1 /*
2 * dlls/rsaenh/rsaenh.c
3 * RSAENH - RSA encryption for Wine
4 *
5 * Copyright 2002 TransGaming Technologies (David Hammerton)
6 * Copyright 2004 Mike McCormack for CodeWeavers
7 * Copyright 2004, 2005 Michael Jung
8 * Copyright 2007 Vijay Kiran Kamuju
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
23 */
24
25 #define WIN32_NO_STATUS
26 #define _INC_WINDOWS
27 #define COM_NO_WINDOWS_H
28
29 #include <config.h>
30 //#include "wine/port.h"
31 #include <wine/library.h>
32 #include <wine/debug.h>
33
34 //#include <stdarg.h>
35 //#include <stdio.h>
36
37 #include <windef.h>
38 //#include "winbase.h"
39 #include <winreg.h>
40 #include <wincrypt.h>
41 #include "handle.h"
42 #include "implglue.h"
43 #include <objbase.h>
44 #include <rpcproxy.h>
45 #include <aclapi.h>
46 #include <strsafe.h>
47
48 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
49
50 static HINSTANCE instance;
51
52 /******************************************************************************
53 * CRYPTHASH - hash objects
54 */
55 #define RSAENH_MAGIC_HASH 0x85938417u
56 #define RSAENH_MAX_HASH_SIZE 104
57 #define RSAENH_HASHSTATE_HASHING 1
58 #define RSAENH_HASHSTATE_FINISHED 2
59 typedef struct _RSAENH_TLS1PRF_PARAMS
60 {
61 CRYPT_DATA_BLOB blobLabel;
62 CRYPT_DATA_BLOB blobSeed;
63 } RSAENH_TLS1PRF_PARAMS;
64
65 typedef struct tagCRYPTHASH
66 {
67 OBJECTHDR header;
68 ALG_ID aiAlgid;
69 HCRYPTKEY hKey;
70 HCRYPTPROV hProv;
71 DWORD dwHashSize;
72 DWORD dwState;
73 HASH_CONTEXT context;
74 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
75 PHMAC_INFO pHMACInfo;
76 RSAENH_TLS1PRF_PARAMS tpPRFParams;
77 } CRYPTHASH;
78
79 /******************************************************************************
80 * CRYPTKEY - key objects
81 */
82 #define RSAENH_MAGIC_KEY 0x73620457u
83 #define RSAENH_MAX_KEY_SIZE 64
84 #define RSAENH_MAX_BLOCK_SIZE 24
85 #define RSAENH_KEYSTATE_IDLE 0
86 #define RSAENH_KEYSTATE_ENCRYPTING 1
87 #define RSAENH_KEYSTATE_MASTERKEY 2
88 typedef struct _RSAENH_SCHANNEL_INFO
89 {
90 SCHANNEL_ALG saEncAlg;
91 SCHANNEL_ALG saMACAlg;
92 CRYPT_DATA_BLOB blobClientRandom;
93 CRYPT_DATA_BLOB blobServerRandom;
94 } RSAENH_SCHANNEL_INFO;
95
96 typedef struct tagCRYPTKEY
97 {
98 OBJECTHDR header;
99 ALG_ID aiAlgid;
100 HCRYPTPROV hProv;
101 DWORD dwMode;
102 DWORD dwModeBits;
103 DWORD dwPermissions;
104 DWORD dwKeyLen;
105 DWORD dwEffectiveKeyLen;
106 DWORD dwSaltLen;
107 DWORD dwBlockLen;
108 DWORD dwState;
109 KEY_CONTEXT context;
110 BYTE abKeyValue[RSAENH_MAX_KEY_SIZE];
111 BYTE abInitVector[RSAENH_MAX_BLOCK_SIZE];
112 BYTE abChainVector[RSAENH_MAX_BLOCK_SIZE];
113 RSAENH_SCHANNEL_INFO siSChannelInfo;
114 CRYPT_DATA_BLOB blobHmacKey;
115 } CRYPTKEY;
116
117 /******************************************************************************
118 * KEYCONTAINER - key containers
119 */
120 #define RSAENH_PERSONALITY_BASE 0u
121 #define RSAENH_PERSONALITY_STRONG 1u
122 #define RSAENH_PERSONALITY_ENHANCED 2u
123 #define RSAENH_PERSONALITY_SCHANNEL 3u
124 #define RSAENH_PERSONALITY_AES 4u
125
126 #define RSAENH_MAGIC_CONTAINER 0x26384993u
127 typedef struct tagKEYCONTAINER
128 {
129 OBJECTHDR header;
130 DWORD dwFlags;
131 DWORD dwPersonality;
132 DWORD dwEnumAlgsCtr;
133 DWORD dwEnumContainersCtr;
