArraySize)->getSourceRange());
2216 }
2217
2218 if (!AllocType->isDependentType()) {
2219 unsigned ActiveSizeBits =
2220 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2221 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2222 return ExprError(
2223 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2224 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2225 }
2226
2227 KnownArraySize = Value->getZExtValue();
2228 } else if (TypeIdParens.isValid()) {
2229 // Can't have dynamic array size when the type-id is in parentheses.
2230 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2231 << (*ArraySize)->getSourceRange()
2232 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2233 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2234
2235 TypeIdParens = SourceRange();
2236 }
2237
2238 // Note that we do *not* convert the argument in any way. It can
2239 // be signed, larger than size_t, whatever.
2240 }
2241
2242 FunctionDecl *OperatorNew = nullptr;
2243 FunctionDecl *OperatorDelete = nullptr;
2244 unsigned Alignment =
2245 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2246 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2247 bool PassAlignment = getLangOpts().AlignedAllocation &&
2248 Alignment > NewAlignment;
2249
2250 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2251 if (!AllocType->isDependentType() &&
2252 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2253 FindAllocationFunctions(
2254 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2255 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2256 OperatorNew, OperatorDelete))
2257 return ExprError();
2258
2259 // If this is an array allocation, compute whether the usual array
2260 // deallocation function for the type has a size_t parameter.
2261 bool UsualArrayDeleteWantsSize = false;
2262 if (ArraySize && !AllocType->isDependentType())
2263 UsualArrayDeleteWantsSize =
2264 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2265
2266 SmallVector<Expr *, 8> AllPlaceArgs;
2267 if (OperatorNew) {
2268 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2269 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2270 : VariadicDoesNotApply;
2271
2272 // We've already converted the placement args, just fill in any default
2273 // arguments. Skip the first parameter because we don't have a corresponding
2274 // argument. Skip the second parameter too if we're passing in the
2275 // alignment; we've already filled it in.
2276 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2277 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2278 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2279 CallType))
2280 return ExprError();
2281
2282 if (!AllPlaceArgs.empty())
2283 PlacementArgs = AllPlaceArgs;
2284
2285 // We would like to perform some checking on the given `operator new` call,
2286 // but the PlacementArgs does not contain the implicit arguments,
2287 // namely allocation size and maybe allocation alignment,
2288 // so we need to conjure them.
2289
2290 QualType SizeTy = Context.getSizeType();
2291 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2292
2293 llvm::APInt SingleEltSize(
2294 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2295
2296 // How many bytes do we want to allocate here?
2297 std::optional<llvm::APInt> AllocationSize;
2298 if (!ArraySize && !AllocType->isDependentType()) {
2299 // For non-array operator new, we only want to allocate one element.
2300 AllocationSize = SingleEltSize;
2301 } else if (KnownArraySize && !AllocType->isDependentType()) {
2302 // For array operator new, only deal with static array size case.
2303 bool Overflow;
2304 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2305 .umul_ov(SingleEltSize, Overflow);
2306 (void)Overflow;
2307 assert(
2308 !Overflow &&
2309 "Expected that all the overflows would have been handled already.");
2310 }
2311
2312 IntegerLiteral AllocationSizeLiteral(
2313 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2314 SizeTy, SourceLocation());
2315 // Otherwise, if we failed to constant-fold the allocation size, we'll
2316 // just give up and pass-in something opaque, that isn't a null pointer.
2317 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2318 OK_Ordinary, /*SourceExpr=*/nullptr);
2319
2320 // Let's synthesize the alignment argument in case we will need it.
2321 // Since we *really* want to allocate these on stack, this is slightly ugly
2322 // because there might not be a `std::align_val_t` type.
2323 EnumDecl *StdAlignValT = getStdAlignValT();
2324 QualType AlignValT =
2325 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2326 IntegerLiteral AlignmentLiteral(
2327 Context,
2328 llvm::APInt(Context.getTypeSize(SizeTy),
2329 Alignment / Context.getCharWidth()),
2330 SizeTy, SourceLocation());
2331 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2332 CK_IntegralCast, &AlignmentLiteral,
2333 VK_PRValue, FPOptionsOverride());
2334
2335 // Adjust placement args by prepending conjured size and alignment exprs.
2336 llvm::SmallVector<Expr *, 8> CallArgs;
2337 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2338 CallArgs.emplace_back(AllocationSize
2339 ? static_cast<Expr *>(&AllocationSizeLiteral)
2340 : &OpaqueAllocationSize);
2341 if (PassAlignment)
2342 CallArgs.emplace_back(&DesiredAlignment);
2343 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2344
2345 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2346
2347 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2348 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2349
2350 // Warn if the type is over-aligned and is being allocated by (unaligned)
2351 // global operator new.
2352 if (PlacementArgs.empty() && !PassAlignment &&
2353 (OperatorNew->isImplicit() ||
2354 (OperatorNew->getBeginLoc().isValid() &&
2355 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2356 if (Alignment > NewAlignment)
2357 Diag(StartLoc, diag::warn_overaligned_type)
2358 << AllocType
2359 << unsigned(Alignment / Context.getCharWidth())
2360 << unsigned(NewAlignment / Context.getCharWidth());
2361 }
2362 }
2363
2364 // Array 'new' can't have any initializers except empty parentheses.
2365 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2366 // dialect distinction.
2367 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2368 SourceRange InitRange(Exprs.front()->getBeginLoc(),
2369 Exprs.back()->getEndLoc());
2370 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2371 return ExprError();
2372 }
2373
2374 // If we can perform the initialization, and we've not already done so,
2375 // do it now.
2376 if (!AllocType->isDependentType() &&
2377 !Expr::hasAnyTypeDependentArguments(Exprs)) {
2378 // The type we initialize is the complete type, including the array bound.
2379 QualType InitType;
2380 if (KnownArraySize)
2381 InitType = Context.getConstantArrayType(
2382 AllocType,
2383 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2384 *KnownArraySize),
2385 *ArraySize, ArrayType::Normal, 0);
2386 else if (ArraySize)
2387 InitType =
2388 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2389 else
2390 InitType = AllocType;
2391
2392 InitializedEntity Entity
2393 = InitializedEntity::InitializeNew(StartLoc, InitType);
2394 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2395 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2396 if (FullInit.isInvalid())
2397 return ExprError();
2398
2399 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2400 // we don't want the initialized object to be destructed.
2401 // FIXME: We should not create these in the first place.
2402 if (CXXBindTemporaryExpr *Binder =
2403 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2404 FullInit = Binder->getSubExpr();
2405
2406 Initializer = FullInit.get();
2407
2408 // FIXME: If we have a KnownArraySize, check that the array bound of the
2409 // initializer is no greater than that constant value.
2410
2411 if (ArraySize && !*ArraySize) {
2412 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2413 if (CAT) {
2414 // FIXME: Track that the array size was inferred rather than explicitly
2415 // specified.
2416 ArraySize = IntegerLiteral::Create(
2417 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2418 } else {
2419 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2420 << Initializer->getSourceRange();
2421 }
2422 }
2423 }
2424
2425 // Mark the new and delete operators as referenced.
2426 if (OperatorNew) {
2427 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2428 return ExprError();
2429 MarkFunctionReferenced(StartLoc, OperatorNew);
2430 }
2431 if (OperatorDelete) {
2432 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2433 return ExprError();
2434 MarkFunctionReferenced(StartLoc, OperatorDelete);
2435 }
2436
2437 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2438 PassAlignment, UsualArrayDeleteWantsSize,
2439 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2440 Initializer, ResultType, AllocTypeInfo, Range,
2441 DirectInitRange);
2442 }
2443
2444 /// Checks that a type is suitable as the allocated type
2445 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)2446 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2447 SourceRange R) {
2448 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2449 // abstract class type or array thereof.
2450 if (AllocType->isFunctionType())
2451 return Diag(Loc, diag::err_bad_new_type)
2452 << AllocType << 0 << R;
2453 else if (AllocType->isReferenceType())
2454 return Diag(Loc, diag::err_bad_new_type)
2455 << AllocType << 1 << R;
2456 else if (!AllocType->isDependentType() &&
2457 RequireCompleteSizedType(
2458 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2459 return true;
2460 else if (RequireNonAbstractType(Loc, AllocType,
2461 diag::err_allocation_of_abstract_type))
2462 return true;
2463 else if (AllocType->isVariablyModifiedType())
2464 return Diag(Loc, diag::err_variably_modified_new_type)
2465 << AllocType;
2466 else if (AllocType.getAddressSpace() != LangAS::Default &&
2467 !getLangOpts().OpenCLCPlusPlus)
2468 return Diag(Loc, diag::err_address_space_qualified_new)
2469 << AllocType.getUnqualifiedType()
2470 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2471 else if (getLangOpts().ObjCAutoRefCount) {
2472 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2473 QualType BaseAllocType = Context.getBaseElementType(AT);
2474 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2475 BaseAllocType->isObjCLifetimeType())
2476 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2477 << BaseAllocType;
2478 }
2479 }
2480
2481 return false;
2482 }
2483
resolveAllocationOverload(Sema & S,LookupResult & R,SourceRange Range,SmallVectorImpl<Expr * > & Args,bool & PassAlignment,FunctionDecl * & Operator,OverloadCandidateSet * AlignedCandidates,Expr * AlignArg,bool Diagnose)2484 static bool resolveAllocationOverload(
2485 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2486 bool &PassAlignment, FunctionDecl *&Operator,
2487 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2488 OverloadCandidateSet Candidates(R.getNameLoc(),
2489 OverloadCandidateSet::CSK_Normal);
2490 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2491 Alloc != AllocEnd; ++Alloc) {
2492 // Even member operator new/delete are implicitly treated as
2493 // static, so don't use AddMemberCandidate.
2494 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2495
2496 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2497 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2498 /*ExplicitTemplateArgs=*/nullptr, Args,
2499 Candidates,
2500 /*SuppressUserConversions=*/false);
2501 continue;
2502 }
2503
2504 FunctionDecl *Fn = cast<FunctionDecl>(D);
2505 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2506 /*SuppressUserConversions=*/false);
2507 }
2508
2509 // Do the resolution.
2510 OverloadCandidateSet::iterator Best;
2511 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2512 case OR_Success: {
2513 // Got one!
2514 FunctionDecl *FnDecl = Best->Function;
2515 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2516 Best->FoundDecl) == Sema::AR_inaccessible)
2517 return true;
2518
2519 Operator = FnDecl;
2520 return false;
2521 }
2522
2523 case OR_No_Viable_Function:
2524 // C++17 [expr.new]p13:
2525 // If no matching function is found and the allocated object type has
2526 // new-extended alignment, the alignment argument is removed from the
2527 // argument list, and overload resolution is performed again.
2528 if (PassAlignment) {
2529 PassAlignment = false;
2530 AlignArg = Args[1];
2531 Args.erase(Args.begin() + 1);
2532 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2533 Operator, &Candidates, AlignArg,
2534 Diagnose);
2535 }
2536
2537 // MSVC will fall back on trying to find a matching global operator new
2538 // if operator new[] cannot be found. Also, MSVC will leak by not
2539 // generating a call to operator delete or operator delete[], but we
2540 // will not replicate that bug.
2541 // FIXME: Find out how this interacts with the std::align_val_t fallback
2542 // once MSVC implements it.
2543 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2544 S.Context.getLangOpts().MSVCCompat) {
2545 R.clear();
2546 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2547 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2548 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2549 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2550 Operator, /*Candidates=*/nullptr,
2551 /*AlignArg=*/nullptr, Diagnose);
2552 }
2553
2554 if (Diagnose) {
2555 // If this is an allocation of the form 'new (p) X' for some object
2556 // pointer p (or an expression that will decay to such a pointer),
2557 // diagnose the missing inclusion of <new>.
2558 if (!R.isClassLookup() && Args.size() == 2 &&
2559 (Args[1]->getType()->isObjectPointerType() ||
2560 Args[1]->getType()->isArrayType())) {
2561 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2562 << R.getLookupName() << Range;
2563 // Listing the candidates is unlikely to be useful; skip it.
2564 return true;
2565 }
2566
2567 // Finish checking all candidates before we note any. This checking can
2568 // produce additional diagnostics so can't be interleaved with our
2569 // emission of notes.
2570 //
2571 // For an aligned allocation, separately check the aligned and unaligned
2572 // candidates with their respective argument lists.
2573 SmallVector<OverloadCandidate*, 32> Cands;
2574 SmallVector<OverloadCandidate*, 32> AlignedCands;
2575 llvm::SmallVector<Expr*, 4> AlignedArgs;
2576 if (AlignedCandidates) {
2577 auto IsAligned = [](OverloadCandidate &C) {
2578 return C.Function->getNumParams() > 1 &&
2579 C.Function->getParamDecl(1)->getType()->isAlignValT();
2580 };
2581 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2582
2583 AlignedArgs.reserve(Args.size() + 1);
2584 AlignedArgs.push_back(Args[0]);
2585 AlignedArgs.push_back(AlignArg);
2586 AlignedArgs.append(Args.begin() + 1, Args.end());
2587 AlignedCands = AlignedCandidates->CompleteCandidates(
2588 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2589
2590 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2591 R.getNameLoc(), IsUnaligned);
2592 } else {
2593 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2594 R.getNameLoc());
2595 }
2596
2597 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2598 << R.getLookupName() << Range;
2599 if (AlignedCandidates)
2600 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2601 R.getNameLoc());
2602 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2603 }
2604 return true;
2605
2606 case OR_Ambiguous:
2607 if (Diagnose) {
2608 Candidates.NoteCandidates(
2609 PartialDiagnosticAt(R.getNameLoc(),
2610 S.PDiag(diag::err_ovl_ambiguous_call)
2611 << R.getLookupName() << Range),
2612 S, OCD_AmbiguousCandidates, Args);
2613 }
2614 return true;
2615
2616 case OR_Deleted: {
2617 if (Diagnose) {
2618 Candidates.NoteCandidates(
2619 PartialDiagnosticAt(R.getNameLoc(),
2620 S.PDiag(diag::err_ovl_deleted_call)
2621 << R.getLookupName() << Range),
2622 S, OCD_AllCandidates, Args);
2623 }
2624 return true;
2625 }
2626 }
2627 llvm_unreachable("Unreachable, bad result from BestViableFunction");
2628 }
2629
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,AllocationFunctionScope NewScope,AllocationFunctionScope DeleteScope,QualType AllocType,bool IsArray,bool & PassAlignment,MultiExprArg PlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete,bool Diagnose)2630 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2631 AllocationFunctionScope NewScope,
2632 AllocationFunctionScope DeleteScope,
2633 QualType AllocType, bool IsArray,
2634 bool &PassAlignment, MultiExprArg PlaceArgs,
2635 FunctionDecl *&OperatorNew,
2636 FunctionDecl *&OperatorDelete,
2637 bool Diagnose) {
2638 // --- Choosing an allocation function ---
2639 // C++ 5.3.4p8 - 14 & 18
2640 // 1) If looking in AFS_Global scope for allocation functions, only look in
2641 // the global scope. Else, if AFS_Class, only look in the scope of the
2642 // allocated class. If AFS_Both, look in both.
2643 // 2) If an array size is given, look for operator new[], else look for
2644 // operator new.
2645 // 3) The first argument is always size_t. Append the arguments from the
2646 // placement form.
2647
2648 SmallVector<Expr*, 8> AllocArgs;
2649 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2650
2651 // We don't care about the actual value of these arguments.
2652 // FIXME: Should the Sema create the expression and embed it in the syntax
2653 // tree? Or should the consumer just recalculate the value?
2654 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2655 IntegerLiteral Size(
2656 Context,
2657 llvm::APInt::getZero(
2658 Context.getTargetInfo().getPointerWidth(LangAS::Default)),
2659 Context.getSizeType(), SourceLocation());
2660 AllocArgs.push_back(&Size);
2661
2662 QualType AlignValT = Context.VoidTy;
2663 if (PassAlignment) {
2664 DeclareGlobalNewDelete();
2665 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2666 }
2667 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2668 if (PassAlignment)
2669 AllocArgs.push_back(&Align);
2670
2671 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2672
2673 // C++ [expr.new]p8:
2674 // If the allocated type is a non-array type, the allocation
2675 // function's name is operator new and the deallocation function's
2676 // name is operator delete. If the allocated type is an array
2677 // type, the allocation function's name is operator new[] and the
2678 // deallocation function's name is operator delete[].
2679 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2680 IsArray ? OO_Array_New : OO_New);
2681
2682 QualType AllocElemType = Context.getBaseElementType(AllocType);
2683
2684 // Find the allocation function.
2685 {
2686 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2687
2688 // C++1z [expr.new]p9:
2689 // If the new-expression begins with a unary :: operator, the allocation
2690 // function's name is looked up in the global scope. Otherwise, if the
2691 // allocated type is a class type T or array thereof, the allocation
2692 // function's name is looked up in the scope of T.
2693 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2694 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2695
2696 // We can see ambiguity here if the allocation function is found in
2697 // multiple base classes.
2698 if (R.isAmbiguous())
2699 return true;
2700
2701 // If this lookup fails to find the name, or if the allocated type is not
2702 // a class type, the allocation function's name is looked up in the
2703 // global scope.
2704 if (R.empty()) {
2705 if (NewScope == AFS_Class)
2706 return true;
2707
2708 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2709 }
2710
2711 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2712 if (PlaceArgs.empty()) {
2713 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2714 } else {
2715 Diag(StartLoc, diag::err_openclcxx_placement_new);
2716 }
2717 return true;
2718 }
2719
2720 assert(!R.empty() && "implicitly declared allocation functions not found");
2721 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2722
2723 // We do our own custom access checks below.
2724 R.suppressDiagnostics();
2725
2726 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2727 OperatorNew, /*Candidates=*/nullptr,
2728 /*AlignArg=*/nullptr, Diagnose))
2729 return true;
2730 }
2731
2732 // We don't need an operator delete if we're running under -fno-exceptions.
2733 if (!getLangOpts().Exceptions) {
2734 OperatorDelete = nullptr;
2735 return false;
2736 }
2737
2738 // Note, the name of OperatorNew might have been changed from array to
2739 // non-array by resolveAllocationOverload.
2740 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2741 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2742 ? OO_Array_Delete
2743 : OO_Delete);
2744
2745 // C++ [expr.new]p19:
2746 //
2747 // If the new-expression begins with a unary :: operator, the
2748 // deallocation function's name is looked up in the global
2749 // scope. Otherwise, if the allocated type is a class type T or an
2750 // array thereof, the deallocation function's name is looked up in
2751 // the scope of T. If this lookup fails to find the name, or if
2752 // the allocated type is not a class type or array thereof, the
2753 // deallocation function's name is looked up in the global scope.
2754 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2755 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2756 auto *RD =
2757 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2758 LookupQualifiedName(FoundDelete, RD);
2759 }
2760 if (FoundDelete.isAmbiguous())
2761 return true; // FIXME: clean up expressions?
2762
2763 // Filter out any destroying operator deletes. We can't possibly call such a
2764 // function in this context, because we're handling the case where the object
2765 // was not successfully constructed.
2766 // FIXME: This is not covered by the language rules yet.
2767 {
2768 LookupResult::Filter Filter = FoundDelete.makeFilter();
2769 while (Filter.hasNext()) {
2770 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2771 if (FD && FD->isDestroyingOperatorDelete())
2772 Filter.erase();
2773 }
2774 Filter.done();
2775 }
2776
2777 bool FoundGlobalDelete = FoundDelete.empty();
2778 if (FoundDelete.empty()) {
2779 FoundDelete.clear(LookupOrdinaryName);
2780
2781 if (DeleteScope == AFS_Class)
2782 return true;
2783
2784 DeclareGlobalNewDelete();
2785 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2786 }
2787
2788 FoundDelete.suppressDiagnostics();
2789
2790 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2791
2792 // Whether we're looking for a placement operator delete is dictated
2793 // by whether we selected a placement operator new, not by whether
2794 // we had explicit placement arguments. This matters for things like
2795 // struct A { void *operator new(size_t, int = 0); ... };
2796 // A *a = new A()
2797 //
2798 // We don't have any definition for what a "placement allocation function"
2799 // is, but we assume it's any allocation function whose
2800 // parameter-declaration-clause is anything other than (size_t).
2801 //
2802 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2803 // This affects whether an exception from the constructor of an overaligned
2804 // type uses the sized or non-sized form of aligned operator delete.
2805 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2806 OperatorNew->isVariadic();
2807
2808 if (isPlacementNew) {
2809 // C++ [expr.new]p20:
2810 // A declaration of a placement deallocation function matches the
2811 // declaration of a placement allocation function if it has the
2812 // same number of parameters and, after parameter transformations
2813 // (8.3.5), all parameter types except the first are
2814 // identical. [...]
2815 //
2816 // To perform this comparison, we compute the function type that
2817 // the deallocation function should have, and use that type both
2818 // for template argument deduction and for comparison purposes.
2819 QualType ExpectedFunctionType;
2820 {
2821 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2822
2823 SmallVector<QualType, 4> ArgTypes;
2824 ArgTypes.push_back(Context.VoidPtrTy);
2825 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2826 ArgTypes.push_back(Proto->getParamType(I));
2827
2828 FunctionProtoType::ExtProtoInfo EPI;
2829 // FIXME: This is not part of the standard's rule.
2830 EPI.Variadic = Proto->isVariadic();
2831
2832 ExpectedFunctionType
2833 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2834 }
2835
2836 for (LookupResult::iterator D = FoundDelete.begin(),
2837 DEnd = FoundDelete.end();
2838 D != DEnd; ++D) {
2839 FunctionDecl *Fn = nullptr;
2840 if (FunctionTemplateDecl *FnTmpl =
2841 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2842 // Perform template argument deduction to try to match the
2843 // expected function type.
2844 TemplateDeductionInfo Info(StartLoc);
2845 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2846 Info))
2847 continue;
2848 } else
2849 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2850
2851 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2852 ExpectedFunctionType,
2853 /*AdjustExcpetionSpec*/true),
2854 ExpectedFunctionType))
2855 Matches.push_back(std::make_pair(D.getPair(), Fn));
2856 }
2857
2858 if (getLangOpts().CUDA)
2859 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2860 Matches);
2861 } else {
2862 // C++1y [expr.new]p22:
2863 // For a non-placement allocation function, the normal deallocation
2864 // function lookup is used
2865 //
2866 // Per [expr.delete]p10, this lookup prefers a member operator delete
2867 // without a size_t argument, but prefers a non-member operator delete
2868 // with a size_t where possible (which it always is in this case).
2869 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2870 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2871 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2872 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2873 &BestDeallocFns);
2874 if (Selected)
2875 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2876 else {
2877 // If we failed to select an operator, all remaining functions are viable
2878 // but ambiguous.
2879 for (auto Fn : BestDeallocFns)
2880 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2881 }
2882 }
2883
2884 // C++ [expr.new]p20:
2885 // [...] If the lookup finds a single matching deallocation
2886 // function, that function will be called; otherwise, no
2887 // deallocation function will be called.
2888 if (Matches.size() == 1) {
2889 OperatorDelete = Matches[0].second;
2890
2891 // C++1z [expr.new]p23:
2892 // If the lookup finds a usual deallocation function (3.7.4.2)
2893 // with a parameter of type std::size_t and that function, considered
2894 // as a placement deallocation function, would have been
2895 // selected as a match for the allocation function, the program
2896 // is ill-formed.
2897 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2898 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2899 UsualDeallocFnInfo Info(*this,
2900 DeclAccessPair::make(OperatorDelete, AS_public));
2901 // Core issue, per mail to core reflector, 2016-10-09:
2902 // If this is a member operator delete, and there is a corresponding
2903 // non-sized member operator delete, this isn't /really/ a sized
2904 // deallocation function, it just happens to have a size_t parameter.
2905 bool IsSizedDelete = Info.HasSizeT;
2906 if (IsSizedDelete && !FoundGlobalDelete) {
2907 auto NonSizedDelete =
2908 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2909 /*WantAlign*/Info.HasAlignValT);
2910 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2911 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2912 IsSizedDelete = false;
2913 }
2914
2915 if (IsSizedDelete) {
2916 SourceRange R = PlaceArgs.empty()
2917 ? SourceRange()
2918 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2919 PlaceArgs.back()->getEndLoc());
2920 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2921 if (!OperatorDelete->isImplicit())
2922 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2923 << DeleteName;
2924 }
2925 }
2926
2927 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2928 Matches[0].first);
2929 } else if (!Matches.empty()) {
2930 // We found multiple suitable operators. Per [expr.new]p20, that means we
2931 // call no 'operator delete' function, but we should at least warn the user.
2932 // FIXME: Suppress this warning if the construction cannot throw.
2933 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2934 << DeleteName << AllocElemType;
2935
2936 for (auto &Match : Matches)
2937 Diag(Match.second->getLocation(),
2938 diag::note_member_declared_here) << DeleteName;
2939 }
2940
2941 return false;
2942 }
2943
2944 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2945 /// delete. These are:
2946 /// @code
2947 /// // C++03:
2948 /// void* operator new(std::size_t) throw(std::bad_alloc);
2949 /// void* operator new[](std::size_t) throw(std::bad_alloc);
2950 /// void operator delete(void *) throw();
2951 /// void operator delete[](void *) throw();
2952 /// // C++11:
2953 /// void* operator new(std::size_t);
2954 /// void* operator new[](std::size_t);
2955 /// void operator delete(void *) noexcept;
2956 /// void operator delete[](void *) noexcept;
2957 /// // C++1y:
2958 /// void* operator new(std::size_t);
2959 /// void* operator new[](std::size_t);
2960 /// void operator delete(void *) noexcept;
2961 /// void operator delete[](void *) noexcept;
2962 /// void operator delete(void *, std::size_t) noexcept;
2963 /// void operator delete[](void *, std::size_t) noexcept;
2964 /// @endcode
2965 /// Note that the placement and nothrow forms of new are *not* implicitly
2966 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()2967 void Sema::DeclareGlobalNewDelete() {
2968 if (GlobalNewDeleteDeclared)
2969 return;
2970
2971 // The implicitly declared new and delete operators
2972 // are not supported in OpenCL.
2973 if (getLangOpts().OpenCLCPlusPlus)
2974 return;
2975
2976 // C++ [basic.stc.dynamic.general]p2:
2977 // The library provides default definitions for the global allocation
2978 // and deallocation functions. Some global allocation and deallocation
2979 // functions are replaceable ([new.delete]); these are attached to the
2980 // global module ([module.unit]).
2981 if (getLangOpts().CPlusPlusModules && getCurrentModule())
2982 PushGlobalModuleFragment(SourceLocation(), /*IsImplicit=*/true);
2983
2984 // C++ [basic.std.dynamic]p2:
2985 // [...] The following allocation and deallocation functions (18.4) are
2986 // implicitly declared in global scope in each translation unit of a
2987 // program
2988 //
2989 // C++03:
2990 // void* operator new(std::size_t) throw(std::bad_alloc);
2991 // void* operator new[](std::size_t) throw(std::bad_alloc);
2992 // void operator delete(void*) throw();
2993 // void operator delete[](void*) throw();
2994 // C++11:
2995 // void* operator new(std::size_t);
2996 // void* operator new[](std::size_t);
2997 // void operator delete(void*) noexcept;
2998 // void operator delete[](void*) noexcept;
2999 // C++1y:
3000 // void* operator new(std::size_t);
3001 // void* operator new[](std::size_t);
3002 // void operator delete(void*) noexcept;
3003 // void operator delete[](void*) noexcept;
3004 // void operator delete(void*, std::size_t) noexcept;
3005 // void operator delete[](void*, std::size_t) noexcept;
3006 //
3007 // These implicit declarations introduce only the function names operator
3008 // new, operator new[], operator delete, operator delete[].
3009 //
3010 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3011 // "std" or "bad_alloc" as necessary to form the exception specification.
3012 // However, we do not make these implicit declarations visible to name
3013 // lookup.
3014 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3015 // The "std::bad_alloc" class has not yet been declared, so build it
3016 // implicitly.
3017 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
3018 getOrCreateStdNamespace(),
3019 SourceLocation(), SourceLocation(),
3020 &PP.getIdentifierTable().get("bad_alloc"),
3021 nullptr);
3022 getStdBadAlloc()->setImplicit(true);
3023
3024 // The implicitly declared "std::bad_alloc" should live in global module
3025 // fragment.
3026 if (GlobalModuleFragment) {
3027 getStdBadAlloc()->setModuleOwnershipKind(
3028 Decl::ModuleOwnershipKind::ReachableWhenImported);
3029 getStdBadAlloc()->setLocalOwningModule(GlobalModuleFragment);
3030 }
3031 }
3032 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3033 // The "std::align_val_t" enum class has not yet been declared, so build it
3034 // implicitly.
3035 auto *AlignValT = EnumDecl::Create(
3036 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3037 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3038
3039 // The implicitly declared "std::align_val_t" should live in global module
3040 // fragment.
3041 if (GlobalModuleFragment) {
3042 AlignValT->setModuleOwnershipKind(
3043 Decl::ModuleOwnershipKind::ReachableWhenImported);
3044 AlignValT->setLocalOwningModule(GlobalModuleFragment);
3045 }
3046
3047 AlignValT->setIntegerType(Context.getSizeType());
3048 AlignValT->setPromotionType(Context.getSizeType());
3049 AlignValT->setImplicit(true);
3050
3051 StdAlignValT = AlignValT;
3052 }
3053
3054 GlobalNewDeleteDeclared = true;
3055
3056 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3057 QualType SizeT = Context.getSizeType();
3058
3059 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3060 QualType Return, QualType Param) {
3061 llvm::SmallVector<QualType, 3> Params;
3062 Params.push_back(Param);
3063
3064 // Create up to four variants of the function (sized/aligned).
