xref: /linux/kernel/rcu/rcu.h (revision dddcddef)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update definitions shared among RCU implementations.
4  *
5  * Copyright IBM Corporation, 2011
6  *
7  * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8  */
9 
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12 
13 #include <linux/slab.h>
14 #include <trace/events/rcu.h>
15 
16 /*
17  * Grace-period counter management.
18  *
19  * The two least significant bits contain the control flags.
20  * The most significant bits contain the grace-period sequence counter.
21  *
22  * When both control flags are zero, no grace period is in progress.
23  * When either bit is non-zero, a grace period has started and is in
24  * progress. When the grace period completes, the control flags are reset
25  * to 0 and the grace-period sequence counter is incremented.
26  *
27  * However some specific RCU usages make use of custom values.
28  *
29  * SRCU special control values:
30  *
31  *	SRCU_SNP_INIT_SEQ	:	Invalid/init value set when SRCU node
32  *					is initialized.
33  *
34  *	SRCU_STATE_IDLE		:	No SRCU gp is in progress
35  *
36  *	SRCU_STATE_SCAN1	:	State set by rcu_seq_start(). Indicates
37  *					we are scanning the readers on the slot
38  *					defined as inactive (there might well
39  *					be pending readers that will use that
40  *					index, but their number is bounded).
41  *
42  *	SRCU_STATE_SCAN2	:	State set manually via rcu_seq_set_state()
43  *					Indicates we are flipping the readers
44  *					index and then scanning the readers on the
45  *					slot newly designated as inactive (again,
46  *					the number of pending readers that will use
47  *					this inactive index is bounded).
48  *
49  * RCU polled GP special control value:
50  *
51  *	RCU_GET_STATE_COMPLETED :	State value indicating an already-completed
52  *					polled GP has completed.  This value covers
53  *					both the state and the counter of the
54  *					grace-period sequence number.
55  */
56 
57 #define RCU_SEQ_CTR_SHIFT	2
58 #define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
59 
60 /* Low-order bit definition for polled grace-period APIs. */
61 #define RCU_GET_STATE_COMPLETED	0x1
62 
63 extern int sysctl_sched_rt_runtime;
64 
65 /*
66  * Return the counter portion of a sequence number previously returned
67  * by rcu_seq_snap() or rcu_seq_current().
68  */
rcu_seq_ctr(unsigned long s)69 static inline unsigned long rcu_seq_ctr(unsigned long s)
70 {
71 	return s >> RCU_SEQ_CTR_SHIFT;
72 }
73 
74 /*
75  * Return the state portion of a sequence number previously returned
76  * by rcu_seq_snap() or rcu_seq_current().
77  */
rcu_seq_state(unsigned long s)78 static inline int rcu_seq_state(unsigned long s)
79 {
80 	return s & RCU_SEQ_STATE_MASK;
81 }
82 
83 /*
84  * Set the state portion of the pointed-to sequence number.
85  * The caller is responsible for preventing conflicting updates.
86  */
rcu_seq_set_state(unsigned long * sp,int newstate)87 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
88 {
89 	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
90 	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
91 }
92 
93 /* Adjust sequence number for start of update-side operation. */
rcu_seq_start(unsigned long * sp)94 static inline void rcu_seq_start(unsigned long *sp)
95 {
96 	WRITE_ONCE(*sp, *sp + 1);
97 	smp_mb(); /* Ensure update-side operation after counter increment. */
98 	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
99 }
100 
101 /* Compute the end-of-grace-period value for the specified sequence number. */
rcu_seq_endval(unsigned long * sp)102 static inline unsigned long rcu_seq_endval(unsigned long *sp)
103 {
104 	return (*sp | RCU_SEQ_STATE_MASK) + 1;
105 }
106 
107 /* Adjust sequence number for end of update-side operation. */
rcu_seq_end(unsigned long * sp)108 static inline void rcu_seq_end(unsigned long *sp)
109 {
110 	smp_mb(); /* Ensure update-side operation before counter increment. */
111 	WARN_ON_ONCE(!rcu_seq_state(*sp));
112 	WRITE_ONCE(*sp, rcu_seq_endval(sp));
113 }
114 
115 /*
116  * rcu_seq_snap - Take a snapshot of the update side's sequence number.