134 CHAR szName[MAX_PATH];
135 CHAR szProvName[MAX_PATH];
136 HCRYPTKEY hKeyExchangeKeyPair;
137 HCRYPTKEY hSignatureKeyPair;
138 } KEYCONTAINER;
139
140 /******************************************************************************
141 * Some magic constants
142 */
143 #define RSAENH_ENCRYPT 1
144 #define RSAENH_DECRYPT 0
145 #define RSAENH_HMAC_DEF_IPAD_CHAR 0x36
146 #define RSAENH_HMAC_DEF_OPAD_CHAR 0x5c
147 #define RSAENH_HMAC_DEF_PAD_LEN 64
148 #define RSAENH_HMAC_BLOCK_LEN 64
149 #define RSAENH_DES_EFFECTIVE_KEYLEN 56
150 #define RSAENH_DES_STORAGE_KEYLEN 64
151 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
152 #define RSAENH_3DES112_STORAGE_KEYLEN 128
153 #define RSAENH_3DES_EFFECTIVE_KEYLEN 168
154 #define RSAENH_3DES_STORAGE_KEYLEN 192
155 #define RSAENH_MAGIC_RSA2 0x32415352
156 #define RSAENH_MAGIC_RSA1 0x31415352
157 #define RSAENH_PKC_BLOCKTYPE 0x02
158 #define RSAENH_SSL3_VERSION_MAJOR 3
159 #define RSAENH_SSL3_VERSION_MINOR 0
160 #define RSAENH_TLS1_VERSION_MAJOR 3
161 #define RSAENH_TLS1_VERSION_MINOR 1
162 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
163
164 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
165 /******************************************************************************
166 * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
167 */
168 #define RSAENH_MAX_ENUMALGS 24
169 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
170 static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
171 {
172 {
173 {CALG_RC2, 40, 40, 56,0, 4,"RC2", 24,"RSA Data Security's RC2"},
174 {CALG_RC4, 40, 40, 56,0, 4,"RC4", 24,"RSA Data Security's RC4"},
175 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
176 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
177 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
178 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
179 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
180 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
181 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
182 {CALG_RSA_SIGN, 512,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
183 {CALG_RSA_KEYX, 512,384, 1024,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
184 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
185 {0, 0, 0, 0,0, 1,"", 1,""}
186 },
187 {
188 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
189 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
190 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
191 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
192 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
193 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
194 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
195 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
196 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
197 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
198 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
199 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
200 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
201 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
202 {0, 0, 0, 0,0, 1,"", 1,""}
203 },
204 {
205 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
206 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
