xref: /qemu/include/exec/memory.h (revision 69e78f1b)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
31 
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39                          TYPE_MEMORY_REGION)
40 
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44                      IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50                      RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51 
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54                       size_t len,
55                       MemoryRegion *mr);
56 #else
fuzz_dma_read_cb(size_t addr,size_t len,MemoryRegion * mr)57 static inline void fuzz_dma_read_cb(size_t addr,
58                                     size_t len,
59                                     MemoryRegion *mr)
60 {
61     /* Do Nothing */
62 }
63 #endif
64 
65 /* Possible bits for global_dirty_log_{start|stop} */
66 
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION  (1U << 0)
69 
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72 
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT      (1U << 2)
75 
76 #define GLOBAL_DIRTY_MASK  (0x7)
77 
78 extern unsigned int global_dirty_tracking;
79 
80 typedef struct MemoryRegionOps MemoryRegionOps;
81 
82 struct ReservedRegion {
83     Range range;
84     unsigned type;
85 };
86 
87 /**
88  * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89  *
90  * @mr: the region, or %NULL if empty
91  * @fv: the flat view of the address space the region is mapped in
92  * @offset_within_region: the beginning of the section, relative to @mr's start
93  * @size: the size of the section; will not exceed @mr's boundaries
94  * @offset_within_address_space: the address of the first byte of the section
95  *     relative to the region's address space
96  * @readonly: writes to this section are ignored
97  * @nonvolatile: this section is non-volatile
98  * @unmergeable: this section should not get merged with adjacent sections
99  */
100 struct MemoryRegionSection {
101     Int128 size;
102     MemoryRegion *mr;
103     FlatView *fv;
104     hwaddr offset_within_region;
105     hwaddr offset_within_address_space;
106     bool readonly;
107     bool nonvolatile;
108     bool unmergeable;
109 };
110 
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
112 
113 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
114 typedef enum {
115     IOMMU_NONE = 0,
116     IOMMU_RO   = 1,
117     IOMMU_WO   = 2,
118     IOMMU_RW   = 3,
119 } IOMMUAccessFlags;
120 
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
122 
123 struct IOMMUTLBEntry {
124     AddressSpace    *target_as;
125     hwaddr           iova;
126     hwaddr           translated_addr;
127     hwaddr           addr_mask;  /* 0xfff = 4k translation */
128     IOMMUAccessFlags perm;
129 };
130 
131 /*
132  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133  * register with one or multiple IOMMU Notifier capability bit(s).
134  *
135  * Normally there're two use cases for the notifiers:
136  *
137  *   (1) When the device needs accurate synchronizations of the vIOMMU page
138  *       tables, it needs to register with both MAP|UNMAP notifies (which
139  *       is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
140  *
141  *       Regarding to accurate synchronization, it's when the notified
142  *       device maintains a shadow page table and must be notified on each
143  *       guest MAP (page table entry creation) and UNMAP (invalidation)
144  *       events (e.g. VFIO). Both notifications must be accurate so that
145  *       the shadow page table is fully in sync with the guest view.
146  *
147  *   (2) When the device doesn't need accurate synchronizations of the
148  *       vIOMMU page tables, it needs to register only with UNMAP or
149  *       DEVIOTLB_UNMAP notifies.
150  *
151  *       It's when the device maintains a cache of IOMMU translations
152  *       (IOTLB) and is able to fill that cache by requesting translations
153  *       from the vIOMMU through a protocol similar to ATS (Address
154  *       Translation Service).
155  *
156  *       Note that in this mode the vIOMMU will not maintain a shadowed
157  *       page table for the address space, and the UNMAP messages can cover
158  *       more than the pages that used to get mapped.  The IOMMU notifiee
159  *       should be able to take care of over-sized invalidations.
160  */
161 typedef enum {
162     IOMMU_NOTIFIER_NONE = 0,
163     /* Notify cache invalidations */
164     IOMMU_NOTIFIER_UNMAP = 0x1,
165     /* Notify entry changes (newly created entries) */
166     IOMMU_NOTIFIER_MAP = 0x2,
167     /* Notify changes on device IOTLB entries */
168     IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
170 
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174                             IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
175 
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178                             IOMMUTLBEntry *data);
179 
180 struct IOMMUNotifier {
181     IOMMUNotify notify;
182     IOMMUNotifierFlag notifier_flags;
183     /* Notify for address space range start <= addr <= end */
184     hwaddr start;
185     hwaddr end;
186     int iommu_idx;
187     QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190 
191 typedef struct IOMMUTLBEvent {
192     IOMMUNotifierFlag type;
193     IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195 
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC   (1 << 0)
198 
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED     (1 << 1)
201 
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203  * Resizing RAM while migrating can result in the migration being canceled.
204  */
205 #define RAM_RESIZEABLE (1 << 2)
206 
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208  * zero the page and wake waiting processes.
209  * (Set during postcopy)
210  */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212 
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215 
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218 
219 
220 /*
221  * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222  * support 'write-tracking' migration type.
223  * Implies ram_state->ram_wt_enabled.
224  */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226 
227 /*
228  * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229  * pages if applicable) is skipped: will bail out if not supported. When not
230  * set, the OS will do the reservation, if supported for the memory type.
231  */
232 #define RAM_NORESERVE (1 << 7)
233 
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236 
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239 
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242 
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245 
246 /* RAM can be private that has kvm guest memfd backend */
247 #define RAM_GUEST_MEMFD   (1 << 12)
248 
iommu_notifier_init(IOMMUNotifier * n,IOMMUNotify fn,IOMMUNotifierFlag flags,hwaddr start,hwaddr end,int iommu_idx)249 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
250                                        IOMMUNotifierFlag flags,
251                                        hwaddr start, hwaddr end,
252                                        int iommu_idx)
253 {
254     n->notify = fn;
255     n->notifier_flags = flags;
256     n->start = start;
257     n->end = end;
258     n->iommu_idx = iommu_idx;
259 }
260 
261 /*
262  * Memory region callbacks
263  */
264 struct MemoryRegionOps {
265     /* Read from the memory region. @addr is relative to @mr; @size is
266      * in bytes. */
267     uint64_t (*read)(void *opaque,
268                      hwaddr addr,
269                      unsigned size);
270     /* Write to the memory region. @addr is relative to @mr; @size is
271      * in bytes. */
272     void (*write)(void *opaque,
273                   hwaddr addr,
274                   uint64_t data,
275                   unsigned size);
276 
277     MemTxResult (*read_with_attrs)(void *opaque,
278                                    hwaddr addr,
279                                    uint64_t *data,
280                                    unsigned size,
281                                    MemTxAttrs attrs);
282     MemTxResult (*write_with_attrs)(void *opaque,
283                                     hwaddr addr,
284                                     uint64_t data,
285                                     unsigned size,
286                                     MemTxAttrs attrs);
287 
288     enum device_endian endianness;
289     /* Guest-visible constraints: */
290     struct {
291         /* If nonzero, specify bounds on access sizes beyond which a machine
292          * check is thrown.
293          */
294         unsigned min_access_size;
295         unsigned max_access_size;
296         /* If true, unaligned accesses are supported.  Otherwise unaligned
297          * accesses throw machine checks.
298          */
299          bool unaligned;
300         /*
301          * If present, and returns #false, the transaction is not accepted
302          * by the device (and results in machine dependent behaviour such
303          * as a machine check exception).
304          */
305         bool (*accepts)(void *opaque, hwaddr addr,
306                         unsigned size, bool is_write,
307                         MemTxAttrs attrs);
308     } valid;
309     /* Internal implementation constraints: */
310     struct {
311         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
312          * will be rounded upwards and a partial result will be returned.
313          */
314         unsigned min_access_size;
315         /* If nonzero, specifies the maximum size implemented.  Larger sizes
316          * will be done as a series of accesses with smaller sizes.
317          */
318         unsigned max_access_size;
319         /* If true, unaligned accesses are supported.  Otherwise all accesses
320          * are converted to (possibly multiple) naturally aligned accesses.
321          */
322         bool unaligned;
323     } impl;
324 };
325 
326 typedef struct MemoryRegionClass {
327     /* private */
328     ObjectClass parent_class;
329 } MemoryRegionClass;
330 
331 
332 enum IOMMUMemoryRegionAttr {
333     IOMMU_ATTR_SPAPR_TCE_FD
334 };
335 
336 /*
337  * IOMMUMemoryRegionClass:
338  *
339  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
340  * and provide an implementation of at least the @translate method here
341  * to handle requests to the memory region. Other methods are optional.
342  *
343  * The IOMMU implementation must use the IOMMU notifier infrastructure
344  * to report whenever mappings are changed, by calling
345  * memory_region_notify_iommu() (or, if necessary, by calling
346  * memory_region_notify_iommu_one() for each registered notifier).
347  *
348  * Conceptually an IOMMU provides a mapping from input address
349  * to an output TLB entry. If the IOMMU is aware of memory transaction
350  * attributes and the output TLB entry depends on the transaction
351  * attributes, we represent this using IOMMU indexes. Each index
352  * selects a particular translation table that the IOMMU has:
353  *
354  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
355  *
356  *   @translate takes an input address and an IOMMU index
357  *
358  * and the mapping returned can only depend on the input address and the
359  * IOMMU index.
360  *
361  * Most IOMMUs don't care about the transaction attributes and support
362  * only a single IOMMU index. A more complex IOMMU might have one index
363  * for secure transactions and one for non-secure transactions.
364  */
365 struct IOMMUMemoryRegionClass {
366     /* private: */
367     MemoryRegionClass parent_class;
368 
369     /* public: */
370     /**
371      * @translate:
372      *
373      * Return a TLB entry that contains a given address.
374      *
375      * The IOMMUAccessFlags indicated via @flag are optional and may
376      * be specified as IOMMU_NONE to indicate that the caller needs
377      * the full translation information for both reads and writes. If
378      * the access flags are specified then the IOMMU implementation
379      * may use this as an optimization, to stop doing a page table
380      * walk as soon as it knows that the requested permissions are not
381      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
382      * full page table walk and report the permissions in the returned
383      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
384      * return different mappings for reads and writes.)
385      *
386      * The returned information remains valid while the caller is
387      * holding the big QEMU lock or is inside an RCU critical section;
388      * if the caller wishes to cache the mapping beyond that it must
389      * register an IOMMU notifier so it can invalidate its cached
390      * information when the IOMMU mapping changes.
391      *
392      * @iommu: the IOMMUMemoryRegion
393      *
394      * @hwaddr: address to be translated within the memory region
395      *
396      * @flag: requested access permission
397      *
398      * @iommu_idx: IOMMU index for the translation
399      */
400     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
401                                IOMMUAccessFlags flag, int iommu_idx);
402     /**
403      * @get_min_page_size:
404      *
405      * Returns minimum supported page size in bytes.
406      *
407      * If this method is not provided then the minimum is assumed to
408      * be TARGET_PAGE_SIZE.
409      *
410      * @iommu: the IOMMUMemoryRegion
411      */
412     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
413     /**
414      * @notify_flag_changed:
415      *
416      * Called when IOMMU Notifier flag changes (ie when the set of
417      * events which IOMMU users are requesting notification for changes).
418      * Optional method -- need not be provided if the IOMMU does not
419      * need to know exactly which events must be notified.
420      *
421      * @iommu: the IOMMUMemoryRegion
422      *
423      * @old_flags: events which previously needed to be notified
424      *
425      * @new_flags: events which now need to be notified
426      *
427      * Returns 0 on success, or a negative errno; in particular
428      * returns -EINVAL if the new flag bitmap is not supported by the
429      * IOMMU memory region. In case of failure, the error object
430      * must be created
431      */
432     int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
433                                IOMMUNotifierFlag old_flags,
434                                IOMMUNotifierFlag new_flags,
435                                Error **errp);
436     /**
437      * @replay:
438      *
439      * Called to handle memory_region_iommu_replay().
440      *
441      * The default implementation of memory_region_iommu_replay() is to
442      * call the IOMMU translate method for every page in the address space
443      * with flag == IOMMU_NONE and then call the notifier if translate
444      * returns a valid mapping. If this method is implemented then it
445      * overrides the default behaviour, and must provide the full semantics
446      * of memory_region_iommu_replay(), by calling @notifier for every
447      * translation present in the IOMMU.
448      *
449      * Optional method -- an IOMMU only needs to provide this method
450      * if the default is inefficient or produces undesirable side effects.
451      *
452      * Note: this is not related to record-and-replay functionality.
453      */
454     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
455 
456     /**
457      * @get_attr:
458      *
459      * Get IOMMU misc attributes. This is an optional method that
460      * can be used to allow users of the IOMMU to get implementation-specific
461      * information. The IOMMU implements this method to handle calls
462      * by IOMMU users to memory_region_iommu_get_attr() by filling in
463      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
464      * the IOMMU supports. If the method is unimplemented then
465      * memory_region_iommu_get_attr() will always return -EINVAL.
466      *
467      * @iommu: the IOMMUMemoryRegion
468      *
469      * @attr: attribute being queried
470      *
471      * @data: memory to fill in with the attribute data
472      *
473      * Returns 0 on success, or a negative errno; in particular
474      * returns -EINVAL for unrecognized or unimplemented attribute types.
475      */
476     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
477                     void *data);
478 
479     /**
480      * @attrs_to_index:
481      *
482      * Return the IOMMU index to use for a given set of transaction attributes.