117  *
118  * This function returns the earliest value of the grace-period sequence number
119  * that will indicate that a full grace period has elapsed since the current
120  * time.  Once the grace-period sequence number has reached this value, it will
121  * be safe to invoke all callbacks that have been registered prior to the
122  * current time. This value is the current grace-period number plus two to the
123  * power of the number of low-order bits reserved for state, then rounded up to
124  * the next value in which the state bits are all zero.
125  */
rcu_seq_snap(unsigned long * sp)126 static inline unsigned long rcu_seq_snap(unsigned long *sp)
127 {
128 	unsigned long s;
129 
130 	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
131 	smp_mb(); /* Above access must not bleed into critical section. */
132 	return s;
133 }
134 
135 /* Return the current value the update side's sequence number, no ordering. */
rcu_seq_current(unsigned long * sp)136 static inline unsigned long rcu_seq_current(unsigned long *sp)
137 {
138 	return READ_ONCE(*sp);
139 }
140 
141 /*
142  * Given a snapshot from rcu_seq_snap(), determine whether or not the
143  * corresponding update-side operation has started.
144  */
rcu_seq_started(unsigned long * sp,unsigned long s)145 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
146 {
147 	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
148 }
149 
150 /*
151  * Given a snapshot from rcu_seq_snap(), determine whether or not a
152  * full update-side operation has occurred.
153  */
rcu_seq_done(unsigned long * sp,unsigned long s)154 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
155 {
156 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
157 }
158 
159 /*
160  * Given a snapshot from rcu_seq_snap(), determine whether or not a
161  * full update-side operation has occurred, but do not allow the
162  * (ULONG_MAX / 2) safety-factor/guard-band.
163  */
rcu_seq_done_exact(unsigned long * sp,unsigned long s)164 static inline bool rcu_seq_done_exact(unsigned long *sp, unsigned long s)
165 {
166 	unsigned long cur_s = READ_ONCE(*sp);
167 
168 	return ULONG_CMP_GE(cur_s, s) || ULONG_CMP_LT(cur_s, s - (2 * RCU_SEQ_STATE_MASK + 1));
169 }
170 
171 /*
172  * Has a grace period completed since the time the old gp_seq was collected?
173  */
rcu_seq_completed_gp(unsigned long old,unsigned long new)174 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
175 {
176 	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
177 }
178 
179 /*
180  * Has a grace period started since the time the old gp_seq was collected?
181  */
rcu_seq_new_gp(unsigned long old,unsigned long new)182 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
183 {
184 	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
185 			    new);
186 }
187 
188 /*
189  * Roughly how many full grace periods have elapsed between the collection
190  * of the two specified grace periods?
191  */
rcu_seq_diff(unsigned long new,unsigned long old)192 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
193 {
194 	unsigned long rnd_diff;
195 
196 	if (old == new)
197 		return 0;
198 	/*
199 	 * Compute the number of grace periods (still shifted up), plus
200 	 * one if either of new and old is not an exact grace period.
201 	 */
202 	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
203 		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
204 		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
205 	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
206 		return 1; /* Definitely no grace period has elapsed. */
207 	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
208 }
209 
210 /*
211  * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
212  * by call_rcu() and rcu callback execution, and are therefore not part
213  * of the RCU API. These are in rcupdate.h because they are used by all
214  * RCU implementations.