3065 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3066 (Kind == OO_Delete || Kind == OO_Array_Delete);
3067 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3068
3069 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3070 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3071 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3072 if (Sized)
3073 Params.push_back(SizeT);
3074
3075 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3076 if (Aligned)
3077 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3078
3079 DeclareGlobalAllocationFunction(
3080 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3081
3082 if (Aligned)
3083 Params.pop_back();
3084 }
3085 }
3086 };
3087
3088 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3089 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3090 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3091 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3092
3093 if (getLangOpts().CPlusPlusModules && getCurrentModule())
3094 PopGlobalModuleFragment();
3095 }
3096
3097 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3098 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,ArrayRef<QualType> Params)3099 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3100 QualType Return,
3101 ArrayRef<QualType> Params) {
3102 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3103
3104 // Check if this function is already declared.
3105 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3106 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3107 Alloc != AllocEnd; ++Alloc) {
3108 // Only look at non-template functions, as it is the predefined,
3109 // non-templated allocation function we are trying to declare here.
3110 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3111 if (Func->getNumParams() == Params.size()) {
3112 llvm::SmallVector<QualType, 3> FuncParams;
3113 for (auto *P : Func->parameters())
3114 FuncParams.push_back(
3115 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3116 if (llvm::ArrayRef(FuncParams) == Params) {
3117 // Make the function visible to name lookup, even if we found it in
3118 // an unimported module. It either is an implicitly-declared global
3119 // allocation function, or is suppressing that function.
3120 Func->setVisibleDespiteOwningModule();
3121 return;
3122 }
3123 }
3124 }
3125 }
3126
3127 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3128 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3129
3130 QualType BadAllocType;
3131 bool HasBadAllocExceptionSpec
3132 = (Name.getCXXOverloadedOperator() == OO_New ||
3133 Name.getCXXOverloadedOperator() == OO_Array_New);
3134 if (HasBadAllocExceptionSpec) {
3135 if (!getLangOpts().CPlusPlus11) {
3136 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3137 assert(StdBadAlloc && "Must have std::bad_alloc declared");
3138 EPI.ExceptionSpec.Type = EST_Dynamic;
3139 EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3140 }
3141 if (getLangOpts().NewInfallible) {
3142 EPI.ExceptionSpec.Type = EST_DynamicNone;
3143 }
3144 } else {
3145 EPI.ExceptionSpec =
3146 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3147 }
3148
3149 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3150 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3151 FunctionDecl *Alloc = FunctionDecl::Create(
3152 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3153 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3154 true);
3155 Alloc->setImplicit();
3156 // Global allocation functions should always be visible.
3157 Alloc->setVisibleDespiteOwningModule();
3158
3159 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
3160 Alloc->addAttr(
3161 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3162
3163 // C++ [basic.stc.dynamic.general]p2:
3164 // The library provides default definitions for the global allocation
3165 // and deallocation functions. Some global allocation and deallocation
3166 // functions are replaceable ([new.delete]); these are attached to the
3167 // global module ([module.unit]).
3168 //
3169 // In the language wording, these functions are attched to the global
3170 // module all the time. But in the implementation, the global module
3171 // is only meaningful when we're in a module unit. So here we attach
3172 // these allocation functions to global module conditionally.
3173 if (GlobalModuleFragment) {
3174 Alloc->setModuleOwnershipKind(
3175 Decl::ModuleOwnershipKind::ReachableWhenImported);
3176 Alloc->setLocalOwningModule(GlobalModuleFragment);
3177 }
3178
3179 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3180 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3181 ? VisibilityAttr::Hidden
3182 : VisibilityAttr::Default));
3183
3184 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3185 for (QualType T : Params) {
3186 ParamDecls.push_back(ParmVarDecl::Create(
3187 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3188 /*TInfo=*/nullptr, SC_None, nullptr));
3189 ParamDecls.back()->setImplicit();
3190 }
3191 Alloc->setParams(ParamDecls);
3192 if (ExtraAttr)
3193 Alloc->addAttr(ExtraAttr);
3194 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3195 Context.getTranslationUnitDecl()->addDecl(Alloc);
3196 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3197 };
3198
3199 if (!LangOpts.CUDA)
3200 CreateAllocationFunctionDecl(nullptr);
3201 else {
3202 // Host and device get their own declaration so each can be
3203 // defined or re-declared independently.
3204 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3205 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3206 }
3207 }
3208
FindUsualDeallocationFunction(SourceLocation StartLoc,bool CanProvideSize,bool Overaligned,DeclarationName Name)3209 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3210 bool CanProvideSize,
3211 bool Overaligned,
3212 DeclarationName Name) {
3213 DeclareGlobalNewDelete();
3214
3215 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3216 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3217
3218 // FIXME: It's possible for this to result in ambiguity, through a
3219 // user-declared variadic operator delete or the enable_if attribute. We
3220 // should probably not consider those cases to be usual deallocation
3221 // functions. But for now we just make an arbitrary choice in that case.
3222 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3223 Overaligned);
3224 assert(Result.FD && "operator delete missing from global scope?");
3225 return Result.FD;
3226 }
3227
FindDeallocationFunctionForDestructor(SourceLocation Loc,CXXRecordDecl * RD)3228 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3229 CXXRecordDecl *RD) {
3230 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3231
3232 FunctionDecl *OperatorDelete = nullptr;
3233 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3234 return nullptr;
3235 if (OperatorDelete)
3236 return OperatorDelete;
3237
3238 // If there's no class-specific operator delete, look up the global
3239 // non-array delete.
3240 return FindUsualDeallocationFunction(
3241 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3242 Name);
3243 }
3244
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose,bool WantSize,bool WantAligned)3245 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3246 DeclarationName Name,
3247 FunctionDecl *&Operator, bool Diagnose,
3248 bool WantSize, bool WantAligned) {
3249 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3250 // Try to find operator delete/operator delete[] in class scope.
3251 LookupQualifiedName(Found, RD);
3252
3253 if (Found.isAmbiguous())
3254 return true;
3255
3256 Found.suppressDiagnostics();
3257
3258 bool Overaligned =
3259 WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3260
3261 // C++17 [expr.delete]p10:
3262 // If the deallocation functions have class scope, the one without a
3263 // parameter of type std::size_t is selected.
3264 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3265 resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3266 /*WantAlign*/ Overaligned, &Matches);
3267
3268 // If we could find an overload, use it.
3269 if (Matches.size() == 1) {
3270 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3271
3272 // FIXME: DiagnoseUseOfDecl?
3273 if (Operator->isDeleted()) {
3274 if (Diagnose) {
3275 Diag(StartLoc, diag::err_deleted_function_use);
3276 NoteDeletedFunction(Operator);
3277 }
3278 return true;
3279 }
3280
3281 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3282 Matches[0].Found, Diagnose) == AR_inaccessible)
3283 return true;
3284
3285 return false;
3286 }
3287
3288 // We found multiple suitable operators; complain about the ambiguity.
3289 // FIXME: The standard doesn't say to do this; it appears that the intent
3290 // is that this should never happen.
3291 if (!Matches.empty()) {
3292 if (Diagnose) {
3293 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3294 << Name << RD;
3295 for (auto &Match : Matches)
3296 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3297 }
3298 return true;
3299 }
3300
3301 // We did find operator delete/operator delete[] declarations, but
3302 // none of them were suitable.
3303 if (!Found.empty()) {
3304 if (Diagnose) {
3305 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3306 << Name << RD;
3307
3308 for (NamedDecl *D : Found)
3309 Diag(D->getUnderlyingDecl()->getLocation(),
3310 diag::note_member_declared_here) << Name;
3311 }
3312 return true;
3313 }
3314
3315 Operator = nullptr;
3316 return false;
3317 }
3318
3319 namespace {
3320 /// Checks whether delete-expression, and new-expression used for
3321 /// initializing deletee have the same array form.
3322 class MismatchingNewDeleteDetector {
3323 public:
3324 enum MismatchResult {
3325 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3326 NoMismatch,
3327 /// Indicates that variable is initialized with mismatching form of \a new.
3328 VarInitMismatches,
3329 /// Indicates that member is initialized with mismatching form of \a new.
3330 MemberInitMismatches,
3331 /// Indicates that 1 or more constructors' definitions could not been
3332 /// analyzed, and they will be checked again at the end of translation unit.
3333 AnalyzeLater
3334 };
3335
3336 /// \param EndOfTU True, if this is the final analysis at the end of
3337 /// translation unit. False, if this is the initial analysis at the point
3338 /// delete-expression was encountered.
MismatchingNewDeleteDetector(bool EndOfTU)3339 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3340 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3341 HasUndefinedConstructors(false) {}
3342
3343 /// Checks whether pointee of a delete-expression is initialized with
3344 /// matching form of new-expression.
3345 ///
3346 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3347 /// point where delete-expression is encountered, then a warning will be
3348 /// issued immediately. If return value is \c AnalyzeLater at the point where
3349 /// delete-expression is seen, then member will be analyzed at the end of
3350 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3351 /// couldn't be analyzed. If at least one constructor initializes the member
3352 /// with matching type of new, the return value is \c NoMismatch.
3353 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3354 /// Analyzes a class member.
3355 /// \param Field Class member to analyze.
3356 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3357 /// for deleting the \p Field.
3358 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3359 FieldDecl *Field;
3360 /// List of mismatching new-expressions used for initialization of the pointee
3361 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3362 /// Indicates whether delete-expression was in array form.
3363 bool IsArrayForm;
3364
3365 private:
3366 const bool EndOfTU;
3367 /// Indicates that there is at least one constructor without body.
3368 bool HasUndefinedConstructors;
3369 /// Returns \c CXXNewExpr from given initialization expression.
3370 /// \param E Expression used for initializing pointee in delete-expression.
3371 /// E can be a single-element \c InitListExpr consisting of new-expression.
3372 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3373 /// Returns whether member is initialized with mismatching form of
3374 /// \c new either by the member initializer or in-class initialization.
3375 ///
3376 /// If bodies of all constructors are not visible at the end of translation
3377 /// unit or at least one constructor initializes member with the matching
3378 /// form of \c new, mismatch cannot be proven, and this function will return
3379 /// \c NoMismatch.
3380 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3381 /// Returns whether variable is initialized with mismatching form of
3382 /// \c new.
3383 ///
3384 /// If variable is initialized with matching form of \c new or variable is not
3385 /// initialized with a \c new expression, this function will return true.
3386 /// If variable is initialized with mismatching form of \c new, returns false.
3387 /// \param D Variable to analyze.
3388 bool hasMatchingVarInit(const DeclRefExpr *D);
3389 /// Checks whether the constructor initializes pointee with mismatching
3390 /// form of \c new.
3391 ///
3392 /// Returns true, if member is initialized with matching form of \c new in
3393 /// member initializer list. Returns false, if member is initialized with the
3394 /// matching form of \c new in this constructor's initializer or given
3395 /// constructor isn't defined at the point where delete-expression is seen, or
3396 /// member isn't initialized by the constructor.
3397 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3398 /// Checks whether member is initialized with matching form of
3399 /// \c new in member initializer list.
3400 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3401 /// Checks whether member is initialized with mismatching form of \c new by
3402 /// in-class initializer.
3403 MismatchResult analyzeInClassInitializer();
3404 };
3405 }
3406
3407 MismatchingNewDeleteDetector::MismatchResult
analyzeDeleteExpr(const CXXDeleteExpr * DE)3408 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3409 NewExprs.clear();
3410 assert(DE && "Expected delete-expression");
3411 IsArrayForm = DE->isArrayForm();
3412 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3413 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3414 return analyzeMemberExpr(ME);
3415 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3416 if (!hasMatchingVarInit(D))
3417 return VarInitMismatches;
3418 }
3419 return NoMismatch;
3420 }
3421
3422 const CXXNewExpr *
getNewExprFromInitListOrExpr(const Expr * E)3423 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3424 assert(E != nullptr && "Expected a valid initializer expression");
3425 E = E->IgnoreParenImpCasts();
3426 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3427 if (ILE->getNumInits() == 1)
3428 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3429 }
3430
3431 return dyn_cast_or_null<const CXXNewExpr>(E);
3432 }
3433
hasMatchingNewInCtorInit(const CXXCtorInitializer * CI)3434 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3435 const CXXCtorInitializer *CI) {
3436 const CXXNewExpr *NE = nullptr;
3437 if (Field == CI->getMember() &&
3438 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3439 if (NE->isArray() == IsArrayForm)
3440 return true;
3441 else
3442 NewExprs.push_back(NE);
3443 }
3444 return false;
3445 }
3446
hasMatchingNewInCtor(const CXXConstructorDecl * CD)3447 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3448 const CXXConstructorDecl *CD) {
3449 if (CD->isImplicit())
3450 return false;
3451 const FunctionDecl *Definition = CD;
3452 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3453 HasUndefinedConstructors = true;
3454 return EndOfTU;
3455 }
3456 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3457 if (hasMatchingNewInCtorInit(CI))
3458 return true;
3459 }
3460 return false;
3461 }
3462
3463 MismatchingNewDeleteDetector::MismatchResult
analyzeInClassInitializer()3464 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3465 assert(Field != nullptr && "This should be called only for members");
3466 const Expr *InitExpr = Field->getInClassInitializer();
3467 if (!InitExpr)
3468 return EndOfTU ? NoMismatch : AnalyzeLater;
3469 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3470 if (NE->isArray() != IsArrayForm) {
3471 NewExprs.push_back(NE);
3472 return MemberInitMismatches;
3473 }
3474 }
3475 return NoMismatch;
3476 }
3477
3478 MismatchingNewDeleteDetector::MismatchResult
analyzeField(FieldDecl * Field,bool DeleteWasArrayForm)3479 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3480 bool DeleteWasArrayForm) {
3481 assert(Field != nullptr && "Analysis requires a valid class member.");
3482 this->Field = Field;
3483 IsArrayForm = DeleteWasArrayForm;
3484 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3485 for (const auto *CD : RD->ctors()) {
3486 if (hasMatchingNewInCtor(CD))
3487 return NoMismatch;
3488 }
3489 if (HasUndefinedConstructors)
3490 return EndOfTU ? NoMismatch : AnalyzeLater;
3491 if (!NewExprs.empty())
3492 return MemberInitMismatches;
3493 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3494 : NoMismatch;
3495 }
3496
3497 MismatchingNewDeleteDetector::MismatchResult
analyzeMemberExpr(const MemberExpr * ME)3498 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3499 assert(ME != nullptr && "Expected a member expression");
3500 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3501 return analyzeField(F, IsArrayForm);
3502 return NoMismatch;
3503 }
3504
hasMatchingVarInit(const DeclRefExpr * D)3505 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3506 const CXXNewExpr *NE = nullptr;
3507 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3508 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3509 NE->isArray() != IsArrayForm) {
3510 NewExprs.push_back(NE);
3511 }
3512 }
3513 return NewExprs.empty();
3514 }
3515
3516 static void
DiagnoseMismatchedNewDelete(Sema & SemaRef,SourceLocation DeleteLoc,const MismatchingNewDeleteDetector & Detector)3517 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3518 const MismatchingNewDeleteDetector &Detector) {
3519 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3520 FixItHint H;
3521 if (!Detector.IsArrayForm)
3522 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3523 else {
3524 SourceLocation RSquare = Lexer::findLocationAfterToken(
3525 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3526 SemaRef.getLangOpts(), true);
3527 if (RSquare.isValid())
3528 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3529 }
3530 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3531 << Detector.IsArrayForm << H;
3532
3533 for (const auto *NE : Detector.NewExprs)
3534 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3535 << Detector.IsArrayForm;
3536 }
3537
AnalyzeDeleteExprMismatch(const CXXDeleteExpr * DE)3538 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3539 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3540 return;
3541 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3542 switch (Detector.analyzeDeleteExpr(DE)) {
3543 case MismatchingNewDeleteDetector::VarInitMismatches:
3544 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3545 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3546 break;
3547 }
3548 case MismatchingNewDeleteDetector::AnalyzeLater: {
3549 DeleteExprs[Detector.Field].push_back(
3550 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3551 break;
3552 }
3553 case MismatchingNewDeleteDetector::NoMismatch:
3554 break;
3555 }
3556 }
3557
AnalyzeDeleteExprMismatch(FieldDecl * Field,SourceLocation DeleteLoc,bool DeleteWasArrayForm)3558 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3559 bool DeleteWasArrayForm) {
3560 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3561 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3562 case MismatchingNewDeleteDetector::VarInitMismatches:
3563 llvm_unreachable("This analysis should have been done for class members.");
3564 case MismatchingNewDeleteDetector::AnalyzeLater:
3565 llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3566 "translation unit.");
3567 case MismatchingNewDeleteDetector::MemberInitMismatches:
3568 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3569 break;
3570 case MismatchingNewDeleteDetector::NoMismatch:
3571 break;
3572 }
3573 }
3574
3575 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3576 /// @code ::delete ptr; @endcode
3577 /// or
3578 /// @code delete [] ptr; @endcode
3579 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)3580 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3581 bool ArrayForm, Expr *ExE) {
3582 // C++ [expr.delete]p1:
3583 // The operand shall have a pointer type, or a class type having a single
3584 // non-explicit conversion function to a pointer type. The result has type
3585 // void.
3586 //
3587 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3588
3589 ExprResult Ex = ExE;
3590 FunctionDecl *OperatorDelete = nullptr;
3591 bool ArrayFormAsWritten = ArrayForm;
3592 bool UsualArrayDeleteWantsSize = false;
3593
3594 if (!Ex.get()->isTypeDependent()) {
3595 // Perform lvalue-to-rvalue cast, if needed.
3596 Ex = DefaultLvalueConversion(Ex.get());
3597 if (Ex.isInvalid())
3598 return ExprError();
3599
3600 QualType Type = Ex.get()->getType();
3601
3602 class DeleteConverter : public ContextualImplicitConverter {
3603 public:
3604 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3605
3606 bool match(QualType ConvType) override {
3607 // FIXME: If we have an operator T* and an operator void*, we must pick
3608 // the operator T*.
3609 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3610 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3611 return true;
3612 return false;
3613 }
3614
3615 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3616 QualType T) override {
3617 return S.Diag(Loc, diag::err_delete_operand) << T;
3618 }
3619
3620 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3621 QualType T) override {
3622 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3623 }
3624
3625 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3626 QualType T,
3627 QualType ConvTy) override {
3628 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3629 }
3630
3631 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3632 QualType ConvTy) override {
3633 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3634 << ConvTy;
3635 }
3636
3637 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3638 QualType T) override {
3639 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3640 }
3641
3642 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3643 QualType ConvTy) override {
3644 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3645 << ConvTy;
3646 }
3647
3648 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3649 QualType T,
3650 QualType ConvTy) override {
3651 llvm_unreachable("conversion functions are permitted");
3652 }
3653 } Converter;
3654
3655 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3656 if (Ex.isInvalid())
3657 return ExprError();
3658 Type = Ex.get()->getType();
3659 if (!Converter.match(Type))
3660 // FIXME: PerformContextualImplicitConversion should return ExprError
3661 // itself in this case.
3662 return ExprError();
3663
3664 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3665 QualType PointeeElem = Context.getBaseElementType(Pointee);
3666
3667 if (Pointee.getAddressSpace() != LangAS::Default &&
3668 !getLangOpts().OpenCLCPlusPlus)
3669 return Diag(Ex.get()->getBeginLoc(),
3670 diag::err_address_space_qualified_delete)
3671 << Pointee.getUnqualifiedType()
3672 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3673
3674 CXXRecordDecl *PointeeRD = nullptr;
3675 if (Pointee->isVoidType() && !isSFINAEContext()) {
3676 // The C++ standard bans deleting a pointer to a non-object type, which
3677 // effectively bans deletion of "void*". However, most compilers support
3678 // this, so we treat it as a warning unless we're in a SFINAE context.
3679 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3680 << Type << Ex.get()->getSourceRange();
3681 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3682 Pointee->isSizelessType()) {
3683 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3684 << Type << Ex.get()->getSourceRange());
3685 } else if (!Pointee->isDependentType()) {
3686 // FIXME: This can result in errors if the definition was imported from a
3687 // module but is hidden.
3688 if (!RequireCompleteType(StartLoc, Pointee,
3689 diag::warn_delete_incomplete, Ex.get())) {
3690 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3691 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3692 }
3693 }
3694
3695 if (Pointee->isArrayType() && !ArrayForm) {
3696 Diag(StartLoc, diag::warn_delete_array_type)
3697 << Type << Ex.get()->getSourceRange()
3698 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3699 ArrayForm = true;
3700 }
3701
3702 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3703 ArrayForm ? OO_Array_Delete : OO_Delete);
3704
3705 if (PointeeRD) {
3706 if (!UseGlobal &&
3707 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3708 OperatorDelete))
3709 return ExprError();
3710
3711 // If we're allocating an array of records, check whether the
3712 // usual operator delete[] has a size_t parameter.
3713 if (ArrayForm) {
3714 // If the user specifically asked to use the global allocator,
3715 // we'll need to do the lookup into the class.
3716 if (UseGlobal)
3717 UsualArrayDeleteWantsSize =
3718 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3719
3720 // Otherwise, the usual operator delete[] should be the
3721 // function we just found.
3722 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3723 UsualArrayDeleteWantsSize =
3724 UsualDeallocFnInfo(*this,
3725 DeclAccessPair::make(OperatorDelete, AS_public))
3726 .HasSizeT;
3727 }
3728
3729 if (!PointeeRD->hasIrrelevantDestructor())
3730 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3731 MarkFunctionReferenced(StartLoc,
3732 const_cast<CXXDestructorDecl*>(Dtor));
3733 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3734 return ExprError();
3735 }
3736
3737 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3738 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3739 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3740 SourceLocation());
3741 }
3742
3743 if (!OperatorDelete) {
3744 if (getLangOpts().OpenCLCPlusPlus) {
3745 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3746 return ExprError();
3747 }
3748
3749 bool IsComplete = isCompleteType(StartLoc, Pointee);
3750 bool CanProvideSize =
3751 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3752 Pointee.isDestructedType());
3753 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3754
3755 // Look for a global declaration.
3756 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3757 Overaligned, DeleteName);
3758 }
3759
3760 MarkFunctionReferenced(StartLoc, OperatorDelete);
3761
3762 // Check access and ambiguity of destructor if we're going to call it.
3763 // Note that this is required even for a virtual delete.
3764 bool IsVirtualDelete = false;
3765 if (PointeeRD) {
3766 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3767 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3768 PDiag(diag::err_access_dtor) << PointeeElem);
3769 IsVirtualDelete = Dtor->isVirtual();
3770 }
3771 }
3772
3773 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3774
3775 // Convert the operand to the type of the first parameter of operator
3776 // delete. This is only necessary if we selected a destroying operator
3777 // delete that we are going to call (non-virtually); converting to void*
3778 // is trivial and left to AST consumers to handle.
3779 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3780 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3781 Qualifiers Qs = Pointee.getQualifiers();
3782 if (Qs.hasCVRQualifiers()) {
3783 // Qualifiers are irrelevant to this conversion; we're only looking
3784 // for access and ambiguity.
3785 Qs.removeCVRQualifiers();
3786 QualType Unqual = Context.getPointerType(
3787 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3788 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3789 }
3790 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3791 if (Ex.isInvalid())
3792 return ExprError();
3793 }
3794 }
3795
3796 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3797 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3798 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3799 AnalyzeDeleteExprMismatch(Result);
3800 return Result;
3801 }
3802
resolveBuiltinNewDeleteOverload(Sema & S,CallExpr * TheCall,bool IsDelete,FunctionDecl * & Operator)3803 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3804 bool IsDelete,
3805 FunctionDecl *&Operator) {
3806
3807 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3808 IsDelete ? OO_Delete : OO_New);
3809
3810 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3811 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3812 assert(!R.empty() && "implicitly declared allocation functions not found");
3813 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3814
3815 // We do our own custom access checks below.
3816 R.suppressDiagnostics();
3817
3818 SmallVector<Expr *, 8> Args(TheCall->arguments());
3819 OverloadCandidateSet Candidates(R.getNameLoc(),
3820 OverloadCandidateSet::CSK_Normal);
3821 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3822 FnOvl != FnOvlEnd; ++FnOvl) {
3823 // Even member operator new/delete are implicitly treated as
3824 // static, so don't use AddMemberCandidate.
3825 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3826
3827 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3828 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3829 /*ExplicitTemplateArgs=*/nullptr, Args,
3830 Candidates,
3831 /*SuppressUserConversions=*/false);
3832 continue;
3833 }
3834
3835 FunctionDecl *Fn = cast<FunctionDecl>(D);
3836 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3837 /*SuppressUserConversions=*/false);
3838 }
3839
3840 SourceRange Range = TheCall->getSourceRange();
3841
3842 // Do the resolution.
3843 OverloadCandidateSet::iterator Best;
3844 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3845 case OR_Success: {
3846 // Got one!
3847 FunctionDecl *FnDecl = Best->Function;
3848 assert(R.getNamingClass() == nullptr &&
3849 "class members should not be considered");
3850
3851 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3852 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3853 << (IsDelete ? 1 : 0) << Range;
3854 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3855 << R.getLookupName() << FnDecl->getSourceRange();
3856 return true;
3857 }
3858
3859 Operator = FnDecl;
3860 return false;
3861 }
3862
3863 case OR_No_Viable_Function:
3864 Candidates.NoteCandidates(
3865 PartialDiagnosticAt(R.getNameLoc(),
3866 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3867 << R.getLookupName() << Range),
3868 S, OCD_AllCandidates, Args);
3869 return true;
3870
3871 case OR_Ambiguous:
3872 Candidates.NoteCandidates(
3873 PartialDiagnosticAt(R.getNameLoc(),
3874 S.PDiag(diag::err_ovl_ambiguous_call)
3875 << R.getLookupName() << Range),
3876 S, OCD_AmbiguousCandidates, Args);
3877 return true;
3878
3879 case OR_Deleted: {
3880 Candidates.NoteCandidates(
3881 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3882 << R.getLookupName() << Range),
3883 S, OCD_AllCandidates, Args);
3884 return true;
3885 }
3886 }
3887 llvm_unreachable("Unreachable, bad result from BestViableFunction");
3888 }
3889
3890 ExprResult
SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,bool IsDelete)3891 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3892 bool IsDelete) {
3893 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3894 if (!getLangOpts().CPlusPlus) {
3895 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3896 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3897 << "C++";
3898 return ExprError();
3899 }
3900 // CodeGen assumes it can find the global new and delete to call,
3901 // so ensure that they are declared.
3902 DeclareGlobalNewDelete();
3903
3904 FunctionDecl *OperatorNewOrDelete = nullptr;
3905 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3906 OperatorNewOrDelete))
3907 return ExprError();
3908 assert(OperatorNewOrDelete && "should be found");
3909
3910 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3911 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3912
3913 TheCall->setType(OperatorNewOrDelete->getReturnType());
3914 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3915 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3916 InitializedEntity Entity =
3917 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3918 ExprResult Arg = PerformCopyInitialization(
3919 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3920 if (Arg.isInvalid())
3921 return ExprError();
3922 TheCall->setArg(i, Arg.get());
3923 }
3924 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3925 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3926 "Callee expected to be implicit cast to a builtin function pointer");
3927 Callee->setType(OperatorNewOrDelete->getType());
3928
3929 return TheCallResult;
3930 }
3931
CheckVirtualDtorCall(CXXDestructorDecl * dtor,SourceLocation Loc,bool IsDelete,bool CallCanBeVirtual,bool WarnOnNonAbstractTypes,SourceLocation DtorLoc)3932 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3933 bool IsDelete, bool CallCanBeVirtual,
3934 bool WarnOnNonAbstractTypes,
3935 SourceLocation DtorLoc) {
3936 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3937 return;
3938
3939 // C++ [expr.delete]p3:
3940 // In the first alternative (delete object), if the static type of the
3941 // object to be deleted is different from its dynamic type, the static
3942 // type shall be a base class of the dynamic type of the object to be
3943 // deleted and the static type shall have a virtual destructor or the
3944 // behavior is undefined.
3945 //
3946 const CXXRecordDecl *PointeeRD = dtor->getParent();
3947 // Note: a final class cannot be derived from, no issue there
3948 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3949 return;
3950
3951 // If the superclass is in a system header, there's nothing that can be done.
3952 // The `delete` (where we emit the warning) can be in a system header,
3953 // what matters for this warning is where the deleted type is defined.
3954 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3955 return;
3956
3957 QualType ClassType = dtor->getThisType()->getPointeeType();
3958 if (PointeeRD->isAbstract()) {
3959 // If the class is abstract, we warn by default, because we're
3960 // sure the code has undefined behavior.
3961 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3962 << ClassType;
3963 } else if (WarnOnNonAbstractTypes) {
3964 // Otherwise, if this is not an array delete, it's a bit suspect,
3965 // but not necessarily wrong.