483      *
484      * Optional method: if an IOMMU only supports a single IOMMU index then
485      * the default implementation of memory_region_iommu_attrs_to_index()
486      * will return 0.
487      *
488      * The indexes supported by an IOMMU must be contiguous, starting at 0.
489      *
490      * @iommu: the IOMMUMemoryRegion
491      * @attrs: memory transaction attributes
492      */
493     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
494 
495     /**
496      * @num_indexes:
497      *
498      * Return the number of IOMMU indexes this IOMMU supports.
499      *
500      * Optional method: if this method is not provided, then
501      * memory_region_iommu_num_indexes() will return 1, indicating that
502      * only a single IOMMU index is supported.
503      *
504      * @iommu: the IOMMUMemoryRegion
505      */
506     int (*num_indexes)(IOMMUMemoryRegion *iommu);
507 
508     /**
509      * @iommu_set_page_size_mask:
510      *
511      * Restrict the page size mask that can be supported with a given IOMMU
512      * memory region. Used for example to propagate host physical IOMMU page
513      * size mask limitations to the virtual IOMMU.
514      *
515      * Optional method: if this method is not provided, then the default global
516      * page mask is used.
517      *
518      * @iommu: the IOMMUMemoryRegion
519      *
520      * @page_size_mask: a bitmask of supported page sizes. At least one bit,
521      * representing the smallest page size, must be set. Additional set bits
522      * represent supported block sizes. For example a host physical IOMMU that
523      * uses page tables with a page size of 4kB, and supports 2MB and 4GB
524      * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
525      * block sizes is specified with mask 0xfffffffffffff000.
526      *
527      * Returns 0 on success, or a negative error. In case of failure, the error
528      * object must be created.
529      */
530      int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
531                                      uint64_t page_size_mask,
532                                      Error **errp);
533     /**
534      * @iommu_set_iova_ranges:
535      *
536      * Propagate information about the usable IOVA ranges for a given IOMMU
537      * memory region. Used for example to propagate host physical device
538      * reserved memory region constraints to the virtual IOMMU.
539      *
540      * Optional method: if this method is not provided, then the default IOVA
541      * aperture is used.
542      *
543      * @iommu: the IOMMUMemoryRegion
544      *
545      * @iova_ranges: list of ordered IOVA ranges (at least one range)
546      *
547      * Returns 0 on success, or a negative error. In case of failure, the error
548      * object must be created.
549      */
550      int (*iommu_set_iova_ranges)(IOMMUMemoryRegion *iommu,
551                                   GList *iova_ranges,
552                                   Error **errp);
553 };
554 
555 typedef struct RamDiscardListener RamDiscardListener;
556 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
557                                  MemoryRegionSection *section);
558 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
559                                  MemoryRegionSection *section);
560 
561 struct RamDiscardListener {
562     /*
563      * @notify_populate:
564      *
565      * Notification that previously discarded memory is about to get populated.
566      * Listeners are able to object. If any listener objects, already
567      * successfully notified listeners are notified about a discard again.
568      *
569      * @rdl: the #RamDiscardListener getting notified
570      * @section: the #MemoryRegionSection to get populated. The section
571      *           is aligned within the memory region to the minimum granularity
572      *           unless it would exceed the registered section.
573      *
574      * Returns 0 on success. If the notification is rejected by the listener,
575      * an error is returned.
576      */
577     NotifyRamPopulate notify_populate;
578 
579     /*
580      * @notify_discard:
581      *
582      * Notification that previously populated memory was discarded successfully
583      * and listeners should drop all references to such memory and prevent
584      * new population (e.g., unmap).
585      *
586      * @rdl: the #RamDiscardListener getting notified
587      * @section: the #MemoryRegionSection to get populated. The section
588      *           is aligned within the memory region to the minimum granularity
589      *           unless it would exceed the registered section.
590      */
591     NotifyRamDiscard notify_discard;
592 
593     /*
594      * @double_discard_supported:
595      *
596      * The listener suppors getting @notify_discard notifications that span
597      * already discarded parts.
598      */
599     bool double_discard_supported;
600 
601     MemoryRegionSection *section;
602     QLIST_ENTRY(RamDiscardListener) next;
603 };
604 
ram_discard_listener_init(RamDiscardListener * rdl,NotifyRamPopulate populate_fn,NotifyRamDiscard discard_fn,bool double_discard_supported)605 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
606                                              NotifyRamPopulate populate_fn,
607                                              NotifyRamDiscard discard_fn,
608                                              bool double_discard_supported)
609 {
610     rdl->notify_populate = populate_fn;
611     rdl->notify_discard = discard_fn;
612     rdl->double_discard_supported = double_discard_supported;
613 }
614 
615 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
616 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
617 
618 /*
619  * RamDiscardManagerClass:
620  *
621  * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
622  * regions are currently populated to be used/accessed by the VM, notifying
623  * after parts were discarded (freeing up memory) and before parts will be
624  * populated (consuming memory), to be used/accessed by the VM.
625  *
626  * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
627  * #MemoryRegion isn't mapped into an address space yet (either directly
628  * or via an alias); it cannot change while the #MemoryRegion is
629  * mapped into an address space.
630  *
631  * The #RamDiscardManager is intended to be used by technologies that are
632  * incompatible with discarding of RAM (e.g., VFIO, which may pin all
633  * memory inside a #MemoryRegion), and require proper coordination to only
634  * map the currently populated parts, to hinder parts that are expected to
635  * remain discarded from silently getting populated and consuming memory.
636  * Technologies that support discarding of RAM don't have to bother and can
637  * simply map the whole #MemoryRegion.
638  *
639  * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
640  * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
641  * Logically unplugging memory consists of discarding RAM. The VM agreed to not
642  * access unplugged (discarded) memory - especially via DMA. virtio-mem will
643  * properly coordinate with listeners before memory is plugged (populated),
644  * and after memory is unplugged (discarded).
645  *
646  * Listeners are called in multiples of the minimum granularity (unless it
647  * would exceed the registered range) and changes are aligned to the minimum
648  * granularity within the #MemoryRegion. Listeners have to prepare for memory
649  * becoming discarded in a different granularity than it was populated and the
650  * other way around.
651  */
652 struct RamDiscardManagerClass {
653     /* private */
654     InterfaceClass parent_class;
655 
656     /* public */
657 
658     /**
659      * @get_min_granularity:
660      *
661      * Get the minimum granularity in which listeners will get notified
662      * about changes within the #MemoryRegion via the #RamDiscardManager.
663      *
664      * @rdm: the #RamDiscardManager
665      * @mr: the #MemoryRegion
666      *
667      * Returns the minimum granularity.
668      */
669     uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
670                                     const MemoryRegion *mr);
671 
672     /**
673      * @is_populated:
674      *
675      * Check whether the given #MemoryRegionSection is completely populated
676      * (i.e., no parts are currently discarded) via the #RamDiscardManager.
677      * There are no alignment requirements.
678      *
679      * @rdm: the #RamDiscardManager
680      * @section: the #MemoryRegionSection
681      *
682      * Returns whether the given range is completely populated.
683      */
684     bool (*is_populated)(const RamDiscardManager *rdm,
685                          const MemoryRegionSection *section);
686 
687     /**
688      * @replay_populated:
689      *
690      * Call the #ReplayRamPopulate callback for all populated parts within the
691      * #MemoryRegionSection via the #RamDiscardManager.
692      *
693      * In case any call fails, no further calls are made.
694      *
695      * @rdm: the #RamDiscardManager
696      * @section: the #MemoryRegionSection
697      * @replay_fn: the #ReplayRamPopulate callback
698      * @opaque: pointer to forward to the callback
699      *
700      * Returns 0 on success, or a negative error if any notification failed.
701      */
702     int (*replay_populated)(const RamDiscardManager *rdm,
703                             MemoryRegionSection *section,
704                             ReplayRamPopulate replay_fn, void *opaque);
705 
706     /**
707      * @replay_discarded:
708      *
709      * Call the #ReplayRamDiscard callback for all discarded parts within the
710      * #MemoryRegionSection via the #RamDiscardManager.
711      *
712      * @rdm: the #RamDiscardManager
713      * @section: the #MemoryRegionSection
714      * @replay_fn: the #ReplayRamDiscard callback
715      * @opaque: pointer to forward to the callback
716      */
717     void (*replay_discarded)(const RamDiscardManager *rdm,
718                              MemoryRegionSection *section,
719                              ReplayRamDiscard replay_fn, void *opaque);
720 
721     /**
722      * @register_listener:
723      *
724      * Register a #RamDiscardListener for the given #MemoryRegionSection and
725      * immediately notify the #RamDiscardListener about all populated parts
726      * within the #MemoryRegionSection via the #RamDiscardManager.
727      *
728      * In case any notification fails, no further notifications are triggered
729      * and an error is logged.
730      *
731      * @rdm: the #RamDiscardManager
732      * @rdl: the #RamDiscardListener
733      * @section: the #MemoryRegionSection
734      */
735     void (*register_listener)(RamDiscardManager *rdm,
736                               RamDiscardListener *rdl,
737                               MemoryRegionSection *section);
738 
739     /**
740      * @unregister_listener:
741      *
742      * Unregister a previously registered #RamDiscardListener via the
743      * #RamDiscardManager after notifying the #RamDiscardListener about all
744      * populated parts becoming unpopulated within the registered
745      * #MemoryRegionSection.
746      *
747      * @rdm: the #RamDiscardManager
748      * @rdl: the #RamDiscardListener
749      */
750     void (*unregister_listener)(RamDiscardManager *rdm,
751                                 RamDiscardListener *rdl);
752 };
753 
754 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
755                                                  const MemoryRegion *mr);
756 
757 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
758                                       const MemoryRegionSection *section);
759 
760 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
761                                          MemoryRegionSection *section,
762                                          ReplayRamPopulate replay_fn,
763                                          void *opaque);
764 
765 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
766                                           MemoryRegionSection *section,
767                                           ReplayRamDiscard replay_fn,
768                                           void *opaque);
769 
770 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
771                                            RamDiscardListener *rdl,
772                                            MemoryRegionSection *section);
773 
774 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
775                                              RamDiscardListener *rdl);
776 
777 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
778                           ram_addr_t *ram_addr, bool *read_only,
779                           bool *mr_has_discard_manager);
780 
781 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
782 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
783 
784 /** MemoryRegion:
785  *
786  * A struct representing a memory region.
787  */
788 struct MemoryRegion {
789     Object parent_obj;
790 
791     /* private: */
792 
793     /* The following fields should fit in a cache line */
794     bool romd_mode;
795     bool ram;
796     bool subpage;
797     bool readonly; /* For RAM regions */
798     bool nonvolatile;
799     bool rom_device;
800     bool flush_coalesced_mmio;
801     bool unmergeable;
802     uint8_t dirty_log_mask;
803     bool is_iommu;
804     RAMBlock *ram_block;
805     Object *owner;
806     /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
807     DeviceState *dev;
808 
809     const MemoryRegionOps *ops;
810     void *opaque;
811     MemoryRegion *container;
812     int mapped_via_alias; /* Mapped via an alias, container might be NULL */
813     Int128 size;
814     hwaddr addr;
815     void (*destructor)(MemoryRegion *mr);
816     uint64_t align;
817     bool terminates;
818     bool ram_device;
819     bool enabled;
820     bool warning_printed; /* For reservations */
821     uint8_t vga_logging_count;
822     MemoryRegion *alias;
823     hwaddr alias_offset;
824     int32_t priority;
825     QTAILQ_HEAD(, MemoryRegion) subregions;
826     QTAILQ_ENTRY(MemoryRegion) subregions_link;
827     QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
828     const char *name;
829     unsigned ioeventfd_nb;
830     MemoryRegionIoeventfd *ioeventfds;
831     RamDiscardManager *rdm; /* Only for RAM */
832 
833     /* For devices designed to perform re-entrant IO into their own IO MRs */
834     bool disable_reentrancy_guard;
835 };
836 
837 struct IOMMUMemoryRegion {
838     MemoryRegion parent_obj;
839 
840     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
841     IOMMUNotifierFlag iommu_notify_flags;
842 };
843 
844 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
845     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
846 
847 #define MEMORY_LISTENER_PRIORITY_MIN            0
848 #define MEMORY_LISTENER_PRIORITY_ACCEL          10
849 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND    10
850 
851 /**
852  * struct MemoryListener: callbacks structure for updates to the physical memory map
853  *
854  * Allows a component to adjust to changes in the guest-visible memory map.
855  * Use with memory_listener_register() and memory_listener_unregister().
856  */
857 struct MemoryListener {
858     /**
859      * @begin:
860      *
861      * Called at the beginning of an address space update transaction.
862      * Followed by calls to #MemoryListener.region_add(),
863      * #MemoryListener.region_del(), #MemoryListener.region_nop(),
864      * #MemoryListener.log_start() and #MemoryListener.log_stop() in
865      * increasing address order.
866      *
867      * @listener: The #MemoryListener.
868      */
869     void (*begin)(MemoryListener *listener);
870 
871     /**
872      * @commit:
873      *
874      * Called at the end of an address space update transaction,
875      * after the last call to #MemoryListener.region_add(),
876      * #MemoryListener.region_del() or #MemoryListener.region_nop(),
877      * #MemoryListener.log_start() and #MemoryListener.log_stop().
878      *
879      * @listener: The #MemoryListener.
880      */
881     void (*commit)(MemoryListener *listener);
882 
883     /**
884      * @region_add:
885      *
886      * Called during an address space update transaction,
887      * for a section of the address space that is new in this address space
888      * space since the last transaction.