207 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
208 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
209 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
210 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
211 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
212 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
213 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
214 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
215 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
216 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
217 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
218 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
219 {0, 0, 0, 0,0, 1,"", 1,""}
220 },
221 {
222 {CALG_RC2, 128, 40, 128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC2", 24,"RSA Data Security's RC2"},
223 {CALG_RC4, 128, 40, 128,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"RC4", 24,"RSA Data Security's RC4"},
224 {CALG_DES, 56, 56, 56,RSAENH_PCT1_SSL2_SSL3_TLS1, 4,"DES", 31,"Data Encryption Standard (DES)"},
225 {CALG_3DES_112, 112,112, 112,RSAENH_PCT1_SSL2_SSL3_TLS1,13,"3DES TWO KEY",19,"Two Key Triple DES"},
226 {CALG_3DES, 168,168, 168,RSAENH_PCT1_SSL2_SSL3_TLS1, 5,"3DES", 21,"Three Key Triple DES"},
227 {CALG_SHA,160,160,160,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,6,"SHA-1",30,"Secure Hash Algorithm (SHA-1)"},
228 {CALG_MD5,128,128,128,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,4,"MD5",23,"Message Digest 5 (MD5)"},
229 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
230 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
231 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_SIGN",14,"RSA Signature"},
232 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1,9,"RSA_KEYX",17,"RSA Key Exchange"},
233 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
234 {CALG_PCT1_MASTER,128,128,128,CRYPT_FLAG_PCT1, 12,"PCT1 MASTER",12,"PCT1 Master"},
235 {CALG_SSL2_MASTER,40,40, 192,CRYPT_FLAG_SSL2, 12,"SSL2 MASTER",12,"SSL2 Master"},
236 {CALG_SSL3_MASTER,384,384,384,CRYPT_FLAG_SSL3, 12,"SSL3 MASTER",12,"SSL3 Master"},
237 {CALG_TLS1_MASTER,384,384,384,CRYPT_FLAG_TLS1, 12,"TLS1 MASTER",12,"TLS1 Master"},
238 {CALG_SCHANNEL_MASTER_HASH,0,0,-1,0, 16,"SCH MASTER HASH",21,"SChannel Master Hash"},
239 {CALG_SCHANNEL_MAC_KEY,0,0,-1,0, 12,"SCH MAC KEY",17,"SChannel MAC Key"},
240 {CALG_SCHANNEL_ENC_KEY,0,0,-1,0, 12,"SCH ENC KEY",24,"SChannel Encryption Key"},
241 {CALG_TLS1PRF, 0, 0, -1,0, 9,"TLS1 PRF", 28,"TLS1 Pseudo Random Function"},
242 {0, 0, 0, 0,0, 1,"", 1,""}
243 },
244 {
245 {CALG_RC2, 128, 40, 128,0, 4,"RC2", 24,"RSA Data Security's RC2"},
246 {CALG_RC4, 128, 40, 128,0, 4,"RC4", 24,"RSA Data Security's RC4"},
247 {CALG_DES, 56, 56, 56,0, 4,"DES", 31,"Data Encryption Standard (DES)"},
248 {CALG_3DES_112, 112,112, 112,0, 13,"3DES TWO KEY",19,"Two Key Triple DES"},
249 {CALG_3DES, 168,168, 168,0, 5,"3DES", 21,"Three Key Triple DES"},
250 {CALG_AES, 128,128, 128,0, 4,"AES", 35,"Advanced Encryption Standard (AES)"},
251 {CALG_AES_128, 128,128, 128,0, 8,"AES-128", 39,"Advanced Encryption Standard (AES-128)"},
252 {CALG_AES_192, 192,192, 192,0, 8,"AES-192", 39,"Advanced Encryption Standard (AES-192)"},