215  */
216 
217 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
218 # define STATE_RCU_HEAD_READY	0
219 # define STATE_RCU_HEAD_QUEUED	1
220 
221 extern const struct debug_obj_descr rcuhead_debug_descr;
222 
debug_rcu_head_queue(struct rcu_head * head)223 static inline int debug_rcu_head_queue(struct rcu_head *head)
224 {
225 	int r1;
226 
227 	r1 = debug_object_activate(head, &rcuhead_debug_descr);
228 	debug_object_active_state(head, &rcuhead_debug_descr,
229 				  STATE_RCU_HEAD_READY,
230 				  STATE_RCU_HEAD_QUEUED);
231 	return r1;
232 }
233 
debug_rcu_head_unqueue(struct rcu_head * head)234 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
235 {
236 	debug_object_active_state(head, &rcuhead_debug_descr,
237 				  STATE_RCU_HEAD_QUEUED,
238 				  STATE_RCU_HEAD_READY);
239 	debug_object_deactivate(head, &rcuhead_debug_descr);
240 }
241 #else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
debug_rcu_head_queue(struct rcu_head * head)242 static inline int debug_rcu_head_queue(struct rcu_head *head)
243 {
244 	return 0;
245 }
246 
debug_rcu_head_unqueue(struct rcu_head * head)247 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
248 {
249 }
250 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
251 
debug_rcu_head_callback(struct rcu_head * rhp)252 static inline void debug_rcu_head_callback(struct rcu_head *rhp)
253 {
254 	if (unlikely(!rhp->func))
255 		kmem_dump_obj(rhp);
256 }
257 
258 extern int rcu_cpu_stall_suppress_at_boot;
259 
rcu_stall_is_suppressed_at_boot(void)260 static inline bool rcu_stall_is_suppressed_at_boot(void)
261 {
262 	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
263 }
264 
265 extern int rcu_cpu_stall_notifiers;
266 
267 #ifdef CONFIG_RCU_STALL_COMMON
268 
269 extern int rcu_cpu_stall_ftrace_dump;
270 extern int rcu_cpu_stall_suppress;
271 extern int rcu_cpu_stall_timeout;
272 extern int rcu_exp_cpu_stall_timeout;
273 extern int rcu_cpu_stall_cputime;
274 extern bool rcu_exp_stall_task_details __read_mostly;
275 int rcu_jiffies_till_stall_check(void);
276 int rcu_exp_jiffies_till_stall_check(void);
277 
rcu_stall_is_suppressed(void)278 static inline bool rcu_stall_is_suppressed(void)
279 {
280 	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
281 }
282 
283 #define rcu_ftrace_dump_stall_suppress() \
284 do { \
285 	if (!rcu_cpu_stall_suppress) \
286 		rcu_cpu_stall_suppress = 3; \
287 } while (0)
288 
289 #define rcu_ftrace_dump_stall_unsuppress() \
290 do { \
291 	if (rcu_cpu_stall_suppress == 3) \
292 		rcu_cpu_stall_suppress = 0; \
293 } while (0)
294 
295 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
296 
rcu_stall_is_suppressed(void)297 static inline bool rcu_stall_is_suppressed(void)
298 {
299 	return rcu_stall_is_suppressed_at_boot();
300 }
301 #define rcu_ftrace_dump_stall_suppress()
302 #define rcu_ftrace_dump_stall_unsuppress()
303 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
304 
305 /*
306  * Strings used in tracepoints need to be exported via the
307  * tracing system such that tools like perf and trace-cmd can
308  * translate the string address pointers to actual text.
309  */
310 #define TPS(x)  tracepoint_string(x)
311 
312 /*
313  * Dump the ftrace buffer, but only one time per callsite per boot.
314  */
315 #define rcu_ftrace_dump(oops_dump_mode) \
316 do { \
317 	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
318 	\
319 	if (!atomic_read(&___rfd_beenhere) && \
320 	    !atomic_xchg(&___rfd_beenhere, 1)) { \
321 		tracing_off(); \
322 		rcu_ftrace_dump_stall_suppress(); \
323 		ftrace_dump(oops_dump_mode); \
324 		rcu_ftrace_dump_stall_unsuppress(); \
325 	} \
326 } while (0)
327 
328 void rcu_early_boot_tests(void);
329 void rcu_test_sync_prims(void);
330 
331 /*
332  * This function really isn't for public consumption, but RCU is special in
333  * that context switches can allow the state machine to make progress.
334  */
335 extern void resched_cpu(int cpu);
336 
337 #if !defined(CONFIG_TINY_RCU)
338 
339 #include <linux/rcu_node_tree.h>
340 
341 extern int rcu_num_lvls;
342 extern int num_rcu_lvl[];
343 extern int rcu_num_nodes;
344 static bool rcu_fanout_exact;
345 static int rcu_fanout_leaf;
346 
347 /*
348  * Compute the per-level fanout, either using the exact fanout specified
349  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
350  */
rcu_init_levelspread(int * levelspread,const int * levelcnt)351 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
352 {
353 	int i;
354 
355 	for (i = 0; i < RCU_NUM_LVLS; i++)
356 		levelspread[i] = INT_MIN;
357 	if (rcu_fanout_exact) {
358 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
359 		for (i = rcu_num_lvls - 2; i >= 0; i--)
360 			levelspread[i] = RCU_FANOUT;
361 	} else {
362 		int ccur;
363 		int cprv;
364 
365 		cprv = nr_cpu_ids;
366 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
367 			ccur = levelcnt[i];
368 			levelspread[i] = (cprv + ccur - 1) / ccur;
369 			cprv = ccur;
370 		}
371 	}
372 }
373 
374 extern void rcu_init_geometry(void);
375 
376 /* Returns a pointer to the first leaf rcu_node structure. */
377 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
378 
379 /* Is this rcu_node a leaf? */
380 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
381 
382 /* Is this rcu_node the last leaf? */
383 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
384 
385 /*
386  * Do a full breadth-first scan of the {s,}rcu_node structures for the
387  * specified state structure (for SRCU) or the only rcu_state structure
388  * (for RCU).