3966 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3967 << ClassType;
3968 }
3969 if (!IsDelete) {
3970 std::string TypeStr;
3971 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3972 Diag(DtorLoc, diag::note_delete_non_virtual)
3973 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3974 }
3975 }
3976
ActOnConditionVariable(Decl * ConditionVar,SourceLocation StmtLoc,ConditionKind CK)3977 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3978 SourceLocation StmtLoc,
3979 ConditionKind CK) {
3980 ExprResult E =
3981 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3982 if (E.isInvalid())
3983 return ConditionError();
3984 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3985 CK == ConditionKind::ConstexprIf);
3986 }
3987
3988 /// Check the use of the given variable as a C++ condition in an if,
3989 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,ConditionKind CK)3990 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3991 SourceLocation StmtLoc,
3992 ConditionKind CK) {
3993 if (ConditionVar->isInvalidDecl())
3994 return ExprError();
3995
3996 QualType T = ConditionVar->getType();
3997
3998 // C++ [stmt.select]p2:
3999 // The declarator shall not specify a function or an array.
4000 if (T->isFunctionType())
4001 return ExprError(Diag(ConditionVar->getLocation(),
4002 diag::err_invalid_use_of_function_type)
4003 << ConditionVar->getSourceRange());
4004 else if (T->isArrayType())
4005 return ExprError(Diag(ConditionVar->getLocation(),
4006 diag::err_invalid_use_of_array_type)
4007 << ConditionVar->getSourceRange());
4008
4009 ExprResult Condition = BuildDeclRefExpr(
4010 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4011 ConditionVar->getLocation());
4012
4013 switch (CK) {
4014 case ConditionKind::Boolean:
4015 return CheckBooleanCondition(StmtLoc, Condition.get());
4016
4017 case ConditionKind::ConstexprIf:
4018 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
4019
4020 case ConditionKind::Switch:
4021 return CheckSwitchCondition(StmtLoc, Condition.get());
4022 }
4023
4024 llvm_unreachable("unexpected condition kind");
4025 }
4026
4027 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr,bool IsConstexpr)4028 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4029 // C++11 6.4p4:
4030 // The value of a condition that is an initialized declaration in a statement
4031 // other than a switch statement is the value of the declared variable
4032 // implicitly converted to type bool. If that conversion is ill-formed, the
4033 // program is ill-formed.
4034 // The value of a condition that is an expression is the value of the
4035 // expression, implicitly converted to bool.
4036 //
4037 // C++2b 8.5.2p2
4038 // If the if statement is of the form if constexpr, the value of the condition
4039 // is contextually converted to bool and the converted expression shall be
4040 // a constant expression.
4041 //
4042
4043 ExprResult E = PerformContextuallyConvertToBool(CondExpr);
4044 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4045 return E;
4046
4047 // FIXME: Return this value to the caller so they don't need to recompute it.
4048 llvm::APSInt Cond;
4049 E = VerifyIntegerConstantExpression(
4050 E.get(), &Cond,
4051 diag::err_constexpr_if_condition_expression_is_not_constant);
4052 return E;
4053 }
4054
4055 /// Helper function to determine whether this is the (deprecated) C++
4056 /// conversion from a string literal to a pointer to non-const char or
4057 /// non-const wchar_t (for narrow and wide string literals,
4058 /// respectively).
4059 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)4060 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4061 // Look inside the implicit cast, if it exists.
4062 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4063 From = Cast->getSubExpr();
4064
4065 // A string literal (2.13.4) that is not a wide string literal can
4066 // be converted to an rvalue of type "pointer to char"; a wide
4067 // string literal can be converted to an rvalue of type "pointer
4068 // to wchar_t" (C++ 4.2p2).
4069 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4070 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4071 if (const BuiltinType *ToPointeeType
4072 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4073 // This conversion is considered only when there is an
4074 // explicit appropriate pointer target type (C++ 4.2p2).
4075 if (!ToPtrType->getPointeeType().hasQualifiers()) {
4076 switch (StrLit->getKind()) {
4077 case StringLiteral::UTF8:
4078 case StringLiteral::UTF16:
4079 case StringLiteral::UTF32:
4080 // We don't allow UTF literals to be implicitly converted
4081 break;
4082 case StringLiteral::Ordinary:
4083 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4084 ToPointeeType->getKind() == BuiltinType::Char_S);
4085 case StringLiteral::Wide:
4086 return Context.typesAreCompatible(Context.getWideCharType(),
4087 QualType(ToPointeeType, 0));
4088 }
4089 }
4090 }
4091
4092 return false;
4093 }
4094
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)4095 static ExprResult BuildCXXCastArgument(Sema &S,
4096 SourceLocation CastLoc,
4097 QualType Ty,
4098 CastKind Kind,
4099 CXXMethodDecl *Method,
4100 DeclAccessPair FoundDecl,
4101 bool HadMultipleCandidates,
4102 Expr *From) {
4103 switch (Kind) {
4104 default: llvm_unreachable("Unhandled cast kind!");
4105 case CK_ConstructorConversion: {
4106 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4107 SmallVector<Expr*, 8> ConstructorArgs;
4108
4109 if (S.RequireNonAbstractType(CastLoc, Ty,
4110 diag::err_allocation_of_abstract_type))
4111 return ExprError();
4112
4113 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4114 ConstructorArgs))
4115 return ExprError();
4116
4117 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4118 InitializedEntity::InitializeTemporary(Ty));
4119 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4120 return ExprError();
4121
4122 ExprResult Result = S.BuildCXXConstructExpr(
4123 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4124 ConstructorArgs, HadMultipleCandidates,
4125 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4126 CXXConstructExpr::CK_Complete, SourceRange());
4127 if (Result.isInvalid())
4128 return ExprError();
4129
4130 return S.MaybeBindToTemporary(Result.getAs<Expr>());
4131 }
4132
4133 case CK_UserDefinedConversion: {
4134 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4135
4136 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4137 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4138 return ExprError();
4139
4140 // Create an implicit call expr that calls it.
4141 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4142 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4143 HadMultipleCandidates);
4144 if (Result.isInvalid())
4145 return ExprError();
4146 // Record usage of conversion in an implicit cast.
4147 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4148 CK_UserDefinedConversion, Result.get(),
4149 nullptr, Result.get()->getValueKind(),
4150 S.CurFPFeatureOverrides());
4151
4152 return S.MaybeBindToTemporary(Result.get());
4153 }
4154 }
4155 }
4156
4157 /// PerformImplicitConversion - Perform an implicit conversion of the
4158 /// expression From to the type ToType using the pre-computed implicit
4159 /// conversion sequence ICS. Returns the converted
4160 /// expression. Action is the kind of conversion we're performing,
4161 /// used in the error message.
4162 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)4163 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4164 const ImplicitConversionSequence &ICS,
4165 AssignmentAction Action,
4166 CheckedConversionKind CCK) {
4167 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4168 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4169 return From;
4170
4171 switch (ICS.getKind()) {
4172 case ImplicitConversionSequence::StandardConversion: {
4173 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4174 Action, CCK);
4175 if (Res.isInvalid())
4176 return ExprError();
4177 From = Res.get();
4178 break;
4179 }
4180
4181 case ImplicitConversionSequence::UserDefinedConversion: {
4182
4183 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4184 CastKind CastKind;
4185 QualType BeforeToType;
4186 assert(FD && "no conversion function for user-defined conversion seq");
4187 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4188 CastKind = CK_UserDefinedConversion;
4189
4190 // If the user-defined conversion is specified by a conversion function,
4191 // the initial standard conversion sequence converts the source type to
4192 // the implicit object parameter of the conversion function.
4193 BeforeToType = Context.getTagDeclType(Conv->getParent());
4194 } else {
4195 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4196 CastKind = CK_ConstructorConversion;
4197 // Do no conversion if dealing with ... for the first conversion.
4198 if (!ICS.UserDefined.EllipsisConversion) {
4199 // If the user-defined conversion is specified by a constructor, the
4200 // initial standard conversion sequence converts the source type to
4201 // the type required by the argument of the constructor
4202 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4203 }
4204 }
4205 // Watch out for ellipsis conversion.
4206 if (!ICS.UserDefined.EllipsisConversion) {
4207 ExprResult Res =
4208 PerformImplicitConversion(From, BeforeToType,
4209 ICS.UserDefined.Before, AA_Converting,
4210 CCK);
4211 if (Res.isInvalid())
4212 return ExprError();
4213 From = Res.get();
4214 }
4215
4216 ExprResult CastArg = BuildCXXCastArgument(
4217 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4218 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4219 ICS.UserDefined.HadMultipleCandidates, From);
4220
4221 if (CastArg.isInvalid())
4222 return ExprError();
4223
4224 From = CastArg.get();
4225
4226 // C++ [over.match.oper]p7:
4227 // [...] the second standard conversion sequence of a user-defined
4228 // conversion sequence is not applied.
4229 if (CCK == CCK_ForBuiltinOverloadedOp)
4230 return From;
4231
4232 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4233 AA_Converting, CCK);
4234 }
4235
4236 case ImplicitConversionSequence::AmbiguousConversion:
4237 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4238 PDiag(diag::err_typecheck_ambiguous_condition)
4239 << From->getSourceRange());
4240 return ExprError();
4241
4242 case ImplicitConversionSequence::EllipsisConversion:
4243 case ImplicitConversionSequence::StaticObjectArgumentConversion:
4244 llvm_unreachable("bad conversion");
4245
4246 case ImplicitConversionSequence::BadConversion:
4247 Sema::AssignConvertType ConvTy =
4248 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4249 bool Diagnosed = DiagnoseAssignmentResult(
4250 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4251 ToType, From->getType(), From, Action);
4252 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4253 return ExprError();
4254 }
4255
4256 // Everything went well.
4257 return From;
4258 }
4259
4260 /// PerformImplicitConversion - Perform an implicit conversion of the
4261 /// expression From to the type ToType by following the standard
4262 /// conversion sequence SCS. Returns the converted
4263 /// expression. Flavor is the context in which we're performing this
4264 /// conversion, for use in error messages.
4265 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)4266 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4267 const StandardConversionSequence& SCS,
4268 AssignmentAction Action,
4269 CheckedConversionKind CCK) {
4270 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4271
4272 // Overall FIXME: we are recomputing too many types here and doing far too
4273 // much extra work. What this means is that we need to keep track of more
4274 // information that is computed when we try the implicit conversion initially,
4275 // so that we don't need to recompute anything here.
4276 QualType FromType = From->getType();
4277
4278 if (SCS.CopyConstructor) {
4279 // FIXME: When can ToType be a reference type?
4280 assert(!ToType->isReferenceType());
4281 if (SCS.Second == ICK_Derived_To_Base) {
4282 SmallVector<Expr*, 8> ConstructorArgs;
4283 if (CompleteConstructorCall(
4284 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4285 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4286 return ExprError();
4287 return BuildCXXConstructExpr(
4288 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4289 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4290 ConstructorArgs, /*HadMultipleCandidates*/ false,
4291 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4292 CXXConstructExpr::CK_Complete, SourceRange());
4293 }
4294 return BuildCXXConstructExpr(
4295 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4296 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4297 From, /*HadMultipleCandidates*/ false,
4298 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4299 CXXConstructExpr::CK_Complete, SourceRange());
4300 }
4301
4302 // Resolve overloaded function references.
4303 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4304 DeclAccessPair Found;
4305 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4306 true, Found);
4307 if (!Fn)
4308 return ExprError();
4309
4310 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4311 return ExprError();
4312
4313 From = FixOverloadedFunctionReference(From, Found, Fn);
4314
4315 // We might get back another placeholder expression if we resolved to a
4316 // builtin.
4317 ExprResult Checked = CheckPlaceholderExpr(From);
4318 if (Checked.isInvalid())
4319 return ExprError();
4320
4321 From = Checked.get();
4322 FromType = From->getType();
4323 }
4324
4325 // If we're converting to an atomic type, first convert to the corresponding
4326 // non-atomic type.
4327 QualType ToAtomicType;
4328 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4329 ToAtomicType = ToType;
4330 ToType = ToAtomic->getValueType();
4331 }
4332
4333 QualType InitialFromType = FromType;
4334 // Perform the first implicit conversion.
4335 switch (SCS.First) {
4336 case ICK_Identity:
4337 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4338 FromType = FromAtomic->getValueType().getUnqualifiedType();
4339 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4340 From, /*BasePath=*/nullptr, VK_PRValue,
4341 FPOptionsOverride());
4342 }
4343 break;
4344
4345 case ICK_Lvalue_To_Rvalue: {
4346 assert(From->getObjectKind() != OK_ObjCProperty);
4347 ExprResult FromRes = DefaultLvalueConversion(From);
4348 if (FromRes.isInvalid())
4349 return ExprError();
4350
4351 From = FromRes.get();
4352 FromType = From->getType();
4353 break;
4354 }
4355
4356 case ICK_Array_To_Pointer:
4357 FromType = Context.getArrayDecayedType(FromType);
4358 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4359 /*BasePath=*/nullptr, CCK)
4360 .get();
4361 break;
4362
4363 case ICK_Function_To_Pointer:
4364 FromType = Context.getPointerType(FromType);
4365 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4366 VK_PRValue, /*BasePath=*/nullptr, CCK)
4367 .get();
4368 break;
4369
4370 default:
4371 llvm_unreachable("Improper first standard conversion");
4372 }
4373
4374 // Perform the second implicit conversion
4375 switch (SCS.Second) {
4376 case ICK_Identity:
4377 // C++ [except.spec]p5:
4378 // [For] assignment to and initialization of pointers to functions,
4379 // pointers to member functions, and references to functions: the
4380 // target entity shall allow at least the exceptions allowed by the
4381 // source value in the assignment or initialization.
4382 switch (Action) {
4383 case AA_Assigning:
4384 case AA_Initializing:
4385 // Note, function argument passing and returning are initialization.
4386 case AA_Passing:
4387 case AA_Returning:
4388 case AA_Sending:
4389 case AA_Passing_CFAudited:
4390 if (CheckExceptionSpecCompatibility(From, ToType))
4391 return ExprError();
4392 break;
4393
4394 case AA_Casting:
4395 case AA_Converting:
4396 // Casts and implicit conversions are not initialization, so are not
4397 // checked for exception specification mismatches.
4398 break;
4399 }
4400 // Nothing else to do.
4401 break;
4402
4403 case ICK_Integral_Promotion:
4404 case ICK_Integral_Conversion:
4405 if (ToType->isBooleanType()) {
4406 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4407 SCS.Second == ICK_Integral_Promotion &&
4408 "only enums with fixed underlying type can promote to bool");
4409 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4410 /*BasePath=*/nullptr, CCK)
4411 .get();
4412 } else {
4413 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4414 /*BasePath=*/nullptr, CCK)
4415 .get();
4416 }
4417 break;
4418
4419 case ICK_Floating_Promotion:
4420 case ICK_Floating_Conversion:
4421 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4422 /*BasePath=*/nullptr, CCK)
4423 .get();
4424 break;
4425
4426 case ICK_Complex_Promotion:
4427 case ICK_Complex_Conversion: {
4428 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4429 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4430 CastKind CK;
4431 if (FromEl->isRealFloatingType()) {
4432 if (ToEl->isRealFloatingType())
4433 CK = CK_FloatingComplexCast;
4434 else
4435 CK = CK_FloatingComplexToIntegralComplex;
4436 } else if (ToEl->isRealFloatingType()) {
4437 CK = CK_IntegralComplexToFloatingComplex;
4438 } else {
4439 CK = CK_IntegralComplexCast;
4440 }
4441 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4442 CCK)
4443 .get();
4444 break;
4445 }
4446
4447 case ICK_Floating_Integral:
4448 if (ToType->isRealFloatingType())
4449 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4450 /*BasePath=*/nullptr, CCK)
4451 .get();
4452 else
4453 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4454 /*BasePath=*/nullptr, CCK)
4455 .get();
4456 break;
4457
4458 case ICK_Compatible_Conversion:
4459 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4460 /*BasePath=*/nullptr, CCK).get();
4461 break;
4462
4463 case ICK_Writeback_Conversion:
4464 case ICK_Pointer_Conversion: {
4465 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4466 // Diagnose incompatible Objective-C conversions
4467 if (Action == AA_Initializing || Action == AA_Assigning)
4468 Diag(From->getBeginLoc(),
4469 diag::ext_typecheck_convert_incompatible_pointer)
4470 << ToType << From->getType() << Action << From->getSourceRange()
4471 << 0;
4472 else
4473 Diag(From->getBeginLoc(),
4474 diag::ext_typecheck_convert_incompatible_pointer)
4475 << From->getType() << ToType << Action << From->getSourceRange()
4476 << 0;
4477
4478 if (From->getType()->isObjCObjectPointerType() &&
4479 ToType->isObjCObjectPointerType())
4480 EmitRelatedResultTypeNote(From);
4481 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4482 !CheckObjCARCUnavailableWeakConversion(ToType,
4483 From->getType())) {
4484 if (Action == AA_Initializing)
4485 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4486 else
4487 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4488 << (Action == AA_Casting) << From->getType() << ToType
4489 << From->getSourceRange();
4490 }
4491
4492 // Defer address space conversion to the third conversion.
4493 QualType FromPteeType = From->getType()->getPointeeType();
4494 QualType ToPteeType = ToType->getPointeeType();
4495 QualType NewToType = ToType;
4496 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4497 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4498 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4499 NewToType = Context.getAddrSpaceQualType(NewToType,
4500 FromPteeType.getAddressSpace());
4501 if (ToType->isObjCObjectPointerType())
4502 NewToType = Context.getObjCObjectPointerType(NewToType);
4503 else if (ToType->isBlockPointerType())
4504 NewToType = Context.getBlockPointerType(NewToType);
4505 else
4506 NewToType = Context.getPointerType(NewToType);
4507 }
4508
4509 CastKind Kind;
4510 CXXCastPath BasePath;
4511 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4512 return ExprError();
4513
4514 // Make sure we extend blocks if necessary.
4515 // FIXME: doing this here is really ugly.
4516 if (Kind == CK_BlockPointerToObjCPointerCast) {
4517 ExprResult E = From;
4518 (void) PrepareCastToObjCObjectPointer(E);
4519 From = E.get();
4520 }
4521 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4522 CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4523 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4524 .get();
4525 break;
4526 }
4527
4528 case ICK_Pointer_Member: {
4529 CastKind Kind;
4530 CXXCastPath BasePath;
4531 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4532 return ExprError();
4533 if (CheckExceptionSpecCompatibility(From, ToType))
4534 return ExprError();
4535
4536 // We may not have been able to figure out what this member pointer resolved
4537 // to up until this exact point. Attempt to lock-in it's inheritance model.
4538 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4539 (void)isCompleteType(From->getExprLoc(), From->getType());
4540 (void)isCompleteType(From->getExprLoc(), ToType);
4541 }
4542
4543 From =
4544 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4545 break;
4546 }
4547
4548 case ICK_Boolean_Conversion:
4549 // Perform half-to-boolean conversion via float.
4550 if (From->getType()->isHalfType()) {
4551 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4552 FromType = Context.FloatTy;
4553 }
4554
4555 From = ImpCastExprToType(From, Context.BoolTy,
4556 ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4557 /*BasePath=*/nullptr, CCK)
4558 .get();
4559 break;
4560
4561 case ICK_Derived_To_Base: {
4562 CXXCastPath BasePath;
4563 if (CheckDerivedToBaseConversion(
4564 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4565 From->getSourceRange(), &BasePath, CStyle))
4566 return ExprError();
4567
4568 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4569 CK_DerivedToBase, From->getValueKind(),
4570 &BasePath, CCK).get();
4571 break;
4572 }
4573
4574 case ICK_Vector_Conversion:
4575 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4576 /*BasePath=*/nullptr, CCK)
4577 .get();
4578 break;
4579
4580 case ICK_SVE_Vector_Conversion:
4581 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4582 /*BasePath=*/nullptr, CCK)
4583 .get();
4584 break;
4585
4586 case ICK_Vector_Splat: {
4587 // Vector splat from any arithmetic type to a vector.
4588 Expr *Elem = prepareVectorSplat(ToType, From).get();
4589 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4590 /*BasePath=*/nullptr, CCK)
4591 .get();
4592 break;
4593 }
4594
4595 case ICK_Complex_Real:
4596 // Case 1. x -> _Complex y
4597 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4598 QualType ElType = ToComplex->getElementType();
4599 bool isFloatingComplex = ElType->isRealFloatingType();
4600
4601 // x -> y
4602 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4603 // do nothing
4604 } else if (From->getType()->isRealFloatingType()) {
4605 From = ImpCastExprToType(From, ElType,
4606 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4607 } else {
4608 assert(From->getType()->isIntegerType());
4609 From = ImpCastExprToType(From, ElType,
4610 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4611 }
4612 // y -> _Complex y
4613 From = ImpCastExprToType(From, ToType,
4614 isFloatingComplex ? CK_FloatingRealToComplex
4615 : CK_IntegralRealToComplex).get();
4616
4617 // Case 2. _Complex x -> y
4618 } else {
4619 auto *FromComplex = From->getType()->castAs<ComplexType>();
4620 QualType ElType = FromComplex->getElementType();
4621 bool isFloatingComplex = ElType->isRealFloatingType();
4622
4623 // _Complex x -> x
4624 From = ImpCastExprToType(From, ElType,
4625 isFloatingComplex ? CK_FloatingComplexToReal
4626 : CK_IntegralComplexToReal,
4627 VK_PRValue, /*BasePath=*/nullptr, CCK)
4628 .get();
4629
4630 // x -> y
4631 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4632 // do nothing
4633 } else if (ToType->isRealFloatingType()) {
4634 From = ImpCastExprToType(From, ToType,
4635 isFloatingComplex ? CK_FloatingCast
4636 : CK_IntegralToFloating,
4637 VK_PRValue, /*BasePath=*/nullptr, CCK)
4638 .get();
4639 } else {
4640 assert(ToType->isIntegerType());
4641 From = ImpCastExprToType(From, ToType,
4642 isFloatingComplex ? CK_FloatingToIntegral
4643 : CK_IntegralCast,
4644 VK_PRValue, /*BasePath=*/nullptr, CCK)
4645 .get();
4646 }
4647 }
4648 break;
4649
4650 case ICK_Block_Pointer_Conversion: {
4651 LangAS AddrSpaceL =
4652 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4653 LangAS AddrSpaceR =
4654 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4655 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4656 "Invalid cast");
4657 CastKind Kind =
4658 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4659 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4660 VK_PRValue, /*BasePath=*/nullptr, CCK)
4661 .get();
4662 break;
4663 }
4664
4665 case ICK_TransparentUnionConversion: {
4666 ExprResult FromRes = From;
4667 Sema::AssignConvertType ConvTy =
4668 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4669 if (FromRes.isInvalid())
4670 return ExprError();
4671 From = FromRes.get();
4672 assert ((ConvTy == Sema::Compatible) &&
4673 "Improper transparent union conversion");
4674 (void)ConvTy;
4675 break;
4676 }
4677
4678 case ICK_Zero_Event_Conversion:
4679 case ICK_Zero_Queue_Conversion:
4680 From = ImpCastExprToType(From, ToType,
4681 CK_ZeroToOCLOpaqueType,
4682 From->getValueKind()).get();
4683 break;
4684
4685 case ICK_Lvalue_To_Rvalue:
4686 case ICK_Array_To_Pointer:
4687 case ICK_Function_To_Pointer:
4688 case ICK_Function_Conversion:
4689 case ICK_Qualification:
4690 case ICK_Num_Conversion_Kinds:
4691 case ICK_C_Only_Conversion:
4692 case ICK_Incompatible_Pointer_Conversion:
4693 llvm_unreachable("Improper second standard conversion");
4694 }
4695
4696 switch (SCS.Third) {
4697 case ICK_Identity:
4698 // Nothing to do.
4699 break;
4700
4701 case ICK_Function_Conversion:
4702 // If both sides are functions (or pointers/references to them), there could
4703 // be incompatible exception declarations.
4704 if (CheckExceptionSpecCompatibility(From, ToType))
4705 return ExprError();
4706
4707 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4708 /*BasePath=*/nullptr, CCK)
4709 .get();
4710 break;
4711
4712 case ICK_Qualification: {
4713 ExprValueKind VK = From->getValueKind();
4714 CastKind CK = CK_NoOp;
4715
4716 if (ToType->isReferenceType() &&
4717 ToType->getPointeeType().getAddressSpace() !=
4718 From->getType().getAddressSpace())
4719 CK = CK_AddressSpaceConversion;
4720
4721 if (ToType->isPointerType() &&
4722 ToType->getPointeeType().getAddressSpace() !=
4723 From->getType()->getPointeeType().getAddressSpace())
4724 CK = CK_AddressSpaceConversion;
4725
4726 if (!isCast(CCK) &&
4727 !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4728 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4729 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4730 << InitialFromType << ToType;
4731 }
4732
4733 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4734 /*BasePath=*/nullptr, CCK)
4735 .get();
4736
4737 if (SCS.DeprecatedStringLiteralToCharPtr &&
4738 !getLangOpts().WritableStrings) {
4739 Diag(From->getBeginLoc(),
4740 getLangOpts().CPlusPlus11
4741 ? diag::ext_deprecated_string_literal_conversion
4742 : diag::warn_deprecated_string_literal_conversion)
4743 << ToType.getNonReferenceType();
4744 }
4745
4746 break;
4747 }
4748
4749 default:
4750 llvm_unreachable("Improper third standard conversion");
4751 }
4752
4753 // If this conversion sequence involved a scalar -> atomic conversion, perform
4754 // that conversion now.
4755 if (!ToAtomicType.isNull()) {
4756 assert(Context.hasSameType(
4757 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4758 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4759 VK_PRValue, nullptr, CCK)
4760 .get();
4761 }
4762
4763 // Materialize a temporary if we're implicitly converting to a reference
4764 // type. This is not required by the C++ rules but is necessary to maintain
4765 // AST invariants.
4766 if (ToType->isReferenceType() && From->isPRValue()) {
4767 ExprResult Res = TemporaryMaterializationConversion(From);
4768 if (Res.isInvalid())
4769 return ExprError();
4770 From = Res.get();
4771 }
4772
4773 // If this conversion sequence succeeded and involved implicitly converting a
4774 // _Nullable type to a _Nonnull one, complain.
4775 if (!isCast(CCK))
4776 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4777 From->getBeginLoc());
4778
4779 return From;
4780 }
4781
4782 /// Check the completeness of a type in a unary type trait.
4783 ///
4784 /// If the particular type trait requires a complete type, tries to complete
4785 /// it. If completing the type fails, a diagnostic is emitted and false
4786 /// returned. If completing the type succeeds or no completion was required,
4787 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,TypeTrait UTT,SourceLocation Loc,QualType ArgTy)4788 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4789 SourceLocation Loc,
4790 QualType ArgTy) {
4791 // C++0x [meta.unary.prop]p3:
4792 // For all of the class templates X declared in this Clause, instantiating
4793 // that template with a template argument that is a class template
4794 // specialization may result in the implicit instantiation of the template
4795 // argument if and only if the semantics of X require that the argument
4796 // must be a complete type.
4797 // We apply this rule to all the type trait expressions used to implement
4798 // these class templates. We also try to follow any GCC documented behavior
4799 // in these expressions to ensure portability of standard libraries.
4800 switch (UTT) {
4801 default: llvm_unreachable("not a UTT");
4802 // is_complete_type somewhat obviously cannot require a complete type.
4803 case UTT_IsCompleteType:
4804 // Fall-through
4805
4806 // These traits are modeled on the type predicates in C++0x
4807 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4808 // requiring a complete type, as whether or not they return true cannot be
4809 // impacted by the completeness of the type.
4810 case UTT_IsVoid:
4811 case UTT_IsIntegral:
4812 case UTT_IsFloatingPoint:
4813 case UTT_IsArray:
4814 case UTT_IsBoundedArray:
4815 case UTT_IsPointer:
4816 case UTT_IsNullPointer:
4817 case UTT_IsReferenceable:
4818 case UTT_IsLvalueReference:
4819 case UTT_IsRvalueReference:
4820 case UTT_IsMemberFunctionPointer:
4821 case UTT_IsMemberObjectPointer:
4822 case UTT_IsEnum:
4823 case UTT_IsScopedEnum:
4824 case UTT_IsUnion:
4825 case UTT_IsClass:
4826 case UTT_IsFunction:
4827 case UTT_IsReference:
4828 case UTT_IsArithmetic:
4829 case UTT_IsFundamental:
4830 case UTT_IsObject:
4831 case UTT_IsScalar:
4832 case UTT_IsCompound:
4833 case UTT_IsMemberPointer:
4834 // Fall-through
4835
4836 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4837 // which requires some of its traits to have the complete type. However,
4838 // the completeness of the type cannot impact these traits' semantics, and
4839 // so they don't require it. This matches the comments on these traits in
4840 // Table 49.
4841 case UTT_IsConst:
4842 case UTT_IsVolatile:
4843 case UTT_IsSigned:
4844 case UTT_IsUnboundedArray:
4845 case UTT_IsUnsigned:
4846
4847 // This type trait always returns false, checking the type is moot.
4848 case UTT_IsInterfaceClass:
4849 return true;
4850
4851 // C++14 [meta.unary.prop]:
4852 // If T is a non-union class type, T shall be a complete type.
4853 case UTT_IsEmpty:
4854 case UTT_IsPolymorphic:
4855 case UTT_IsAbstract:
4856 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4857 if (!RD->isUnion())
4858 return !S.RequireCompleteType(
4859 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4860 return true;
4861
4862 // C++14 [meta.unary.prop]:
4863 // If T is a class type, T shall be a complete type.
