1 //===- lib/CodeGen/MachineTraceMetrics.h - Super-scalar metrics -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for the MachineTraceMetrics analysis pass 10 // that estimates CPU resource usage and critical data dependency paths through 11 // preferred traces. This is useful for super-scalar CPUs where execution speed 12 // can be limited both by data dependencies and by limited execution resources. 13 // 14 // Out-of-order CPUs will often be executing instructions from multiple basic 15 // blocks at the same time. This makes it difficult to estimate the resource 16 // usage accurately in a single basic block. Resources can be estimated better 17 // by looking at a trace through the current basic block. 18 // 19 // For every block, the MachineTraceMetrics pass will pick a preferred trace 20 // that passes through the block. The trace is chosen based on loop structure, 21 // branch probabilities, and resource usage. The intention is to pick likely 22 // traces that would be the most affected by code transformations. 23 // 24 // It is expensive to compute a full arbitrary trace for every block, so to 25 // save some computations, traces are chosen to be convergent. This means that 26 // if the traces through basic blocks A and B ever cross when moving away from 27 // A and B, they never diverge again. This applies in both directions - If the 28 // traces meet above A and B, they won't diverge when going further back. 29 // 30 // Traces tend to align with loops. The trace through a block in an inner loop 31 // will begin at the loop entry block and end at a back edge. If there are 32 // nested loops, the trace may begin and end at those instead. 33 // 34 // For each trace, we compute the critical path length, which is the number of 35 // cycles required to execute the trace when execution is limited by data 36 // dependencies only. We also compute the resource height, which is the number 37 // of cycles required to execute all instructions in the trace when ignoring 38 // data dependencies. 39 // 40 // Every instruction in the current block has a slack - the number of cycles 41 // execution of the instruction can be delayed without extending the critical 42 // path. 43 // 44 //===----------------------------------------------------------------------===// 45 46 #ifndef LLVM_CODEGEN_MACHINETRACEMETRICS_H 47 #define LLVM_CODEGEN_MACHINETRACEMETRICS_H 48 49 #include "llvm/ADT/SparseSet.h" 50 #include "llvm/ADT/ArrayRef.h" 51 #include "llvm/ADT/DenseMap.h" 52 #include "llvm/ADT/SmallVector.h" 53 #include "llvm/CodeGen/MachineBasicBlock.h" 54 #include "llvm/CodeGen/MachineFunctionPass.h" 55 #include "llvm/CodeGen/TargetSchedule.h" 56 57 namespace llvm { 58 59 class AnalysisUsage; 60 class MachineFunction; 61 class MachineInstr; 62 class MachineLoop; 63 class MachineLoopInfo; 64 class MachineRegisterInfo; 65 struct MCSchedClassDesc; 66 class raw_ostream; 67 class TargetInstrInfo; 68 class TargetRegisterInfo; 69 70 // Keep track of physreg data dependencies by recording each live register unit. 71 // Associate each regunit with an instruction operand. Depending on the 72 // direction instructions are scanned, it could be the operand that defined the 73 // regunit, or the highest operand to read the regunit. 74 struct LiveRegUnit { 75 unsigned RegUnit; 76 unsigned Cycle = 0; 77 const MachineInstr *MI = nullptr; 78 unsigned Op = 0; 79 getSparseSetIndexLiveRegUnit80 unsigned getSparseSetIndex() const { return RegUnit; } 81 LiveRegUnitLiveRegUnit82 LiveRegUnit(unsigned RU) : RegUnit(RU) {} 83 }; 84 85 86 class MachineTraceMetrics : public MachineFunctionPass { 87 const MachineFunction *MF = nullptr; 88 const TargetInstrInfo *TII = nullptr; 89 const TargetRegisterInfo *TRI = nullptr; 90 const MachineRegisterInfo *MRI = nullptr; 91 const MachineLoopInfo *Loops = nullptr; 92 TargetSchedModel SchedModel; 93 94 public: 95 friend class Ensemble; 96 friend class Trace; 97 98 class Ensemble; 99 100 static char ID; 101 102 MachineTraceMetrics(); 103 104 void getAnalysisUsage(AnalysisUsage&) const override; 105 bool runOnMachineFunction(MachineFunction&) override; 106 void releaseMemory() override; 107 void verifyAnalysis() const override; 108 109 /// Per-basic block information that doesn't depend on the trace through the 110 /// block. 111 struct FixedBlockInfo { 112 /// The number of non-trivial instructions in the block. 113 /// Doesn't count PHI and COPY instructions that are likely to be removed. 114 unsigned InstrCount = ~0u; 115 116 /// True when the block contains calls. 