389  */
390 #define _rcu_for_each_node_breadth_first(sp, rnp) \
391 	for ((rnp) = &(sp)->node[0]; \
392 	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
393 #define rcu_for_each_node_breadth_first(rnp) \
394 	_rcu_for_each_node_breadth_first(&rcu_state, rnp)
395 #define srcu_for_each_node_breadth_first(ssp, rnp) \
396 	_rcu_for_each_node_breadth_first(ssp->srcu_sup, rnp)
397 
398 /*
399  * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
400  * Note that if there is a singleton rcu_node tree with but one rcu_node
401  * structure, this loop -will- visit the rcu_node structure.  It is still
402  * a leaf node, even if it is also the root node.
403  */
404 #define rcu_for_each_leaf_node(rnp) \
405 	for ((rnp) = rcu_first_leaf_node(); \
406 	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
407 
408 /*
409  * Iterate over all possible CPUs in a leaf RCU node.
410  */
411 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
412 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
413 	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
414 	     (cpu) <= rnp->grphi; \
415 	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
416 
417 /*
418  * Iterate over all CPUs in a leaf RCU node's specified mask.
419  */
420 #define rcu_find_next_bit(rnp, cpu, mask) \
421 	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
422 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
423 	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
424 	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
425 	     (cpu) <= rnp->grphi; \
426 	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
427 
428 #endif /* !defined(CONFIG_TINY_RCU) */
429 
430 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
431 
432 /*
433  * Wrappers for the rcu_node::lock acquire and release.
434  *
435  * Because the rcu_nodes form a tree, the tree traversal locking will observe
436  * different lock values, this in turn means that an UNLOCK of one level
437  * followed by a LOCK of another level does not imply a full memory barrier;
438  * and most importantly transitivity is lost.
439  *
440  * In order to restore full ordering between tree levels, augment the regular
441  * lock acquire functions with smp_mb__after_unlock_lock().
442  *
443  * As ->lock of struct rcu_node is a __private field, therefore one should use
444  * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
445  */
446 #define raw_spin_lock_rcu_node(p)					\
447 do {									\
448 	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
449 	smp_mb__after_unlock_lock();					\
450 } while (0)
451 
452 #define raw_spin_unlock_rcu_node(p)					\
453 do {									\
454 	lockdep_assert_irqs_disabled();					\
455 	raw_spin_unlock(&ACCESS_PRIVATE(p, lock));			\
456 } while (0)
457 
458 #define raw_spin_lock_irq_rcu_node(p)					\
459 do {									\
460 	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
461 	smp_mb__after_unlock_lock();					\
462 } while (0)
463 
464 #define raw_spin_unlock_irq_rcu_node(p)					\
465 do {									\
466 	lockdep_assert_irqs_disabled();					\
467 	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock));			\
468 } while (0)
469 
470 #define raw_spin_lock_irqsave_rcu_node(p, flags)			\
471 do {									\
472 	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
473 	smp_mb__after_unlock_lock();					\
474 } while (0)
475 
476 #define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
477 do {									\
478 	lockdep_assert_irqs_disabled();					\
479 	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags);	\
480 } while (0)
481 
482 #define raw_spin_trylock_rcu_node(p)					\
483 ({									\
484 	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
485 									\
486 	if (___locked)							\
487 		smp_mb__after_unlock_lock();				\
488 	___locked;							\
489 })
490 
491 #define raw_lockdep_assert_held_rcu_node(p)				\
492 	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
493 