253 {CALG_AES_256, 256,256, 256,0, 8,"AES-256", 39,"Advanced Encryption Standard (AES-256)"},
254 {CALG_SHA, 160,160, 160,CRYPT_FLAG_SIGNING, 6,"SHA-1", 30,"Secure Hash Algorithm (SHA-1)"},
255 {CALG_SHA_256, 256,256, 256,CRYPT_FLAG_SIGNING, 6,"SHA-256", 30,"Secure Hash Algorithm (SHA-256)"},
256 {CALG_SHA_384, 384,384, 384,CRYPT_FLAG_SIGNING, 6,"SHA-384", 30,"Secure Hash Algorithm (SHA-384)"},
257 {CALG_SHA_512, 512,512, 512,CRYPT_FLAG_SIGNING, 6,"SHA-512", 30,"Secure Hash Algorithm (SHA-512)"},
258 {CALG_MD2, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD2", 23,"Message Digest 2 (MD2)"},
259 {CALG_MD4, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD4", 23,"Message Digest 4 (MD4)"},
260 {CALG_MD5, 128,128, 128,CRYPT_FLAG_SIGNING, 4,"MD5", 23,"Message Digest 5 (MD5)"},
261 {CALG_SSL3_SHAMD5,288,288,288,0, 12,"SSL3 SHAMD5",12,"SSL3 SHAMD5"},
262 {CALG_MAC, 0, 0, 0,0, 4,"MAC", 28,"Message Authentication Code"},
263 {CALG_RSA_SIGN,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_SIGN",14,"RSA Signature"},
264 {CALG_RSA_KEYX,1024,384,16384,CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC,9,"RSA_KEYX",17,"RSA Key Exchange"},
265 {CALG_HMAC, 0, 0, 0,0, 5,"HMAC", 18,"Hugo's MAC (HMAC)"},
266 {0, 0, 0, 0,0, 1,"", 1,""}
267 }
268 };
269
270 /******************************************************************************
271 * API forward declarations
272 */
273 BOOL WINAPI
274 RSAENH_CPGetKeyParam(
275 HCRYPTPROV hProv,
276 HCRYPTKEY hKey,
277 DWORD dwParam,
278 BYTE *pbData,
279 DWORD *pdwDataLen,
280 DWORD dwFlags
281 );
282
283 BOOL WINAPI
284 RSAENH_CPEncrypt(
285 HCRYPTPROV hProv,
286 HCRYPTKEY hKey,
287 HCRYPTHASH hHash,
288 BOOL Final,
289 DWORD dwFlags,
290 BYTE *pbData,
291 DWORD *pdwDataLen,
292 DWORD dwBufLen
293 );
294
295 BOOL WINAPI
296 RSAENH_CPCreateHash(
297 HCRYPTPROV hProv,
298 ALG_ID Algid,
299 HCRYPTKEY hKey,
300 DWORD dwFlags,
301 HCRYPTHASH *phHash
302 );
303
304 BOOL WINAPI
305 RSAENH_CPSetHashParam(
306 HCRYPTPROV hProv,
307 HCRYPTHASH hHash,
308 DWORD dwParam,
309 BYTE *pbData, DWORD dwFlags
310 );
311
312 BOOL WINAPI
313 RSAENH_CPGetHashParam(
314 HCRYPTPROV hProv,
315 HCRYPTHASH hHash,
316 DWORD dwParam,
317 BYTE *pbData,
318 DWORD *pdwDataLen,
319 DWORD dwFlags
320 );
321
322 BOOL WINAPI
323 RSAENH_CPDestroyHash(
324 HCRYPTPROV hProv,
325 HCRYPTHASH hHash
326 );
327
328 static BOOL crypt_export_key(
329 CRYPTKEY *pCryptKey,
330 HCRYPTKEY hPubKey,
331 DWORD dwBlobType,
332 DWORD dwFlags,
333 BOOL force,
334 BYTE *pbData,
335 DWORD *pdwDataLen
336 );
337
338 static BOOL import_key(
339 HCRYPTPROV hProv,
340 const BYTE *pbData,
341 DWORD dwDataLen,
342 HCRYPTKEY hPubKey,
343 DWORD dwFlags,
344 BOOL fStoreKey,
345 HCRYPTKEY *phKey
346 );
347
348 BOOL WINAPI
349 RSAENH_CPHashData(
350 HCRYPTPROV hProv,
351 HCRYPTHASH hHash,
352 const BYTE *pbData,
353 DWORD dwDataLen,
354 DWORD dwFlags
355 );
356
357 /******************************************************************************
358 * CSP's handle table (used by all acquired key containers)
359 */
360 static struct handle_table handle_table;
361
362 /******************************************************************************
363 * DllMain (RSAENH.@)
364 *
365 * Initializes and destroys the handle table for the CSP's handles.