117 bool HasCalls = false; 118 119 FixedBlockInfo() = default; 120 121 /// Returns true when resource information for this block has been computed. hasResourcesFixedBlockInfo122 bool hasResources() const { return InstrCount != ~0u; } 123 124 /// Invalidate resource information. invalidateFixedBlockInfo125 void invalidate() { InstrCount = ~0u; } 126 }; 127 128 /// Get the fixed resource information about MBB. Compute it on demand. 129 const FixedBlockInfo *getResources(const MachineBasicBlock*); 130 131 /// Get the scaled number of cycles used per processor resource in MBB. 132 /// This is an array with SchedModel.getNumProcResourceKinds() entries. 133 /// The getResources() function above must have been called first. 134 /// 135 /// These numbers have already been scaled by SchedModel.getResourceFactor(). 136 ArrayRef<unsigned> getProcResourceCycles(unsigned MBBNum) const; 137 138 /// A virtual register or regunit required by a basic block or its trace 139 /// successors. 140 struct LiveInReg { 141 /// The virtual register required, or a register unit. 142 Register Reg; 143 144 /// For virtual registers: Minimum height of the defining instruction. 145 /// For regunits: Height of the highest user in the trace. 146 unsigned Height; 147 RegLiveInReg148 LiveInReg(Register Reg, unsigned Height = 0) : Reg(Reg), Height(Height) {} 149 }; 150 151 /// Per-basic block information that relates to a specific trace through the 152 /// block. Convergent traces means that only one of these is required per 153 /// block in a trace ensemble. 154 struct TraceBlockInfo { 155 /// Trace predecessor, or NULL for the first block in the trace. 156 /// Valid when hasValidDepth(). 157 const MachineBasicBlock *Pred = nullptr; 158 159 /// Trace successor, or NULL for the last block in the trace. 160 /// Valid when hasValidHeight(). 161 const MachineBasicBlock *Succ = nullptr; 162 163 /// The block number of the head of the trace. (When hasValidDepth()). 164 unsigned Head; 165 166 /// The block number of the tail of the trace. (When hasValidHeight()). 167 unsigned Tail; 168 169 /// Accumulated number of instructions in the trace above this block. 170 /// Does not include instructions in this block. 171 unsigned InstrDepth = ~0u; 172 173 /// Accumulated number of instructions in the trace below this block. 174 /// Includes instructions in this block. 175 unsigned InstrHeight = ~0u; 176 177 TraceBlockInfo() = default; 178 179 /// Returns true if the depth resources have been computed from the trace 180 /// above this block. hasValidDepthTraceBlockInfo181 bool hasValidDepth() const { return InstrDepth != ~0u; } 182 183 /// Returns true if the height resources have been computed from the trace 184 /// below this block. hasValidHeightTraceBlockInfo185 bool hasValidHeight() const { return InstrHeight != ~0u; } 186 187 /// Invalidate depth resources when some block above this one has changed. invalidateDepthTraceBlockInfo188 void invalidateDepth() { InstrDepth = ~0u; HasValidInstrDepths = false; } 189 190 /// Invalidate height resources when a block below this one has changed. invalidateHeightTraceBlockInfo191 void invalidateHeight() { InstrHeight = ~0u; HasValidInstrHeights = false; } 192 193 /// Assuming that this is a dominator of TBI, determine if it contains 194 /// useful instruction depths. A dominating block can be above the current 195 /// trace head, and any dependencies from such a far away dominator are not 196 /// expected to affect the critical path. 197 /// 198 /// Also returns true when TBI == this. isUsefulDominatorTraceBlockInfo199 bool isUsefulDominator(const TraceBlockInfo &TBI) const { 200 // The trace for TBI may not even be calculated yet. 201 if (!hasValidDepth() || !TBI.hasValidDepth()) 202 return false; 203 // Instruction depths are only comparable if the traces share a head. 204 if (Head != TBI.Head) 205 return false; 206 // It is almost always the case that TBI belongs to the same trace as 207 // this block, but rare convoluted cases involving irreducible control 208 // flow, a dominator may share a trace head without actually being on the 209 // same trace as TBI. This is not a big problem as long as it doesn't 210 // increase the instruction depth. 211 return HasValidInstrDepths && InstrDepth <= TBI.InstrDepth; 212 } 213 214 // Data-dependency-related information. Per-instruction depth and height 215 // are computed from data dependencies in the current trace, using 216 // itinerary data. 217 218 /// Instruction depths have been computed. This implies hasValidDepth(). 