889      *
890      * @listener: The #MemoryListener.
891      * @section: The new #MemoryRegionSection.
892      */
893     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
894 
895     /**
896      * @region_del:
897      *
898      * Called during an address space update transaction,
899      * for a section of the address space that has disappeared in the address
900      * space since the last transaction.
901      *
902      * @listener: The #MemoryListener.
903      * @section: The old #MemoryRegionSection.
904      */
905     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
906 
907     /**
908      * @region_nop:
909      *
910      * Called during an address space update transaction,
911      * for a section of the address space that is in the same place in the address
912      * space as in the last transaction.
913      *
914      * @listener: The #MemoryListener.
915      * @section: The #MemoryRegionSection.
916      */
917     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
918 
919     /**
920      * @log_start:
921      *
922      * Called during an address space update transaction, after
923      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
924      * #MemoryListener.region_nop(), if dirty memory logging clients have
925      * become active since the last transaction.
926      *
927      * @listener: The #MemoryListener.
928      * @section: The #MemoryRegionSection.
929      * @old: A bitmap of dirty memory logging clients that were active in
930      * the previous transaction.
931      * @new: A bitmap of dirty memory logging clients that are active in
932      * the current transaction.
933      */
934     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
935                       int old, int new);
936 
937     /**
938      * @log_stop:
939      *
940      * Called during an address space update transaction, after
941      * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
942      * #MemoryListener.region_nop() and possibly after
943      * #MemoryListener.log_start(), if dirty memory logging clients have
944      * become inactive since the last transaction.
945      *
946      * @listener: The #MemoryListener.
947      * @section: The #MemoryRegionSection.
948      * @old: A bitmap of dirty memory logging clients that were active in
949      * the previous transaction.
950      * @new: A bitmap of dirty memory logging clients that are active in
951      * the current transaction.
952      */
953     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
954                      int old, int new);
955 
956     /**
957      * @log_sync:
958      *
959      * Called by memory_region_snapshot_and_clear_dirty() and
960      * memory_global_dirty_log_sync(), before accessing QEMU's "official"
961      * copy of the dirty memory bitmap for a #MemoryRegionSection.
962      *
963      * @listener: The #MemoryListener.
964      * @section: The #MemoryRegionSection.
965      */
966     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
967 
968     /**
969      * @log_sync_global:
970      *
971      * This is the global version of @log_sync when the listener does
972      * not have a way to synchronize the log with finer granularity.
973      * When the listener registers with @log_sync_global defined, then
974      * its @log_sync must be NULL.  Vice versa.
975      *
976      * @listener: The #MemoryListener.
977      * @last_stage: The last stage to synchronize the log during migration.
978      * The caller should guarantee that the synchronization with true for
979      * @last_stage is triggered for once after all VCPUs have been stopped.
980      */
981     void (*log_sync_global)(MemoryListener *listener, bool last_stage);
982 
983     /**
984      * @log_clear:
985      *
986      * Called before reading the dirty memory bitmap for a
987      * #MemoryRegionSection.
988      *
989      * @listener: The #MemoryListener.
990      * @section: The #MemoryRegionSection.
991      */
992     void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
993 
994     /**
995      * @log_global_start:
996      *
997      * Called by memory_global_dirty_log_start(), which
998      * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
999      * the address space.  #MemoryListener.log_global_start() is also
1000      * called when a #MemoryListener is added, if global dirty logging is
1001      * active at that time.
1002      *
1003      * @listener: The #MemoryListener.
1004      * @errp: pointer to Error*, to store an error if it happens.
1005      *
1006      * Return: true on success, else false setting @errp with error.
1007      */
1008     bool (*log_global_start)(MemoryListener *listener, Error **errp);
1009 
1010     /**
1011      * @log_global_stop:
1012      *
1013      * Called by memory_global_dirty_log_stop(), which
1014      * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
1015      * the address space.
1016      *
1017      * @listener: The #MemoryListener.
1018      */
1019     void (*log_global_stop)(MemoryListener *listener);
1020 
1021     /**
1022      * @log_global_after_sync:
1023      *
1024      * Called after reading the dirty memory bitmap
1025      * for any #MemoryRegionSection.
1026      *
1027      * @listener: The #MemoryListener.
1028      */
1029     void (*log_global_after_sync)(MemoryListener *listener);
1030 
1031     /**
1032      * @eventfd_add:
1033      *
1034      * Called during an address space update transaction,
1035      * for a section of the address space that has had a new ioeventfd
1036      * registration since the last transaction.
1037      *
1038      * @listener: The #MemoryListener.
1039      * @section: The new #MemoryRegionSection.
1040      * @match_data: The @match_data parameter for the new ioeventfd.
1041      * @data: The @data parameter for the new ioeventfd.
1042      * @e: The #EventNotifier parameter for the new ioeventfd.
1043      */
1044     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1045                         bool match_data, uint64_t data, EventNotifier *e);
1046 
1047     /**
1048      * @eventfd_del:
1049      *
1050      * Called during an address space update transaction,
1051      * for a section of the address space that has dropped an ioeventfd
1052      * registration since the last transaction.
1053      *
1054      * @listener: The #MemoryListener.
1055      * @section: The new #MemoryRegionSection.
1056      * @match_data: The @match_data parameter for the dropped ioeventfd.
1057      * @data: The @data parameter for the dropped ioeventfd.
1058      * @e: The #EventNotifier parameter for the dropped ioeventfd.
1059      */
1060     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1061                         bool match_data, uint64_t data, EventNotifier *e);
1062 
1063     /**
1064      * @coalesced_io_add:
1065      *
1066      * Called during an address space update transaction,
1067      * for a section of the address space that has had a new coalesced
1068      * MMIO range registration since the last transaction.
1069      *
1070      * @listener: The #MemoryListener.
1071      * @section: The new #MemoryRegionSection.
1072      * @addr: The starting address for the coalesced MMIO range.
1073      * @len: The length of the coalesced MMIO range.
1074      */
1075     void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1076                                hwaddr addr, hwaddr len);
1077 
1078     /**
1079      * @coalesced_io_del:
1080      *
1081      * Called during an address space update transaction,
1082      * for a section of the address space that has dropped a coalesced
1083      * MMIO range since the last transaction.
1084      *
1085      * @listener: The #MemoryListener.
1086      * @section: The new #MemoryRegionSection.
1087      * @addr: The starting address for the coalesced MMIO range.
1088      * @len: The length of the coalesced MMIO range.
1089      */
1090     void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1091                                hwaddr addr, hwaddr len);
1092     /**
1093      * @priority:
1094      *
1095      * Govern the order in which memory listeners are invoked. Lower priorities
1096      * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1097      * or "stop" callbacks.
1098      */
1099     unsigned priority;
1100 
1101     /**
1102      * @name:
1103      *
1104      * Name of the listener.  It can be used in contexts where we'd like to
1105      * identify one memory listener with the rest.
1106      */
1107     const char *name;
1108 
1109     /* private: */
1110     AddressSpace *address_space;
1111     QTAILQ_ENTRY(MemoryListener) link;
1112     QTAILQ_ENTRY(MemoryListener) link_as;
1113 };
1114 
1115 typedef struct AddressSpaceMapClient {
1116     QEMUBH *bh;
1117     QLIST_ENTRY(AddressSpaceMapClient) link;
1118 } AddressSpaceMapClient;
1119 
1120 typedef struct {
1121     MemoryRegion *mr;
1122     void *buffer;
1123     hwaddr addr;
1124     hwaddr len;
1125     bool in_use;
1126 } BounceBuffer;
1127 
1128 /**
1129  * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1130  */
1131 struct AddressSpace {
1132     /* private: */
1133     struct rcu_head rcu;
1134     char *name;
1135     MemoryRegion *root;
1136 
1137     /* Accessed via RCU.  */
1138     struct FlatView *current_map;
1139 
1140     int ioeventfd_nb;
1141     int ioeventfd_notifiers;
1142     struct MemoryRegionIoeventfd *ioeventfds;
1143     QTAILQ_HEAD(, MemoryListener) listeners;
1144     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1145 
1146     /* Bounce buffer to use for this address space. */
1147     BounceBuffer bounce;
1148     /* List of callbacks to invoke when buffers free up */
1149     QemuMutex map_client_list_lock;
1150     QLIST_HEAD(, AddressSpaceMapClient) map_client_list;
1151 };
1152 
1153 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1154 typedef struct FlatRange FlatRange;
1155 
1156 /* Flattened global view of current active memory hierarchy.  Kept in sorted
1157  * order.
1158  */
1159 struct FlatView {
1160     struct rcu_head rcu;
1161     unsigned ref;
1162     FlatRange *ranges;
1163     unsigned nr;
1164     unsigned nr_allocated;
1165     struct AddressSpaceDispatch *dispatch;
1166     MemoryRegion *root;
1167 };
1168 
address_space_to_flatview(AddressSpace * as)1169 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1170 {
1171     return qatomic_rcu_read(&as->current_map);
1172 }
1173 
1174 /**
1175  * typedef flatview_cb: callback for flatview_for_each_range()
1176  *
1177  * @start: start address of the range within the FlatView
1178  * @len: length of the range in bytes
1179  * @mr: MemoryRegion covering this range
1180  * @offset_in_region: offset of the first byte of the range within @mr
1181  * @opaque: data pointer passed to flatview_for_each_range()
1182  *
1183  * Returns: true to stop the iteration, false to keep going.
1184  */
1185 typedef bool (*flatview_cb)(Int128 start,
1186                             Int128 len,
1187                             const MemoryRegion *mr,
1188                             hwaddr offset_in_region,
1189                             void *opaque);
1190 
1191 /**
1192  * flatview_for_each_range: Iterate through a FlatView
1193  * @fv: the FlatView to iterate through
1194  * @cb: function to call for each range
1195  * @opaque: opaque data pointer to pass to @cb
1196  *
1197  * A FlatView is made up of a list of non-overlapping ranges, each of
1198  * which is a slice of a MemoryRegion. This function iterates through
1199  * each range in @fv, calling @cb. The callback function can terminate
1200  * iteration early by returning 'true'.
1201  */
1202 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1203 
MemoryRegionSection_eq(MemoryRegionSection * a,MemoryRegionSection * b)1204 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1205                                           MemoryRegionSection *b)
1206 {
1207     return a->mr == b->mr &&
1208            a->fv == b->fv &&
1209            a->offset_within_region == b->offset_within_region &&
1210            a->offset_within_address_space == b->offset_within_address_space &&
1211            int128_eq(a->size, b->size) &&
1212            a->readonly == b->readonly &&
1213            a->nonvolatile == b->nonvolatile;
1214 }
1215 
1216 /**
1217  * memory_region_section_new_copy: Copy a memory region section
1218  *
1219  * Allocate memory for a new copy, copy the memory region section, and
1220  * properly take a reference on all relevant members.
1221  *
1222  * @s: the #MemoryRegionSection to copy
1223  */
1224 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1225 
1226 /**
1227  * memory_region_section_new_copy: Free a copied memory region section
1228  *
1229  * Free a copy of a memory section created via memory_region_section_new_copy().
1230  * properly dropping references on all relevant members.
1231  *
1232  * @s: the #MemoryRegionSection to copy
1233  */
1234 void memory_region_section_free_copy(MemoryRegionSection *s);
1235 
1236 /**
1237  * memory_region_init: Initialize a memory region
1238  *
1239  * The region typically acts as a container for other memory regions.  Use
1240  * memory_region_add_subregion() to add subregions.
1241  *
1242  * @mr: the #MemoryRegion to be initialized
1243  * @owner: the object that tracks the region's reference count
1244  * @name: used for debugging; not visible to the user or ABI
1245  * @size: size of the region; any subregions beyond this size will be clipped
1246  */
1247 void memory_region_init(MemoryRegion *mr,
1248                         Object *owner,
1249                         const char *name,
1250                         uint64_t size);
1251 
1252 /**
1253  * memory_region_ref: Add 1 to a memory region's reference count
1254  *
1255  * Whenever memory regions are accessed outside the BQL, they need to be
1256  * preserved against hot-unplug.  MemoryRegions actually do not have their
1257  * own reference count; they piggyback on a QOM object, their "owner".
1258  * This function adds a reference to the owner.
1259  *
1260  * All MemoryRegions must have an owner if they can disappear, even if the
1261  * device they belong to operates exclusively under the BQL.  This is because
1262  * the region could be returned at any time by memory_region_find, and this
1263  * is usually under guest control.
1264  *
1265  * @mr: the #MemoryRegion
1266  */
1267 void memory_region_ref(MemoryRegion *mr);
1268 
1269 /**
1270  * memory_region_unref: Remove 1 to a memory region's reference count
1271  *
1272  * Whenever memory regions are accessed outside the BQL, they need to be
1273  * preserved against hot-unplug.  MemoryRegions actually do not have their
1274  * own reference count; they piggyback on a QOM object, their "owner".
1275  * This function removes a reference to the owner and possibly destroys it.
1276  *
1277  * @mr: the #MemoryRegion
1278  */
1279 void memory_region_unref(MemoryRegion *mr);
1280 
1281 /**
1282  * memory_region_init_io: Initialize an I/O memory region.
1283  *
1284  * Accesses into the region will cause the callbacks in @ops to be called.
1285  * if @size is nonzero, subregions will be clipped to @size.