366 */
DllMain(HINSTANCE hInstance,DWORD fdwReason,PVOID reserved)367 BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID reserved)
368 {
369 switch (fdwReason)
370 {
371 case DLL_PROCESS_ATTACH:
372 instance = hInstance;
373 DisableThreadLibraryCalls(hInstance);
374 init_handle_table(&handle_table);
375 break;
376
377 case DLL_PROCESS_DETACH:
378 if (reserved) break;
379 destroy_handle_table(&handle_table);
380 break;
381 }
382 return TRUE;
383 }
384
385 /******************************************************************************
386 * copy_param [Internal]
387 *
388 * Helper function that supports the standard WINAPI protocol for querying data
389 * of dynamic size.
390 *
391 * PARAMS
392 * pbBuffer [O] Buffer where the queried parameter is copied to, if it is large enough.
393 * May be NUL if the required buffer size is to be queried only.
394 * pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
395 * Out: Size of parameter pbParam
396 * pbParam [I] Parameter value.
397 * dwParamSize [I] Size of pbParam
398 *
399 * RETURN
400 * Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
401 * Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
402 */
copy_param(BYTE * pbBuffer,DWORD * pdwBufferSize,const BYTE * pbParam,DWORD dwParamSize)403 static inline BOOL copy_param(BYTE *pbBuffer, DWORD *pdwBufferSize, const BYTE *pbParam,
404 DWORD dwParamSize)
405 {
406 if (pbBuffer)
407 {
408 if (dwParamSize > *pdwBufferSize)
409 {
410 SetLastError(ERROR_MORE_DATA);
411 *pdwBufferSize = dwParamSize;
412 return FALSE;
413 }
414 memcpy(pbBuffer, pbParam, dwParamSize);
415 }
416 *pdwBufferSize = dwParamSize;
417 return TRUE;
418 }
419
get_key_container(HCRYPTPROV hProv)420 static inline KEYCONTAINER* get_key_container(HCRYPTPROV hProv)
421 {
422 KEYCONTAINER *pKeyContainer;
423
424 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
425 (OBJECTHDR**)&pKeyContainer))
426 {
427 SetLastError(NTE_BAD_UID);
428 return NULL;
429 }
430 return pKeyContainer;
431 }
432
433 /******************************************************************************
434 * get_algid_info [Internal]
435 *
436 * Query CSP capabilities for a given crypto algorithm.
437 *
438 * PARAMS
439 * hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
440 * algid [I] Identifier of the crypto algorithm about which information is requested.
441 *
442 * RETURNS
443 * Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
444 * Failure: NULL (algid not supported)
445 */
get_algid_info(HCRYPTPROV hProv,ALG_ID algid)446 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
447 const PROV_ENUMALGS_EX *iterator;
448 KEYCONTAINER *pKeyContainer;
449
450 if (!(pKeyContainer = get_key_container(hProv))) return NULL;
451
452 for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
453 if (iterator->aiAlgid == algid) return iterator;
454 }
455
456 SetLastError(NTE_BAD_ALGID);
457 return NULL;
458 }
459
460 /******************************************************************************
461 * copy_data_blob [Internal]
462 *
463 * deeply copies a DATA_BLOB
464 *
465 * PARAMS
466 * dst [O] That's where the blob will be copied to
467 * src [I] Source blob
468 *
469 * RETURNS
470 * Success: TRUE
471 * Failure: FALSE (GetLastError() == NTE_NO_MEMORY
472 *
473 * NOTES
474 * Use free_data_blob to release resources occupied by copy_data_blob.