219 bool HasValidInstrDepths = false; 220 221 /// Instruction heights have been computed. This implies hasValidHeight(). 222 bool HasValidInstrHeights = false; 223 224 /// Critical path length. This is the number of cycles in the longest data 225 /// dependency chain through the trace. This is only valid when both 226 /// HasValidInstrDepths and HasValidInstrHeights are set. 227 unsigned CriticalPath; 228 229 /// Live-in registers. These registers are defined above the current block 230 /// and used by this block or a block below it. 231 /// This does not include PHI uses in the current block, but it does 232 /// include PHI uses in deeper blocks. 233 SmallVector<LiveInReg, 4> LiveIns; 234 235 void print(raw_ostream&) const; 236 }; 237 238 /// InstrCycles represents the cycle height and depth of an instruction in a 239 /// trace. 240 struct InstrCycles { 241 /// Earliest issue cycle as determined by data dependencies and instruction 242 /// latencies from the beginning of the trace. Data dependencies from 243 /// before the trace are not included. 244 unsigned Depth; 245 246 /// Minimum number of cycles from this instruction is issued to the of the 247 /// trace, as determined by data dependencies and instruction latencies. 248 unsigned Height; 249 }; 250 251 /// A trace represents a plausible sequence of executed basic blocks that 252 /// passes through the current basic block one. The Trace class serves as a 253 /// handle to internal cached data structures. 254 class Trace { 255 Ensemble &TE; 256 TraceBlockInfo &TBI; 257 getBlockNum()258 unsigned getBlockNum() const { return &TBI - &TE.BlockInfo[0]; } 259 260 public: Trace(Ensemble & te,TraceBlockInfo & tbi)261 explicit Trace(Ensemble &te, TraceBlockInfo &tbi) : TE(te), TBI(tbi) {} 262 263 void print(raw_ostream&) const; 264 265 /// Compute the total number of instructions in the trace. getInstrCount()266 unsigned getInstrCount() const { 267 return TBI.InstrDepth + TBI.InstrHeight; 268 } 269 270 /// Return the resource depth of the top/bottom of the trace center block. 271 /// This is the number of cycles required to execute all instructions from 272 /// the trace head to the trace center block. The resource depth only 273 /// considers execution resources, it ignores data dependencies. 274 /// When Bottom is set, instructions in the trace center block are included. 275 unsigned getResourceDepth(bool Bottom) const; 276 277 /// Return the resource length of the trace. This is the number of cycles 278 /// required to execute the instructions in the trace if they were all 279 /// independent, exposing the maximum instruction-level parallelism. 280 /// 281 /// Any blocks in Extrablocks are included as if they were part of the 282 /// trace. Likewise, extra resources required by the specified scheduling 283 /// classes are included. For the caller to account for extra machine 284 /// instructions, it must first resolve each instruction's scheduling class. 285 unsigned getResourceLength( 286 ArrayRef<const MachineBasicBlock *> Extrablocks = std::nullopt, 287 ArrayRef<const MCSchedClassDesc *> ExtraInstrs = std::nullopt, 288 ArrayRef<const MCSchedClassDesc *> RemoveInstrs = std::nullopt) const; 289 290 /// Return the length of the (data dependency) critical path through the 291 /// trace. getCriticalPath()292 unsigned getCriticalPath() const { return TBI.CriticalPath; } 293 294 /// Return the depth and height of MI. The depth is only valid for 295 /// instructions in or above the trace center block. The height is only 296 /// valid for instructions in or below the trace center block. getInstrCycles(const MachineInstr & MI)297 InstrCycles getInstrCycles(const MachineInstr &MI) const { 298 return TE.Cycles.lookup(&MI); 299 } 300 301 /// Return the slack of MI. This is the number of cycles MI can be delayed 302 /// before the critical path becomes longer. 303 /// MI must be an instruction in the trace center block. 304 unsigned getInstrSlack(const MachineInstr &MI) const; 305 306 /// Return the Depth of a PHI instruction in a trace center block successor. 307 /// The PHI does not have to be part of the trace. 308 unsigned getPHIDepth(const MachineInstr &PHI) const; 309 310 /// A dependence is useful if the basic block of the defining instruction 311 /// is part of the trace of the user instruction. It is assumed that DefMI 312 /// dominates UseMI (see also isUsefulDominator). 