1286  *
1287  * @mr: the #MemoryRegion to be initialized.
1288  * @owner: the object that tracks the region's reference count
1289  * @ops: a structure containing read and write callbacks to be used when
1290  *       I/O is performed on the region.
1291  * @opaque: passed to the read and write callbacks of the @ops structure.
1292  * @name: used for debugging; not visible to the user or ABI
1293  * @size: size of the region.
1294  */
1295 void memory_region_init_io(MemoryRegion *mr,
1296                            Object *owner,
1297                            const MemoryRegionOps *ops,
1298                            void *opaque,
1299                            const char *name,
1300                            uint64_t size);
1301 
1302 /**
1303  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1304  *                                    into the region will modify memory
1305  *                                    directly.
1306  *
1307  * @mr: the #MemoryRegion to be initialized.
1308  * @owner: the object that tracks the region's reference count
1309  * @name: Region name, becomes part of RAMBlock name used in migration stream
1310  *        must be unique within any device
1311  * @size: size of the region.
1312  * @errp: pointer to Error*, to store an error if it happens.
1313  *
1314  * Note that this function does not do anything to cause the data in the
1315  * RAM memory region to be migrated; that is the responsibility of the caller.
1316  *
1317  * Return: true on success, else false setting @errp with error.
1318  */
1319 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1320                                       Object *owner,
1321                                       const char *name,
1322                                       uint64_t size,
1323                                       Error **errp);
1324 
1325 /**
1326  * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1327  *                                          Accesses into the region will
1328  *                                          modify memory directly.
1329  *
1330  * @mr: the #MemoryRegion to be initialized.
1331  * @owner: the object that tracks the region's reference count
1332  * @name: Region name, becomes part of RAMBlock name used in migration stream
1333  *        must be unique within any device
1334  * @size: size of the region.
1335  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1336  *             RAM_GUEST_MEMFD.
1337  * @errp: pointer to Error*, to store an error if it happens.
1338  *
1339  * Note that this function does not do anything to cause the data in the
1340  * RAM memory region to be migrated; that is the responsibility of the caller.
1341  *
1342  * Return: true on success, else false setting @errp with error.
1343  */
1344 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1345                                             Object *owner,
1346                                             const char *name,
1347                                             uint64_t size,
1348                                             uint32_t ram_flags,
1349                                             Error **errp);
1350 
1351 /**
1352  * memory_region_init_resizeable_ram:  Initialize memory region with resizable
1353  *                                     RAM.  Accesses into the region will
1354  *                                     modify memory directly.  Only an initial
1355  *                                     portion of this RAM is actually used.
1356  *                                     Changing the size while migrating
1357  *                                     can result in the migration being
1358  *                                     canceled.
1359  *
1360  * @mr: the #MemoryRegion to be initialized.
1361  * @owner: the object that tracks the region's reference count
1362  * @name: Region name, becomes part of RAMBlock name used in migration stream
1363  *        must be unique within any device
1364  * @size: used size of the region.
1365  * @max_size: max size of the region.
1366  * @resized: callback to notify owner about used size change.
1367  * @errp: pointer to Error*, to store an error if it happens.
1368  *
1369  * Note that this function does not do anything to cause the data in the
1370  * RAM memory region to be migrated; that is the responsibility of the caller.
1371  *
1372  * Return: true on success, else false setting @errp with error.
1373  */
1374 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1375                                        Object *owner,
1376                                        const char *name,
1377                                        uint64_t size,
1378                                        uint64_t max_size,
1379                                        void (*resized)(const char*,
1380                                                        uint64_t length,
1381                                                        void *host),
1382                                        Error **errp);
1383 #ifdef CONFIG_POSIX
1384 
1385 /**
1386  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1387  *                                    mmap-ed backend.
1388  *
1389  * @mr: the #MemoryRegion to be initialized.
1390  * @owner: the object that tracks the region's reference count
1391  * @name: Region name, becomes part of RAMBlock name used in migration stream
1392  *        must be unique within any device
1393  * @size: size of the region.
1394  * @align: alignment of the region base address; if 0, the default alignment
1395  *         (getpagesize()) will be used.
1396  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1397  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1398  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1399  * @path: the path in which to allocate the RAM.
1400  * @offset: offset within the file referenced by path
1401  * @errp: pointer to Error*, to store an error if it happens.
1402  *
1403  * Note that this function does not do anything to cause the data in the
1404  * RAM memory region to be migrated; that is the responsibility of the caller.
1405  *
1406  * Return: true on success, else false setting @errp with error.
1407  */
1408 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1409                                       Object *owner,
1410                                       const char *name,
1411                                       uint64_t size,
1412                                       uint64_t align,
1413                                       uint32_t ram_flags,
1414                                       const char *path,
1415                                       ram_addr_t offset,
1416                                       Error **errp);
1417 
1418 /**
1419  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1420  *                                  mmap-ed backend.
1421  *
1422  * @mr: the #MemoryRegion to be initialized.
1423  * @owner: the object that tracks the region's reference count
1424  * @name: the name of the region.
1425  * @size: size of the region.
1426  * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1427  *             RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1428  *             RAM_READONLY_FD, RAM_GUEST_MEMFD
1429  * @fd: the fd to mmap.
1430  * @offset: offset within the file referenced by fd
1431  * @errp: pointer to Error*, to store an error if it happens.
1432  *
1433  * Note that this function does not do anything to cause the data in the
1434  * RAM memory region to be migrated; that is the responsibility of the caller.
1435  *
1436  * Return: true on success, else false setting @errp with error.
1437  */
1438 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1439                                     Object *owner,
1440                                     const char *name,
1441                                     uint64_t size,
1442                                     uint32_t ram_flags,
1443                                     int fd,
1444                                     ram_addr_t offset,
1445                                     Error **errp);
1446 #endif
1447 
1448 /**
1449  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1450  *                              user-provided pointer.  Accesses into the
1451  *                              region will modify memory directly.
1452  *
1453  * @mr: the #MemoryRegion to be initialized.
1454  * @owner: the object that tracks the region's reference count
1455  * @name: Region name, becomes part of RAMBlock name used in migration stream
1456  *        must be unique within any device
1457  * @size: size of the region.
1458  * @ptr: memory to be mapped; must contain at least @size bytes.
1459  *
1460  * Note that this function does not do anything to cause the data in the
1461  * RAM memory region to be migrated; that is the responsibility of the caller.
1462  */
1463 void memory_region_init_ram_ptr(MemoryRegion *mr,
1464                                 Object *owner,
1465                                 const char *name,
1466                                 uint64_t size,
1467                                 void *ptr);
1468 
1469 /**
1470  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1471  *                                     a user-provided pointer.
1472  *
1473  * A RAM device represents a mapping to a physical device, such as to a PCI
1474  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1475  * into the VM address space and access to the region will modify memory
1476  * directly.  However, the memory region should not be included in a memory
1477  * dump (device may not be enabled/mapped at the time of the dump), and
1478  * operations incompatible with manipulating MMIO should be avoided.  Replaces
1479  * skip_dump flag.
1480  *
1481  * @mr: the #MemoryRegion to be initialized.
1482  * @owner: the object that tracks the region's reference count
1483  * @name: the name of the region.
1484  * @size: size of the region.
1485  * @ptr: memory to be mapped; must contain at least @size bytes.
1486  *
1487  * Note that this function does not do anything to cause the data in the
1488  * RAM memory region to be migrated; that is the responsibility of the caller.
1489  * (For RAM device memory regions, migrating the contents rarely makes sense.)
1490  */
1491 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1492                                        Object *owner,
1493                                        const char *name,
1494                                        uint64_t size,
1495                                        void *ptr);
1496 
1497 /**
1498  * memory_region_init_alias: Initialize a memory region that aliases all or a
1499  *                           part of another memory region.
1500  *
1501  * @mr: the #MemoryRegion to be initialized.
1502  * @owner: the object that tracks the region's reference count
1503  * @name: used for debugging; not visible to the user or ABI
1504  * @orig: the region to be referenced; @mr will be equivalent to
1505  *        @orig between @offset and @offset + @size - 1.
1506  * @offset: start of the section in @orig to be referenced.
1507  * @size: size of the region.
1508  */
1509 void memory_region_init_alias(MemoryRegion *mr,
1510                               Object *owner,
1511                               const char *name,
1512                               MemoryRegion *orig,
1513                               hwaddr offset,
1514                               uint64_t size);
1515 
1516 /**
1517  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1518  *
1519  * This has the same effect as calling memory_region_init_ram_nomigrate()
1520  * and then marking the resulting region read-only with
1521  * memory_region_set_readonly().
1522  *
1523  * Note that this function does not do anything to cause the data in the
1524  * RAM side of the memory region to be migrated; that is the responsibility
1525  * of the caller.
1526  *
1527  * @mr: the #MemoryRegion to be initialized.
1528  * @owner: the object that tracks the region's reference count
1529  * @name: Region name, becomes part of RAMBlock name used in migration stream
1530  *        must be unique within any device
1531  * @size: size of the region.
1532  * @errp: pointer to Error*, to store an error if it happens.
1533  *
1534  * Return: true on success, else false setting @errp with error.
1535  */
1536 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1537                                       Object *owner,
1538                                       const char *name,
1539                                       uint64_t size,
1540                                       Error **errp);
1541 
1542 /**
1543  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1544  *                                 Writes are handled via callbacks.
1545  *
1546  * Note that this function does not do anything to cause the data in the
1547  * RAM side of the memory region to be migrated; that is the responsibility
1548  * of the caller.
1549  *
1550  * @mr: the #MemoryRegion to be initialized.
1551  * @owner: the object that tracks the region's reference count
1552  * @ops: callbacks for write access handling (must not be NULL).
1553  * @opaque: passed to the read and write callbacks of the @ops structure.
1554  * @name: Region name, becomes part of RAMBlock name used in migration stream
1555  *        must be unique within any device
1556  * @size: size of the region.
1557  * @errp: pointer to Error*, to store an error if it happens.
1558  *
1559  * Return: true on success, else false setting @errp with error.
1560  */
1561 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1562                                              Object *owner,
1563                                              const MemoryRegionOps *ops,
1564                                              void *opaque,
1565                                              const char *name,
1566                                              uint64_t size,
1567                                              Error **errp);
1568 
1569 /**
1570  * memory_region_init_iommu: Initialize a memory region of a custom type
1571  * that translates addresses
1572  *
1573  * An IOMMU region translates addresses and forwards accesses to a target
1574  * memory region.
1575  *
1576  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1577  * @_iommu_mr should be a pointer to enough memory for an instance of
1578  * that subclass, @instance_size is the size of that subclass, and
1579  * @mrtypename is its name. This function will initialize @_iommu_mr as an
1580  * instance of the subclass, and its methods will then be called to handle
1581  * accesses to the memory region. See the documentation of
1582  * #IOMMUMemoryRegionClass for further details.
1583  *
1584  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1585  * @instance_size: the IOMMUMemoryRegion subclass instance size
1586  * @mrtypename: the type name of the #IOMMUMemoryRegion
1587  * @owner: the object that tracks the region's reference count
1588  * @name: used for debugging; not visible to the user or ABI
1589  * @size: size of the region.
1590  */
1591 void memory_region_init_iommu(void *_iommu_mr,
1592                               size_t instance_size,
1593                               const char *mrtypename,
1594                               Object *owner,
1595                               const char *name,
1596                               uint64_t size);
1597 
1598 /**
1599  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1600  *                          region will modify memory directly.
1601  *
1602  * @mr: the #MemoryRegion to be initialized
1603  * @owner: the object that tracks the region's reference count (must be
1604  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1605  * @name: name of the memory region
1606  * @size: size of the region in bytes
1607  * @errp: pointer to Error*, to store an error if it happens.
1608  *
1609  * This function allocates RAM for a board model or device, and
1610  * arranges for it to be migrated (by calling vmstate_register_ram()
1611  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1612  * @owner is NULL).
1613  *
1614  * TODO: Currently we restrict @owner to being either NULL (for
1615  * global RAM regions with no owner) or devices, so that we can
1616  * give the RAM block a unique name for migration purposes.
1617  * We should lift this restriction and allow arbitrary Objects.
1618  * If you pass a non-NULL non-device @owner then we will assert.
1619  *
1620  * Return: true on success, else false setting @errp with error.
1621  */
1622 bool memory_region_init_ram(MemoryRegion *mr,
1623                             Object *owner,
1624                             const char *name,
1625                             uint64_t size,
1626                             Error **errp);
1627 
1628 /**
1629  * memory_region_init_rom: Initialize a ROM memory region.
1630  *
1631  * This has the same effect as calling memory_region_init_ram()
1632  * and then marking the resulting region read-only with
1633  * memory_region_set_readonly(). This includes arranging for the
1634  * contents to be migrated.
1635  *
1636  * TODO: Currently we restrict @owner to being either NULL (for
1637  * global RAM regions with no owner) or devices, so that we can
1638  * give the RAM block a unique name for migration purposes.
1639  * We should lift this restriction and allow arbitrary Objects.
1640  * If you pass a non-NULL non-device @owner then we will assert.
1641  *
1642  * @mr: the #MemoryRegion to be initialized.
1643  * @owner: the object that tracks the region's reference count
1644  * @name: Region name, becomes part of RAMBlock name used in migration stream
1645  *        must be unique within any device
1646  * @size: size of the region.
1647  * @errp: pointer to Error*, to store an error if it happens.
1648  *
1649  * Return: true on success, else false setting @errp with error.