494 #endif // #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
495 
496 #ifdef CONFIG_TINY_RCU
497 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
rcu_gp_is_normal(void)498 static inline bool rcu_gp_is_normal(void) { return true; }
rcu_gp_is_expedited(void)499 static inline bool rcu_gp_is_expedited(void) { return false; }
rcu_async_should_hurry(void)500 static inline bool rcu_async_should_hurry(void) { return false; }
rcu_expedite_gp(void)501 static inline void rcu_expedite_gp(void) { }
rcu_unexpedite_gp(void)502 static inline void rcu_unexpedite_gp(void) { }
rcu_async_hurry(void)503 static inline void rcu_async_hurry(void) { }
rcu_async_relax(void)504 static inline void rcu_async_relax(void) { }
rcu_cpu_online(int cpu)505 static inline bool rcu_cpu_online(int cpu) { return true; }
506 #else /* #ifdef CONFIG_TINY_RCU */
507 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
508 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
509 bool rcu_async_should_hurry(void);  /* Internal RCU use. */
510 void rcu_expedite_gp(void);
511 void rcu_unexpedite_gp(void);
512 void rcu_async_hurry(void);
513 void rcu_async_relax(void);
514 void rcupdate_announce_bootup_oddness(void);
515 bool rcu_cpu_online(int cpu);
516 #ifdef CONFIG_TASKS_RCU_GENERIC
517 void show_rcu_tasks_gp_kthreads(void);
518 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
show_rcu_tasks_gp_kthreads(void)519 static inline void show_rcu_tasks_gp_kthreads(void) {}
520 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
521 #endif /* #else #ifdef CONFIG_TINY_RCU */
522 
523 #ifdef CONFIG_TASKS_RCU
524 struct task_struct *get_rcu_tasks_gp_kthread(void);
525 void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq);
526 #endif // # ifdef CONFIG_TASKS_RCU
527 
528 #ifdef CONFIG_TASKS_RUDE_RCU
529 struct task_struct *get_rcu_tasks_rude_gp_kthread(void);
530 void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq);
531 #endif // # ifdef CONFIG_TASKS_RUDE_RCU
532 
533 #ifdef CONFIG_TASKS_TRACE_RCU
534 void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq);
535 #endif
536 
537 #ifdef CONFIG_TASKS_RCU_GENERIC
538 void tasks_cblist_init_generic(void);
539 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
tasks_cblist_init_generic(void)540 static inline void tasks_cblist_init_generic(void) { }
541 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
542 
543 #define RCU_SCHEDULER_INACTIVE	0
544 #define RCU_SCHEDULER_INIT	1
545 #define RCU_SCHEDULER_RUNNING	2
546 
547 enum rcutorture_type {
548 	RCU_FLAVOR,
549 	RCU_TASKS_FLAVOR,
550 	RCU_TASKS_RUDE_FLAVOR,
551 	RCU_TASKS_TRACING_FLAVOR,
552 	RCU_TRIVIAL_FLAVOR,
553 	SRCU_FLAVOR,
554 	INVALID_RCU_FLAVOR
555 };
556 
557 #if defined(CONFIG_RCU_LAZY)
558 unsigned long rcu_get_jiffies_lazy_flush(void);
559 void rcu_set_jiffies_lazy_flush(unsigned long j);
560 #else
rcu_get_jiffies_lazy_flush(void)561 static inline unsigned long rcu_get_jiffies_lazy_flush(void) { return 0; }
rcu_set_jiffies_lazy_flush(unsigned long j)562 static inline void rcu_set_jiffies_lazy_flush(unsigned long j) { }
563 #endif
564 
565 #if defined(CONFIG_TREE_RCU)
566 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq);
567 void do_trace_rcu_torture_read(const char *rcutorturename,
568 			       struct rcu_head *rhp,
569 			       unsigned long secs,
570 			       unsigned long c_old,
571 			       unsigned long c);
572 void rcu_gp_set_torture_wait(int duration);
573 #else
rcutorture_get_gp_data(int * flags,unsigned long * gp_seq)574 static inline void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
575 {
576 	*flags = 0;
577 	*gp_seq = 0;
578 }
579 #ifdef CONFIG_RCU_TRACE
580 void do_trace_rcu_torture_read(const char *rcutorturename,
581 			       struct rcu_head *rhp,
582 			       unsigned long secs,
583 			       unsigned long c_old,
584 			       unsigned long c);
585 #else
586 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
587 	do { } while (0)
588 #endif