475 */
copy_data_blob(PCRYPT_DATA_BLOB dst,const PCRYPT_DATA_BLOB src)476 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src)
477 {
478 dst->pbData = HeapAlloc(GetProcessHeap(), 0, src->cbData);
479 if (!dst->pbData) {
480 SetLastError(NTE_NO_MEMORY);
481 return FALSE;
482 }
483 dst->cbData = src->cbData;
484 memcpy(dst->pbData, src->pbData, src->cbData);
485 return TRUE;
486 }
487
488 /******************************************************************************
489 * concat_data_blobs [Internal]
490 *
491 * Concatenates two blobs
492 *
493 * PARAMS
494 * dst [O] The new blob will be copied here
495 * src1 [I] Prefix blob
496 * src2 [I] Appendix blob
497 *
498 * RETURNS
499 * Success: TRUE
500 * Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
501 *
502 * NOTES
503 * Release resources occupied by concat_data_blobs with free_data_blobs
504 */
concat_data_blobs(PCRYPT_DATA_BLOB dst,const PCRYPT_DATA_BLOB src1,const PCRYPT_DATA_BLOB src2)505 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src1,
506 const PCRYPT_DATA_BLOB src2)
507 {
508 dst->cbData = src1->cbData + src2->cbData;
509 dst->pbData = HeapAlloc(GetProcessHeap(), 0, dst->cbData);
510 if (!dst->pbData) {
511 SetLastError(NTE_NO_MEMORY);
512 return FALSE;
513 }
514 memcpy(dst->pbData, src1->pbData, src1->cbData);
515 memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
516 return TRUE;
517 }
518
519 /******************************************************************************
520 * free_data_blob [Internal]
521 *
522 * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
523 *
524 * PARAMS
525 * pBlob [I] Heap space occupied by pBlob->pbData is released
526 */
free_data_blob(PCRYPT_DATA_BLOB pBlob)527 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
528 HeapFree(GetProcessHeap(), 0, pBlob->pbData);
529 }
530
531 /******************************************************************************
532 * init_data_blob [Internal]
533 */
init_data_blob(PCRYPT_DATA_BLOB pBlob)534 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
535 pBlob->pbData = NULL;
536 pBlob->cbData = 0;
537 }
538
539 /******************************************************************************
540 * free_hmac_info [Internal]
541 *
542 * Deeply free an HMAC_INFO struct.
543 *
544 * PARAMS
545 * hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
546 *
547 * NOTES
548 * See Internet RFC 2104 for details on the HMAC algorithm.
549 */
free_hmac_info(PHMAC_INFO hmac_info)550 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
551 if (!hmac_info) return;
552 HeapFree(GetProcessHeap(), 0, hmac_info->pbInnerString);
553 HeapFree(GetProcessHeap(), 0, hmac_info->pbOuterString);
554 HeapFree(GetProcessHeap(), 0, hmac_info);
555 }
556
557 /******************************************************************************
558 * copy_hmac_info [Internal]
559 *
560 * Deeply copy an HMAC_INFO struct
561 *
562 * PARAMS
563 * dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
564 * src [I] Pointer to the HMAC_INFO struct to be copied.
565 *
566 * RETURNS
567 * Success: TRUE
568 * Failure: FALSE
569 *
570 * NOTES
571 * See Internet RFC 2104 for details on the HMAC algorithm.
572 */
copy_hmac_info(PHMAC_INFO * dst,const HMAC_INFO * src)573 static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
574 if (!src) return FALSE;
575 *dst = HeapAlloc(GetProcessHeap(), 0, sizeof(HMAC_INFO));
576 if (!*dst) return FALSE;
577 **dst = *src;
578 (*dst)->pbInnerString = NULL;
579 (*dst)->pbOuterString = NULL;
580 if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
581 (*dst)->pbInnerString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbInnerString);
582 if (!(*dst)->pbInnerString) {
583 free_hmac_info(*dst);
584 return FALSE;
585 }
586 if (src->cbInnerString)
587 memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
588 else
589 memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
590 if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
591 (*dst)->pbOuterString = HeapAlloc(GetProcessHeap(), 0, (*dst)->cbOuterString);
592 if (!(*dst)->pbOuterString) {
593 free_hmac_info(*dst);
594 return FALSE;
595 }
596 if (src->cbOuterString)
597 memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
598 else
599 memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
600 return TRUE;
601 }
602
603 /******************************************************************************
604 * destroy_hash [Internal]
605 *
606 * Destructor for hash objects
607 *
608 * PARAMS
609 * pCryptHash [I] Pointer to the hash object to be destroyed.