1650  */
1651 bool memory_region_init_rom(MemoryRegion *mr,
1652                             Object *owner,
1653                             const char *name,
1654                             uint64_t size,
1655                             Error **errp);
1656 
1657 /**
1658  * memory_region_init_rom_device:  Initialize a ROM memory region.
1659  *                                 Writes are handled via callbacks.
1660  *
1661  * This function initializes a memory region backed by RAM for reads
1662  * and callbacks for writes, and arranges for the RAM backing to
1663  * be migrated (by calling vmstate_register_ram()
1664  * if @owner is a DeviceState, or vmstate_register_ram_global() if
1665  * @owner is NULL).
1666  *
1667  * TODO: Currently we restrict @owner to being either NULL (for
1668  * global RAM regions with no owner) or devices, so that we can
1669  * give the RAM block a unique name for migration purposes.
1670  * We should lift this restriction and allow arbitrary Objects.
1671  * If you pass a non-NULL non-device @owner then we will assert.
1672  *
1673  * @mr: the #MemoryRegion to be initialized.
1674  * @owner: the object that tracks the region's reference count
1675  * @ops: callbacks for write access handling (must not be NULL).
1676  * @opaque: passed to the read and write callbacks of the @ops structure.
1677  * @name: Region name, becomes part of RAMBlock name used in migration stream
1678  *        must be unique within any device
1679  * @size: size of the region.
1680  * @errp: pointer to Error*, to store an error if it happens.
1681  *
1682  * Return: true on success, else false setting @errp with error.
1683  */
1684 bool memory_region_init_rom_device(MemoryRegion *mr,
1685                                    Object *owner,
1686                                    const MemoryRegionOps *ops,
1687                                    void *opaque,
1688                                    const char *name,
1689                                    uint64_t size,
1690                                    Error **errp);
1691 
1692 
1693 /**
1694  * memory_region_owner: get a memory region's owner.
1695  *
1696  * @mr: the memory region being queried.
1697  */
1698 Object *memory_region_owner(MemoryRegion *mr);
1699 
1700 /**
1701  * memory_region_size: get a memory region's size.
1702  *
1703  * @mr: the memory region being queried.
1704  */
1705 uint64_t memory_region_size(MemoryRegion *mr);
1706 
1707 /**
1708  * memory_region_is_ram: check whether a memory region is random access
1709  *
1710  * Returns %true if a memory region is random access.
1711  *
1712  * @mr: the memory region being queried
1713  */
memory_region_is_ram(MemoryRegion * mr)1714 static inline bool memory_region_is_ram(MemoryRegion *mr)
1715 {
1716     return mr->ram;
1717 }
1718 
1719 /**
1720  * memory_region_is_ram_device: check whether a memory region is a ram device
1721  *
1722  * Returns %true if a memory region is a device backed ram region
1723  *
1724  * @mr: the memory region being queried
1725  */
1726 bool memory_region_is_ram_device(MemoryRegion *mr);
1727 
1728 /**
1729  * memory_region_is_romd: check whether a memory region is in ROMD mode
1730  *
1731  * Returns %true if a memory region is a ROM device and currently set to allow
1732  * direct reads.
1733  *
1734  * @mr: the memory region being queried
1735  */
memory_region_is_romd(MemoryRegion * mr)1736 static inline bool memory_region_is_romd(MemoryRegion *mr)
1737 {
1738     return mr->rom_device && mr->romd_mode;
1739 }
1740 
1741 /**
1742  * memory_region_is_protected: check whether a memory region is protected
1743  *
1744  * Returns %true if a memory region is protected RAM and cannot be accessed
1745  * via standard mechanisms, e.g. DMA.
1746  *
1747  * @mr: the memory region being queried
1748  */
1749 bool memory_region_is_protected(MemoryRegion *mr);
1750 
1751 /**
1752  * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1753  *     associated
1754  *
1755  * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1756  *
1757  * @mr: the memory region being queried
1758  */
1759 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1760 
1761 /**
1762  * memory_region_get_iommu: check whether a memory region is an iommu
1763  *
1764  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1765  * otherwise NULL.
1766  *
1767  * @mr: the memory region being queried
1768  */
memory_region_get_iommu(MemoryRegion * mr)1769 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1770 {
1771     if (mr->alias) {
1772         return memory_region_get_iommu(mr->alias);
1773     }
1774     if (mr->is_iommu) {
1775         return (IOMMUMemoryRegion *) mr;
1776     }
1777     return NULL;
1778 }
1779 
1780 /**
1781  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1782  *   if an iommu or NULL if not
1783  *
1784  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1785  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1786  *
1787  * @iommu_mr: the memory region being queried
1788  */
memory_region_get_iommu_class_nocheck(IOMMUMemoryRegion * iommu_mr)1789 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1790         IOMMUMemoryRegion *iommu_mr)
1791 {
1792     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1793 }
1794 
1795 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1796 
1797 /**
1798  * memory_region_iommu_get_min_page_size: get minimum supported page size
1799  * for an iommu
1800  *
1801  * Returns minimum supported page size for an iommu.
1802  *
1803  * @iommu_mr: the memory region being queried
1804  */
1805 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1806 
1807 /**
1808  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1809  *
1810  * Note: for any IOMMU implementation, an in-place mapping change
1811  * should be notified with an UNMAP followed by a MAP.
1812  *
1813  * @iommu_mr: the memory region that was changed
1814  * @iommu_idx: the IOMMU index for the translation table which has changed
1815  * @event: TLB event with the new entry in the IOMMU translation table.
1816  *         The entry replaces all old entries for the same virtual I/O address
1817  *         range.
1818  */
1819 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1820                                 int iommu_idx,
1821                                 IOMMUTLBEvent event);
1822 
1823 /**
1824  * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1825  *                           entry to a single notifier
1826  *
1827  * This works just like memory_region_notify_iommu(), but it only
1828  * notifies a specific notifier, not all of them.
1829  *
1830  * @notifier: the notifier to be notified
1831  * @event: TLB event with the new entry in the IOMMU translation table.
1832  *         The entry replaces all old entries for the same virtual I/O address
1833  *         range.
1834  */
1835 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1836                                     IOMMUTLBEvent *event);
1837 
1838 /**
1839  * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1840  *                                           translation that covers the
1841  *                                           range of a notifier
1842  *
1843  * @notifier: the notifier to be notified
1844  */
1845 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1846 
1847 
1848 /**
1849  * memory_region_register_iommu_notifier: register a notifier for changes to
1850  * IOMMU translation entries.
1851  *
1852  * Returns 0 on success, or a negative errno otherwise. In particular,
1853  * -EINVAL indicates that at least one of the attributes of the notifier
1854  * is not supported (flag/range) by the IOMMU memory region. In case of error
1855  * the error object must be created.
1856  *
1857  * @mr: the memory region to observe
1858  * @n: the IOMMUNotifier to be added; the notify callback receives a
1859  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1860  *     ceases to be valid on exit from the notifier.
1861  * @errp: pointer to Error*, to store an error if it happens.
1862  */
1863 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1864                                           IOMMUNotifier *n, Error **errp);
1865 
1866 /**
1867  * memory_region_iommu_replay: replay existing IOMMU translations to
1868  * a notifier with the minimum page granularity returned by
1869  * mr->iommu_ops->get_page_size().
1870  *
1871  * Note: this is not related to record-and-replay functionality.
1872  *
1873  * @iommu_mr: the memory region to observe
1874  * @n: the notifier to which to replay iommu mappings
1875  */
1876 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1877 
1878 /**
1879  * memory_region_unregister_iommu_notifier: unregister a notifier for
1880  * changes to IOMMU translation entries.
1881  *
1882  * @mr: the memory region which was observed and for which notity_stopped()
1883  *      needs to be called
1884  * @n: the notifier to be removed.
1885  */
1886 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1887                                              IOMMUNotifier *n);
1888 
1889 /**
1890  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1891  * defined on the IOMMU.
1892  *
1893  * Returns 0 on success, or a negative errno otherwise. In particular,
1894  * -EINVAL indicates that the IOMMU does not support the requested
1895  * attribute.
1896  *
1897  * @iommu_mr: the memory region
1898  * @attr: the requested attribute
1899  * @data: a pointer to the requested attribute data
1900  */
1901 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1902                                  enum IOMMUMemoryRegionAttr attr,
1903                                  void *data);
1904 
1905 /**
1906  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1907  * use for translations with the given memory transaction attributes.
1908  *
1909  * @iommu_mr: the memory region
1910  * @attrs: the memory transaction attributes
1911  */
1912 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1913                                        MemTxAttrs attrs);
1914 
1915 /**
1916  * memory_region_iommu_num_indexes: return the total number of IOMMU
1917  * indexes that this IOMMU supports.
1918  *
1919  * @iommu_mr: the memory region
1920  */
1921 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1922 
1923 /**
1924  * memory_region_iommu_set_page_size_mask: set the supported page
1925  * sizes for a given IOMMU memory region
1926  *
1927  * @iommu_mr: IOMMU memory region
1928  * @page_size_mask: supported page size mask
1929  * @errp: pointer to Error*, to store an error if it happens.
1930  */
1931 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1932                                            uint64_t page_size_mask,
1933                                            Error **errp);
1934 
1935 /**
1936  * memory_region_iommu_set_iova_ranges - Set the usable IOVA ranges
1937  * for a given IOMMU MR region
1938  *
1939  * @iommu: IOMMU memory region
1940  * @iova_ranges: list of ordered IOVA ranges (at least one range)
1941  * @errp: pointer to Error*, to store an error if it happens.
1942  */
1943 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu,
1944                                         GList *iova_ranges,
1945                                         Error **errp);
1946 
1947 /**
1948  * memory_region_name: get a memory region's name
1949  *
1950  * Returns the string that was used to initialize the memory region.
1951  *
1952  * @mr: the memory region being queried
1953  */
1954 const char *memory_region_name(const MemoryRegion *mr);
1955 
1956 /**
1957  * memory_region_is_logging: return whether a memory region is logging writes
1958  *
1959  * Returns %true if the memory region is logging writes for the given client
1960  *
1961  * @mr: the memory region being queried
1962  * @client: the client being queried
1963  */
1964 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1965 
1966 /**
1967  * memory_region_get_dirty_log_mask: return the clients for which a
1968  * memory region is logging writes.
1969  *
1970  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1971  * are the bit indices.
1972  *
1973  * @mr: the memory region being queried
1974  */
1975 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1976 
1977 /**
1978  * memory_region_is_rom: check whether a memory region is ROM
1979  *
1980  * Returns %true if a memory region is read-only memory.
1981  *
1982  * @mr: the memory region being queried
1983  */
memory_region_is_rom(MemoryRegion * mr)1984 static inline bool memory_region_is_rom(MemoryRegion *mr)
1985 {
1986     return mr->ram && mr->readonly;
1987 }
1988 
1989 /**
1990  * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1991  *
1992  * Returns %true is a memory region is non-volatile memory.
1993  *
1994  * @mr: the memory region being queried
1995  */
memory_region_is_nonvolatile(MemoryRegion * mr)1996 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1997 {
1998     return mr->nonvolatile;
1999 }
2000 
2001 /**
2002  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
2003  *
2004  * Returns a file descriptor backing a file-based RAM memory region,
2005  * or -1 if the region is not a file-based RAM memory region.
2006  *
2007  * @mr: the RAM or alias memory region being queried.
2008  */
2009 int memory_region_get_fd(MemoryRegion *mr);
2010 
2011 /**
2012  * memory_region_from_host: Convert a pointer into a RAM memory region
2013  * and an offset within it.
2014  *
2015  * Given a host pointer inside a RAM memory region (created with
2016  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
2017  * the MemoryRegion and the offset within it.
2018  *
2019  * Use with care; by the time this function returns, the returned pointer is
2020  * not protected by RCU anymore.  If the caller is not within an RCU critical
2021  * section and does not hold the BQL, it must have other means of
2022  * protecting the pointer, such as a reference to the region that includes
2023  * the incoming ram_addr_t.
2024  *
2025  * @ptr: the host pointer to be converted
2026  * @offset: the offset within memory region
2027  */
2028 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
2029 
2030 /**
2031  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
2032  *
2033  * Returns a host pointer to a RAM memory region (created with
2034  * memory_region_init_ram() or memory_region_init_ram_ptr()).
2035  *
2036  * Use with care; by the time this function returns, the returned pointer is
2037  * not protected by RCU anymore.  If the caller is not within an RCU critical
2038  * section and does not hold the BQL, it must have other means of
2039  * protecting the pointer, such as a reference to the region that includes
2040  * the incoming ram_addr_t.
2041  *
2042  * @mr: the memory region being queried.
2043  */
2044 void *memory_region_get_ram_ptr(MemoryRegion *mr);
2045 
2046 /* memory_region_ram_resize: Resize a RAM region.
2047  *
2048  * Resizing RAM while migrating can result in the migration being canceled.
2049  * Care has to be taken if the guest might have already detected the memory.
2050  *
2051  * @mr: a memory region created with @memory_region_init_resizeable_ram.
2052  * @newsize: the new size the region
2053  * @errp: pointer to Error*, to store an error if it happens.