313 bool isDepInTrace(const MachineInstr &DefMI, 314 const MachineInstr &UseMI) const; 315 }; 316 317 /// A trace ensemble is a collection of traces selected using the same 318 /// strategy, for example 'minimum resource height'. There is one trace for 319 /// every block in the function. 320 class Ensemble { 321 friend class Trace; 322 323 SmallVector<TraceBlockInfo, 4> BlockInfo; 324 DenseMap<const MachineInstr*, InstrCycles> Cycles; 325 SmallVector<unsigned, 0> ProcResourceDepths; 326 SmallVector<unsigned, 0> ProcResourceHeights; 327 328 void computeTrace(const MachineBasicBlock*); 329 void computeDepthResources(const MachineBasicBlock*); 330 void computeHeightResources(const MachineBasicBlock*); 331 unsigned computeCrossBlockCriticalPath(const TraceBlockInfo&); 332 void computeInstrDepths(const MachineBasicBlock*); 333 void computeInstrHeights(const MachineBasicBlock*); 334 void addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 335 ArrayRef<const MachineBasicBlock*> Trace); 336 337 protected: 338 MachineTraceMetrics &MTM; 339 340 explicit Ensemble(MachineTraceMetrics*); 341 342 virtual const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) =0; 343 virtual const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) =0; 344 const MachineLoop *getLoopFor(const MachineBasicBlock*) const; 345 const TraceBlockInfo *getDepthResources(const MachineBasicBlock*) const; 346 const TraceBlockInfo *getHeightResources(const MachineBasicBlock*) const; 347 ArrayRef<unsigned> getProcResourceDepths(unsigned MBBNum) const; 348 ArrayRef<unsigned> getProcResourceHeights(unsigned MBBNum) const; 349 350 public: 351 virtual ~Ensemble(); 352 353 virtual const char *getName() const = 0; 354 void print(raw_ostream&) const; 355 void invalidate(const MachineBasicBlock *MBB); 356 void verify() const; 357 358 /// Get the trace that passes through MBB. 359 /// The trace is computed on demand. 360 Trace getTrace(const MachineBasicBlock *MBB); 361 362 /// Updates the depth of an machine instruction, given RegUnits. 363 void updateDepth(TraceBlockInfo &TBI, const MachineInstr&, 364 SparseSet<LiveRegUnit> &RegUnits); 365 void updateDepth(const MachineBasicBlock *, const MachineInstr&, 366 SparseSet<LiveRegUnit> &RegUnits); 367 368 /// Updates the depth of the instructions from Start to End. 369 void updateDepths(MachineBasicBlock::iterator Start, 370 MachineBasicBlock::iterator End, 371 SparseSet<LiveRegUnit> &RegUnits); 372 373 }; 374 375 /// Strategies for selecting traces. 376 enum Strategy { 377 /// Select the trace through a block that has the fewest instructions. 378 TS_MinInstrCount, 379 380 TS_NumStrategies 381 }; 382 383 /// Get the trace ensemble representing the given trace selection strategy. 384 /// The returned Ensemble object is owned by the MachineTraceMetrics analysis, 385 /// and valid for the lifetime of the analysis pass. 386 Ensemble *getEnsemble(Strategy); 387 388 /// Invalidate cached information about MBB. This must be called *before* MBB 389 /// is erased, or the CFG is otherwise changed. 390 /// 391 /// This invalidates per-block information about resource usage for MBB only, 392 /// and it invalidates per-trace information for any trace that passes 393 /// through MBB. 394 /// 395 /// Call Ensemble::getTrace() again to update any trace handles. 396 void invalidate(const MachineBasicBlock *MBB); 397 398 private: 399 // One entry per basic block, indexed by block number. 400 SmallVector<FixedBlockInfo, 4> BlockInfo; 401 402 // Cycles consumed on each processor resource per block. 403 // The number of processor resource kinds is constant for a given subtarget, 404 // but it is not known at compile time. The number of cycles consumed by 405 // block B on processor resource R is at ProcResourceCycles[B*Kinds + R] 406 // where Kinds = SchedModel.getNumProcResourceKinds(). 407 SmallVector<unsigned, 0> ProcResourceCycles; 408 409 // One ensemble per strategy. 410 Ensemble* Ensembles[TS_NumStrategies]; 411 412 // Convert scaled resource usage to a cycle count that can be compared with 413 // latencies. getCycles(unsigned Scaled)414 unsigned getCycles(unsigned Scaled) { 415 unsigned Factor = SchedModel.getLatencyFactor(); 416 return (Scaled + Factor - 1) / Factor; 417 } 418 }; 419 420 inline raw_ostream &operator<<(raw_ostream &OS, 421 const MachineTraceMetrics::Trace &Tr) { 422 Tr.print(OS); 423 return OS; 424 } 425 426 inline raw_ostream &operator<<(raw_ostream &OS, 427 const MachineTraceMetrics::Ensemble &En) { 428 En.print(OS); 429 return OS; 430 } 431 432 } // end namespace llvm 433 434 #endif // LLVM_CODEGEN_MACHINETRACEMETRICS_H 435