rcu_gp_set_torture_wait(int duration)589 static inline void rcu_gp_set_torture_wait(int duration) { }
590 #endif
591 
592 #ifdef CONFIG_TINY_SRCU
593 
srcutorture_get_gp_data(struct srcu_struct * sp,int * flags,unsigned long * gp_seq)594 static inline void srcutorture_get_gp_data(struct srcu_struct *sp, int *flags,
595 					   unsigned long *gp_seq)
596 {
597 	*flags = 0;
598 	*gp_seq = sp->srcu_idx;
599 }
600 
601 #elif defined(CONFIG_TREE_SRCU)
602 
603 void srcutorture_get_gp_data(struct srcu_struct *sp, int *flags,
604 			     unsigned long *gp_seq);
605 
606 #endif
607 
608 #ifdef CONFIG_TINY_RCU
rcu_dynticks_zero_in_eqs(int cpu,int * vp)609 static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
rcu_get_gp_seq(void)610 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
rcu_exp_batches_completed(void)611 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
612 static inline unsigned long
srcu_batches_completed(struct srcu_struct * sp)613 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
rcu_force_quiescent_state(void)614 static inline void rcu_force_quiescent_state(void) { }
rcu_check_boost_fail(unsigned long gp_state,int * cpup)615 static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
show_rcu_gp_kthreads(void)616 static inline void show_rcu_gp_kthreads(void) { }
rcu_get_gp_kthreads_prio(void)617 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
rcu_fwd_progress_check(unsigned long j)618 static inline void rcu_fwd_progress_check(unsigned long j) { }
rcu_gp_slow_register(atomic_t * rgssp)619 static inline void rcu_gp_slow_register(atomic_t *rgssp) { }
rcu_gp_slow_unregister(atomic_t * rgssp)620 static inline void rcu_gp_slow_unregister(atomic_t *rgssp) { }
621 #else /* #ifdef CONFIG_TINY_RCU */
622 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
623 unsigned long rcu_get_gp_seq(void);
624 unsigned long rcu_exp_batches_completed(void);
625 unsigned long srcu_batches_completed(struct srcu_struct *sp);
626 bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
627 void show_rcu_gp_kthreads(void);
628 int rcu_get_gp_kthreads_prio(void);
629 void rcu_fwd_progress_check(unsigned long j);
630 void rcu_force_quiescent_state(void);
631 extern struct workqueue_struct *rcu_gp_wq;
632 extern struct kthread_worker *rcu_exp_gp_kworker;
633 void rcu_gp_slow_register(atomic_t *rgssp);
634 void rcu_gp_slow_unregister(atomic_t *rgssp);
635 #endif /* #else #ifdef CONFIG_TINY_RCU */
636 
637 #ifdef CONFIG_RCU_NOCB_CPU
638 void rcu_bind_current_to_nocb(void);
639 #else
rcu_bind_current_to_nocb(void)640 static inline void rcu_bind_current_to_nocb(void) { }
641 #endif
642 
643 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
644 void show_rcu_tasks_classic_gp_kthread(void);
645 #else
show_rcu_tasks_classic_gp_kthread(void)646 static inline void show_rcu_tasks_classic_gp_kthread(void) {}
647 #endif
648 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
649 void show_rcu_tasks_rude_gp_kthread(void);
650 #else
show_rcu_tasks_rude_gp_kthread(void)651 static inline void show_rcu_tasks_rude_gp_kthread(void) {}
652 #endif
653 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
654 void show_rcu_tasks_trace_gp_kthread(void);
655 #else
show_rcu_tasks_trace_gp_kthread(void)656 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
657 #endif
658 
659 #ifdef CONFIG_TINY_RCU
rcu_cpu_beenfullyonline(int cpu)660 static inline bool rcu_cpu_beenfullyonline(int cpu) { return true; }
661 #else
662 bool rcu_cpu_beenfullyonline(int cpu);
663 #endif
664 
665 #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
666 int rcu_stall_notifier_call_chain(unsigned long val, void *v);
667 #else // #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
rcu_stall_notifier_call_chain(unsigned long val,void * v)668 static inline int rcu_stall_notifier_call_chain(unsigned long val, void *v) { return NOTIFY_DONE; }
669 #endif // #else // #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
670 
671 #endif /* __LINUX_RCU_H */
672