4864 case UTT_IsFinal:
4865 case UTT_IsSealed:
4866 if (ArgTy->getAsCXXRecordDecl())
4867 return !S.RequireCompleteType(
4868 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4869 return true;
4870
4871 // LWG3823: T shall be an array type, a complete type, or cv void.
4872 case UTT_IsAggregate:
4873 if (ArgTy->isArrayType() || ArgTy->isVoidType())
4874 return true;
4875
4876 return !S.RequireCompleteType(
4877 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4878
4879 // C++1z [meta.unary.prop]:
4880 // remove_all_extents_t<T> shall be a complete type or cv void.
4881 case UTT_IsTrivial:
4882 case UTT_IsTriviallyCopyable:
4883 case UTT_IsStandardLayout:
4884 case UTT_IsPOD:
4885 case UTT_IsLiteral:
4886 // By analogy, is_trivially_relocatable imposes the same constraints.
4887 case UTT_IsTriviallyRelocatable:
4888 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4889 // or an array of unknown bound. But GCC actually imposes the same constraints
4890 // as above.
4891 case UTT_HasNothrowAssign:
4892 case UTT_HasNothrowMoveAssign:
4893 case UTT_HasNothrowConstructor:
4894 case UTT_HasNothrowCopy:
4895 case UTT_HasTrivialAssign:
4896 case UTT_HasTrivialMoveAssign:
4897 case UTT_HasTrivialDefaultConstructor:
4898 case UTT_HasTrivialMoveConstructor:
4899 case UTT_HasTrivialCopy:
4900 case UTT_HasTrivialDestructor:
4901 case UTT_HasVirtualDestructor:
4902 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4903 [[fallthrough]];
4904
4905 // C++1z [meta.unary.prop]:
4906 // T shall be a complete type, cv void, or an array of unknown bound.
4907 case UTT_IsDestructible:
4908 case UTT_IsNothrowDestructible:
4909 case UTT_IsTriviallyDestructible:
4910 case UTT_HasUniqueObjectRepresentations:
4911 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4912 return true;
4913
4914 return !S.RequireCompleteType(
4915 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4916 }
4917 }
4918
HasNoThrowOperator(const RecordType * RT,OverloadedOperatorKind Op,Sema & Self,SourceLocation KeyLoc,ASTContext & C,bool (CXXRecordDecl::* HasTrivial)()const,bool (CXXRecordDecl::* HasNonTrivial)()const,bool (CXXMethodDecl::* IsDesiredOp)()const)4919 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4920 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4921 bool (CXXRecordDecl::*HasTrivial)() const,
4922 bool (CXXRecordDecl::*HasNonTrivial)() const,
4923 bool (CXXMethodDecl::*IsDesiredOp)() const)
4924 {
4925 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4926 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4927 return true;
4928
4929 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4930 DeclarationNameInfo NameInfo(Name, KeyLoc);
4931 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4932 if (Self.LookupQualifiedName(Res, RD)) {
4933 bool FoundOperator = false;
4934 Res.suppressDiagnostics();
4935 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4936 Op != OpEnd; ++Op) {
4937 if (isa<FunctionTemplateDecl>(*Op))
4938 continue;
4939
4940 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4941 if((Operator->*IsDesiredOp)()) {
4942 FoundOperator = true;
4943 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4944 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4945 if (!CPT || !CPT->isNothrow())
4946 return false;
4947 }
4948 }
4949 return FoundOperator;
4950 }
4951 return false;
4952 }
4953
EvaluateUnaryTypeTrait(Sema & Self,TypeTrait UTT,SourceLocation KeyLoc,QualType T)4954 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4955 SourceLocation KeyLoc, QualType T) {
4956 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4957
4958 ASTContext &C = Self.Context;
4959 switch(UTT) {
4960 default: llvm_unreachable("not a UTT");
4961 // Type trait expressions corresponding to the primary type category
4962 // predicates in C++0x [meta.unary.cat].
4963 case UTT_IsVoid:
4964 return T->isVoidType();
4965 case UTT_IsIntegral:
4966 return T->isIntegralType(C);
4967 case UTT_IsFloatingPoint:
4968 return T->isFloatingType();
4969 case UTT_IsArray:
4970 return T->isArrayType();
4971 case UTT_IsBoundedArray:
4972 if (!T->isVariableArrayType()) {
4973 return T->isArrayType() && !T->isIncompleteArrayType();
4974 }
4975
4976 Self.Diag(KeyLoc, diag::err_vla_unsupported)
4977 << 1 << tok::kw___is_bounded_array;
4978 return false;
4979 case UTT_IsUnboundedArray:
4980 if (!T->isVariableArrayType()) {
4981 return T->isIncompleteArrayType();
4982 }
4983
4984 Self.Diag(KeyLoc, diag::err_vla_unsupported)
4985 << 1 << tok::kw___is_unbounded_array;
4986 return false;
4987 case UTT_IsPointer:
4988 return T->isAnyPointerType();
4989 case UTT_IsNullPointer:
4990 return T->isNullPtrType();
4991 case UTT_IsLvalueReference:
4992 return T->isLValueReferenceType();
4993 case UTT_IsRvalueReference:
4994 return T->isRValueReferenceType();
4995 case UTT_IsMemberFunctionPointer:
4996 return T->isMemberFunctionPointerType();
4997 case UTT_IsMemberObjectPointer:
4998 return T->isMemberDataPointerType();
4999 case UTT_IsEnum:
5000 return T->isEnumeralType();
5001 case UTT_IsScopedEnum:
5002 return T->isScopedEnumeralType();
5003 case UTT_IsUnion:
5004 return T->isUnionType();
5005 case UTT_IsClass:
5006 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5007 case UTT_IsFunction:
5008 return T->isFunctionType();
5009
5010 // Type trait expressions which correspond to the convenient composition
5011 // predicates in C++0x [meta.unary.comp].
5012 case UTT_IsReference:
5013 return T->isReferenceType();
5014 case UTT_IsArithmetic:
5015 return T->isArithmeticType() && !T->isEnumeralType();
5016 case UTT_IsFundamental:
5017 return T->isFundamentalType();
5018 case UTT_IsObject:
5019 return T->isObjectType();
5020 case UTT_IsScalar:
5021 // Note: semantic analysis depends on Objective-C lifetime types to be
5022 // considered scalar types. However, such types do not actually behave
5023 // like scalar types at run time (since they may require retain/release
5024 // operations), so we report them as non-scalar.
5025 if (T->isObjCLifetimeType()) {
5026 switch (T.getObjCLifetime()) {
5027 case Qualifiers::OCL_None:
5028 case Qualifiers::OCL_ExplicitNone:
5029 return true;
5030
5031 case Qualifiers::OCL_Strong:
5032 case Qualifiers::OCL_Weak:
5033 case Qualifiers::OCL_Autoreleasing:
5034 return false;
5035 }
5036 }
5037
5038 return T->isScalarType();
5039 case UTT_IsCompound:
5040 return T->isCompoundType();
5041 case UTT_IsMemberPointer:
5042 return T->isMemberPointerType();
5043
5044 // Type trait expressions which correspond to the type property predicates
5045 // in C++0x [meta.unary.prop].
5046 case UTT_IsConst:
5047 return T.isConstQualified();
5048 case UTT_IsVolatile:
5049 return T.isVolatileQualified();
5050 case UTT_IsTrivial:
5051 return T.isTrivialType(C);
5052 case UTT_IsTriviallyCopyable:
5053 return T.isTriviallyCopyableType(C);
5054 case UTT_IsStandardLayout:
5055 return T->isStandardLayoutType();
5056 case UTT_IsPOD:
5057 return T.isPODType(C);
5058 case UTT_IsLiteral:
5059 return T->isLiteralType(C);
5060 case UTT_IsEmpty:
5061 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5062 return !RD->isUnion() && RD->isEmpty();
5063 return false;
5064 case UTT_IsPolymorphic:
5065 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5066 return !RD->isUnion() && RD->isPolymorphic();
5067 return false;
5068 case UTT_IsAbstract:
5069 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5070 return !RD->isUnion() && RD->isAbstract();
5071 return false;
5072 case UTT_IsAggregate:
5073 // Report vector extensions and complex types as aggregates because they
5074 // support aggregate initialization. GCC mirrors this behavior for vectors
5075 // but not _Complex.
5076 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5077 T->isAnyComplexType();
5078 // __is_interface_class only returns true when CL is invoked in /CLR mode and
5079 // even then only when it is used with the 'interface struct ...' syntax
5080 // Clang doesn't support /CLR which makes this type trait moot.
5081 case UTT_IsInterfaceClass:
5082 return false;
5083 case UTT_IsFinal:
5084 case UTT_IsSealed:
5085 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5086 return RD->hasAttr<FinalAttr>();
5087 return false;
5088 case UTT_IsSigned:
5089 // Enum types should always return false.
5090 // Floating points should always return true.
5091 return T->isFloatingType() ||
5092 (T->isSignedIntegerType() && !T->isEnumeralType());
5093 case UTT_IsUnsigned:
5094 // Enum types should always return false.
5095 return T->isUnsignedIntegerType() && !T->isEnumeralType();
5096
5097 // Type trait expressions which query classes regarding their construction,
5098 // destruction, and copying. Rather than being based directly on the
5099 // related type predicates in the standard, they are specified by both
5100 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5101 // specifications.
5102 //
5103 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5104 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5105 //
5106 // Note that these builtins do not behave as documented in g++: if a class
5107 // has both a trivial and a non-trivial special member of a particular kind,
5108 // they return false! For now, we emulate this behavior.
5109 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5110 // does not correctly compute triviality in the presence of multiple special
5111 // members of the same kind. Revisit this once the g++ bug is fixed.
5112 case UTT_HasTrivialDefaultConstructor:
5113 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5114 // If __is_pod (type) is true then the trait is true, else if type is
5115 // a cv class or union type (or array thereof) with a trivial default
5116 // constructor ([class.ctor]) then the trait is true, else it is false.
5117 if (T.isPODType(C))
5118 return true;
5119 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5120 return RD->hasTrivialDefaultConstructor() &&
5121 !RD->hasNonTrivialDefaultConstructor();
5122 return false;
5123 case UTT_HasTrivialMoveConstructor:
5124 // This trait is implemented by MSVC 2012 and needed to parse the
5125 // standard library headers. Specifically this is used as the logic
5126 // behind std::is_trivially_move_constructible (20.9.4.3).
5127 if (T.isPODType(C))
5128 return true;
5129 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5130 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5131 return false;
5132 case UTT_HasTrivialCopy:
5133 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5134 // If __is_pod (type) is true or type is a reference type then
5135 // the trait is true, else if type is a cv class or union type
5136 // with a trivial copy constructor ([class.copy]) then the trait
5137 // is true, else it is false.
5138 if (T.isPODType(C) || T->isReferenceType())
5139 return true;
5140 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5141 return RD->hasTrivialCopyConstructor() &&
5142 !RD->hasNonTrivialCopyConstructor();
5143 return false;
5144 case UTT_HasTrivialMoveAssign:
5145 // This trait is implemented by MSVC 2012 and needed to parse the
5146 // standard library headers. Specifically it is used as the logic
5147 // behind std::is_trivially_move_assignable (20.9.4.3)
5148 if (T.isPODType(C))
5149 return true;
5150 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5151 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5152 return false;
5153 case UTT_HasTrivialAssign:
5154 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5155 // If type is const qualified or is a reference type then the
5156 // trait is false. Otherwise if __is_pod (type) is true then the
5157 // trait is true, else if type is a cv class or union type with
5158 // a trivial copy assignment ([class.copy]) then the trait is
5159 // true, else it is false.
5160 // Note: the const and reference restrictions are interesting,
5161 // given that const and reference members don't prevent a class
5162 // from having a trivial copy assignment operator (but do cause
5163 // errors if the copy assignment operator is actually used, q.v.
5164 // [class.copy]p12).
5165
5166 if (T.isConstQualified())
5167 return false;
5168 if (T.isPODType(C))
5169 return true;
5170 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5171 return RD->hasTrivialCopyAssignment() &&
5172 !RD->hasNonTrivialCopyAssignment();
5173 return false;
5174 case UTT_IsDestructible:
5175 case UTT_IsTriviallyDestructible:
5176 case UTT_IsNothrowDestructible:
5177 // C++14 [meta.unary.prop]:
5178 // For reference types, is_destructible<T>::value is true.
5179 if (T->isReferenceType())
5180 return true;
5181
5182 // Objective-C++ ARC: autorelease types don't require destruction.
5183 if (T->isObjCLifetimeType() &&
5184 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5185 return true;
5186
5187 // C++14 [meta.unary.prop]:
5188 // For incomplete types and function types, is_destructible<T>::value is
5189 // false.
5190 if (T->isIncompleteType() || T->isFunctionType())
5191 return false;
5192
5193 // A type that requires destruction (via a non-trivial destructor or ARC
5194 // lifetime semantics) is not trivially-destructible.
5195 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5196 return false;
5197
5198 // C++14 [meta.unary.prop]:
5199 // For object types and given U equal to remove_all_extents_t<T>, if the
5200 // expression std::declval<U&>().~U() is well-formed when treated as an
5201 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5202 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5203 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5204 if (!Destructor)
5205 return false;
5206 // C++14 [dcl.fct.def.delete]p2:
5207 // A program that refers to a deleted function implicitly or
5208 // explicitly, other than to declare it, is ill-formed.
5209 if (Destructor->isDeleted())
5210 return false;
5211 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5212 return false;
5213 if (UTT == UTT_IsNothrowDestructible) {
5214 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5215 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5216 if (!CPT || !CPT->isNothrow())
5217 return false;
5218 }
5219 }
5220 return true;
5221
5222 case UTT_HasTrivialDestructor:
5223 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5224 // If __is_pod (type) is true or type is a reference type
5225 // then the trait is true, else if type is a cv class or union
5226 // type (or array thereof) with a trivial destructor
5227 // ([class.dtor]) then the trait is true, else it is
5228 // false.
5229 if (T.isPODType(C) || T->isReferenceType())
5230 return true;
5231
5232 // Objective-C++ ARC: autorelease types don't require destruction.
5233 if (T->isObjCLifetimeType() &&
5234 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5235 return true;
5236
5237 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5238 return RD->hasTrivialDestructor();
5239 return false;
5240 // TODO: Propagate nothrowness for implicitly declared special members.
5241 case UTT_HasNothrowAssign:
5242 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5243 // If type is const qualified or is a reference type then the
5244 // trait is false. Otherwise if __has_trivial_assign (type)
5245 // is true then the trait is true, else if type is a cv class
5246 // or union type with copy assignment operators that are known
5247 // not to throw an exception then the trait is true, else it is
5248 // false.
5249 if (C.getBaseElementType(T).isConstQualified())
5250 return false;
5251 if (T->isReferenceType())
5252 return false;
5253 if (T.isPODType(C) || T->isObjCLifetimeType())
5254 return true;
5255
5256 if (const RecordType *RT = T->getAs<RecordType>())
5257 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5258 &CXXRecordDecl::hasTrivialCopyAssignment,
5259 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5260 &CXXMethodDecl::isCopyAssignmentOperator);
5261 return false;
5262 case UTT_HasNothrowMoveAssign:
5263 // This trait is implemented by MSVC 2012 and needed to parse the
5264 // standard library headers. Specifically this is used as the logic
5265 // behind std::is_nothrow_move_assignable (20.9.4.3).
5266 if (T.isPODType(C))
5267 return true;
5268
5269 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5270 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5271 &CXXRecordDecl::hasTrivialMoveAssignment,
5272 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5273 &CXXMethodDecl::isMoveAssignmentOperator);
5274 return false;
5275 case UTT_HasNothrowCopy:
5276 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5277 // If __has_trivial_copy (type) is true then the trait is true, else
5278 // if type is a cv class or union type with copy constructors that are
5279 // known not to throw an exception then the trait is true, else it is
5280 // false.
5281 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5282 return true;
5283 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5284 if (RD->hasTrivialCopyConstructor() &&
5285 !RD->hasNonTrivialCopyConstructor())
5286 return true;
5287
5288 bool FoundConstructor = false;
5289 unsigned FoundTQs;
5290 for (const auto *ND : Self.LookupConstructors(RD)) {
5291 // A template constructor is never a copy constructor.
5292 // FIXME: However, it may actually be selected at the actual overload
5293 // resolution point.
5294 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5295 continue;
5296 // UsingDecl itself is not a constructor
5297 if (isa<UsingDecl>(ND))
5298 continue;
5299 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5300 if (Constructor->isCopyConstructor(FoundTQs)) {
5301 FoundConstructor = true;
5302 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5303 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5304 if (!CPT)
5305 return false;
5306 // TODO: check whether evaluating default arguments can throw.
5307 // For now, we'll be conservative and assume that they can throw.
5308 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5309 return false;
5310 }
5311 }
5312
5313 return FoundConstructor;
5314 }
5315 return false;
5316 case UTT_HasNothrowConstructor:
5317 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5318 // If __has_trivial_constructor (type) is true then the trait is
5319 // true, else if type is a cv class or union type (or array
5320 // thereof) with a default constructor that is known not to
5321 // throw an exception then the trait is true, else it is false.
5322 if (T.isPODType(C) || T->isObjCLifetimeType())
5323 return true;
5324 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5325 if (RD->hasTrivialDefaultConstructor() &&
5326 !RD->hasNonTrivialDefaultConstructor())
5327 return true;
5328
5329 bool FoundConstructor = false;
5330 for (const auto *ND : Self.LookupConstructors(RD)) {
5331 // FIXME: In C++0x, a constructor template can be a default constructor.
5332 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5333 continue;
5334 // UsingDecl itself is not a constructor
5335 if (isa<UsingDecl>(ND))
5336 continue;
5337 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5338 if (Constructor->isDefaultConstructor()) {
5339 FoundConstructor = true;
5340 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5341 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5342 if (!CPT)
5343 return false;
5344 // FIXME: check whether evaluating default arguments can throw.
5345 // For now, we'll be conservative and assume that they can throw.
5346 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5347 return false;
5348 }
5349 }
5350 return FoundConstructor;
5351 }
5352 return false;
5353 case UTT_HasVirtualDestructor:
5354 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5355 // If type is a class type with a virtual destructor ([class.dtor])
5356 // then the trait is true, else it is false.
5357 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5358 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5359 return Destructor->isVirtual();
5360 return false;
5361
5362 // These type trait expressions are modeled on the specifications for the
5363 // Embarcadero C++0x type trait functions:
5364 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5365 case UTT_IsCompleteType:
5366 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5367 // Returns True if and only if T is a complete type at the point of the
5368 // function call.
5369 return !T->isIncompleteType();
5370 case UTT_HasUniqueObjectRepresentations:
5371 return C.hasUniqueObjectRepresentations(T);
5372 case UTT_IsTriviallyRelocatable:
5373 return T.isTriviallyRelocatableType(C);
5374 case UTT_IsReferenceable:
5375 return T.isReferenceable();
5376 }
5377 }
5378
5379 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5380 QualType RhsT, SourceLocation KeyLoc);
5381
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)5382 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5383 ArrayRef<TypeSourceInfo *> Args,
5384 SourceLocation RParenLoc) {
5385 if (Kind <= UTT_Last)
5386 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5387
5388 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5389 // traits to avoid duplication.
5390 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5391 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5392 Args[1]->getType(), RParenLoc);
5393
5394 switch (Kind) {
5395 case clang::BTT_ReferenceBindsToTemporary:
5396 case clang::TT_IsConstructible:
5397 case clang::TT_IsNothrowConstructible:
5398 case clang::TT_IsTriviallyConstructible: {
5399 // C++11 [meta.unary.prop]:
5400 // is_trivially_constructible is defined as:
5401 //
5402 // is_constructible<T, Args...>::value is true and the variable
5403 // definition for is_constructible, as defined below, is known to call
5404 // no operation that is not trivial.
5405 //
5406 // The predicate condition for a template specialization
5407 // is_constructible<T, Args...> shall be satisfied if and only if the
5408 // following variable definition would be well-formed for some invented
5409 // variable t:
5410 //
5411 // T t(create<Args>()...);
5412 assert(!Args.empty());
5413
5414 // Precondition: T and all types in the parameter pack Args shall be
5415 // complete types, (possibly cv-qualified) void, or arrays of
5416 // unknown bound.
5417 for (const auto *TSI : Args) {
5418 QualType ArgTy = TSI->getType();
5419 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5420 continue;
5421
5422 if (S.RequireCompleteType(KWLoc, ArgTy,
5423 diag::err_incomplete_type_used_in_type_trait_expr))
5424 return false;
5425 }
5426
5427 // Make sure the first argument is not incomplete nor a function type.
5428 QualType T = Args[0]->getType();
5429 if (T->isIncompleteType() || T->isFunctionType())
5430 return false;
5431
5432 // Make sure the first argument is not an abstract type.
5433 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5434 if (RD && RD->isAbstract())
5435 return false;
5436
5437 llvm::BumpPtrAllocator OpaqueExprAllocator;
5438 SmallVector<Expr *, 2> ArgExprs;
5439 ArgExprs.reserve(Args.size() - 1);
5440 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5441 QualType ArgTy = Args[I]->getType();
5442 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5443 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5444 ArgExprs.push_back(
5445 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5446 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5447 ArgTy.getNonLValueExprType(S.Context),
5448 Expr::getValueKindForType(ArgTy)));
5449 }
5450
5451 // Perform the initialization in an unevaluated context within a SFINAE
5452 // trap at translation unit scope.
5453 EnterExpressionEvaluationContext Unevaluated(
5454 S, Sema::ExpressionEvaluationContext::Unevaluated);
5455 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5456 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5457 InitializedEntity To(
5458 InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5459 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5460 RParenLoc));
5461 InitializationSequence Init(S, To, InitKind, ArgExprs);
5462 if (Init.Failed())
5463 return false;
5464
5465 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5466 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5467 return false;
5468
5469 if (Kind == clang::TT_IsConstructible)
5470 return true;
5471
5472 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5473 if (!T->isReferenceType())
5474 return false;
5475
5476 return !Init.isDirectReferenceBinding();
5477 }
5478
5479 if (Kind == clang::TT_IsNothrowConstructible)
5480 return S.canThrow(Result.get()) == CT_Cannot;
5481
5482 if (Kind == clang::TT_IsTriviallyConstructible) {
5483 // Under Objective-C ARC and Weak, if the destination has non-trivial
5484 // Objective-C lifetime, this is a non-trivial construction.
5485 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5486 return false;
5487
5488 // The initialization succeeded; now make sure there are no non-trivial
5489 // calls.
5490 return !Result.get()->hasNonTrivialCall(S.Context);
5491 }
5492
5493 llvm_unreachable("unhandled type trait");
5494 return false;
5495 }
5496 default: llvm_unreachable("not a TT");
5497 }
5498
5499 return false;
5500 }
5501
5502 namespace {
DiagnoseBuiltinDeprecation(Sema & S,TypeTrait Kind,SourceLocation KWLoc)5503 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5504 SourceLocation KWLoc) {
5505 TypeTrait Replacement;
5506 switch (Kind) {
5507 case UTT_HasNothrowAssign:
5508 case UTT_HasNothrowMoveAssign:
5509 Replacement = BTT_IsNothrowAssignable;
5510 break;
5511 case UTT_HasNothrowCopy:
5512 case UTT_HasNothrowConstructor:
5513 Replacement = TT_IsNothrowConstructible;
5514 break;
5515 case UTT_HasTrivialAssign:
5516 case UTT_HasTrivialMoveAssign:
5517 Replacement = BTT_IsTriviallyAssignable;
5518 break;
5519 case UTT_HasTrivialCopy:
5520 Replacement = UTT_IsTriviallyCopyable;
5521 break;
5522 case UTT_HasTrivialDefaultConstructor:
5523 case UTT_HasTrivialMoveConstructor:
5524 Replacement = TT_IsTriviallyConstructible;
5525 break;
5526 case UTT_HasTrivialDestructor:
5527 Replacement = UTT_IsTriviallyDestructible;
5528 break;
5529 default:
5530 return;
5531 }
5532 S.Diag(KWLoc, diag::warn_deprecated_builtin)
5533 << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5534 }
5535 }
5536
CheckTypeTraitArity(unsigned Arity,SourceLocation Loc,size_t N)5537 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5538 if (Arity && N != Arity) {
5539 Diag(Loc, diag::err_type_trait_arity)
5540 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5541 return false;
5542 }
5543
5544 if (!Arity && N == 0) {
5545 Diag(Loc, diag::err_type_trait_arity)
5546 << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5547 return false;
5548 }
5549 return true;
5550 }
5551
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)5552 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5553 ArrayRef<TypeSourceInfo *> Args,
5554 SourceLocation RParenLoc) {
5555 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
5556 return ExprError();
5557 QualType ResultType = Context.getLogicalOperationType();
5558
5559 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5560 *this, Kind, KWLoc, Args[0]->getType()))
5561 return ExprError();
5562
5563 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5564
5565 bool Dependent = false;
5566 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5567 if (Args[I]->getType()->isDependentType()) {
5568 Dependent = true;
5569 break;
5570 }
5571 }
5572
5573 bool Result = false;
5574 if (!Dependent)
5575 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5576
5577 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5578 RParenLoc, Result);
5579 }
5580
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)5581 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5582 ArrayRef<ParsedType> Args,
5583 SourceLocation RParenLoc) {
5584 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5585 ConvertedArgs.reserve(Args.size());
5586
5587 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5588 TypeSourceInfo *TInfo;
5589 QualType T = GetTypeFromParser(Args[I], &TInfo);
5590 if (!TInfo)
5591 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5592
5593 ConvertedArgs.push_back(TInfo);
5594 }
5595
5596 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5597 }
5598
EvaluateBinaryTypeTrait(Sema & Self,TypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)5599 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5600 QualType RhsT, SourceLocation KeyLoc) {
5601 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5602 "Cannot evaluate traits of dependent types");
5603
5604 switch(BTT) {
5605 case BTT_IsBaseOf: {
5606 // C++0x [meta.rel]p2
5607 // Base is a base class of Derived without regard to cv-qualifiers or
5608 // Base and Derived are not unions and name the same class type without
5609 // regard to cv-qualifiers.
5610
5611 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5612 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5613 if (!rhsRecord || !lhsRecord) {
5614 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5615 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5616 if (!LHSObjTy || !RHSObjTy)
5617 return false;
5618
5619 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5620 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5621 if (!BaseInterface || !DerivedInterface)
5622 return false;
5623
5624 if (Self.RequireCompleteType(
5625 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5626 return false;
5627
5628 return BaseInterface->isSuperClassOf(DerivedInterface);
5629 }
5630
5631 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5632 == (lhsRecord == rhsRecord));
5633
5634 // Unions are never base classes, and never have base classes.
5635 // It doesn't matter if they are complete or not. See PR#41843
5636 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5637 return false;
5638 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5639 return false;
5640
5641 if (lhsRecord == rhsRecord)
5642 return true;
5643
5644 // C++0x [meta.rel]p2:
5645 // If Base and Derived are class types and are different types
5646 // (ignoring possible cv-qualifiers) then Derived shall be a
5647 // complete type.
5648 if (Self.RequireCompleteType(KeyLoc, RhsT,
5649 diag::err_incomplete_type_used_in_type_trait_expr))
5650 return false;
5651
5652 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5653 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5654 }
5655 case BTT_IsSame:
5656 return Self.Context.hasSameType(LhsT, RhsT);
5657 case BTT_TypeCompatible: {
5658 // GCC ignores cv-qualifiers on arrays for this builtin.
5659 Qualifiers LhsQuals, RhsQuals;
5660 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5661 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5662 return Self.Context.typesAreCompatible(Lhs, Rhs);
5663 }
5664 case BTT_IsConvertible:
5665 case BTT_IsConvertibleTo: {
5666 // C++0x [meta.rel]p4:
5667 // Given the following function prototype:
5668 //
5669 // template <class T>
5670 // typename add_rvalue_reference<T>::type create();
5671 //
5672 // the predicate condition for a template specialization
5673 // is_convertible<From, To> shall be satisfied if and only if
5674 // the return expression in the following code would be
5675 // well-formed, including any implicit conversions to the return
5676 // type of the function:
5677 //
5678 // To test() {
5679 // return create<From>();
5680 // }
5681 //
5682 // Access checking is performed as if in a context unrelated to To and
5683 // From. Only the validity of the immediate context of the expression
5684 // of the return-statement (including conversions to the return type)
5685 // is considered.
5686 //
5687 // We model the initialization as a copy-initialization of a temporary
5688 // of the appropriate type, which for this expression is identical to the
5689 // return statement (since NRVO doesn't apply).
5690
5691 // Functions aren't allowed to return function or array types.
5692 if (RhsT->isFunctionType() || RhsT->isArrayType())
5693 return false;
5694
5695 // A return statement in a void function must have void type.
5696 if (RhsT->isVoidType())
5697 return LhsT->isVoidType();
5698
5699 // A function definition requires a complete, non-abstract return type.
5700 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5701 return false;
5702
5703 // Compute the result of add_rvalue_reference.
5704 if (LhsT->isObjectType() || LhsT->isFunctionType())
5705 LhsT = Self.Context.getRValueReferenceType(LhsT);
5706
5707 // Build a fake source and destination for initialization.
5708 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5709 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5710 Expr::getValueKindForType(LhsT));
5711 Expr *FromPtr = &From;
5712 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5713 SourceLocation()));
5714
5715 // Perform the initialization in an unevaluated context within a SFINAE
5716 // trap at translation unit scope.