2054  */
2055 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2056                               Error **errp);
2057 
2058 /**
2059  * memory_region_msync: Synchronize selected address range of
2060  * a memory mapped region
2061  *
2062  * @mr: the memory region to be msync
2063  * @addr: the initial address of the range to be sync
2064  * @size: the size of the range to be sync
2065  */
2066 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2067 
2068 /**
2069  * memory_region_writeback: Trigger cache writeback for
2070  * selected address range
2071  *
2072  * @mr: the memory region to be updated
2073  * @addr: the initial address of the range to be written back
2074  * @size: the size of the range to be written back
2075  */
2076 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2077 
2078 /**
2079  * memory_region_set_log: Turn dirty logging on or off for a region.
2080  *
2081  * Turns dirty logging on or off for a specified client (display, migration).
2082  * Only meaningful for RAM regions.
2083  *
2084  * @mr: the memory region being updated.
2085  * @log: whether dirty logging is to be enabled or disabled.
2086  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2087  */
2088 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2089 
2090 /**
2091  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2092  *
2093  * Marks a range of bytes as dirty, after it has been dirtied outside
2094  * guest code.
2095  *
2096  * @mr: the memory region being dirtied.
2097  * @addr: the address (relative to the start of the region) being dirtied.
2098  * @size: size of the range being dirtied.
2099  */
2100 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2101                              hwaddr size);
2102 
2103 /**
2104  * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2105  *
2106  * This function is called when the caller wants to clear the remote
2107  * dirty bitmap of a memory range within the memory region.  This can
2108  * be used by e.g. KVM to manually clear dirty log when
2109  * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2110  * kernel.
2111  *
2112  * @mr:     the memory region to clear the dirty log upon
2113  * @start:  start address offset within the memory region
2114  * @len:    length of the memory region to clear dirty bitmap
2115  */
2116 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2117                                       hwaddr len);
2118 
2119 /**
2120  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2121  *                                         bitmap and clear it.
2122  *
2123  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2124  * returns the snapshot.  The snapshot can then be used to query dirty
2125  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
2126  * querying the same page multiple times, which is especially useful for
2127  * display updates where the scanlines often are not page aligned.
2128  *
2129  * The dirty bitmap region which gets copied into the snapshot (and
2130  * cleared afterwards) can be larger than requested.  The boundaries
2131  * are rounded up/down so complete bitmap longs (covering 64 pages on
2132  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
2133  * isn't a problem for display updates as the extra pages are outside
2134  * the visible area, and in case the visible area changes a full
2135  * display redraw is due anyway.  Should other use cases for this
2136  * function emerge we might have to revisit this implementation
2137  * detail.
2138  *
2139  * Use g_free to release DirtyBitmapSnapshot.
2140  *
2141  * @mr: the memory region being queried.
2142  * @addr: the address (relative to the start of the region) being queried.
2143  * @size: the size of the range being queried.
2144  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2145  */
2146 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2147                                                             hwaddr addr,
2148                                                             hwaddr size,
2149                                                             unsigned client);
2150 
2151 /**
2152  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2153  *                                   in the specified dirty bitmap snapshot.
2154  *
2155  * @mr: the memory region being queried.
2156  * @snap: the dirty bitmap snapshot
2157  * @addr: the address (relative to the start of the region) being queried.
2158  * @size: the size of the range being queried.
2159  */
2160 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2161                                       DirtyBitmapSnapshot *snap,
2162                                       hwaddr addr, hwaddr size);
2163 
2164 /**
2165  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2166  *                            client.
2167  *
2168  * Marks a range of pages as no longer dirty.
2169  *
2170  * @mr: the region being updated.
2171  * @addr: the start of the subrange being cleaned.
2172  * @size: the size of the subrange being cleaned.
2173  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2174  *          %DIRTY_MEMORY_VGA.
2175  */
2176 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2177                                hwaddr size, unsigned client);
2178 
2179 /**
2180  * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2181  *                                 TBs (for self-modifying code).
2182  *
2183  * The MemoryRegionOps->write() callback of a ROM device must use this function
2184  * to mark byte ranges that have been modified internally, such as by directly
2185  * accessing the memory returned by memory_region_get_ram_ptr().
2186  *
2187  * This function marks the range dirty and invalidates TBs so that TCG can
2188  * detect self-modifying code.
2189  *
2190  * @mr: the region being flushed.
2191  * @addr: the start, relative to the start of the region, of the range being
2192  *        flushed.
2193  * @size: the size, in bytes, of the range being flushed.
2194  */
2195 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2196 
2197 /**
2198  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2199  *
2200  * Allows a memory region to be marked as read-only (turning it into a ROM).
2201  * only useful on RAM regions.
2202  *
2203  * @mr: the region being updated.
2204  * @readonly: whether rhe region is to be ROM or RAM.
2205  */
2206 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2207 
2208 /**
2209  * memory_region_set_nonvolatile: Turn a memory region non-volatile
2210  *
2211  * Allows a memory region to be marked as non-volatile.
2212  * only useful on RAM regions.
2213  *
2214  * @mr: the region being updated.
2215  * @nonvolatile: whether rhe region is to be non-volatile.
2216  */
2217 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2218 
2219 /**
2220  * memory_region_rom_device_set_romd: enable/disable ROMD mode
2221  *
2222  * Allows a ROM device (initialized with memory_region_init_rom_device() to
2223  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2224  * device is mapped to guest memory and satisfies read access directly.
2225  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2226  * Writes are always handled by the #MemoryRegion.write function.
2227  *
2228  * @mr: the memory region to be updated
2229  * @romd_mode: %true to put the region into ROMD mode
2230  */
2231 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2232 
2233 /**
2234  * memory_region_set_coalescing: Enable memory coalescing for the region.
2235  *
2236  * Enabled writes to a region to be queued for later processing. MMIO ->write
2237  * callbacks may be delayed until a non-coalesced MMIO is issued.
2238  * Only useful for IO regions.  Roughly similar to write-combining hardware.
2239  *
2240  * @mr: the memory region to be write coalesced
2241  */
2242 void memory_region_set_coalescing(MemoryRegion *mr);
2243 
2244 /**
2245  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2246  *                               a region.
2247  *
2248  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2249  * Multiple calls can be issued coalesced disjoint ranges.
2250  *
2251  * @mr: the memory region to be updated.
2252  * @offset: the start of the range within the region to be coalesced.
2253  * @size: the size of the subrange to be coalesced.
2254  */
2255 void memory_region_add_coalescing(MemoryRegion *mr,
2256                                   hwaddr offset,
2257                                   uint64_t size);
2258 
2259 /**
2260  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2261  *
2262  * Disables any coalescing caused by memory_region_set_coalescing() or
2263  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2264  * hardware.
2265  *
2266  * @mr: the memory region to be updated.
2267  */
2268 void memory_region_clear_coalescing(MemoryRegion *mr);
2269 
2270 /**
2271  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2272  *                                    accesses.
2273  *
2274  * Ensure that pending coalesced MMIO request are flushed before the memory
2275  * region is accessed. This property is automatically enabled for all regions
2276  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2277  *
2278  * @mr: the memory region to be updated.
2279  */
2280 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2281 
2282 /**
2283  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2284  *                                      accesses.
2285  *
2286  * Clear the automatic coalesced MMIO flushing enabled via
2287  * memory_region_set_flush_coalesced. Note that this service has no effect on
2288  * memory regions that have MMIO coalescing enabled for themselves. For them,
2289  * automatic flushing will stop once coalescing is disabled.
2290  *
2291  * @mr: the memory region to be updated.
2292  */
2293 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2294 
2295 /**
2296  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2297  *                            is written to a location.
2298  *
2299  * Marks a word in an IO region (initialized with memory_region_init_io())
2300  * as a trigger for an eventfd event.  The I/O callback will not be called.
2301  * The caller must be prepared to handle failure (that is, take the required
2302  * action if the callback _is_ called).
2303  *
2304  * @mr: the memory region being updated.
2305  * @addr: the address within @mr that is to be monitored
2306  * @size: the size of the access to trigger the eventfd
2307  * @match_data: whether to match against @data, instead of just @addr
2308  * @data: the data to match against the guest write
2309  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2310  **/
2311 void memory_region_add_eventfd(MemoryRegion *mr,
2312                                hwaddr addr,
2313                                unsigned size,
2314                                bool match_data,
2315                                uint64_t data,
2316                                EventNotifier *e);
2317 
2318 /**
2319  * memory_region_del_eventfd: Cancel an eventfd.
2320  *
2321  * Cancels an eventfd trigger requested by a previous
2322  * memory_region_add_eventfd() call.
2323  *
2324  * @mr: the memory region being updated.
2325  * @addr: the address within @mr that is to be monitored
2326  * @size: the size of the access to trigger the eventfd
2327  * @match_data: whether to match against @data, instead of just @addr
2328  * @data: the data to match against the guest write
2329  * @e: event notifier to be triggered when @addr, @size, and @data all match.
2330  */
2331 void memory_region_del_eventfd(MemoryRegion *mr,
2332                                hwaddr addr,
2333                                unsigned size,
2334                                bool match_data,
2335                                uint64_t data,
2336                                EventNotifier *e);
2337 
2338 /**
2339  * memory_region_add_subregion: Add a subregion to a container.
2340  *
2341  * Adds a subregion at @offset.  The subregion may not overlap with other
2342  * subregions (except for those explicitly marked as overlapping).  A region
2343  * may only be added once as a subregion (unless removed with
2344  * memory_region_del_subregion()); use memory_region_init_alias() if you
2345  * want a region to be a subregion in multiple locations.
2346  *
2347  * @mr: the region to contain the new subregion; must be a container
2348  *      initialized with memory_region_init().
2349  * @offset: the offset relative to @mr where @subregion is added.
2350  * @subregion: the subregion to be added.
2351  */
2352 void memory_region_add_subregion(MemoryRegion *mr,
2353                                  hwaddr offset,
2354                                  MemoryRegion *subregion);
2355 /**
2356  * memory_region_add_subregion_overlap: Add a subregion to a container
2357  *                                      with overlap.
2358  *
2359  * Adds a subregion at @offset.  The subregion may overlap with other
2360  * subregions.  Conflicts are resolved by having a higher @priority hide a
2361  * lower @priority. Subregions without priority are taken as @priority 0.
2362  * A region may only be added once as a subregion (unless removed with
2363  * memory_region_del_subregion()); use memory_region_init_alias() if you
2364  * want a region to be a subregion in multiple locations.
2365  *
2366  * @mr: the region to contain the new subregion; must be a container
2367  *      initialized with memory_region_init().
2368  * @offset: the offset relative to @mr where @subregion is added.
2369  * @subregion: the subregion to be added.
2370  * @priority: used for resolving overlaps; highest priority wins.
2371  */
2372 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2373                                          hwaddr offset,
2374                                          MemoryRegion *subregion,
2375                                          int priority);
2376 
2377 /**
2378  * memory_region_get_ram_addr: Get the ram address associated with a memory
2379  *                             region
2380  *
2381  * @mr: the region to be queried
2382  */
2383 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2384 
2385 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2386 /**
2387  * memory_region_del_subregion: Remove a subregion.
2388  *
2389  * Removes a subregion from its container.
2390  *
2391  * @mr: the container to be updated.
2392  * @subregion: the region being removed; must be a current subregion of @mr.
2393  */
2394 void memory_region_del_subregion(MemoryRegion *mr,
2395                                  MemoryRegion *subregion);
2396 
2397 /*
2398  * memory_region_set_enabled: dynamically enable or disable a region
2399  *
2400  * Enables or disables a memory region.  A disabled memory region
2401  * ignores all accesses to itself and its subregions.  It does not
2402  * obscure sibling subregions with lower priority - it simply behaves as
2403  * if it was removed from the hierarchy.
2404  *
2405  * Regions default to being enabled.
2406  *
2407  * @mr: the region to be updated
2408  * @enabled: whether to enable or disable the region
2409  */
2410 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2411 
2412 /*
2413  * memory_region_set_address: dynamically update the address of a region
2414  *
2415  * Dynamically updates the address of a region, relative to its container.
2416  * May be used on regions are currently part of a memory hierarchy.
2417  *
2418  * @mr: the region to be updated
2419  * @addr: new address, relative to container region
2420  */
2421 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2422 
2423 /*
2424  * memory_region_set_size: dynamically update the size of a region.
2425  *
2426  * Dynamically updates the size of a region.
2427  *
2428  * @mr: the region to be updated
2429  * @size: used size of the region.
2430  */
2431 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2432 
2433 /*
2434  * memory_region_set_alias_offset: dynamically update a memory alias's offset
2435  *
2436  * Dynamically updates the offset into the target region that an alias points
2437  * to, as if the fourth argument to memory_region_init_alias() has changed.
2438  *
2439  * @mr: the #MemoryRegion to be updated; should be an alias.
2440  * @offset: the new offset into the target memory region
2441  */
2442 void memory_region_set_alias_offset(MemoryRegion *mr,
2443                                     hwaddr offset);
2444 
2445 /*
2446  * memory_region_set_unmergeable: Set a memory region unmergeable
2447  *
2448  * Mark a memory region unmergeable, resulting in the memory region (or
2449  * everything contained in a memory region container) not getting merged when
2450  * simplifying the address space and notifying memory listeners. Consequently,
2451  * memory listeners will never get notified about ranges that are larger than
2452  * the original memory regions.
2453  *
2454  * This is primarily useful when multiple aliases to a RAM memory region are
2455  * mapped into a memory region container, and updates (e.g., enable/disable or
2456  * map/unmap) of individual memory region aliases are not supposed to affect
2457  * other memory regions in the same container.