5717 EnterExpressionEvaluationContext Unevaluated(
5718 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5719 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5720 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5721 InitializationSequence Init(Self, To, Kind, FromPtr);
5722 if (Init.Failed())
5723 return false;
5724
5725 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5726 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5727 }
5728
5729 case BTT_IsAssignable:
5730 case BTT_IsNothrowAssignable:
5731 case BTT_IsTriviallyAssignable: {
5732 // C++11 [meta.unary.prop]p3:
5733 // is_trivially_assignable is defined as:
5734 // is_assignable<T, U>::value is true and the assignment, as defined by
5735 // is_assignable, is known to call no operation that is not trivial
5736 //
5737 // is_assignable is defined as:
5738 // The expression declval<T>() = declval<U>() is well-formed when
5739 // treated as an unevaluated operand (Clause 5).
5740 //
5741 // For both, T and U shall be complete types, (possibly cv-qualified)
5742 // void, or arrays of unknown bound.
5743 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5744 Self.RequireCompleteType(KeyLoc, LhsT,
5745 diag::err_incomplete_type_used_in_type_trait_expr))
5746 return false;
5747 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5748 Self.RequireCompleteType(KeyLoc, RhsT,
5749 diag::err_incomplete_type_used_in_type_trait_expr))
5750 return false;
5751
5752 // cv void is never assignable.
5753 if (LhsT->isVoidType() || RhsT->isVoidType())
5754 return false;
5755
5756 // Build expressions that emulate the effect of declval<T>() and
5757 // declval<U>().
5758 if (LhsT->isObjectType() || LhsT->isFunctionType())
5759 LhsT = Self.Context.getRValueReferenceType(LhsT);
5760 if (RhsT->isObjectType() || RhsT->isFunctionType())
5761 RhsT = Self.Context.getRValueReferenceType(RhsT);
5762 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5763 Expr::getValueKindForType(LhsT));
5764 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5765 Expr::getValueKindForType(RhsT));
5766
5767 // Attempt the assignment in an unevaluated context within a SFINAE
5768 // trap at translation unit scope.
5769 EnterExpressionEvaluationContext Unevaluated(
5770 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5771 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5772 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5773 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5774 &Rhs);
5775 if (Result.isInvalid())
5776 return false;
5777
5778 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5779 Self.CheckUnusedVolatileAssignment(Result.get());
5780
5781 if (SFINAE.hasErrorOccurred())
5782 return false;
5783
5784 if (BTT == BTT_IsAssignable)
5785 return true;
5786
5787 if (BTT == BTT_IsNothrowAssignable)
5788 return Self.canThrow(Result.get()) == CT_Cannot;
5789
5790 if (BTT == BTT_IsTriviallyAssignable) {
5791 // Under Objective-C ARC and Weak, if the destination has non-trivial
5792 // Objective-C lifetime, this is a non-trivial assignment.
5793 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5794 return false;
5795
5796 return !Result.get()->hasNonTrivialCall(Self.Context);
5797 }
5798
5799 llvm_unreachable("unhandled type trait");
5800 return false;
5801 }
5802 default: llvm_unreachable("not a BTT");
5803 }
5804 llvm_unreachable("Unknown type trait or not implemented");
5805 }
5806
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)5807 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5808 SourceLocation KWLoc,
5809 ParsedType Ty,
5810 Expr* DimExpr,
5811 SourceLocation RParen) {
5812 TypeSourceInfo *TSInfo;
5813 QualType T = GetTypeFromParser(Ty, &TSInfo);
5814 if (!TSInfo)
5815 TSInfo = Context.getTrivialTypeSourceInfo(T);
5816
5817 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5818 }
5819
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)5820 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5821 QualType T, Expr *DimExpr,
5822 SourceLocation KeyLoc) {
5823 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5824
5825 switch(ATT) {
5826 case ATT_ArrayRank:
5827 if (T->isArrayType()) {
5828 unsigned Dim = 0;
5829 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5830 ++Dim;
5831 T = AT->getElementType();
5832 }
5833 return Dim;
5834 }
5835 return 0;
5836
5837 case ATT_ArrayExtent: {
5838 llvm::APSInt Value;
5839 uint64_t Dim;
5840 if (Self.VerifyIntegerConstantExpression(
5841 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5842 .isInvalid())
5843 return 0;
5844 if (Value.isSigned() && Value.isNegative()) {
5845 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5846 << DimExpr->getSourceRange();
5847 return 0;
5848 }
5849 Dim = Value.getLimitedValue();
5850
5851 if (T->isArrayType()) {
5852 unsigned D = 0;
5853 bool Matched = false;
5854 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5855 if (Dim == D) {
5856 Matched = true;
5857 break;
5858 }
5859 ++D;
5860 T = AT->getElementType();
5861 }
5862
5863 if (Matched && T->isArrayType()) {
5864 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5865 return CAT->getSize().getLimitedValue();
5866 }
5867 }
5868 return 0;
5869 }
5870 }
5871 llvm_unreachable("Unknown type trait or not implemented");
5872 }
5873
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)5874 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5875 SourceLocation KWLoc,
5876 TypeSourceInfo *TSInfo,
5877 Expr* DimExpr,
5878 SourceLocation RParen) {
5879 QualType T = TSInfo->getType();
5880
5881 // FIXME: This should likely be tracked as an APInt to remove any host
5882 // assumptions about the width of size_t on the target.
5883 uint64_t Value = 0;
5884 if (!T->isDependentType())
5885 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5886
5887 // While the specification for these traits from the Embarcadero C++
5888 // compiler's documentation says the return type is 'unsigned int', Clang
5889 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5890 // compiler, there is no difference. On several other platforms this is an
5891 // important distinction.
5892 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5893 RParen, Context.getSizeType());
5894 }
5895
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)5896 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5897 SourceLocation KWLoc,
5898 Expr *Queried,
5899 SourceLocation RParen) {
5900 // If error parsing the expression, ignore.
5901 if (!Queried)
5902 return ExprError();
5903
5904 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5905
5906 return Result;
5907 }
5908
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)5909 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5910 switch (ET) {
5911 case ET_IsLValueExpr: return E->isLValue();
5912 case ET_IsRValueExpr:
5913 return E->isPRValue();
5914 }
5915 llvm_unreachable("Expression trait not covered by switch");
5916 }
5917
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)5918 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5919 SourceLocation KWLoc,
5920 Expr *Queried,
5921 SourceLocation RParen) {
5922 if (Queried->isTypeDependent()) {
5923 // Delay type-checking for type-dependent expressions.
5924 } else if (Queried->hasPlaceholderType()) {
5925 ExprResult PE = CheckPlaceholderExpr(Queried);
5926 if (PE.isInvalid()) return ExprError();
5927 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5928 }
5929
5930 bool Value = EvaluateExpressionTrait(ET, Queried);
5931
5932 return new (Context)
5933 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5934 }
5935
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)5936 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5937 ExprValueKind &VK,
5938 SourceLocation Loc,
5939 bool isIndirect) {
5940 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
5941 "placeholders should have been weeded out by now");
5942
5943 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5944 // temporary materialization conversion otherwise.
5945 if (isIndirect)
5946 LHS = DefaultLvalueConversion(LHS.get());
5947 else if (LHS.get()->isPRValue())
5948 LHS = TemporaryMaterializationConversion(LHS.get());
5949 if (LHS.isInvalid())
5950 return QualType();
5951
5952 // The RHS always undergoes lvalue conversions.
5953 RHS = DefaultLvalueConversion(RHS.get());
5954 if (RHS.isInvalid()) return QualType();
5955
5956 const char *OpSpelling = isIndirect ? "->*" : ".*";
5957 // C++ 5.5p2
5958 // The binary operator .* [p3: ->*] binds its second operand, which shall
5959 // be of type "pointer to member of T" (where T is a completely-defined
5960 // class type) [...]
5961 QualType RHSType = RHS.get()->getType();
5962 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5963 if (!MemPtr) {
5964 Diag(Loc, diag::err_bad_memptr_rhs)
5965 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5966 return QualType();
5967 }
5968
5969 QualType Class(MemPtr->getClass(), 0);
5970
5971 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5972 // member pointer points must be completely-defined. However, there is no
5973 // reason for this semantic distinction, and the rule is not enforced by
5974 // other compilers. Therefore, we do not check this property, as it is
5975 // likely to be considered a defect.
5976
5977 // C++ 5.5p2
5978 // [...] to its first operand, which shall be of class T or of a class of
5979 // which T is an unambiguous and accessible base class. [p3: a pointer to
5980 // such a class]
5981 QualType LHSType = LHS.get()->getType();
5982 if (isIndirect) {
5983 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5984 LHSType = Ptr->getPointeeType();
5985 else {
5986 Diag(Loc, diag::err_bad_memptr_lhs)
5987 << OpSpelling << 1 << LHSType
5988 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5989 return QualType();
5990 }
5991 }
5992
5993 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5994 // If we want to check the hierarchy, we need a complete type.
5995 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5996 OpSpelling, (int)isIndirect)) {
5997 return QualType();
5998 }
5999
6000 if (!IsDerivedFrom(Loc, LHSType, Class)) {
6001 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6002 << (int)isIndirect << LHS.get()->getType();
6003 return QualType();
6004 }
6005
6006 CXXCastPath BasePath;
6007 if (CheckDerivedToBaseConversion(
6008 LHSType, Class, Loc,
6009 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6010 &BasePath))
6011 return QualType();
6012
6013 // Cast LHS to type of use.
6014 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
6015 if (isIndirect)
6016 UseType = Context.getPointerType(UseType);
6017 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6018 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
6019 &BasePath);
6020 }
6021
6022 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
6023 // Diagnose use of pointer-to-member type which when used as
6024 // the functional cast in a pointer-to-member expression.
6025 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6026 return QualType();
6027 }
6028
6029 // C++ 5.5p2
6030 // The result is an object or a function of the type specified by the
6031 // second operand.
6032 // The cv qualifiers are the union of those in the pointer and the left side,
6033 // in accordance with 5.5p5 and 5.2.5.
6034 QualType Result = MemPtr->getPointeeType();
6035 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
6036
6037 // C++0x [expr.mptr.oper]p6:
6038 // In a .* expression whose object expression is an rvalue, the program is
6039 // ill-formed if the second operand is a pointer to member function with
6040 // ref-qualifier &. In a ->* expression or in a .* expression whose object
6041 // expression is an lvalue, the program is ill-formed if the second operand
6042 // is a pointer to member function with ref-qualifier &&.
6043 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6044 switch (Proto->getRefQualifier()) {
6045 case RQ_None:
6046 // Do nothing
6047 break;
6048
6049 case RQ_LValue:
6050 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
6051 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6052 // is (exactly) 'const'.
6053 if (Proto->isConst() && !Proto->isVolatile())
6054 Diag(Loc, getLangOpts().CPlusPlus20
6055 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6056 : diag::ext_pointer_to_const_ref_member_on_rvalue);
6057 else
6058 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6059 << RHSType << 1 << LHS.get()->getSourceRange();
6060 }
6061 break;
6062
6063 case RQ_RValue:
6064 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6065 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6066 << RHSType << 0 << LHS.get()->getSourceRange();
6067 break;
6068 }
6069 }
6070
6071 // C++ [expr.mptr.oper]p6:
6072 // The result of a .* expression whose second operand is a pointer
6073 // to a data member is of the same value category as its
6074 // first operand. The result of a .* expression whose second
6075 // operand is a pointer to a member function is a prvalue. The
6076 // result of an ->* expression is an lvalue if its second operand
6077 // is a pointer to data member and a prvalue otherwise.
6078 if (Result->isFunctionType()) {
6079 VK = VK_PRValue;
6080 return Context.BoundMemberTy;
6081 } else if (isIndirect) {
6082 VK = VK_LValue;
6083 } else {
6084 VK = LHS.get()->getValueKind();
6085 }
6086
6087 return Result;
6088 }
6089
6090 /// Try to convert a type to another according to C++11 5.16p3.
6091 ///
6092 /// This is part of the parameter validation for the ? operator. If either
6093 /// value operand is a class type, the two operands are attempted to be
6094 /// converted to each other. This function does the conversion in one direction.
6095 /// It returns true if the program is ill-formed and has already been diagnosed
6096 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)6097 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6098 SourceLocation QuestionLoc,
6099 bool &HaveConversion,
6100 QualType &ToType) {
6101 HaveConversion = false;
6102 ToType = To->getType();
6103
6104 InitializationKind Kind =
6105 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
6106 // C++11 5.16p3
6107 // The process for determining whether an operand expression E1 of type T1
6108 // can be converted to match an operand expression E2 of type T2 is defined
6109 // as follows:
6110 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6111 // implicitly converted to type "lvalue reference to T2", subject to the
6112 // constraint that in the conversion the reference must bind directly to
6113 // an lvalue.
6114 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6115 // implicitly converted to the type "rvalue reference to R2", subject to
6116 // the constraint that the reference must bind directly.
6117 if (To->isGLValue()) {
6118 QualType T = Self.Context.getReferenceQualifiedType(To);
6119 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6120
6121 InitializationSequence InitSeq(Self, Entity, Kind, From);
6122 if (InitSeq.isDirectReferenceBinding()) {
6123 ToType = T;
6124 HaveConversion = true;
6125 return false;
6126 }
6127
6128 if (InitSeq.isAmbiguous())
6129 return InitSeq.Diagnose(Self, Entity, Kind, From);
6130 }
6131
6132 // -- If E2 is an rvalue, or if the conversion above cannot be done:
6133 // -- if E1 and E2 have class type, and the underlying class types are
6134 // the same or one is a base class of the other:
6135 QualType FTy = From->getType();
6136 QualType TTy = To->getType();
6137 const RecordType *FRec = FTy->getAs<RecordType>();
6138 const RecordType *TRec = TTy->getAs<RecordType>();
6139 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6140 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6141 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6142 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6143 // E1 can be converted to match E2 if the class of T2 is the
6144 // same type as, or a base class of, the class of T1, and
6145 // [cv2 > cv1].
6146 if (FRec == TRec || FDerivedFromT) {
6147 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
6148 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6149 InitializationSequence InitSeq(Self, Entity, Kind, From);
6150 if (InitSeq) {
6151 HaveConversion = true;
6152 return false;
6153 }
6154
6155 if (InitSeq.isAmbiguous())
6156 return InitSeq.Diagnose(Self, Entity, Kind, From);
6157 }
6158 }
6159
6160 return false;
6161 }
6162
6163 // -- Otherwise: E1 can be converted to match E2 if E1 can be
6164 // implicitly converted to the type that expression E2 would have
6165 // if E2 were converted to an rvalue (or the type it has, if E2 is
6166 // an rvalue).
6167 //
6168 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6169 // to the array-to-pointer or function-to-pointer conversions.
6170 TTy = TTy.getNonLValueExprType(Self.Context);
6171
6172 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6173 InitializationSequence InitSeq(Self, Entity, Kind, From);
6174 HaveConversion = !InitSeq.Failed();
6175 ToType = TTy;
6176 if (InitSeq.isAmbiguous())
6177 return InitSeq.Diagnose(Self, Entity, Kind, From);
6178
6179 return false;
6180 }
6181
6182 /// Try to find a common type for two according to C++0x 5.16p5.
6183 ///
6184 /// This is part of the parameter validation for the ? operator. If either
6185 /// value operand is a class type, overload resolution is used to find a
6186 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)6187 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6188 SourceLocation QuestionLoc) {
6189 Expr *Args[2] = { LHS.get(), RHS.get() };
6190 OverloadCandidateSet CandidateSet(QuestionLoc,
6191 OverloadCandidateSet::CSK_Operator);
6192 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6193 CandidateSet);
6194
6195 OverloadCandidateSet::iterator Best;
6196 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6197 case OR_Success: {
6198 // We found a match. Perform the conversions on the arguments and move on.
6199 ExprResult LHSRes = Self.PerformImplicitConversion(
6200 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6201 Sema::AA_Converting);
6202 if (LHSRes.isInvalid())
6203 break;
6204 LHS = LHSRes;
6205
6206 ExprResult RHSRes = Self.PerformImplicitConversion(
6207 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6208 Sema::AA_Converting);
6209 if (RHSRes.isInvalid())
6210 break;
6211 RHS = RHSRes;
6212 if (Best->Function)
6213 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6214 return false;
6215 }
6216
6217 case OR_No_Viable_Function:
6218
6219 // Emit a better diagnostic if one of the expressions is a null pointer
6220 // constant and the other is a pointer type. In this case, the user most
6221 // likely forgot to take the address of the other expression.
6222 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6223 return true;
6224
6225 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6226 << LHS.get()->getType() << RHS.get()->getType()
6227 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6228 return true;
6229
6230 case OR_Ambiguous:
6231 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6232 << LHS.get()->getType() << RHS.get()->getType()
6233 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6234 // FIXME: Print the possible common types by printing the return types of
6235 // the viable candidates.
6236 break;
6237
6238 case OR_Deleted:
6239 llvm_unreachable("Conditional operator has only built-in overloads");
6240 }
6241 return true;
6242 }
6243
6244 /// Perform an "extended" implicit conversion as returned by
6245 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)6246 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6247 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6248 InitializationKind Kind =
6249 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6250 Expr *Arg = E.get();
6251 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6252 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6253 if (Result.isInvalid())
6254 return true;
6255
6256 E = Result;
6257 return false;
6258 }
6259
6260 // Check the condition operand of ?: to see if it is valid for the GCC
6261 // extension.
isValidVectorForConditionalCondition(ASTContext & Ctx,QualType CondTy)6262 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6263 QualType CondTy) {
6264 if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6265 return false;
6266 const QualType EltTy =
6267 cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6268 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6269 return EltTy->isIntegralType(Ctx);
6270 }
6271
isValidSizelessVectorForConditionalCondition(ASTContext & Ctx,QualType CondTy)6272 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6273 QualType CondTy) {
6274 if (!CondTy->isVLSTBuiltinType())
6275 return false;
6276 const QualType EltTy =
6277 cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6278 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6279 return EltTy->isIntegralType(Ctx);
6280 }
6281
CheckVectorConditionalTypes(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)6282 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6283 ExprResult &RHS,
6284 SourceLocation QuestionLoc) {
6285 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6286 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6287
6288 QualType CondType = Cond.get()->getType();
6289 const auto *CondVT = CondType->castAs<VectorType>();
6290 QualType CondElementTy = CondVT->getElementType();
6291 unsigned CondElementCount = CondVT->getNumElements();
6292 QualType LHSType = LHS.get()->getType();
6293 const auto *LHSVT = LHSType->getAs<VectorType>();
6294 QualType RHSType = RHS.get()->getType();
6295 const auto *RHSVT = RHSType->getAs<VectorType>();
6296
6297 QualType ResultType;
6298
6299
6300 if (LHSVT && RHSVT) {
6301 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6302 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6303 << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6304 return {};
6305 }
6306
6307 // If both are vector types, they must be the same type.
6308 if (!Context.hasSameType(LHSType, RHSType)) {
6309 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6310 << LHSType << RHSType;
6311 return {};
6312 }
6313 ResultType = Context.getCommonSugaredType(LHSType, RHSType);
6314 } else if (LHSVT || RHSVT) {
6315 ResultType = CheckVectorOperands(
6316 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6317 /*AllowBoolConversions*/ false,
6318 /*AllowBoolOperation*/ true,
6319 /*ReportInvalid*/ true);
6320 if (ResultType.isNull())
6321 return {};
6322 } else {
6323 // Both are scalar.
6324 LHSType = LHSType.getUnqualifiedType();
6325 RHSType = RHSType.getUnqualifiedType();
6326 QualType ResultElementTy =
6327 Context.hasSameType(LHSType, RHSType)
6328 ? Context.getCommonSugaredType(LHSType, RHSType)
6329 : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
6330 ACK_Conditional);
6331
6332 if (ResultElementTy->isEnumeralType()) {
6333 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6334 << ResultElementTy;
6335 return {};
6336 }
6337 if (CondType->isExtVectorType())
6338 ResultType =
6339 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6340 else
6341 ResultType = Context.getVectorType(
6342 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6343
6344 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6345 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6346 }
6347
6348 assert(!ResultType.isNull() && ResultType->isVectorType() &&
6349 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6350 "Result should have been a vector type");
6351 auto *ResultVectorTy = ResultType->castAs<VectorType>();
6352 QualType ResultElementTy = ResultVectorTy->getElementType();
6353 unsigned ResultElementCount = ResultVectorTy->getNumElements();
6354
6355 if (ResultElementCount != CondElementCount) {
6356 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6357 << ResultType;
6358 return {};
6359 }
6360
6361 if (Context.getTypeSize(ResultElementTy) !=
6362 Context.getTypeSize(CondElementTy)) {
6363 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6364 << ResultType;
6365 return {};
6366 }
6367
6368 return ResultType;
6369 }
6370
CheckSizelessVectorConditionalTypes(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)6371 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6372 ExprResult &LHS,
6373 ExprResult &RHS,
6374 SourceLocation QuestionLoc) {
6375 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6376 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6377
6378 QualType CondType = Cond.get()->getType();
6379 const auto *CondBT = CondType->castAs<BuiltinType>();
6380 QualType CondElementTy = CondBT->getSveEltType(Context);
6381 llvm::ElementCount CondElementCount =
6382 Context.getBuiltinVectorTypeInfo(CondBT).EC;
6383
6384 QualType LHSType = LHS.get()->getType();
6385 const auto *LHSBT =
6386 LHSType->isVLSTBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6387 QualType RHSType = RHS.get()->getType();
6388 const auto *RHSBT =
6389 RHSType->isVLSTBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6390
6391 QualType ResultType;
6392
6393 if (LHSBT && RHSBT) {
6394 // If both are sizeless vector types, they must be the same type.
6395 if (!Context.hasSameType(LHSType, RHSType)) {
6396 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6397 << LHSType << RHSType;
6398 return QualType();
6399 }
6400 ResultType = LHSType;
6401 } else if (LHSBT || RHSBT) {
6402 ResultType = CheckSizelessVectorOperands(
6403 LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6404 if (ResultType.isNull())
6405 return QualType();
6406 } else {
6407 // Both are scalar so splat
6408 QualType ResultElementTy;
6409 LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6410 RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6411
6412 if (Context.hasSameType(LHSType, RHSType))
6413 ResultElementTy = LHSType;
6414 else
6415 ResultElementTy =
6416 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6417
6418 if (ResultElementTy->isEnumeralType()) {
6419 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6420 << ResultElementTy;
6421 return QualType();
6422 }
6423
6424 ResultType = Context.getScalableVectorType(
6425 ResultElementTy, CondElementCount.getKnownMinValue());
6426
6427 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6428 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6429 }
6430
6431 assert(!ResultType.isNull() && ResultType->isVLSTBuiltinType() &&
6432 "Result should have been a vector type");
6433 auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6434 QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6435 llvm::ElementCount ResultElementCount =
6436 Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6437
6438 if (ResultElementCount != CondElementCount) {
6439 Diag(QuestionLoc, diag::err_conditional_vector_size)
6440 << CondType << ResultType;
6441 return QualType();
6442 }
6443
6444 if (Context.getTypeSize(ResultElementTy) !=
6445 Context.getTypeSize(CondElementTy)) {
6446 Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6447 << CondType << ResultType;
6448 return QualType();
6449 }
6450
6451 return ResultType;
6452 }
6453
6454 /// Check the operands of ?: under C++ semantics.
6455 ///
6456 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6457 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6458 ///
6459 /// This function also implements GCC's vector extension and the
6460 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6461 /// permit the use of a?b:c where the type of a is that of a integer vector with
6462 /// the same number of elements and size as the vectors of b and c. If one of
6463 /// either b or c is a scalar it is implicitly converted to match the type of
6464 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6465 /// scalars, then b and c are checked and converted to the type of a if
6466 /// possible.
6467 ///
6468 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6469 /// For the GCC extension, the ?: operator is evaluated as
6470 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6471 /// For the OpenCL extensions, the ?: operator is evaluated as
6472 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
6473 /// most-significant-bit-set(a[n]) ? b[n] : c[n]).
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)6474 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6475 ExprResult &RHS, ExprValueKind &VK,
6476 ExprObjectKind &OK,
6477 SourceLocation QuestionLoc) {
6478 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6479 // pointers.
6480
6481 // Assume r-value.
6482 VK = VK_PRValue;
6483 OK = OK_Ordinary;
6484 bool IsVectorConditional =
6485 isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6486
6487 bool IsSizelessVectorConditional =
6488 isValidSizelessVectorForConditionalCondition(Context,
6489 Cond.get()->getType());
6490
6491 // C++11 [expr.cond]p1
6492 // The first expression is contextually converted to bool.
6493 if (!Cond.get()->isTypeDependent()) {
6494 ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6495 ? DefaultFunctionArrayLvalueConversion(Cond.get())
6496 : CheckCXXBooleanCondition(Cond.get());
6497 if (CondRes.isInvalid())
6498 return QualType();
6499 Cond = CondRes;
6500 } else {
6501 // To implement C++, the first expression typically doesn't alter the result
6502 // type of the conditional, however the GCC compatible vector extension
6503 // changes the result type to be that of the conditional. Since we cannot
6504 // know if this is a vector extension here, delay the conversion of the
6505 // LHS/RHS below until later.
6506 return Context.DependentTy;
6507 }
6508
6509
6510 // Either of the arguments dependent?
6511 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6512 return Context.DependentTy;
6513
6514 // C++11 [expr.cond]p2
6515 // If either the second or the third operand has type (cv) void, ...
6516 QualType LTy = LHS.get()->getType();
6517 QualType RTy = RHS.get()->getType();
6518 bool LVoid = LTy->isVoidType();
6519 bool RVoid = RTy->isVoidType();
6520 if (LVoid || RVoid) {
6521 // ... one of the following shall hold:
6522 // -- The second or the third operand (but not both) is a (possibly
6523 // parenthesized) throw-expression; the result is of the type
6524 // and value category of the other.
6525 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6526 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6527
6528 // Void expressions aren't legal in the vector-conditional expressions.
6529 if (IsVectorConditional) {
6530 SourceRange DiagLoc =
6531 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6532 bool IsThrow = LVoid ? LThrow : RThrow;
6533 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6534 << DiagLoc << IsThrow;
6535 return QualType();
6536 }
6537
6538 if (LThrow != RThrow) {
6539 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6540 VK = NonThrow->getValueKind();
6541 // DR (no number yet): the result is a bit-field if the
6542 // non-throw-expression operand is a bit-field.
6543 OK = NonThrow->getObjectKind();
6544 return NonThrow->getType();
6545 }
6546
6547 // -- Both the second and third operands have type void; the result is of
6548 // type void and is a prvalue.
6549 if (LVoid && RVoid)
6550 return Context.getCommonSugaredType(LTy, RTy);
6551
6552 // Neither holds, error.
6553 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6554 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6555 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6556 return QualType();
6557 }
6558
6559 // Neither is void.
6560 if (IsVectorConditional)
6561 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6562
6563 if (IsSizelessVectorConditional)
6564 return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6565
6566 // C++11 [expr.cond]p3
6567 // Otherwise, if the second and third operand have different types, and
6568 // either has (cv) class type [...] an attempt is made to convert each of
6569 // those operands to the type of the other.
6570 if (!Context.hasSameType(LTy, RTy) &&
6571 (LTy->isRecordType() || RTy->isRecordType())) {
6572 // These return true if a single direction is already ambiguous.
6573 QualType L2RType, R2LType;
6574 bool HaveL2R, HaveR2L;
6575 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6576 return QualType();
6577 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6578 return QualType();
6579
6580 // If both can be converted, [...] the program is ill-formed.
6581 if (HaveL2R && HaveR2L) {
6582 Diag(QuestionLoc, diag::err_conditional_ambiguous)
6583 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6584 return QualType();
6585 }
6586
6587 // If exactly one conversion is possible, that conversion is applied to
6588 // the chosen operand and the converted operands are used in place of the
6589 // original operands for the remainder of this section.
6590 if (HaveL2R) {
6591 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6592 return QualType();
6593 LTy = LHS.get()->getType();
6594 } else if (HaveR2L) {
6595 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6596 return QualType();
6597 RTy = RHS.get()->getType();
6598 }
6599 }
6600
6601 // C++11 [expr.cond]p3
6602 // if both are glvalues of the same value category and the same type except
6603 // for cv-qualification, an attempt is made to convert each of those
6604 // operands to the type of the other.
6605 // FIXME:
6606 // Resolving a defect in P0012R1: we extend this to cover all cases where
6607 // one of the operands is reference-compatible with the other, in order
6608 // to support conditionals between functions differing in noexcept. This
6609 // will similarly cover difference in array bounds after P0388R4.
6610 // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6611 // that instead?
6612 ExprValueKind LVK = LHS.get()->getValueKind();
6613 ExprValueKind RVK = RHS.get()->getValueKind();
6614 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6615 // DerivedToBase was already handled by the class-specific case above.
6616 // FIXME: Should we allow ObjC conversions here?
6617 const ReferenceConversions AllowedConversions =
6618 ReferenceConversions::Qualification |
6619 ReferenceConversions::NestedQualification |
6620 ReferenceConversions::Function;
6621
6622 ReferenceConversions RefConv;
6623 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6624 Ref_Compatible &&
6625 !(RefConv & ~AllowedConversions) &&
6626 // [...] subject to the constraint that the reference must bind
6627 // directly [...]
6628 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6629 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6630 RTy = RHS.get()->getType();
6631 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6632 Ref_Compatible &&
6633 !(RefConv & ~AllowedConversions) &&
6634 !LHS.get()->refersToBitField() &&
6635 !LHS.get()->refersToVectorElement()) {
6636 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6637 LTy = LHS.get()->getType();
6638 }
6639 }
6640
6641 // C++11 [expr.cond]p4
6642 // If the second and third operands are glvalues of the same value
6643 // category and have the same type, the result is of that type and
6644 // value category and it is a bit-field if the second or the third
6645 // operand is a bit-field, or if both are bit-fields.
6646 // We only extend this to bitfields, not to the crazy other kinds of
6647 // l-values.
6648 bool Same = Context.hasSameType(LTy, RTy);
6649 if (Same && LVK == RVK && LVK != VK_PRValue &&
6650 LHS.get()->isOrdinaryOrBitFieldObject() &&
6651 RHS.get()->isOrdinaryOrBitFieldObject()) {
6652 VK = LHS.get()->getValueKind();
6653 if (LHS.get()->getObjectKind() == OK_BitField ||
6654 RHS.get()->getObjectKind() == OK_BitField)
6655 OK = OK_BitField;
6656 return Context.getCommonSugaredType(LTy, RTy);
6657 }
6658
6659 // C++11 [expr.cond]p5
6660 // Otherwise, the result is a prvalue. If the second and third operands
6661 // do not have the same type, and either has (cv) class type, ...
6662 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6663 // ... overload resolution is used to determine the conversions (if any)
6664 // to be applied to the operands. If the overload resolution fails, the
6665 // program is ill-formed.
6666 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6667 return QualType();
6668 }
6669
6670 // C++11 [expr.cond]p6
6671 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6672 // conversions are performed on the second and third operands.
6673 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6674 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6675 if (LHS.isInvalid() || RHS.isInvalid())
6676 return QualType();
6677 LTy = LHS.get()->getType();
6678 RTy = RHS.get()->getType();
6679
6680 // After those conversions, one of the following shall hold:
6681 // -- The second and third operands have the same type; the result
6682 // is of that type. If the operands have class type, the result
6683 // is a prvalue temporary of the result type, which is
6684 // copy-initialized from either the second operand or the third
6685 // operand depending on the value of the first operand.
6686 if (Context.hasSameType(LTy, RTy)) {
6687 if (LTy->isRecordType()) {
6688 // The operands have class type. Make a temporary copy.
6689 ExprResult LHSCopy = PerformCopyInitialization(
6690 InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
6691 if (LHSCopy.isInvalid())
6692 return QualType();
6693
6694 ExprResult RHSCopy = PerformCopyInitialization(
6695 InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
6696 if (RHSCopy.isInvalid())
6697 return QualType();
6698
6699 LHS = LHSCopy;
6700 RHS = RHSCopy;
6701 }
6702 return Context.getCommonSugaredType(LTy, RTy);
6703 }
6704
6705 // Extension: conditional operator involving vector types.
6706 if (LTy->isVectorType() || RTy->isVectorType())
6707 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
6708 /*AllowBothBool*/ true,
6709 /*AllowBoolConversions*/ false,
6710 /*AllowBoolOperation*/ false,
6711 /*ReportInvalid*/ true);
6712
6713 // -- The second and third operands have arithmetic or enumeration type;
6714 // the usual arithmetic conversions are performed to bring them to a
6715 // common type, and the result is of that type.
6716 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6717 QualType ResTy =
6718 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6719 if (LHS.isInvalid() || RHS.isInvalid())
6720 return QualType();
6721 if (ResTy.isNull()) {
6722 Diag(QuestionLoc,
6723 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6724 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6725 return QualType();
6726 }
6727
6728 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6729 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6730
6731 return ResTy;
6732 }
6733
6734 // -- The second and third operands have pointer type, or one has pointer
6735 // type and the other is a null pointer constant, or both are null
6736 // pointer constants, at least one of which is non-integral; pointer
6737 // conversions and qualification conversions are performed to bring them
6738 // to their composite pointer type. The result is of the composite
6739 // pointer type.
6740 // -- The second and third operands have pointer to member type, or one has
6741 // pointer to member type and the other is a null pointer constant;
6742 // pointer to member conversions and qualification conversions are
6743 // performed to bring them to a common type, whose cv-qualification
6744 // shall match the cv-qualification of either the second or the third
6745 // operand. The result is of the common type.
6746 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6747 if (!Composite.isNull())
6748 return Composite;
6749
6750 // Similarly, attempt to find composite type of two objective-c pointers.
6751 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6752 if (LHS.isInvalid() || RHS.isInvalid())
6753 return QualType();
6754 if (!Composite.isNull())
6755 return Composite;
6756
6757 // Check if we are using a null with a non-pointer type.
6758 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6759 return QualType();
6760
6761 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6762 << LHS.get()->getType() << RHS.get()->getType()
6763 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6764 return QualType();
6765 }
6766
6767 /// Find a merged pointer type and convert the two expressions to it.
6768 ///
6769 /// This finds the composite pointer type for \p E1 and \p E2 according to
6770 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6771 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6772 /// is \c true).
6773 ///
6774 /// \param Loc The location of the operator requiring these two expressions to
6775 /// be converted to the composite pointer type.
6776 ///
6777 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool ConvertArgs)6778 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6779 Expr *&E1, Expr *&E2,
6780 bool ConvertArgs) {
6781 assert(getLangOpts().CPlusPlus && "This function assumes C++");
6782
6783 // C++1z [expr]p14:
6784 // The composite pointer type of two operands p1 and p2 having types T1
6785 // and T2
6786 QualType T1 = E1->getType(), T2 = E2->getType();
6787
6788 // where at least one is a pointer or pointer to member type or
6789 // std::nullptr_t is:
6790 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6791 T1->isNullPtrType();
6792 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6793 T2->isNullPtrType();
6794 if (!T1IsPointerLike && !T2IsPointerLike)
6795 return QualType();
6796
6797 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
6798 // This can't actually happen, following the standard, but we also use this
6799 // to implement the end of [expr.conv], which hits this case.
6800 //
6801 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6802 if (T1IsPointerLike &&
6803 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6804 if (ConvertArgs)
6805 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6806 ? CK_NullToMemberPointer
6807 : CK_NullToPointer).get();
6808 return T1;
6809 }
6810 if (T2IsPointerLike &&
6811 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6812 if (ConvertArgs)
6813 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6814 ? CK_NullToMemberPointer
6815 : CK_NullToPointer).get();
6816 return T2;
6817 }
6818
6819 // Now both have to be pointers or member pointers.
6820 if (!T1IsPointerLike || !T2IsPointerLike)
6821 return QualType();
6822 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6823 "nullptr_t should be a null pointer constant");
6824
6825 struct Step {
6826 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6827 // Qualifiers to apply under the step kind.
6828 Qualifiers Quals;
6829 /// The class for a pointer-to-member; a constant array type with a bound
6830 /// (if any) for an array.
6831 const Type *ClassOrBound;
6832
6833 Step(Kind K, const Type *ClassOrBound = nullptr)
6834 : K(K), ClassOrBound(ClassOrBound) {}
6835 QualType rebuild(ASTContext &Ctx, QualType T) const {
6836 T = Ctx.getQualifiedType(T, Quals);
6837 switch (K) {
6838 case Pointer:
6839 return Ctx.getPointerType(T);
6840 case MemberPointer:
6841 return Ctx.getMemberPointerType(T, ClassOrBound);
6842 case ObjCPointer:
6843 return Ctx.getObjCObjectPointerType(T);
6844 case Array:
6845 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6846 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6847 ArrayType::Normal, 0);
6848 else
6849 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6850 }
6851 llvm_unreachable("unknown step kind");
6852 }
6853 };
6854
6855 SmallVector<Step, 8> Steps;
6856
6857 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6858 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6859 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6860 // respectively;
6861 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6862 // to member of C2 of type cv2 U2" for some non-function type U, where
6863 // C1 is reference-related to C2 or C2 is reference-related to C1, the
6864 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6865 // respectively;
6866 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6867 // T2;
6868 //
6869 // Dismantle T1 and T2 to simultaneously determine whether they are similar
6870 // and to prepare to form the cv-combined type if so.
6871 QualType Composite1 = T1;
6872 QualType Composite2 = T2;
6873 unsigned NeedConstBefore = 0;
6874 while (true) {
6875 assert(!Composite1.isNull() && !Composite2.isNull());
6876
6877 Qualifiers Q1, Q2;
6878 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6879 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6880
6881 // Top-level qualifiers are ignored. Merge at all lower levels.
6882 if (!Steps.empty()) {
6883 // Find the qualifier union: (approximately) the unique minimal set of
6884 // qualifiers that is compatible with both types.
6885 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6886 Q2.getCVRUQualifiers());
6887
6888 // Under one level of pointer or pointer-to-member, we can change to an
6889 // unambiguous compatible address space.
6890 if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6891 Quals.setAddressSpace(Q1.getAddressSpace());
6892 } else if (Steps.size() == 1) {
6893 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6894 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6895 if (MaybeQ1 == MaybeQ2) {
6896 // Exception for ptr size address spaces. Should be able to choose
6897 // either address space during comparison.
6898 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
6899 isPtrSizeAddressSpace(Q2.getAddressSpace()))
6900 MaybeQ1 = true;
6901 else
6902 return QualType(); // No unique best address space.
6903 }
6904 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6905 : Q2.getAddressSpace());
6906 } else {
6907 return QualType();
6908 }
6909
6910 // FIXME: In C, we merge __strong and none to __strong at the top level.
6911 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6912 Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6913 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6914 assert(Steps.size() == 1);
6915 else
6916 return QualType();
6917
6918 // Mismatched lifetime qualifiers never compatibly include each other.
6919 if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6920 Quals.setObjCLifetime(Q1.getObjCLifetime());
6921 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6922 assert(Steps.size() == 1);
6923 else
6924 return QualType();
6925
6926 Steps.back().Quals = Quals;
6927 if (Q1 != Quals || Q2 != Quals)
6928 NeedConstBefore = Steps.size() - 1;
6929 }
6930
6931 // FIXME: Can we unify the following with UnwrapSimilarTypes?
6932
6933 const ArrayType *Arr1, *Arr2;
6934 if ((Arr1 = Context.getAsArrayType(Composite1)) &&
6935 (Arr2 = Context.getAsArrayType(Composite2))) {
6936 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
6937 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
6938 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
6939 Composite1 = Arr1->getElementType();
6940 Composite2 = Arr2->getElementType();
6941 Steps.emplace_back(Step::Array, CAT1);
6942 continue;
6943 }
6944 bool IAT1 = isa<IncompleteArrayType>(Arr1);
6945 bool IAT2 = isa<IncompleteArrayType>(Arr2);
6946 if ((IAT1 && IAT2) ||
6947 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
6948 ((bool)CAT1 != (bool)CAT2) &&
6949 (Steps.empty() || Steps.back().K != Step::Array))) {
6950 // In C++20 onwards, we can unify an array of N T with an array of
6951 // a different or unknown bound. But we can't form an array whose
6952 // element type is an array of unknown bound by doing so.
6953 Composite1 = Arr1->getElementType();
6954 Composite2 = Arr2->getElementType();
6955 Steps.emplace_back(Step::Array);
6956 if (CAT1 || CAT2)
6957 NeedConstBefore = Steps.size();
6958 continue;
6959 }
6960 }
6961
6962 const PointerType *Ptr1, *Ptr2;
6963 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6964 (Ptr2 = Composite2->getAs<PointerType>())) {
6965 Composite1 = Ptr1->getPointeeType();
6966 Composite2 = Ptr2->getPointeeType();
6967 Steps.emplace_back(Step::Pointer);
6968 continue;
6969 }
6970
6971 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
6972 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
6973 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
6974 Composite1 = ObjPtr1->getPointeeType();
6975 Composite2 = ObjPtr2->getPointeeType();
6976 Steps.emplace_back(Step::ObjCPointer);
6977 continue;
6978 }
6979
6980 const MemberPointerType *MemPtr1, *MemPtr2;
6981 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6982 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6983 Composite1 = MemPtr1->getPointeeType();
6984 Composite2 = MemPtr2->getPointeeType();
6985
6986 // At the top level, we can perform a base-to-derived pointer-to-member
6987 // conversion:
6988 //
6989 // - [...] where C1 is reference-related to C2 or C2 is
6990 // reference-related to C1
6991 //
6992 // (Note that the only kinds of reference-relatedness in scope here are
6993 // "same type or derived from".) At any other level, the class must
6994 // exactly match.
6995 const Type *Class = nullptr;
6996 QualType Cls1(MemPtr1->getClass(), 0);
6997 QualType Cls2(MemPtr2->getClass(), 0);
6998 if (Context.hasSameType(Cls1, Cls2))
6999 Class = MemPtr1->getClass();
7000 else if (Steps.empty())
7001 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
7002 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
7003 if (!Class)
7004 return QualType();
7005
7006 Steps.emplace_back(Step::MemberPointer, Class);
7007 continue;
7008 }
7009
7010 // Special case: at the top level, we can decompose an Objective-C pointer
7011 // and a 'cv void *'. Unify the qualifiers.
7012 if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7013 Composite2->isObjCObjectPointerType()) ||
7014 (Composite1->isObjCObjectPointerType() &&
7015 Composite2->isVoidPointerType()))) {
7016 Composite1 = Composite1->getPointeeType();
7017 Composite2 = Composite2->getPointeeType();
7018 Steps.emplace_back(Step::Pointer);
7019 continue;
7020 }
7021
7022 // FIXME: block pointer types?
7023
7024 // Cannot unwrap any more types.
7025 break;
7026 }
7027
7028 // - if T1 or T2 is "pointer to noexcept function" and the other type is
7029 // "pointer to function", where the function types are otherwise the same,
7030 // "pointer to function";
7031 // - if T1 or T2 is "pointer to member of C1 of type function", the other
7032 // type is "pointer to member of C2 of type noexcept function", and C1
7033 // is reference-related to C2 or C2 is reference-related to C1, where
7034 // the function types are otherwise the same, "pointer to member of C2 of
7035 // type function" or "pointer to member of C1 of type function",
7036 // respectively;
7037 //
7038 // We also support 'noreturn' here, so as a Clang extension we generalize the
7039 // above to:
7040 //
7041 // - [Clang] If T1 and T2 are both of type "pointer to function" or
7042 // "pointer to member function" and the pointee types can be unified
7043 // by a function pointer conversion, that conversion is applied
7044 // before checking the following rules.
7045 //
7046 // We've already unwrapped down to the function types, and we want to merge
7047 // rather than just convert, so do this ourselves rather than calling
7048 // IsFunctionConversion.
7049 //
7050 // FIXME: In order to match the standard wording as closely as possible, we
7051 // currently only do this under a single level of pointers. Ideally, we would
7052 // allow this in general, and set NeedConstBefore to the relevant depth on
7053 // the side(s) where we changed anything. If we permit that, we should also
7054 // consider this conversion when determining type similarity and model it as
7055 // a qualification conversion.
7056 if (Steps.size() == 1) {
7057 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7058 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7059 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7060 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7061
7062 // The result is noreturn if both operands are.
7063 bool Noreturn =
7064 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7065 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7066 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7067
7068 // The result is nothrow if both operands are.
7069 SmallVector<QualType, 8> ExceptionTypeStorage;
7070 EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7071 EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
7072 getLangOpts().CPlusPlus17);
7073
7074 Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7075 FPT1->getParamTypes(), EPI1);
7076 Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7077 FPT2->getParamTypes(), EPI2);
7078 }
7079 }
7080 }
7081
7082 // There are some more conversions we can perform under exactly one pointer.
7083 if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7084 !Context.hasSameType(Composite1, Composite2)) {
7085 // - if T1 or T2 is "pointer to cv1 void" and the other type is
7086 // "pointer to cv2 T", where T is an object type or void,
7087 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7088 if (Composite1->isVoidType() && Composite2->isObjectType())
7089 Composite2 = Composite1;
7090 else if (Composite2->isVoidType() && Composite1->isObjectType())
7091 Composite1 = Composite2;
7092 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7093 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7094 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7095 // T1, respectively;
7096 //
7097 // The "similar type" handling covers all of this except for the "T1 is a
7098 // base class of T2" case in the definition of reference-related.
7099 else if (IsDerivedFrom(Loc, Composite1, Composite2))
7100 Composite1 = Composite2;
7101 else if (IsDerivedFrom(Loc, Composite2, Composite1))
7102 Composite2 = Composite1;
7103 }
7104
7105 // At this point, either the inner types are the same or we have failed to
7106 // find a composite pointer type.
7107 if (!Context.hasSameType(Composite1, Composite2))
7108 return QualType();
7109
7110 // Per C++ [conv.qual]p3, add 'const' to every level before the last
7111 // differing qualifier.
7112 for (unsigned I = 0; I != NeedConstBefore; ++I)
7113 Steps[I].Quals.addConst();
7114
7115 // Rebuild the composite type.
7116 QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
7117 for (auto &S : llvm::reverse(Steps))
7118 Composite = S.rebuild(Context, Composite);
7119
7120 if (ConvertArgs) {
7121 // Convert the expressions to the composite pointer type.
7122 InitializedEntity Entity =
7123 InitializedEntity::InitializeTemporary(Composite);
7124 InitializationKind Kind =
7125 InitializationKind::CreateCopy(Loc, SourceLocation());
7126
7127 InitializationSequence E1ToC(*this, Entity, Kind, E1);
7128 if (!E1ToC)
7129 return QualType();
7130
7131 InitializationSequence E2ToC(*this, Entity, Kind, E2);
7132 if (!E2ToC)
7133 return QualType();
7134
7135 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7136 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7137 if (E1Result.isInvalid())
7138 return QualType();
7139 E1 = E1Result.get();
7140
7141 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7142 if (E2Result.isInvalid())
7143 return QualType();
7144 E2 = E2Result.get();
7145 }
7146
7147 return Composite;
7148 }
7149
MaybeBindToTemporary(Expr * E)7150 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7151 if (!E)
7152 return ExprError();
7153
7154 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7155
7156 // If the result is a glvalue, we shouldn't bind it.
7157 if (E->isGLValue())
7158 return E;
7159
7160 // In ARC, calls that return a retainable type can return retained,
7161 // in which case we have to insert a consuming cast.
7162 if (getLangOpts().ObjCAutoRefCount &&
7163 E->getType()->isObjCRetainableType()) {
7164
7165 bool ReturnsRetained;
7166
7167 // For actual calls, we compute this by examining the type of the
7168 // called value.
7169 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7170 Expr *Callee = Call->getCallee()->IgnoreParens();
7171 QualType T = Callee->getType();
7172
7173 if (T == Context.BoundMemberTy) {
7174 // Handle pointer-to-members.
7175 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7176 T = BinOp->getRHS()->getType();
7177 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7178 T = Mem->getMemberDecl()->getType();
7179 }
7180
7181 if (const PointerType *Ptr = T->getAs<PointerType>())
7182 T = Ptr->getPointeeType();
7183 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7184 T = Ptr->getPointeeType();
7185 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7186 T = MemPtr->getPointeeType();
7187
7188 auto *FTy = T->castAs<FunctionType>();
7189 ReturnsRetained = FTy->getExtInfo().getProducesResult();
7190
7191 // ActOnStmtExpr arranges things so that StmtExprs of retainable
7192 // type always produce a +1 object.
7193 } else if (isa<StmtExpr>(E)) {
7194 ReturnsRetained = true;
7195
7196 // We hit this case with the lambda conversion-to-block optimization;
7197 // we don't want any extra casts here.
7198 } else if (isa<CastExpr>(E) &&
7199 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7200 return E;
7201
7202 // For message sends and property references, we try to find an
7203 // actual method. FIXME: we should infer retention by selector in
7204 // cases where we don't have an actual method.
7205 } else {
7206 ObjCMethodDecl *D = nullptr;
7207 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7208 D = Send->getMethodDecl();
7209 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7210 D = BoxedExpr->getBoxingMethod();
7211 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7212 // Don't do reclaims if we're using the zero-element array
7213 // constant.
7214 if (ArrayLit->getNumElements() == 0 &&
7215 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7216 return E;
7217
7218 D = ArrayLit->getArrayWithObjectsMethod();
7219 } else if (ObjCDictionaryLiteral *DictLit
7220 = dyn_cast<ObjCDictionaryLiteral>(E)) {
7221 // Don't do reclaims if we're using the zero-element dictionary
7222 // constant.
7223 if (DictLit->getNumElements() == 0 &&
7224 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7225 return E;
7226
7227 D = DictLit->getDictWithObjectsMethod();
7228 }
7229
7230 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7231
7232 // Don't do reclaims on performSelector calls; despite their
7233 // return type, the invoked method doesn't necessarily actually
7234 // return an object.
7235 if (!ReturnsRetained &&
7236 D && D->getMethodFamily() == OMF_performSelector)
7237 return E;
7238 }
7239
7240 // Don't reclaim an object of Class type.
7241 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7242 return E;
7243
7244 Cleanup.setExprNeedsCleanups(true);
7245
7246 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7247 : CK_ARCReclaimReturnedObject);
7248 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7249 VK_PRValue, FPOptionsOverride());
7250 }
7251
7252 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7253 Cleanup.setExprNeedsCleanups(true);
7254
7255 if (!getLangOpts().CPlusPlus)
7256 return E;
7257
7258 // Search for the base element type (cf. ASTContext::getBaseElementType) with
7259 // a fast path for the common case that the type is directly a RecordType.
7260 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7261 const RecordType *RT = nullptr;
7262 while (!RT) {
7263 switch (T->getTypeClass()) {
7264 case Type::Record:
7265 RT = cast<RecordType>(T);
7266 break;
7267 case Type::ConstantArray:
7268 case Type::IncompleteArray:
7269 case Type::VariableArray:
7270 case Type::DependentSizedArray:
7271 T = cast<ArrayType>(T)->getElementType().getTypePtr();
7272 break;
7273 default:
7274 return E;
7275 }
7276 }
7277
7278 // That should be enough to guarantee that this type is complete, if we're
7279 // not processing a decltype expression.
7280 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7281 if (RD->isInvalidDecl() || RD->isDependentContext())
7282 return E;
7283
7284 bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7285 ExpressionEvaluationContextRecord::EK_Decltype;
7286 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7287
7288 if (Destructor) {
7289 MarkFunctionReferenced(E->getExprLoc(), Destructor);
7290 CheckDestructorAccess(E->getExprLoc(), Destructor,
7291 PDiag(diag::err_access_dtor_temp)
7292 << E->getType());
7293 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7294 return ExprError();
7295
7296 // If destructor is trivial, we can avoid the extra copy.
7297 if (Destructor->isTrivial())
7298 return E;
7299
7300 // We need a cleanup, but we don't need to remember the temporary.
7301 Cleanup.setExprNeedsCleanups(true);
7302 }
7303
7304 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7305 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7306
7307 if (IsDecltype)
7308 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7309
7310 return Bind;
7311 }
7312
7313 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)7314 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7315 if (SubExpr.isInvalid())
7316 return ExprError();
7317
7318 return MaybeCreateExprWithCleanups(SubExpr.get());
7319 }
7320
MaybeCreateExprWithCleanups(Expr * SubExpr)7321 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7322 assert(SubExpr && "subexpression can't be null!");
7323
7324 CleanupVarDeclMarking();
7325
7326 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7327 assert(ExprCleanupObjects.size() >= FirstCleanup);
7328 assert(Cleanup.exprNeedsCleanups() ||
7329 ExprCleanupObjects.size() == FirstCleanup);
7330 if (!Cleanup.exprNeedsCleanups())
7331 return SubExpr;
7332
7333 auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7334 ExprCleanupObjects.size() - FirstCleanup);
7335
7336 auto *E = ExprWithCleanups::Create(
7337 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7338 DiscardCleanupsInEvaluationContext();
7339
7340 return E;
7341 }
7342
MaybeCreateStmtWithCleanups(Stmt * SubStmt)7343 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7344 assert(SubStmt && "sub-statement can't be null!");
7345
7346 CleanupVarDeclMarking();
7347
7348 if (!Cleanup.exprNeedsCleanups())
7349 return SubStmt;
7350
7351 // FIXME: In order to attach the temporaries, wrap the statement into
7352 // a StmtExpr; currently this is only used for asm statements.
7353 // This is hacky, either create a new CXXStmtWithTemporaries statement or
7354 // a new AsmStmtWithTemporaries.
7355 CompoundStmt *CompStmt =
7356 CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7357 SourceLocation(), SourceLocation());
7358 Expr *E = new (Context)
7359 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7360 /*FIXME TemplateDepth=*/0);
7361 return MaybeCreateExprWithCleanups(E);
7362 }
7363
7364 /// Process the expression contained within a decltype. For such expressions,
7365 /// certain semantic checks on temporaries are delayed until this point, and
7366 /// are omitted for the 'topmost' call in the decltype expression. If the
7367 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)7368 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7369 assert(ExprEvalContexts.back().ExprContext ==
7370 ExpressionEvaluationContextRecord::EK_Decltype &&
7371 "not in a decltype expression");
7372
7373 ExprResult Result = CheckPlaceholderExpr(E);
7374 if (Result.isInvalid())
7375 return ExprError();
7376 E = Result.get();
7377
7378 // C++11 [expr.call]p11:
7379 // If a function call is a prvalue of object type,
7380 // -- if the function call is either
7381 // -- the operand of a decltype-specifier, or
7382 // -- the right operand of a comma operator that is the operand of a
7383 // decltype-specifier,
7384 // a temporary object is not introduced for the prvalue.
7385
7386 // Recursively rebuild ParenExprs and comma expressions to strip out the
7387 // outermost CXXBindTemporaryExpr, if any.
7388 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7389 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7390 if (SubExpr.isInvalid())
7391 return ExprError();
7392 if (SubExpr.get() == PE->getSubExpr())
7393 return E;
7394 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7395 }
7396 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7397 if (BO->getOpcode() == BO_Comma) {
7398 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7399 if (RHS.isInvalid())
7400 return ExprError();
7401 if (RHS.get() == BO->getRHS())
7402 return E;
7403 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7404 BO->getType(), BO->getValueKind(),
7405 BO->getObjectKind(), BO->getOperatorLoc(),
7406 BO->getFPFeatures());
7407 }
7408 }
7409
7410 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7411 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7412 : nullptr;
7413 if (TopCall)
7414 E = TopCall;
7415 else
7416 TopBind = nullptr;
7417
7418 // Disable the special decltype handling now.
7419 ExprEvalContexts.back().ExprContext =
7420 ExpressionEvaluationContextRecord::EK_Other;
7421
7422 Result = CheckUnevaluatedOperand(E);
7423 if (Result.isInvalid())
7424 return ExprError();
7425 E = Result.get();
7426
7427 // In MS mode, don't perform any extra checking of call return types within a
7428 // decltype expression.
7429 if (getLangOpts().MSVCCompat)
7430 return E;
7431
7432 // Perform the semantic checks we delayed until this point.
7433 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7434 I != N; ++I) {
7435 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7436 if (Call == TopCall)
7437 continue;
7438
7439 if (CheckCallReturnType(Call->getCallReturnType(Context),
7440 Call->getBeginLoc(), Call, Call->getDirectCallee()))
7441 return ExprError();
7442 }
7443
7444 // Now all relevant types are complete, check the destructors are accessible
7445 // and non-deleted, and annotate them on the temporaries.
7446 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7447 I != N; ++I) {
7448 CXXBindTemporaryExpr *Bind =
7449 ExprEvalContexts.back().DelayedDecltypeBinds[I];
7450 if (Bind == TopBind)
7451 continue;
7452
7453 CXXTemporary *Temp = Bind->getTemporary();
7454
7455 CXXRecordDecl *RD =
7456 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7457 CXXDestructorDecl *Destructor = LookupDestructor(RD);
7458 Temp->setDestructor(Destructor);
7459
7460 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7461 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7462 PDiag(diag::err_access_dtor_temp)
7463 << Bind->getType());
7464 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7465 return ExprError();
7466
7467 // We need a cleanup, but we don't need to remember the temporary.
7468 Cleanup.setExprNeedsCleanups(true);
7469 }
7470
7471 // Possibly strip off the top CXXBindTemporaryExpr.
7472 return E;
7473 }
7474
7475 /// Note a set of 'operator->' functions that were used for a member access.
noteOperatorArrows(Sema & S,ArrayRef<FunctionDecl * > OperatorArrows)7476 static void noteOperatorArrows(Sema &S,
7477 ArrayRef<FunctionDecl *> OperatorArrows) {
7478 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7479 // FIXME: Make this configurable?
7480 unsigned Limit = 9;
7481 if (OperatorArrows.size() > Limit) {
7482 // Produce Limit-1 normal notes and one 'skipping' note.
7483 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7484 SkipCount = OperatorArrows.size() - (Limit - 1);
7485 }
7486
7487 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7488 if (I == SkipStart) {
7489 S.Diag(OperatorArrows[I]->getLocation(),
7490 diag::note_operator_arrows_suppressed)
7491 << SkipCount;
7492 I += SkipCount;
7493 } else {
7494 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7495 << OperatorArrows[I]->getCallResultType();
7496 ++I;
7497 }
7498 }
7499 }
7500
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)7501 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7502 SourceLocation OpLoc,
7503 tok::TokenKind OpKind,
7504 ParsedType &ObjectType,
7505 bool &MayBePseudoDestructor) {
7506 // Since this might be a postfix expression, get rid of ParenListExprs.