2458  *
2459  * @mr: the #MemoryRegion to be updated
2460  * @unmergeable: whether to mark the #MemoryRegion unmergeable
2461  */
2462 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2463 
2464 /**
2465  * memory_region_present: checks if an address relative to a @container
2466  * translates into #MemoryRegion within @container
2467  *
2468  * Answer whether a #MemoryRegion within @container covers the address
2469  * @addr.
2470  *
2471  * @container: a #MemoryRegion within which @addr is a relative address
2472  * @addr: the area within @container to be searched
2473  */
2474 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2475 
2476 /**
2477  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2478  * into another memory region, which does not necessarily imply that it is
2479  * mapped into an address space.
2480  *
2481  * @mr: a #MemoryRegion which should be checked if it's mapped
2482  */
2483 bool memory_region_is_mapped(MemoryRegion *mr);
2484 
2485 /**
2486  * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2487  * #MemoryRegion
2488  *
2489  * The #RamDiscardManager cannot change while a memory region is mapped.
2490  *
2491  * @mr: the #MemoryRegion
2492  */
2493 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2494 
2495 /**
2496  * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2497  * #RamDiscardManager assigned
2498  *
2499  * @mr: the #MemoryRegion
2500  */
memory_region_has_ram_discard_manager(MemoryRegion * mr)2501 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2502 {
2503     return !!memory_region_get_ram_discard_manager(mr);
2504 }
2505 
2506 /**
2507  * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2508  * #MemoryRegion
2509  *
2510  * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2511  * that does not cover RAM, or a #MemoryRegion that already has a
2512  * #RamDiscardManager assigned.
2513  *
2514  * @mr: the #MemoryRegion
2515  * @rdm: #RamDiscardManager to set
2516  */
2517 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2518                                            RamDiscardManager *rdm);
2519 
2520 /**
2521  * memory_region_find: translate an address/size relative to a
2522  * MemoryRegion into a #MemoryRegionSection.
2523  *
2524  * Locates the first #MemoryRegion within @mr that overlaps the range
2525  * given by @addr and @size.
2526  *
2527  * Returns a #MemoryRegionSection that describes a contiguous overlap.
2528  * It will have the following characteristics:
2529  * - @size = 0 iff no overlap was found
2530  * - @mr is non-%NULL iff an overlap was found
2531  *
2532  * Remember that in the return value the @offset_within_region is
2533  * relative to the returned region (in the .@mr field), not to the
2534  * @mr argument.
2535  *
2536  * Similarly, the .@offset_within_address_space is relative to the
2537  * address space that contains both regions, the passed and the
2538  * returned one.  However, in the special case where the @mr argument
2539  * has no container (and thus is the root of the address space), the
2540  * following will hold:
2541  * - @offset_within_address_space >= @addr
2542  * - @offset_within_address_space + .@size <= @addr + @size
2543  *
2544  * @mr: a MemoryRegion within which @addr is a relative address
2545  * @addr: start of the area within @as to be searched
2546  * @size: size of the area to be searched
2547  */
2548 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2549                                        hwaddr addr, uint64_t size);
2550 
2551 /**
2552  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2553  *
2554  * Synchronizes the dirty page log for all address spaces.
2555  *
2556  * @last_stage: whether this is the last stage of live migration
2557  */
2558 void memory_global_dirty_log_sync(bool last_stage);
2559 
2560 /**
2561  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2562  *
2563  * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2564  * This function must be called after the dirty log bitmap is cleared, and
2565  * before dirty guest memory pages are read.  If you are using
2566  * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2567  * care of doing this.
2568  */
2569 void memory_global_after_dirty_log_sync(void);
2570 
2571 /**
2572  * memory_region_transaction_begin: Start a transaction.
2573  *
2574  * During a transaction, changes will be accumulated and made visible
2575  * only when the transaction ends (is committed).
2576  */
2577 void memory_region_transaction_begin(void);
2578 
2579 /**
2580  * memory_region_transaction_commit: Commit a transaction and make changes
2581  *                                   visible to the guest.
2582  */
2583 void memory_region_transaction_commit(void);
2584 
2585 /**
2586  * memory_listener_register: register callbacks to be called when memory
2587  *                           sections are mapped or unmapped into an address
2588  *                           space
2589  *
2590  * @listener: an object containing the callbacks to be called
2591  * @filter: if non-%NULL, only regions in this address space will be observed
2592  */
2593 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2594 
2595 /**
2596  * memory_listener_unregister: undo the effect of memory_listener_register()
2597  *
2598  * @listener: an object containing the callbacks to be removed
2599  */
2600 void memory_listener_unregister(MemoryListener *listener);
2601 
2602 /**
2603  * memory_global_dirty_log_start: begin dirty logging for all regions
2604  *
2605  * @flags: purpose of starting dirty log, migration or dirty rate
2606  * @errp: pointer to Error*, to store an error if it happens.
2607  *
2608  * Return: true on success, else false setting @errp with error.
2609  */
2610 bool memory_global_dirty_log_start(unsigned int flags, Error **errp);
2611 
2612 /**
2613  * memory_global_dirty_log_stop: end dirty logging for all regions
2614  *
2615  * @flags: purpose of stopping dirty log, migration or dirty rate
2616  */
2617 void memory_global_dirty_log_stop(unsigned int flags);
2618 
2619 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2620 
2621 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2622                                 unsigned size, bool is_write,
2623                                 MemTxAttrs attrs);
2624 
2625 /**
2626  * memory_region_dispatch_read: perform a read directly to the specified
2627  * MemoryRegion.
2628  *
2629  * @mr: #MemoryRegion to access
2630  * @addr: address within that region
2631  * @pval: pointer to uint64_t which the data is written to
2632  * @op: size, sign, and endianness of the memory operation
2633  * @attrs: memory transaction attributes to use for the access
2634  */
2635 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2636                                         hwaddr addr,
2637                                         uint64_t *pval,
2638                                         MemOp op,
2639                                         MemTxAttrs attrs);
2640 /**
2641  * memory_region_dispatch_write: perform a write directly to the specified
2642  * MemoryRegion.
2643  *
2644  * @mr: #MemoryRegion to access
2645  * @addr: address within that region
2646  * @data: data to write
2647  * @op: size, sign, and endianness of the memory operation
2648  * @attrs: memory transaction attributes to use for the access
2649  */
2650 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2651                                          hwaddr addr,
2652                                          uint64_t data,
2653                                          MemOp op,
2654                                          MemTxAttrs attrs);
2655 
2656 /**
2657  * address_space_init: initializes an address space
2658  *
2659  * @as: an uninitialized #AddressSpace
2660  * @root: a #MemoryRegion that routes addresses for the address space
2661  * @name: an address space name.  The name is only used for debugging
2662  *        output.
2663  */
2664 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2665 
2666 /**
2667  * address_space_destroy: destroy an address space
2668  *
2669  * Releases all resources associated with an address space.  After an address space
2670  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2671  * as well.
2672  *
2673  * @as: address space to be destroyed
2674  */
2675 void address_space_destroy(AddressSpace *as);
2676 
2677 /**
2678  * address_space_remove_listeners: unregister all listeners of an address space
2679  *
2680  * Removes all callbacks previously registered with memory_listener_register()
2681  * for @as.
2682  *
2683  * @as: an initialized #AddressSpace
2684  */
2685 void address_space_remove_listeners(AddressSpace *as);
2686 
2687 /**
2688  * address_space_rw: read from or write to an address space.
2689  *
2690  * Return a MemTxResult indicating whether the operation succeeded
2691  * or failed (eg unassigned memory, device rejected the transaction,
2692  * IOMMU fault).
2693  *
2694  * @as: #AddressSpace to be accessed
2695  * @addr: address within that address space
2696  * @attrs: memory transaction attributes
2697  * @buf: buffer with the data transferred
2698  * @len: the number of bytes to read or write
2699  * @is_write: indicates the transfer direction
2700  */
2701 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2702                              MemTxAttrs attrs, void *buf,
2703                              hwaddr len, bool is_write);
2704 
2705 /**
2706  * address_space_write: write to address space.
2707  *
2708  * Return a MemTxResult indicating whether the operation succeeded
2709  * or failed (eg unassigned memory, device rejected the transaction,
2710  * IOMMU fault).
2711  *
2712  * @as: #AddressSpace to be accessed
2713  * @addr: address within that address space
2714  * @attrs: memory transaction attributes
2715  * @buf: buffer with the data transferred
2716  * @len: the number of bytes to write
2717  */
2718 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2719                                 MemTxAttrs attrs,
2720                                 const void *buf, hwaddr len);
2721 
2722 /**
2723  * address_space_write_rom: write to address space, including ROM.
2724  *
2725  * This function writes to the specified address space, but will
2726  * write data to both ROM and RAM. This is used for non-guest
2727  * writes like writes from the gdb debug stub or initial loading
2728  * of ROM contents.
2729  *
2730  * Note that portions of the write which attempt to write data to
2731  * a device will be silently ignored -- only real RAM and ROM will
2732  * be written to.
2733  *
2734  * Return a MemTxResult indicating whether the operation succeeded
2735  * or failed (eg unassigned memory, device rejected the transaction,
2736  * IOMMU fault).
2737  *
2738  * @as: #AddressSpace to be accessed
2739  * @addr: address within that address space
2740  * @attrs: memory transaction attributes
2741  * @buf: buffer with the data transferred
2742  * @len: the number of bytes to write
2743  */
2744 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2745                                     MemTxAttrs attrs,
2746                                     const void *buf, hwaddr len);
2747 
2748 /* address_space_ld*: load from an address space
2749  * address_space_st*: store to an address space
2750  *
2751  * These functions perform a load or store of the byte, word,
2752  * longword or quad to the specified address within the AddressSpace.
2753  * The _le suffixed functions treat the data as little endian;
2754  * _be indicates big endian; no suffix indicates "same endianness
2755  * as guest CPU".
2756  *
2757  * The "guest CPU endianness" accessors are deprecated for use outside
2758  * target-* code; devices should be CPU-agnostic and use either the LE
2759  * or the BE accessors.
2760  *
2761  * @as #AddressSpace to be accessed
2762  * @addr: address within that address space
2763  * @val: data value, for stores
2764  * @attrs: memory transaction attributes
2765  * @result: location to write the success/failure of the transaction;
2766  *   if NULL, this information is discarded
2767  */
2768 
2769 #define SUFFIX
2770 #define ARG1         as
2771 #define ARG1_DECL    AddressSpace *as
2772 #include "exec/memory_ldst.h.inc"
2773 
2774 #define SUFFIX
2775 #define ARG1         as
2776 #define ARG1_DECL    AddressSpace *as
2777 #include "exec/memory_ldst_phys.h.inc"
2778 
2779 struct MemoryRegionCache {
2780     void *ptr;
2781     hwaddr xlat;
2782     hwaddr len;
2783     FlatView *fv;
2784     MemoryRegionSection mrs;
2785     bool is_write;
2786 };
2787 
2788 /* address_space_ld*_cached: load from a cached #MemoryRegion
2789  * address_space_st*_cached: store into a cached #MemoryRegion
2790  *
2791  * These functions perform a load or store of the byte, word,
2792  * longword or quad to the specified address.  The address is
2793  * a physical address in the AddressSpace, but it must lie within
2794  * a #MemoryRegion that was mapped with address_space_cache_init.
2795  *
2796  * The _le suffixed functions treat the data as little endian;
2797  * _be indicates big endian; no suffix indicates "same endianness
2798  * as guest CPU".
2799  *
2800  * The "guest CPU endianness" accessors are deprecated for use outside
2801  * target-* code; devices should be CPU-agnostic and use either the LE
2802  * or the BE accessors.
2803  *
2804  * @cache: previously initialized #MemoryRegionCache to be accessed
2805  * @addr: address within the address space
2806  * @val: data value, for stores
2807  * @attrs: memory transaction attributes
2808  * @result: location to write the success/failure of the transaction;
2809  *   if NULL, this information is discarded
2810  */
2811 
2812 #define SUFFIX       _cached_slow
2813 #define ARG1         cache
2814 #define ARG1_DECL    MemoryRegionCache *cache
2815 #include "exec/memory_ldst.h.inc"
2816 
2817 /* Inline fast path for direct RAM access.  */
address_space_ldub_cached(MemoryRegionCache * cache,hwaddr addr,MemTxAttrs attrs,MemTxResult * result)2818 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2819     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2820 {
2821     assert(addr < cache->len);
2822     if (likely(cache->ptr)) {
2823         return ldub_p(cache->ptr + addr);
2824     } else {
2825         return address_space_ldub_cached_slow(cache, addr, attrs, result);
2826     }
2827 }
2828 
address_space_stb_cached(MemoryRegionCache * cache,hwaddr addr,uint8_t val,MemTxAttrs attrs,MemTxResult * result)2829 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2830     hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2831 {
2832     assert(addr < cache->len);
2833     if (likely(cache->ptr)) {
2834         stb_p(cache->ptr + addr, val);
2835     } else {
2836         address_space_stb_cached_slow(cache, addr, val, attrs, result);
2837     }
2838 }
2839 
2840 #define ENDIANNESS   _le
2841 #include "exec/memory_ldst_cached.h.inc"
2842 
2843 #define ENDIANNESS   _be
2844 #include "exec/memory_ldst_cached.h.inc"
2845 
2846 #define SUFFIX       _cached
2847 #define ARG1         cache
2848 #define ARG1_DECL    MemoryRegionCache *cache
2849 #include "exec/memory_ldst_phys.h.inc"
2850 
2851 /* address_space_cache_init: prepare for repeated access to a physical
2852  * memory region
2853  *
2854  * @cache: #MemoryRegionCache to be filled
2855  * @as: #AddressSpace to be accessed
2856  * @addr: address within that address space
2857  * @len: length of buffer
2858  * @is_write: indicates the transfer direction
2859  *
2860  * Will only work with RAM, and may map a subset of the requested range by
2861  * returning a value that is less than @len.  On failure, return a negative
2862  * errno value.
2863  *
2864  * Because it only works with RAM, this function can be used for
2865  * read-modify-write operations.  In this case, is_write should be %true.
2866  *
2867  * Note that addresses passed to the address_space_*_cached functions
2868  * are relative to @addr.
2869  */
2870 int64_t address_space_cache_init(MemoryRegionCache *cache,
2871                                  AddressSpace *as,
2872                                  hwaddr addr,
2873                                  hwaddr len,
2874                                  bool is_write);
2875 
2876 /**
2877  * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2878  *
2879  * @cache: The #MemoryRegionCache to operate on.
2880  *
2881  * Initializes #MemoryRegionCache structure without memory region attached.
2882  * Cache initialized this way can only be safely destroyed, but not used.
2883  */
address_space_cache_init_empty(MemoryRegionCache * cache)2884 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2885 {
2886     cache->mrs.mr = NULL;
2887     /* There is no real need to initialize fv, but it makes Coverity happy. */
2888     cache->fv = NULL;
2889 }
2890 
2891 /**
2892  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2893  *
2894  * @cache: The #MemoryRegionCache to operate on.
2895  * @addr: The first physical address that was written, relative to the
2896  * address that was passed to @address_space_cache_init.
2897  * @access_len: The number of bytes that were written starting at @addr.
2898  */
2899 void address_space_cache_invalidate(MemoryRegionCache *cache,
2900                                     hwaddr addr,
2901                                     hwaddr access_len);
2902 
2903 /**
2904  * address_space_cache_destroy: free a #MemoryRegionCache
2905  *
2906  * @cache: The #MemoryRegionCache whose memory should be released.
2907  */
2908 void address_space_cache_destroy(MemoryRegionCache *cache);
2909 
2910 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2911  * entry. Should be called from an RCU critical section.
2912  */
2913 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2914                                             bool is_write, MemTxAttrs attrs);
2915 
2916 /* address_space_translate: translate an address range into an address space
2917  * into a MemoryRegion and an address range into that section.  Should be
2918  * called from an RCU critical section, to avoid that the last reference
2919  * to the returned region disappears after address_space_translate returns.
2920  *
2921  * @fv: #FlatView to be accessed
2922  * @addr: address within that address space
2923  * @xlat: pointer to address within the returned memory region section's
2924  * #MemoryRegion.
2925  * @len: pointer to length
2926  * @is_write: indicates the transfer direction
2927  * @attrs: memory attributes
2928  */
2929 MemoryRegion *flatview_translate(FlatView *fv,
2930                                  hwaddr addr, hwaddr *xlat,
2931                                  hwaddr *len, bool is_write,
2932                                  MemTxAttrs attrs);
2933 
address_space_translate(AddressSpace * as,hwaddr addr,hwaddr * xlat,hwaddr * len,bool is_write,MemTxAttrs attrs)2934 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2935                                                     hwaddr addr, hwaddr *xlat,
2936                                                     hwaddr *len, bool is_write,
2937                                                     MemTxAttrs attrs)
2938 {
2939     return flatview_translate(address_space_to_flatview(as),
2940                               addr, xlat, len, is_write, attrs);
2941 }
2942 
2943 /* address_space_access_valid: check for validity of accessing an address
2944  * space range
2945  *
2946  * Check whether memory is assigned to the given address space range, and
2947  * access is permitted by any IOMMU regions that are active for the address
2948  * space.
2949  *
2950  * For now, addr and len should be aligned to a page size.  This limitation
2951  * will be lifted in the future.
2952  *
2953  * @as: #AddressSpace to be accessed
2954  * @addr: address within that address space
2955  * @len: length of the area to be checked
2956  * @is_write: indicates the transfer direction
2957  * @attrs: memory attributes
2958  */
2959 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2960                                 bool is_write, MemTxAttrs attrs);
2961 
2962 /* address_space_map: map a physical memory region into a host virtual address
2963  *
2964  * May map a subset of the requested range, given by and returned in @plen.
2965  * May return %NULL and set *@plen to zero(0), if resources needed to perform
2966  * the mapping are exhausted.
2967  * Use only for reads OR writes - not for read-modify-write operations.
2968  * Use address_space_register_map_client() to know when retrying the map
2969  * operation is likely to succeed.
2970  *
2971  * @as: #AddressSpace to be accessed
2972  * @addr: address within that address space
2973  * @plen: pointer to length of buffer; updated on return
2974  * @is_write: indicates the transfer direction
2975  * @attrs: memory attributes
2976  */
2977 void *address_space_map(AddressSpace *as, hwaddr addr,
2978                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2979 
2980 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2981  *
2982  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2983  * the amount of memory that was actually read or written by the caller.
2984  *
2985  * @as: #AddressSpace used
2986  * @buffer: host pointer as returned by address_space_map()
2987  * @len: buffer length as returned by address_space_map()
2988  * @access_len: amount of data actually transferred
2989  * @is_write: indicates the transfer direction
2990  */
2991 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2992                          bool is_write, hwaddr access_len);
2993 
2994 /*
2995  * address_space_register_map_client: Register a callback to invoke when
2996  * resources for address_space_map() are available again.
2997  *
2998  * address_space_map may fail when there are not enough resources available,
2999  * such as when bounce buffer memory would exceed the limit. The callback can
3000  * be used to retry the address_space_map operation. Note that the callback
3001  * gets automatically removed after firing.
3002  *
3003  * @as: #AddressSpace to be accessed
3004  * @bh: callback to invoke when address_space_map() retry is appropriate
3005  */
3006 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh);
3007 
3008 /*
3009  * address_space_unregister_map_client: Unregister a callback that has
3010  * previously been registered and not fired yet.
3011  *
3012  * @as: #AddressSpace to be accessed
3013  * @bh: callback to unregister
3014  */
3015 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh);
3016 
3017 /* Internal functions, part of the implementation of address_space_read.  */
3018 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3019                                     MemTxAttrs attrs, void *buf, hwaddr len);
3020 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3021                                    MemTxAttrs attrs, void *buf,
3022                                    hwaddr len, hwaddr addr1, hwaddr l,
3023                                    MemoryRegion *mr);
3024 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
3025 
3026 /* Internal functions, part of the implementation of address_space_read_cached
3027  * and address_space_write_cached.  */
3028 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
3029                                            hwaddr addr, void *buf, hwaddr len);
3030 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
3031                                             hwaddr addr, const void *buf,
3032                                             hwaddr len);
3033 
3034 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
3035 bool prepare_mmio_access(MemoryRegion *mr);
3036 
memory_access_is_direct(MemoryRegion * mr,bool is_write)3037 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
3038 {
3039     if (is_write) {
3040         return memory_region_is_ram(mr) && !mr->readonly &&
3041                !mr->rom_device && !memory_region_is_ram_device(mr);
3042     } else {
3043         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
3044                memory_region_is_romd(mr);
3045     }
3046 }
3047 
3048 /**
3049  * address_space_read: read from an address space.
3050  *
3051  * Return a MemTxResult indicating whether the operation succeeded
3052  * or failed (eg unassigned memory, device rejected the transaction,
3053  * IOMMU fault).  Called within RCU critical section.
3054  *
3055  * @as: #AddressSpace to be accessed
3056  * @addr: address within that address space
3057  * @attrs: memory transaction attributes
3058  * @buf: buffer with the data transferred
3059  * @len: length of the data transferred
3060  */
3061 static inline __attribute__((__always_inline__))
address_space_read(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3062 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3063                                MemTxAttrs attrs, void *buf,
3064                                hwaddr len)
3065 {
3066     MemTxResult result = MEMTX_OK;
3067     hwaddr l, addr1;
3068     void *ptr;
3069     MemoryRegion *mr;
3070     FlatView *fv;
3071 
3072     if (__builtin_constant_p(len)) {
3073         if (len) {
3074             RCU_READ_LOCK_GUARD();
3075             fv = address_space_to_flatview(as);
3076             l = len;
3077             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3078             if (len == l && memory_access_is_direct(mr, false)) {
3079                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3080                 memcpy(buf, ptr, len);
3081             } else {
3082                 result = flatview_read_continue(fv, addr, attrs, buf, len,
3083                                                 addr1, l, mr);
3084             }
3085         }
3086     } else {
3087         result = address_space_read_full(as, addr, attrs, buf, len);
3088     }
3089     return result;
3090 }
3091 
3092 /**
3093  * address_space_read_cached: read from a cached RAM region
3094  *
3095  * @cache: Cached region to be addressed
3096  * @addr: address relative to the base of the RAM region
3097  * @buf: buffer with the data transferred
3098  * @len: length of the data transferred
3099  */
3100 static inline MemTxResult
address_space_read_cached(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3101 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3102                           void *buf, hwaddr len)
3103 {
3104     assert(addr < cache->len && len <= cache->len - addr);
3105     fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3106     if (likely(cache->ptr)) {
3107         memcpy(buf, cache->ptr + addr, len);
3108         return MEMTX_OK;
3109     } else {
3110         return address_space_read_cached_slow(cache, addr, buf, len);
3111     }
3112 }
3113 
3114 /**
3115  * address_space_write_cached: write to a cached RAM region
3116  *
3117  * @cache: Cached region to be addressed
3118  * @addr: address relative to the base of the RAM region
3119  * @buf: buffer with the data transferred
3120  * @len: length of the data transferred
3121  */
3122 static inline MemTxResult
address_space_write_cached(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3123 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3124                            const void *buf, hwaddr len)
3125 {
3126     assert(addr < cache->len && len <= cache->len - addr);
3127     if (likely(cache->ptr)) {
3128         memcpy(cache->ptr + addr, buf, len);
3129         return MEMTX_OK;
3130     } else {
3131         return address_space_write_cached_slow(cache, addr, buf, len);
3132     }
3133 }
3134 
3135 /**
3136  * address_space_set: Fill address space with a constant byte.
3137  *
3138  * Return a MemTxResult indicating whether the operation succeeded
3139  * or failed (eg unassigned memory, device rejected the transaction,
3140  * IOMMU fault).
3141  *
3142  * @as: #AddressSpace to be accessed
3143  * @addr: address within that address space
3144  * @c: constant byte to fill the memory
3145  * @len: the number of bytes to fill with the constant byte
3146  * @attrs: memory transaction attributes
3147  */
3148 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3149                               uint8_t c, hwaddr len, MemTxAttrs attrs);
3150 
3151 #ifdef COMPILING_PER_TARGET
3152 /* enum device_endian to MemOp.  */
devend_memop(enum device_endian end)3153 static inline MemOp devend_memop(enum device_endian end)
3154 {
3155     QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3156                       DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3157 
3158 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3159     /* Swap if non-host endianness or native (target) endianness */
3160     return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3161 #else
3162     const int non_host_endianness =
3163         DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3164 
3165     /* In this case, native (target) endianness needs no swap.  */
3166     return (end == non_host_endianness) ? MO_BSWAP : 0;
3167 #endif
3168 }
3169 #endif /* COMPILING_PER_TARGET */
3170 
3171 /*
3172  * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3173  * to manage the actual amount of memory consumed by the VM (then, the memory
3174  * provided by RAM blocks might be bigger than the desired memory consumption).
3175  * This *must* be set if:
3176  * - Discarding parts of a RAM blocks does not result in the change being
3177  *   reflected in the VM and the pages getting freed.
3178  * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3179  *   discards blindly.
3180  * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3181  *   encrypted VMs).
3182  * Technologies that only temporarily pin the current working set of a
3183  * driver are fine, because we don't expect such pages to be discarded
3184  * (esp. based on guest action like balloon inflation).
3185  *
3186  * This is *not* to be used to protect from concurrent discards (esp.,
3187  * postcopy).
3188  *
3189  * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3190  * discards to work reliably is active.
3191  */
3192 int ram_block_discard_disable(bool state);
3193 
3194 /*
3195  * See ram_block_discard_disable(): only disable uncoordinated discards,
3196  * keeping coordinated discards (via the RamDiscardManager) enabled.
3197  */
3198 int ram_block_uncoordinated_discard_disable(bool state);
3199 
3200 /*
3201  * Inhibit technologies that disable discarding of pages in RAM blocks.
3202  *
3203  * Returns 0 if successful. Returns -EBUSY if discards are already set to
3204  * broken.
3205  */
3206 int ram_block_discard_require(bool state);
3207 
3208 /*
3209  * See ram_block_discard_require(): only inhibit technologies that disable
3210  * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3211  * technologies that only inhibit uncoordinated discards (via the
3212  * RamDiscardManager).
3213  */
3214 int ram_block_coordinated_discard_require(bool state);
3215 
3216 /*
3217  * Test if any discarding of memory in ram blocks is disabled.
3218  */
3219 bool ram_block_discard_is_disabled(void);
3220 
3221 /*
3222  * Test if any discarding of memory in ram blocks is required to work reliably.
3223  */
3224 bool ram_block_discard_is_required(void);
3225 
3226 #endif
3227 
3228 #endif
3229