7507 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7508 if (Result.isInvalid()) return ExprError();
7509 Base = Result.get();
7510
7511 Result = CheckPlaceholderExpr(Base);
7512 if (Result.isInvalid()) return ExprError();
7513 Base = Result.get();
7514
7515 QualType BaseType = Base->getType();
7516 MayBePseudoDestructor = false;
7517 if (BaseType->isDependentType()) {
7518 // If we have a pointer to a dependent type and are using the -> operator,
7519 // the object type is the type that the pointer points to. We might still
7520 // have enough information about that type to do something useful.
7521 if (OpKind == tok::arrow)
7522 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7523 BaseType = Ptr->getPointeeType();
7524
7525 ObjectType = ParsedType::make(BaseType);
7526 MayBePseudoDestructor = true;
7527 return Base;
7528 }
7529
7530 // C++ [over.match.oper]p8:
7531 // [...] When operator->returns, the operator-> is applied to the value
7532 // returned, with the original second operand.
7533 if (OpKind == tok::arrow) {
7534 QualType StartingType = BaseType;
7535 bool NoArrowOperatorFound = false;
7536 bool FirstIteration = true;
7537 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7538 // The set of types we've considered so far.
7539 llvm::SmallPtrSet<CanQualType,8> CTypes;
7540 SmallVector<FunctionDecl*, 8> OperatorArrows;
7541 CTypes.insert(Context.getCanonicalType(BaseType));
7542
7543 while (BaseType->isRecordType()) {
7544 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7545 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7546 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7547 noteOperatorArrows(*this, OperatorArrows);
7548 Diag(OpLoc, diag::note_operator_arrow_depth)
7549 << getLangOpts().ArrowDepth;
7550 return ExprError();
7551 }
7552
7553 Result = BuildOverloadedArrowExpr(
7554 S, Base, OpLoc,
7555 // When in a template specialization and on the first loop iteration,
7556 // potentially give the default diagnostic (with the fixit in a
7557 // separate note) instead of having the error reported back to here
7558 // and giving a diagnostic with a fixit attached to the error itself.
7559 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7560 ? nullptr
7561 : &NoArrowOperatorFound);
7562 if (Result.isInvalid()) {
7563 if (NoArrowOperatorFound) {
7564 if (FirstIteration) {
7565 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7566 << BaseType << 1 << Base->getSourceRange()
7567 << FixItHint::CreateReplacement(OpLoc, ".");
7568 OpKind = tok::period;
7569 break;
7570 }
7571 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7572 << BaseType << Base->getSourceRange();
7573 CallExpr *CE = dyn_cast<CallExpr>(Base);
7574 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7575 Diag(CD->getBeginLoc(),
7576 diag::note_member_reference_arrow_from_operator_arrow);
7577 }
7578 }
7579 return ExprError();
7580 }
7581 Base = Result.get();
7582 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7583 OperatorArrows.push_back(OpCall->getDirectCallee());
7584 BaseType = Base->getType();
7585 CanQualType CBaseType = Context.getCanonicalType(BaseType);
7586 if (!CTypes.insert(CBaseType).second) {
7587 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7588 noteOperatorArrows(*this, OperatorArrows);
7589 return ExprError();
7590 }
7591 FirstIteration = false;
7592 }
7593
7594 if (OpKind == tok::arrow) {
7595 if (BaseType->isPointerType())
7596 BaseType = BaseType->getPointeeType();
7597 else if (auto *AT = Context.getAsArrayType(BaseType))
7598 BaseType = AT->getElementType();
7599 }
7600 }
7601
7602 // Objective-C properties allow "." access on Objective-C pointer types,
7603 // so adjust the base type to the object type itself.
7604 if (BaseType->isObjCObjectPointerType())
7605 BaseType = BaseType->getPointeeType();
7606
7607 // C++ [basic.lookup.classref]p2:
7608 // [...] If the type of the object expression is of pointer to scalar
7609 // type, the unqualified-id is looked up in the context of the complete
7610 // postfix-expression.
7611 //
7612 // This also indicates that we could be parsing a pseudo-destructor-name.
7613 // Note that Objective-C class and object types can be pseudo-destructor
7614 // expressions or normal member (ivar or property) access expressions, and
7615 // it's legal for the type to be incomplete if this is a pseudo-destructor
7616 // call. We'll do more incomplete-type checks later in the lookup process,
7617 // so just skip this check for ObjC types.
7618 if (!BaseType->isRecordType()) {
7619 ObjectType = ParsedType::make(BaseType);
7620 MayBePseudoDestructor = true;
7621 return Base;
7622 }
7623
7624 // The object type must be complete (or dependent), or
7625 // C++11 [expr.prim.general]p3:
7626 // Unlike the object expression in other contexts, *this is not required to
7627 // be of complete type for purposes of class member access (5.2.5) outside
7628 // the member function body.
7629 if (!BaseType->isDependentType() &&
7630 !isThisOutsideMemberFunctionBody(BaseType) &&
7631 RequireCompleteType(OpLoc, BaseType,
7632 diag::err_incomplete_member_access)) {
7633 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7634 }
7635
7636 // C++ [basic.lookup.classref]p2:
7637 // If the id-expression in a class member access (5.2.5) is an
7638 // unqualified-id, and the type of the object expression is of a class
7639 // type C (or of pointer to a class type C), the unqualified-id is looked
7640 // up in the scope of class C. [...]
7641 ObjectType = ParsedType::make(BaseType);
7642 return Base;
7643 }
7644
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)7645 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7646 tok::TokenKind &OpKind, SourceLocation OpLoc) {
7647 if (Base->hasPlaceholderType()) {
7648 ExprResult result = S.CheckPlaceholderExpr(Base);
7649 if (result.isInvalid()) return true;
7650 Base = result.get();
7651 }
7652 ObjectType = Base->getType();
7653
7654 // C++ [expr.pseudo]p2:
7655 // The left-hand side of the dot operator shall be of scalar type. The
7656 // left-hand side of the arrow operator shall be of pointer to scalar type.
7657 // This scalar type is the object type.
7658 // Note that this is rather different from the normal handling for the
7659 // arrow operator.
7660 if (OpKind == tok::arrow) {
7661 // The operator requires a prvalue, so perform lvalue conversions.
7662 // Only do this if we might plausibly end with a pointer, as otherwise
7663 // this was likely to be intended to be a '.'.
7664 if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7665 ObjectType->isFunctionType()) {
7666 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7667 if (BaseResult.isInvalid())
7668 return true;
7669 Base = BaseResult.get();
7670 ObjectType = Base->getType();
7671 }
7672
7673 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7674 ObjectType = Ptr->getPointeeType();
7675 } else if (!Base->isTypeDependent()) {
7676 // The user wrote "p->" when they probably meant "p."; fix it.
7677 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7678 << ObjectType << true
7679 << FixItHint::CreateReplacement(OpLoc, ".");
7680 if (S.isSFINAEContext())
7681 return true;
7682
7683 OpKind = tok::period;
7684 }
7685 }
7686
7687 return false;
7688 }
7689
7690 /// Check if it's ok to try and recover dot pseudo destructor calls on
7691 /// pointer objects.
7692 static bool
canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema & SemaRef,QualType DestructedType)7693 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7694 QualType DestructedType) {
7695 // If this is a record type, check if its destructor is callable.
7696 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7697 if (RD->hasDefinition())
7698 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7699 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7700 return false;
7701 }
7702
7703 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7704 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7705 DestructedType->isVectorType();
7706 }
7707
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed)7708 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7709 SourceLocation OpLoc,
7710 tok::TokenKind OpKind,
7711 const CXXScopeSpec &SS,
7712 TypeSourceInfo *ScopeTypeInfo,
7713 SourceLocation CCLoc,
7714 SourceLocation TildeLoc,
7715 PseudoDestructorTypeStorage Destructed) {
7716 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7717
7718 QualType ObjectType;
7719 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7720 return ExprError();
7721
7722 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7723 !ObjectType->isVectorType()) {
7724 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7725 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7726 else {
7727 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7728 << ObjectType << Base->getSourceRange();
7729 return ExprError();
7730 }
7731 }
7732
7733 // C++ [expr.pseudo]p2:
7734 // [...] The cv-unqualified versions of the object type and of the type
7735 // designated by the pseudo-destructor-name shall be the same type.
7736 if (DestructedTypeInfo) {
7737 QualType DestructedType = DestructedTypeInfo->getType();
7738 SourceLocation DestructedTypeStart =
7739 DestructedTypeInfo->getTypeLoc().getBeginLoc();
7740 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7741 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7742 // Detect dot pseudo destructor calls on pointer objects, e.g.:
7743 // Foo *foo;
7744 // foo.~Foo();
7745 if (OpKind == tok::period && ObjectType->isPointerType() &&
7746 Context.hasSameUnqualifiedType(DestructedType,
7747 ObjectType->getPointeeType())) {
7748 auto Diagnostic =
7749 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7750 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7751
7752 // Issue a fixit only when the destructor is valid.
7753 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7754 *this, DestructedType))
7755 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7756
7757 // Recover by setting the object type to the destructed type and the
7758 // operator to '->'.
7759 ObjectType = DestructedType;
7760 OpKind = tok::arrow;
7761 } else {
7762 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7763 << ObjectType << DestructedType << Base->getSourceRange()
7764 << DestructedTypeInfo->getTypeLoc().getSourceRange();
7765
7766 // Recover by setting the destructed type to the object type.
7767 DestructedType = ObjectType;
7768 DestructedTypeInfo =
7769 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7770 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7771 }
7772 } else if (DestructedType.getObjCLifetime() !=
7773 ObjectType.getObjCLifetime()) {
7774
7775 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7776 // Okay: just pretend that the user provided the correctly-qualified
7777 // type.
7778 } else {
7779 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7780 << ObjectType << DestructedType << Base->getSourceRange()
7781 << DestructedTypeInfo->getTypeLoc().getSourceRange();
7782 }
7783
7784 // Recover by setting the destructed type to the object type.
7785 DestructedType = ObjectType;
7786 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7787 DestructedTypeStart);
7788 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7789 }
7790 }
7791 }
7792
7793 // C++ [expr.pseudo]p2:
7794 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7795 // form
7796 //
7797 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7798 //
7799 // shall designate the same scalar type.
7800 if (ScopeTypeInfo) {
7801 QualType ScopeType = ScopeTypeInfo->getType();
7802 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7803 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7804
7805 Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
7806 diag::err_pseudo_dtor_type_mismatch)
7807 << ObjectType << ScopeType << Base->getSourceRange()
7808 << ScopeTypeInfo->getTypeLoc().getSourceRange();
7809
7810 ScopeType = QualType();
7811 ScopeTypeInfo = nullptr;
7812 }
7813 }
7814
7815 Expr *Result
7816 = new (Context) CXXPseudoDestructorExpr(Context, Base,
7817 OpKind == tok::arrow, OpLoc,
7818 SS.getWithLocInContext(Context),
7819 ScopeTypeInfo,
7820 CCLoc,
7821 TildeLoc,
7822 Destructed);
7823
7824 return Result;
7825 }
7826
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName)7827 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7828 SourceLocation OpLoc,
7829 tok::TokenKind OpKind,
7830 CXXScopeSpec &SS,
7831 UnqualifiedId &FirstTypeName,
7832 SourceLocation CCLoc,
7833 SourceLocation TildeLoc,
7834 UnqualifiedId &SecondTypeName) {
7835 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7836 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7837 "Invalid first type name in pseudo-destructor");
7838 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7839 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7840 "Invalid second type name in pseudo-destructor");
7841
7842 QualType ObjectType;
7843 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7844 return ExprError();
7845
7846 // Compute the object type that we should use for name lookup purposes. Only
7847 // record types and dependent types matter.
7848 ParsedType ObjectTypePtrForLookup;
7849 if (!SS.isSet()) {
7850 if (ObjectType->isRecordType())
7851 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7852 else if (ObjectType->isDependentType())
7853 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7854 }
7855
7856 // Convert the name of the type being destructed (following the ~) into a
7857 // type (with source-location information).
7858 QualType DestructedType;
7859 TypeSourceInfo *DestructedTypeInfo = nullptr;
7860 PseudoDestructorTypeStorage Destructed;
7861 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7862 ParsedType T = getTypeName(*SecondTypeName.Identifier,
7863 SecondTypeName.StartLocation,
7864 S, &SS, true, false, ObjectTypePtrForLookup,
7865 /*IsCtorOrDtorName*/true);
7866 if (!T &&
7867 ((SS.isSet() && !computeDeclContext(SS, false)) ||
7868 (!SS.isSet() && ObjectType->isDependentType()))) {
7869 // The name of the type being destroyed is a dependent name, and we
7870 // couldn't find anything useful in scope. Just store the identifier and
7871 // it's location, and we'll perform (qualified) name lookup again at
7872 // template instantiation time.
7873 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7874 SecondTypeName.StartLocation);
7875 } else if (!T) {
7876 Diag(SecondTypeName.StartLocation,
7877 diag::err_pseudo_dtor_destructor_non_type)
7878 << SecondTypeName.Identifier << ObjectType;
7879 if (isSFINAEContext())
7880 return ExprError();
7881
7882 // Recover by assuming we had the right type all along.
7883 DestructedType = ObjectType;
7884 } else
7885 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7886 } else {
7887 // Resolve the template-id to a type.
7888 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7889 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7890 TemplateId->NumArgs);
7891 TypeResult T = ActOnTemplateIdType(S,
7892 SS,
7893 TemplateId->TemplateKWLoc,
7894 TemplateId->Template,
7895 TemplateId->Name,
7896 TemplateId->TemplateNameLoc,
7897 TemplateId->LAngleLoc,
7898 TemplateArgsPtr,
7899 TemplateId->RAngleLoc,
7900 /*IsCtorOrDtorName*/true);
7901 if (T.isInvalid() || !T.get()) {
7902 // Recover by assuming we had the right type all along.
7903 DestructedType = ObjectType;
7904 } else
7905 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7906 }
7907
7908 // If we've performed some kind of recovery, (re-)build the type source
7909 // information.
7910 if (!DestructedType.isNull()) {
7911 if (!DestructedTypeInfo)
7912 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7913 SecondTypeName.StartLocation);
7914 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7915 }
7916
7917 // Convert the name of the scope type (the type prior to '::') into a type.
7918 TypeSourceInfo *ScopeTypeInfo = nullptr;
7919 QualType ScopeType;
7920 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7921 FirstTypeName.Identifier) {
7922 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7923 ParsedType T = getTypeName(*FirstTypeName.Identifier,
7924 FirstTypeName.StartLocation,
7925 S, &SS, true, false, ObjectTypePtrForLookup,
7926 /*IsCtorOrDtorName*/true);
7927 if (!T) {
7928 Diag(FirstTypeName.StartLocation,
7929 diag::err_pseudo_dtor_destructor_non_type)
7930 << FirstTypeName.Identifier << ObjectType;
7931
7932 if (isSFINAEContext())
7933 return ExprError();
7934
7935 // Just drop this type. It's unnecessary anyway.
7936 ScopeType = QualType();
7937 } else
7938 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7939 } else {
7940 // Resolve the template-id to a type.
7941 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7942 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7943 TemplateId->NumArgs);
7944 TypeResult T = ActOnTemplateIdType(S,
7945 SS,
7946 TemplateId->TemplateKWLoc,
7947 TemplateId->Template,
7948 TemplateId->Name,
7949 TemplateId->TemplateNameLoc,
7950 TemplateId->LAngleLoc,
7951 TemplateArgsPtr,
7952 TemplateId->RAngleLoc,
7953 /*IsCtorOrDtorName*/true);
7954 if (T.isInvalid() || !T.get()) {
7955 // Recover by dropping this type.
7956 ScopeType = QualType();
7957 } else
7958 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7959 }
7960 }
7961
7962 if (!ScopeType.isNull() && !ScopeTypeInfo)
7963 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7964 FirstTypeName.StartLocation);
7965
7966
7967 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7968 ScopeTypeInfo, CCLoc, TildeLoc,
7969 Destructed);
7970 }
7971
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS)7972 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7973 SourceLocation OpLoc,
7974 tok::TokenKind OpKind,
7975 SourceLocation TildeLoc,
7976 const DeclSpec& DS) {
7977 QualType ObjectType;
7978 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7979 return ExprError();
7980
7981 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
7982 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
7983 return true;
7984 }
7985
7986 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
7987
7988 TypeLocBuilder TLB;
7989 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7990 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
7991 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
7992 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7993 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7994
7995 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7996 nullptr, SourceLocation(), TildeLoc,
7997 Destructed);
7998 }
7999
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)8000 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
8001 CXXConversionDecl *Method,
8002 bool HadMultipleCandidates) {
8003 // Convert the expression to match the conversion function's implicit object
8004 // parameter.
8005 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
8006 FoundDecl, Method);
8007 if (Exp.isInvalid())
8008 return true;
8009
8010 if (Method->getParent()->isLambda() &&
8011 Method->getConversionType()->isBlockPointerType()) {
8012 // This is a lambda conversion to block pointer; check if the argument
8013 // was a LambdaExpr.
8014 Expr *SubE = E;
8015 CastExpr *CE = dyn_cast<CastExpr>(SubE);
8016 if (CE && CE->getCastKind() == CK_NoOp)
8017 SubE = CE->getSubExpr();
8018 SubE = SubE->IgnoreParens();
8019 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
8020 SubE = BE->getSubExpr();
8021 if (isa<LambdaExpr>(SubE)) {
8022 // For the conversion to block pointer on a lambda expression, we
8023 // construct a special BlockLiteral instead; this doesn't really make
8024 // a difference in ARC, but outside of ARC the resulting block literal
8025 // follows the normal lifetime rules for block literals instead of being
8026 // autoreleased.
8027 PushExpressionEvaluationContext(
8028 ExpressionEvaluationContext::PotentiallyEvaluated);
8029 ExprResult BlockExp = BuildBlockForLambdaConversion(
8030 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
8031 PopExpressionEvaluationContext();
8032
8033 // FIXME: This note should be produced by a CodeSynthesisContext.
8034 if (BlockExp.isInvalid())
8035 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
8036 return BlockExp;
8037 }
8038 }
8039
8040 MemberExpr *ME =
8041 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
8042 NestedNameSpecifierLoc(), SourceLocation(), Method,
8043 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
8044 HadMultipleCandidates, DeclarationNameInfo(),
8045 Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
8046
8047 QualType ResultType = Method->getReturnType();
8048 ExprValueKind VK = Expr::getValueKindForType(ResultType);
8049 ResultType = ResultType.getNonLValueExprType(Context);
8050
8051 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
8052 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
8053 CurFPFeatureOverrides());
8054
8055 if (CheckFunctionCall(Method, CE,
8056 Method->getType()->castAs<FunctionProtoType>()))
8057 return ExprError();
8058
8059 return CheckForImmediateInvocation(CE, CE->getMethodDecl());
8060 }
8061
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)8062 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8063 SourceLocation RParen) {
8064 // If the operand is an unresolved lookup expression, the expression is ill-
8065 // formed per [over.over]p1, because overloaded function names cannot be used
8066 // without arguments except in explicit contexts.
8067 ExprResult R = CheckPlaceholderExpr(Operand);
8068 if (R.isInvalid())
8069 return R;
8070
8071 R = CheckUnevaluatedOperand(R.get());
8072 if (R.isInvalid())
8073 return ExprError();
8074
8075 Operand = R.get();
8076
8077 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8078 Operand->HasSideEffects(Context, false)) {
8079 // The expression operand for noexcept is in an unevaluated expression
8080 // context, so side effects could result in unintended consequences.
8081 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8082 }
8083
8084 CanThrowResult CanThrow = canThrow(Operand);
8085 return new (Context)
8086 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8087 }
8088
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)8089 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8090 Expr *Operand, SourceLocation RParen) {
8091 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8092 }
8093
MaybeDecrementCount(Expr * E,llvm::DenseMap<const VarDecl *,int> & RefsMinusAssignments)8094 static void MaybeDecrementCount(
8095 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8096 DeclRefExpr *LHS = nullptr;
8097 bool IsCompoundAssign = false;
8098 bool isIncrementDecrementUnaryOp = false;
8099 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8100 if (BO->getLHS()->getType()->isDependentType() ||
8101 BO->getRHS()->getType()->isDependentType()) {
8102 if (BO->getOpcode() != BO_Assign)
8103 return;
8104 } else if (!BO->isAssignmentOp())
8105 return;
8106 else
8107 IsCompoundAssign = BO->isCompoundAssignmentOp();
8108 LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8109 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8110 if (COCE->getOperator() != OO_Equal)
8111 return;
8112 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8113 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8114 if (!UO->isIncrementDecrementOp())
8115 return;
8116 isIncrementDecrementUnaryOp = true;
8117 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8118 }
8119 if (!LHS)
8120 return;
8121 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8122 if (!VD)
8123 return;
8124 // Don't decrement RefsMinusAssignments if volatile variable with compound
8125 // assignment (+=, ...) or increment/decrement unary operator to avoid
8126 // potential unused-but-set-variable warning.
8127 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8128 VD->getType().isVolatileQualified())
8129 return;
8130 auto iter = RefsMinusAssignments.find(VD);
8131 if (iter == RefsMinusAssignments.end())
8132 return;
8133 iter->getSecond()--;
8134 }
8135
8136 /// Perform the conversions required for an expression used in a
8137 /// context that ignores the result.
IgnoredValueConversions(Expr * E)8138 ExprResult Sema::IgnoredValueConversions(Expr *E) {
8139 MaybeDecrementCount(E, RefsMinusAssignments);
8140
8141 if (E->hasPlaceholderType()) {
8142 ExprResult result = CheckPlaceholderExpr(E);
8143 if (result.isInvalid()) return E;
8144 E = result.get();
8145 }
8146
8147 // C99 6.3.2.1:
8148 // [Except in specific positions,] an lvalue that does not have
8149 // array type is converted to the value stored in the
8150 // designated object (and is no longer an lvalue).
8151 if (E->isPRValue()) {
8152 // In C, function designators (i.e. expressions of function type)
8153 // are r-values, but we still want to do function-to-pointer decay
8154 // on them. This is both technically correct and convenient for
8155 // some clients.
8156 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8157 return DefaultFunctionArrayConversion(E);
8158
8159 return E;
8160 }
8161
8162 if (getLangOpts().CPlusPlus) {
8163 // The C++11 standard defines the notion of a discarded-value expression;
8164 // normally, we don't need to do anything to handle it, but if it is a
8165 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8166 // conversion.
8167 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8168 ExprResult Res = DefaultLvalueConversion(E);
8169 if (Res.isInvalid())
8170 return E;
8171 E = Res.get();
8172 } else {
8173 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8174 // it occurs as a discarded-value expression.
8175 CheckUnusedVolatileAssignment(E);
8176 }
8177
8178 // C++1z:
8179 // If the expression is a prvalue after this optional conversion, the
8180 // temporary materialization conversion is applied.
8181 //
8182 // We skip this step: IR generation is able to synthesize the storage for
8183 // itself in the aggregate case, and adding the extra node to the AST is
8184 // just clutter.
8185 // FIXME: We don't emit lifetime markers for the temporaries due to this.
8186 // FIXME: Do any other AST consumers care about this?
8187 return E;
8188 }
8189
8190 // GCC seems to also exclude expressions of incomplete enum type.
8191 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8192 if (!T->getDecl()->isComplete()) {
8193 // FIXME: stupid workaround for a codegen bug!
8194 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8195 return E;
8196 }
8197 }
8198
8199 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8200 if (Res.isInvalid())
8201 return E;
8202 E = Res.get();
8203
8204 if (!E->getType()->isVoidType())
8205 RequireCompleteType(E->getExprLoc(), E->getType(),
8206 diag::err_incomplete_type);
8207 return E;
8208 }
8209
CheckUnevaluatedOperand(Expr * E)8210 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8211 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8212 // it occurs as an unevaluated operand.
8213 CheckUnusedVolatileAssignment(E);
8214
8215 return E;
8216 }
8217
8218 // If we can unambiguously determine whether Var can never be used
8219 // in a constant expression, return true.
8220 // - if the variable and its initializer are non-dependent, then
8221 // we can unambiguously check if the variable is a constant expression.
8222 // - if the initializer is not value dependent - we can determine whether
8223 // it can be used to initialize a constant expression. If Init can not
8224 // be used to initialize a constant expression we conclude that Var can
8225 // never be a constant expression.
8226 // - FXIME: if the initializer is dependent, we can still do some analysis and
8227 // identify certain cases unambiguously as non-const by using a Visitor:
8228 // - such as those that involve odr-use of a ParmVarDecl, involve a new
8229 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
VariableCanNeverBeAConstantExpression(VarDecl * Var,ASTContext & Context)8230 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8231 ASTContext &Context) {
8232 if (isa<ParmVarDecl>(Var)) return true;
8233 const VarDecl *DefVD = nullptr;
8234
8235 // If there is no initializer - this can not be a constant expression.
8236 if (!Var->getAnyInitializer(DefVD)) return true;
8237 assert(DefVD);
8238 if (DefVD->isWeak()) return false;
8239 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
8240
8241 Expr *Init = cast<Expr>(Eval->Value);
8242
8243 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8244 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8245 // of value-dependent expressions, and use it here to determine whether the
8246 // initializer is a potential constant expression.
8247 return false;
8248 }
8249
8250 return !Var->isUsableInConstantExpressions(Context);
8251 }
8252
8253 /// Check if the current lambda has any potential captures
8254 /// that must be captured by any of its enclosing lambdas that are ready to
8255 /// capture. If there is a lambda that can capture a nested
8256 /// potential-capture, go ahead and do so. Also, check to see if any
8257 /// variables are uncaptureable or do not involve an odr-use so do not
8258 /// need to be captured.
8259
CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(Expr * const FE,LambdaScopeInfo * const CurrentLSI,Sema & S)8260 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8261 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8262
8263 assert(!S.isUnevaluatedContext());
8264 assert(S.CurContext->isDependentContext());
8265 #ifndef NDEBUG
8266 DeclContext *DC = S.CurContext;
8267 while (DC && isa<CapturedDecl>(DC))
8268 DC = DC->getParent();
8269 assert(
8270 CurrentLSI->CallOperator == DC &&
8271 "The current call operator must be synchronized with Sema's CurContext");
8272 #endif // NDEBUG
8273
8274 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8275
8276 // All the potentially captureable variables in the current nested
8277 // lambda (within a generic outer lambda), must be captured by an
8278 // outer lambda that is enclosed within a non-dependent context.
8279 CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
8280 // If the variable is clearly identified as non-odr-used and the full
8281 // expression is not instantiation dependent, only then do we not
8282 // need to check enclosing lambda's for speculative captures.
8283 // For e.g.:
8284 // Even though 'x' is not odr-used, it should be captured.
8285 // int test() {
8286 // const int x = 10;
8287 // auto L = [=](auto a) {
8288 // (void) +x + a;
8289 // };
8290 // }
8291 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8292 !IsFullExprInstantiationDependent)
8293 return;
8294
8295 VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8296 if (!UnderlyingVar)
8297 return;
8298
8299 // If we have a capture-capable lambda for the variable, go ahead and
8300 // capture the variable in that lambda (and all its enclosing lambdas).
8301 if (const std::optional<unsigned> Index =
8302 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8303 S.FunctionScopes, Var, S))
8304 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8305 const bool IsVarNeverAConstantExpression =
8306 VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
8307 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8308 // This full expression is not instantiation dependent or the variable
8309 // can not be used in a constant expression - which means
8310 // this variable must be odr-used here, so diagnose a
8311 // capture violation early, if the variable is un-captureable.
8312 // This is purely for diagnosing errors early. Otherwise, this
8313 // error would get diagnosed when the lambda becomes capture ready.
8314 QualType CaptureType, DeclRefType;
8315 SourceLocation ExprLoc = VarExpr->getExprLoc();
8316 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8317 /*EllipsisLoc*/ SourceLocation(),
8318 /*BuildAndDiagnose*/false, CaptureType,
8319 DeclRefType, nullptr)) {
8320 // We will never be able to capture this variable, and we need
8321 // to be able to in any and all instantiations, so diagnose it.
8322 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8323 /*EllipsisLoc*/ SourceLocation(),
8324 /*BuildAndDiagnose*/true, CaptureType,
8325 DeclRefType, nullptr);
8326 }
8327 }
8328 });
8329
8330 // Check if 'this' needs to be captured.
8331 if (CurrentLSI->hasPotentialThisCapture()) {
8332 // If we have a capture-capable lambda for 'this', go ahead and capture
8333 // 'this' in that lambda (and all its enclosing lambdas).
8334 if (const std::optional<unsigned> Index =
8335 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8336 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8337 const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8338 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8339 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8340 &FunctionScopeIndexOfCapturableLambda);
8341 }
8342 }
8343
8344 // Reset all the potential captures at the end of each full-expression.
8345 CurrentLSI->clearPotentialCaptures();
8346 }
8347
attemptRecovery(Sema & SemaRef,const TypoCorrectionConsumer & Consumer,const TypoCorrection & TC)8348 static ExprResult attemptRecovery(Sema &SemaRef,
8349 const TypoCorrectionConsumer &Consumer,
8350 const TypoCorrection &TC) {
8351 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8352 Consumer.getLookupResult().getLookupKind());
8353 const CXXScopeSpec *SS = Consumer.getSS();
8354 CXXScopeSpec NewSS;
8355
8356 // Use an approprate CXXScopeSpec for building the expr.
8357 if (auto *NNS = TC.getCorrectionSpecifier())
8358 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8359 else if (SS && !TC.WillReplaceSpecifier())
8360 NewSS = *SS;
8361
8362 if (auto *ND = TC.getFoundDecl()) {
8363 R.setLookupName(ND->getDeclName());
8364 R.addDecl(ND);
8365 if (ND->isCXXClassMember()) {
8366 // Figure out the correct naming class to add to the LookupResult.
8367 CXXRecordDecl *Record = nullptr;
8368 if (auto *NNS = TC.getCorrectionSpecifier())
8369 Record = NNS->getAsType()->getAsCXXRecordDecl();
8370 if (!Record)
8371 Record =
8372 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8373 if (Record)
8374 R.setNamingClass(Record);
8375
8376 // Detect and handle the case where the decl might be an implicit
8377 // member.
8378 bool MightBeImplicitMember;
8379 if (!Consumer.isAddressOfOperand())
8380 MightBeImplicitMember = true;
8381 else if (!NewSS.isEmpty())
8382 MightBeImplicitMember = false;
8383 else if (R.isOverloadedResult())
8384 MightBeImplicitMember = false;
8385 else if (R.isUnresolvableResult())
8386 MightBeImplicitMember = true;
8387 else
8388 MightBeImplicitMember = isa<FieldDecl>(ND) ||
8389 isa<IndirectFieldDecl>(ND) ||
8390 isa<MSPropertyDecl>(ND);
8391
8392 if (MightBeImplicitMember)
8393 return SemaRef.BuildPossibleImplicitMemberExpr(
8394 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8395 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8396 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8397 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8398 Ivar->getIdentifier());
8399 }
8400 }
8401
8402 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8403 /*AcceptInvalidDecl*/ true);
8404 }
8405
8406 namespace {
8407 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8408 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8409
8410 public:
FindTypoExprs(llvm::SmallSetVector<TypoExpr *,2> & TypoExprs)8411 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8412 : TypoExprs(TypoExprs) {}
VisitTypoExpr(TypoExpr * TE)8413 bool VisitTypoExpr(TypoExpr *TE) {
8414 TypoExprs.insert(TE);
8415 return true;
8416 }
8417 };
8418
8419 class TransformTypos : public TreeTransform<TransformTypos> {
8420 typedef TreeTransform<TransformTypos> BaseTransform;
8421
8422 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8423 // process of being initialized.
8424 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8425 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8426 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8427 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8428
8429 /// Emit diagnostics for all of the TypoExprs encountered.
8430 ///
8431 /// If the TypoExprs were successfully corrected, then the diagnostics should
8432 /// suggest the corrections. Otherwise the diagnostics will not suggest
8433 /// anything (having been passed an empty TypoCorrection).
8434 ///
8435 /// If we've failed to correct due to ambiguous corrections, we need to
8436 /// be sure to pass empty corrections and replacements. Otherwise it's
8437 /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8438 /// and we don't want to report those diagnostics.
EmitAllDiagnostics(bool IsAmbiguous)8439 void EmitAllDiagnostics(bool IsAmbiguous) {
8440 for (TypoExpr *TE : TypoExprs) {
8441 auto &State = SemaRef.getTypoExprState(TE);
8442 if (State.DiagHandler) {
8443 TypoCorrection TC = IsAmbiguous
8444 ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8445 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8446
8447 // Extract the NamedDecl from the transformed TypoExpr and add it to the
8448 // TypoCorrection, replacing the existing decls. This ensures the right
8449 // NamedDecl is used in diagnostics e.g. in the case where overload
8450 // resolution was used to select one from several possible decls that
8451 // had been stored in the TypoCorrection.
8452 if (auto *ND = getDeclFromExpr(
8453 Replacement.isInvalid() ? nullptr : Replacement.get()))
8454 TC.setCorrectionDecl(ND);
8455
8456 State.DiagHandler(TC);
8457 }
8458 SemaRef.clearDelayedTypo(TE);
8459 }
8460 }
8461
8462 /// Try to advance the typo correction state of the first unfinished TypoExpr.
8463 /// We allow advancement of the correction stream by removing it from the
8464 /// TransformCache which allows `TransformTypoExpr` to advance during the
8465 /// next transformation attempt.
8466 ///
8467 /// Any substitution attempts for the previous TypoExprs (which must have been
8468 /// finished) will need to be retried since it's possible that they will now
8469 /// be invalid given the latest advancement.
8470 ///
8471 /// We need to be sure that we're making progress - it's possible that the
8472 /// tree is so malformed that the transform never makes it to the
8473 /// `TransformTypoExpr`.
8474 ///
8475 /// Returns true if there are any untried correction combinations.
CheckAndAdvanceTypoExprCorrectionStreams()8476 bool CheckAndAdvanceTypoExprCorrectionStreams() {
8477 for (auto *TE : TypoExprs) {
8478 auto &State = SemaRef.getTypoExprState(TE);
8479 TransformCache.erase(TE);
8480 if (!State.Consumer->hasMadeAnyCorrectionProgress())
8481 return false;
8482 if (!State.Consumer->finished())
8483 return true;
8484 State.Consumer->resetCorrectionStream();
8485 }
8486 return false;
8487 }
8488
getDeclFromExpr(Expr * E)8489 NamedDecl *getDeclFromExpr(Expr *E) {
8490 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8491 E = OverloadResolution[OE];
8492
8493 if (!E)
8494 return nullptr;
8495 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8496 return DRE->getFoundDecl();
8497 if (auto *ME = dyn_cast<MemberExpr>(E))
8498 return ME->getFoundDecl();
8499 // FIXME: Add any other expr types that could be seen by the delayed typo
8500 // correction TreeTransform for which the corresponding TypoCorrection could
8501 // contain multiple decls.
8502 return nullptr;
8503 }
8504
TryTransform(Expr * E)8505 ExprResult TryTransform(Expr *E) {
8506 Sema::SFINAETrap Trap(SemaRef);
8507 ExprResult Res = TransformExpr(E);
8508 if (Trap.hasErrorOccurred() || Res.isInvalid())
8509 return ExprError();
8510
8511 return ExprFilter(Res.get());
8512 }
8513
8514 // Since correcting typos may intoduce new TypoExprs, this function
8515 // checks for new TypoExprs and recurses if it finds any. Note that it will
8516 // only succeed if it is able to correct all typos in the given expression.
CheckForRecursiveTypos(ExprResult Res,bool & IsAmbiguous)8517 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8518 if (Res.isInvalid()) {
8519 return Res;
8520 }
8521 // Check to see if any new TypoExprs were created. If so, we need to recurse
8522 // to check their validity.
8523 Expr *FixedExpr = Res.get();
8524
8525 auto SavedTypoExprs = std::move(TypoExprs);
8526 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8527 TypoExprs.clear();
8528 AmbiguousTypoExprs.clear();
8529
8530 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8531 if (!TypoExprs.empty()) {
8532 // Recurse to handle newly created TypoExprs. If we're not able to
8533 // handle them, discard these TypoExprs.
8534 ExprResult RecurResult =
8535 RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8536 if (RecurResult.isInvalid()) {
8537 Res = ExprError();
8538 // Recursive corrections didn't work, wipe them away and don't add
8539 // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8540 // since we don't want to clear them twice. Note: it's possible the
8541 // TypoExprs were created recursively and thus won't be in our
8542 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8543 auto &SemaTypoExprs = SemaRef.TypoExprs;
8544 for (auto *TE : TypoExprs) {
8545 TransformCache.erase(TE);
8546 SemaRef.clearDelayedTypo(TE);
8547
8548 auto SI = find(SemaTypoExprs, TE);
8549 if (SI != SemaTypoExprs.end()) {
8550 SemaTypoExprs.erase(SI);
8551 }
8552 }
8553 } else {
8554 // TypoExpr is valid: add newly created TypoExprs since we were
8555 // able to correct them.
8556 Res = RecurResult;
8557 SavedTypoExprs.set_union(TypoExprs);
8558 }
8559 }
8560
8561 TypoExprs = std::move(SavedTypoExprs);
8562 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8563
8564 return Res;
8565 }
8566
8567 // Try to transform the given expression, looping through the correction
8568 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8569 //
8570 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8571 // true and this method immediately will return an `ExprError`.
RecursiveTransformLoop(Expr * E,bool & IsAmbiguous)8572 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8573 ExprResult Res;
8574 auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8575 SemaRef.TypoExprs.clear();
8576
8577 while (true) {
8578 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8579
8580 // Recursion encountered an ambiguous correction. This means that our
8581 // correction itself is ambiguous, so stop now.
8582 if (IsAmbiguous)
8583 break;
8584
8585 // If the transform is still valid after checking for any new typos,
8586 // it's good to go.
8587 if (!Res.isInvalid())
8588 break;
8589
8590 // The transform was invalid, see if we have any TypoExprs with untried
8591 // correction candidates.
8592 if (!CheckAndAdvanceTypoExprCorrectionStreams())
8593 break;
8594 }
8595
8596 // If we found a valid result, double check to make sure it's not ambiguous.
8597 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8598 auto SavedTransformCache =
8599 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8600
8601 // Ensure none of the TypoExprs have multiple typo correction candidates
8602 // with the same edit length that pass all the checks and filters.
8603 while (!AmbiguousTypoExprs.empty()) {
8604 auto TE = AmbiguousTypoExprs.back();
8605
8606 // TryTransform itself can create new Typos, adding them to the TypoExpr map
8607 // and invalidating our TypoExprState, so always fetch it instead of storing.
8608 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8609
8610 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8611 TypoCorrection Next;
8612 do {
8613 // Fetch the next correction by erasing the typo from the cache and calling
8614 // `TryTransform` which will iterate through corrections in
8615 // `TransformTypoExpr`.
8616 TransformCache.erase(TE);
8617 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8618
8619 if (!AmbigRes.isInvalid() || IsAmbiguous) {
8620 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8621 SavedTransformCache.erase(TE);
8622 Res = ExprError();
8623 IsAmbiguous = true;
8624 break;
8625 }
8626 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8627 Next.getEditDistance(false) == TC.getEditDistance(false));
8628
8629 if (IsAmbiguous)
8630 break;
8631
8632 AmbiguousTypoExprs.remove(TE);
8633 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8634 TransformCache[TE] = SavedTransformCache[TE];
8635 }
8636 TransformCache = std::move(SavedTransformCache);
8637 }
8638
8639 // Wipe away any newly created TypoExprs that we don't know about. Since we
8640 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8641 // possible if a `TypoExpr` is created during a transformation but then
8642 // fails before we can discover it.
8643 auto &SemaTypoExprs = SemaRef.TypoExprs;
8644 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8645 auto TE = *Iterator;
8646 auto FI = find(TypoExprs, TE);
8647 if (FI != TypoExprs.end()) {
8648 Iterator++;
8649 continue;
8650 }
8651 SemaRef.clearDelayedTypo(TE);
8652 Iterator = SemaTypoExprs.erase(Iterator);
8653 }
8654 SemaRef.TypoExprs = std::move(SavedTypoExprs);
8655
8656 return Res;
8657 }
8658
8659 public:
TransformTypos(Sema & SemaRef,VarDecl * InitDecl,llvm::function_ref<ExprResult (Expr *)> Filter)8660 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8661 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8662
RebuildCallExpr(Expr * Callee,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig=nullptr)8663 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8664 MultiExprArg Args,
8665 SourceLocation RParenLoc,
8666 Expr *ExecConfig = nullptr) {
8667 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8668 RParenLoc, ExecConfig);
8669 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8670 if (Result.isUsable()) {
8671 Expr *ResultCall = Result.get();
8672 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8673 ResultCall = BE->getSubExpr();
8674 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8675 OverloadResolution[OE] = CE->getCallee();
8676 }
8677 }
8678 return Result;
8679 }
8680
TransformLambdaExpr(LambdaExpr * E)8681 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8682
TransformBlockExpr(BlockExpr * E)8683 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8684
Transform(Expr * E)8685 ExprResult Transform(Expr *E) {
8686 bool IsAmbiguous = false;
8687 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8688
8689 if (!Res.isUsable())
8690 FindTypoExprs(TypoExprs).TraverseStmt(E);
8691
8692 EmitAllDiagnostics(IsAmbiguous);
8693
8694 return Res;
8695 }
8696
TransformTypoExpr(TypoExpr * E)8697 ExprResult TransformTypoExpr(TypoExpr *E) {
8698 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8699 // cached transformation result if there is one and the TypoExpr isn't the
8700 // first one that was encountered.
8701 auto &CacheEntry = TransformCache[E];
8702 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8703 return CacheEntry;
8704 }
8705
8706 auto &State = SemaRef.getTypoExprState(E);
8707 assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8708
8709 // For the first TypoExpr and an uncached TypoExpr, find the next likely
8710 // typo correction and return it.
8711 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8712 if (InitDecl && TC.getFoundDecl() == InitDecl)
8713 continue;
8714 // FIXME: If we would typo-correct to an invalid declaration, it's
8715 // probably best to just suppress all errors from this typo correction.
8716 ExprResult NE = State.RecoveryHandler ?
8717 State.RecoveryHandler(SemaRef, E, TC) :
8718 attemptRecovery(SemaRef, *State.Consumer, TC);
8719 if (!NE.isInvalid()) {
8720 // Check whether there may be a second viable correction with the same
8721 // edit distance; if so, remember this TypoExpr may have an ambiguous
8722 // correction so it can be more thoroughly vetted later.
8723 TypoCorrection Next;
8724 if ((Next = State.Consumer->peekNextCorrection()) &&
8725 Next.getEditDistance(false) == TC.getEditDistance(false)) {
8726 AmbiguousTypoExprs.insert(E);
8727 } else {
8728 AmbiguousTypoExprs.remove(E);
8729 }
8730 assert(!NE.isUnset() &&
8731 "Typo was transformed into a valid-but-null ExprResult");
8732 return CacheEntry = NE;
8733 }
8734 }
8735 return CacheEntry = ExprError();
8736 }
8737 };
8738 }
8739
8740 ExprResult
CorrectDelayedTyposInExpr(Expr * E,VarDecl * InitDecl,bool RecoverUncorrectedTypos,llvm::function_ref<ExprResult (Expr *)> Filter)8741 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8742 bool RecoverUncorrectedTypos,
8743 llvm::function_ref<ExprResult(Expr *)> Filter) {
8744 // If the current evaluation context indicates there are uncorrected typos
8745 // and the current expression isn't guaranteed to not have typos, try to
8746 // resolve any TypoExpr nodes that might be in the expression.
8747 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8748 (E->isTypeDependent() || E->isValueDependent() ||
8749 E->isInstantiationDependent())) {
8750 auto TyposResolved = DelayedTypos.size();
8751 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8752 TyposResolved -= DelayedTypos.size();
8753 if (Result.isInvalid() || Result.get() != E) {
8754 ExprEvalContexts.back().NumTypos -= TyposResolved;
8755 if (Result.isInvalid() && RecoverUncorrectedTypos) {
8756 struct TyposReplace : TreeTransform<TyposReplace> {
8757 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8758 ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8759 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8760 E->getEndLoc(), {});
8761 }
8762 } TT(*this);
8763 return TT.TransformExpr(E);
8764 }
8765 return Result;
8766 }
8767 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8768 }
8769 return E;
8770 }
8771
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr,bool IsTemplateArgument)8772 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8773 bool DiscardedValue, bool IsConstexpr,
8774 bool IsTemplateArgument) {
8775 ExprResult FullExpr = FE;
8776
8777 if (!FullExpr.get())
8778 return ExprError();
8779
8780 if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
8781 return ExprError();
8782
8783 if (DiscardedValue) {
8784 // Top-level expressions default to 'id' when we're in a debugger.
8785 if (getLangOpts().DebuggerCastResultToId &&
8786 FullExpr.get()->getType() == Context.UnknownAnyTy) {
8787 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8788 if (FullExpr.isInvalid())
8789 return ExprError();
8790 }
8791
8792 FullExpr = CheckPlaceholderExpr(FullExpr.get());
8793 if (FullExpr.isInvalid())
8794 return ExprError();
8795
8796 FullExpr = IgnoredValueConversions(FullExpr.get());
8797 if (FullExpr.isInvalid())
8798 return ExprError();
8799
8800 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8801 }
8802
8803 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8804 /*RecoverUncorrectedTypos=*/true);
8805 if (FullExpr.isInvalid())
8806 return ExprError();
8807
8808 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8809
8810 // At the end of this full expression (which could be a deeply nested
8811 // lambda), if there is a potential capture within the nested lambda,
8812 // have the outer capture-able lambda try and capture it.
8813 // Consider the following code:
8814 // void f(int, int);
8815 // void f(const int&, double);
8816 // void foo() {
8817 // const int x = 10, y = 20;
8818 // auto L = [=](auto a) {
8819 // auto M = [=](auto b) {
8820 // f(x, b); <-- requires x to be captured by L and M
8821 // f(y, a); <-- requires y to be captured by L, but not all Ms
8822 // };
8823 // };
8824 // }
8825
8826 // FIXME: Also consider what happens for something like this that involves
8827 // the gnu-extension statement-expressions or even lambda-init-captures:
8828 // void f() {
8829 // const int n = 0;
8830 // auto L = [&](auto a) {
8831 // +n + ({ 0; a; });
8832 // };
8833 // }
8834 //
8835 // Here, we see +n, and then the full-expression 0; ends, so we don't
8836 // capture n (and instead remove it from our list of potential captures),
8837 // and then the full-expression +n + ({ 0; }); ends, but it's too late
8838 // for us to see that we need to capture n after all.
8839
8840 LambdaScopeInfo *const CurrentLSI =
8841 getCurLambda(/*IgnoreCapturedRegions=*/true);
8842 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8843 // even if CurContext is not a lambda call operator. Refer to that Bug Report
8844 // for an example of the code that might cause this asynchrony.
8845 // By ensuring we are in the context of a lambda's call operator
8846 // we can fix the bug (we only need to check whether we need to capture
8847 // if we are within a lambda's body); but per the comments in that
8848 // PR, a proper fix would entail :
8849 // "Alternative suggestion:
8850 // - Add to Sema an integer holding the smallest (outermost) scope
8851 // index that we are *lexically* within, and save/restore/set to
8852 // FunctionScopes.size() in InstantiatingTemplate's
8853 // constructor/destructor.
8854 // - Teach the handful of places that iterate over FunctionScopes to
8855 // stop at the outermost enclosing lexical scope."
8856 DeclContext *DC = CurContext;
8857 while (DC && isa<CapturedDecl>(DC))
8858 DC = DC->getParent();
8859 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8860 if (IsInLambdaDeclContext && CurrentLSI &&
8861 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8862 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8863 *this);
8864 return MaybeCreateExprWithCleanups(FullExpr);
8865 }
8866
ActOnFinishFullStmt(Stmt * FullStmt)8867 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8868 if (!FullStmt) return StmtError();
8869
8870 return MaybeCreateStmtWithCleanups(FullStmt);
8871 }
8872
8873 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)8874 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8875 CXXScopeSpec &SS,
8876 const DeclarationNameInfo &TargetNameInfo) {
8877 DeclarationName TargetName = TargetNameInfo.getName();
8878 if (!TargetName)
8879 return IER_DoesNotExist;
8880
8881 // If the name itself is dependent, then the result is dependent.
8882 if (TargetName.isDependentName())
8883 return IER_Dependent;
8884
8885 // Do the redeclaration lookup in the current scope.
8886 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8887 Sema::NotForRedeclaration);
8888 LookupParsedName(R, S, &SS);
8889 R.suppressDiagnostics();
8890
8891 switch (R.getResultKind()) {
8892 case LookupResult::Found:
8893 case LookupResult::FoundOverloaded:
8894 case LookupResult::FoundUnresolvedValue:
8895 case LookupResult::Ambiguous:
8896 return IER_Exists;
8897
8898 case LookupResult::NotFound:
8899 return IER_DoesNotExist;
8900
8901 case LookupResult::NotFoundInCurrentInstantiation:
8902 return IER_Dependent;
8903 }
8904
8905 llvm_unreachable("Invalid LookupResult Kind!");
8906 }
8907
8908 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)8909 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8910 bool IsIfExists, CXXScopeSpec &SS,
8911 UnqualifiedId &Name) {
8912 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8913
8914 // Check for an unexpanded parameter pack.
8915 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8916 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8917 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8918 return IER_Error;
8919
8920 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8921 }
8922
ActOnSimpleRequirement(Expr * E)8923 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8924 return BuildExprRequirement(E, /*IsSimple=*/true,
8925 /*NoexceptLoc=*/SourceLocation(),
8926 /*ReturnTypeRequirement=*/{});
8927 }
8928
8929 concepts::Requirement *
ActOnTypeRequirement(SourceLocation TypenameKWLoc,CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo * TypeName,TemplateIdAnnotation * TemplateId)8930 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8931 SourceLocation NameLoc, IdentifierInfo *TypeName,
8932 TemplateIdAnnotation *TemplateId) {
8933 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8934 "Exactly one of TypeName and TemplateId must be specified.");
8935 TypeSourceInfo *TSI = nullptr;
8936 if (TypeName) {
8937 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8938 SS.getWithLocInContext(Context), *TypeName,
8939 NameLoc, &TSI, /*DeducedTSTContext=*/false);
8940 if (T.isNull())
8941 return nullptr;
8942 } else {
8943 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8944 TemplateId->NumArgs);
8945 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8946 TemplateId->TemplateKWLoc,
8947 TemplateId->Template, TemplateId->Name,
8948 TemplateId->TemplateNameLoc,
8949 TemplateId->LAngleLoc, ArgsPtr,
8950 TemplateId->RAngleLoc);
8951 if (T.isInvalid())
8952 return nullptr;
8953 if (GetTypeFromParser(T.get(), &TSI).isNull())
8954 return nullptr;
8955 }
8956 return BuildTypeRequirement(TSI);
8957 }
8958
8959 concepts::Requirement *
ActOnCompoundRequirement(Expr * E,SourceLocation NoexceptLoc)8960 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8961 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8962 /*ReturnTypeRequirement=*/{});
8963 }
8964
8965 concepts::Requirement *
ActOnCompoundRequirement(Expr * E,SourceLocation NoexceptLoc,CXXScopeSpec & SS,TemplateIdAnnotation * TypeConstraint,unsigned Depth)8966 Sema::ActOnCompoundRequirement(
8967 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8968 TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8969 // C++2a [expr.prim.req.compound] p1.3.3
8970 // [..] the expression is deduced against an invented function template
8971 // F [...] F is a void function template with a single type template
8972 // parameter T declared with the constrained-parameter. Form a new
8973 // cv-qualifier-seq cv by taking the union of const and volatile specifiers
8974 // around the constrained-parameter. F has a single parameter whose
8975 // type-specifier is cv T followed by the abstract-declarator. [...]
8976 //
8977 // The cv part is done in the calling function - we get the concept with
8978 // arguments and the abstract declarator with the correct CV qualification and
8979 // have to synthesize T and the single parameter of F.
8980 auto &II = Context.Idents.get("expr-type");
8981 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8982 SourceLocation(),
8983 SourceLocation(), Depth,
8984 /*Index=*/0, &II,
8985 /*Typename=*/true,
8986 /*ParameterPack=*/false,
8987 /*HasTypeConstraint=*/true);
8988
8989 if (BuildTypeConstraint(SS, TypeConstraint, TParam,
8990 /*EllipsisLoc=*/SourceLocation(),
8991 /*AllowUnexpandedPack=*/true))
8992 // Just produce a requirement with no type requirements.
8993 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
8994
8995 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
8996 SourceLocation(),
8997 ArrayRef<NamedDecl *>(TParam),
8998 SourceLocation(),
8999 /*RequiresClause=*/nullptr);
9000 return BuildExprRequirement(
9001 E, /*IsSimple=*/false, NoexceptLoc,
9002 concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9003 }
9004
9005 concepts::ExprRequirement *
BuildExprRequirement(Expr * E,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement)9006 Sema::BuildExprRequirement(
9007 Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9008 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9009 auto Status = concepts::ExprRequirement::SS_Satisfied;
9010 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9011 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
9012 Status = concepts::ExprRequirement::SS_Dependent;
9013 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9014 Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9015 else if (ReturnTypeRequirement.isSubstitutionFailure())
9016 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9017 else if (ReturnTypeRequirement.isTypeConstraint()) {
9018 // C++2a [expr.prim.req]p1.3.3
9019 // The immediately-declared constraint ([temp]) of decltype((E)) shall
9020 // be satisfied.
9021 TemplateParameterList *TPL =
9022 ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9023 QualType MatchedType =
9024 Context.getReferenceQualifiedType(E).getCanonicalType();
9025 llvm::SmallVector<TemplateArgument, 1> Args;
9026 Args.push_back(TemplateArgument(MatchedType));
9027
9028 auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
9029
9030 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
9031 MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(),
9032 /*Final=*/false);
9033 MLTAL.addOuterRetainedLevels(TPL->getDepth());
9034 Expr *IDC = Param->getTypeConstraint()->getImmediatelyDeclaredConstraint();
9035 ExprResult Constraint = SubstExpr(IDC, MLTAL);
9036 if (Constraint.isInvalid()) {
9037 Status = concepts::ExprRequirement::SS_ExprSubstitutionFailure;
9038 } else {
9039 SubstitutedConstraintExpr =
9040 cast<ConceptSpecializationExpr>(Constraint.get());
9041 if (!SubstitutedConstraintExpr->isSatisfied())
9042 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9043 }
9044 }
9045 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9046 ReturnTypeRequirement, Status,
9047 SubstitutedConstraintExpr);
9048 }
9049
9050 concepts::ExprRequirement *
BuildExprRequirement(concepts::Requirement::SubstitutionDiagnostic * ExprSubstitutionDiagnostic,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement)9051 Sema::BuildExprRequirement(
9052 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9053 bool IsSimple, SourceLocation NoexceptLoc,
9054 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9055 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9056 IsSimple, NoexceptLoc,
9057 ReturnTypeRequirement);
9058 }
9059
9060 concepts::TypeRequirement *
BuildTypeRequirement(TypeSourceInfo * Type)9061 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9062 return new (Context) concepts::TypeRequirement(Type);
9063 }
9064
9065 concepts::TypeRequirement *
BuildTypeRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)9066 Sema::BuildTypeRequirement(
9067 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9068 return new (Context) concepts::TypeRequirement(SubstDiag);
9069 }
9070
ActOnNestedRequirement(Expr * Constraint)9071 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9072 return BuildNestedRequirement(Constraint);
9073 }
9074
9075 concepts::NestedRequirement *
BuildNestedRequirement(Expr * Constraint)9076 Sema::BuildNestedRequirement(Expr *Constraint) {
9077 ConstraintSatisfaction Satisfaction;
9078 if (!Constraint->isInstantiationDependent() &&
9079 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9080 Constraint->getSourceRange(), Satisfaction))
9081 return nullptr;
9082 return new (Context) concepts::NestedRequirement(Context, Constraint,
9083 Satisfaction);
9084 }
9085
9086 concepts::NestedRequirement *
BuildNestedRequirement(StringRef InvalidConstraintEntity,const ASTConstraintSatisfaction & Satisfaction)9087 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9088 const ASTConstraintSatisfaction &Satisfaction) {
9089 return new (Context) concepts::NestedRequirement(
9090 InvalidConstraintEntity,
9091 ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
9092 }
9093
9094 RequiresExprBodyDecl *
ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,ArrayRef<ParmVarDecl * > LocalParameters,Scope * BodyScope)9095 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9096 ArrayRef<ParmVarDecl *> LocalParameters,
9097 Scope *BodyScope) {
9098 assert(BodyScope);
9099
9100 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9101 RequiresKWLoc);
9102
9103 PushDeclContext(BodyScope, Body);
9104
9105 for (ParmVarDecl *Param : LocalParameters) {
9106 if (Param->hasDefaultArg())
9107 // C++2a [expr.prim.req] p4
9108 // [...] A local parameter of a requires-expression shall not have a
9109 // default argument. [...]
9110 Diag(Param->getDefaultArgRange().getBegin(),
9111 diag::err_requires_expr_local_parameter_default_argument);
9112 // Ignore default argument and move on
9113
9114 Param->setDeclContext(Body);
9115 // If this has an identifier, add it to the scope stack.
9116 if (Param->getIdentifier()) {
9117 CheckShadow(BodyScope, Param);
9118 PushOnScopeChains(Param, BodyScope);
9119 }
9120 }
9121 return Body;
9122 }
9123
ActOnFinishRequiresExpr()9124 void Sema::ActOnFinishRequiresExpr() {
9125 assert(CurContext && "DeclContext imbalance!");
9126 CurContext = CurContext->getLexicalParent();
9127 assert(CurContext && "Popped translation unit!");
9128 }
9129
9130 ExprResult
ActOnRequiresExpr(SourceLocation RequiresKWLoc,RequiresExprBodyDecl * Body,ArrayRef<ParmVarDecl * > LocalParameters,ArrayRef<concepts::Requirement * > Requirements,SourceLocation ClosingBraceLoc)9131 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
9132 RequiresExprBodyDecl *Body,
9133 ArrayRef<ParmVarDecl *> LocalParameters,
9134 ArrayRef<concepts::Requirement *> Requirements,
9135 SourceLocation ClosingBraceLoc) {
9136 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
9137 Requirements, ClosingBraceLoc);
9138 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9139 return ExprError();
9140 return RE;
9141 }
9142