610 * Will be invalid after function returns!
611 */
destroy_hash(OBJECTHDR * pObject)612 static void destroy_hash(OBJECTHDR *pObject)
613 {
614 CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
615
616 free_hmac_info(pCryptHash->pHMACInfo);
617 free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
618 free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
619 HeapFree(GetProcessHeap(), 0, pCryptHash);
620 }
621
622 /******************************************************************************
623 * init_hash [Internal]
624 *
625 * Initialize (or reset) a hash object
626 *
627 * PARAMS
628 * pCryptHash [I] The hash object to be initialized.
629 */
init_hash(CRYPTHASH * pCryptHash)630 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
631 DWORD dwLen;
632
633 switch (pCryptHash->aiAlgid)
634 {
635 case CALG_HMAC:
636 if (pCryptHash->pHMACInfo) {
637 const PROV_ENUMALGS_EX *pAlgInfo;
638
639 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
640 if (!pAlgInfo) return FALSE;
641 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
642 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
643 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
644 pCryptHash->pHMACInfo->pbInnerString,
645 pCryptHash->pHMACInfo->cbInnerString);
646 }
647 return TRUE;
648
649 case CALG_MAC:
650 dwLen = sizeof(DWORD);
651 RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN,
652 (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
653 pCryptHash->dwHashSize >>= 3;
654 return TRUE;
655
656 default:
657 return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context);
658 }
659 }
660
661 /******************************************************************************
662 * update_hash [Internal]
663 *
664 * Hashes the given data and updates the hash object's state accordingly
665 *
666 * PARAMS
667 * pCryptHash [I] Hash object to be updated.
668 * pbData [I] Pointer to data stream to be hashed.
669 * dwDataLen [I] Length of data stream.
670 */
update_hash(CRYPTHASH * pCryptHash,const BYTE * pbData,DWORD dwDataLen)671 static inline void update_hash(CRYPTHASH *pCryptHash, const BYTE *pbData, DWORD dwDataLen)
672 {
673 BYTE *pbTemp;
674
675 switch (pCryptHash->aiAlgid)
676 {
677 case CALG_HMAC:
678 if (pCryptHash->pHMACInfo)
679 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
680 pbData, dwDataLen);
681 break;
682
683 case CALG_MAC:
684 pbTemp = HeapAlloc(GetProcessHeap(), 0, dwDataLen);
685 if (!pbTemp) return;
686 memcpy(pbTemp, pbData, dwDataLen);
687 RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, FALSE, 0,
688 pbTemp, &dwDataLen, dwDataLen);
689 HeapFree(GetProcessHeap(), 0, pbTemp);
690 break;
691
692 default:
693 update_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pbData, dwDataLen);
694 }
695 }
696
697 /******************************************************************************
698 * finalize_hash [Internal]
699 *
700 * Finalizes the hash, after all data has been hashed with update_hash.
701 * No additional data can be hashed afterwards until the hash gets initialized again.
702 *
703 * PARAMS
704 * pCryptHash [I] Hash object to be finalized.
705 */
finalize_hash(CRYPTHASH * pCryptHash)706 static inline void finalize_hash(CRYPTHASH *pCryptHash) {
707 DWORD dwDataLen;
708
709 switch (pCryptHash->aiAlgid)
710 {
711 case CALG_HMAC:
712 if (pCryptHash->pHMACInfo) {
713 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
714
715 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
716 pCryptHash->abHashValue);
717 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
718 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context);
719 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
720 pCryptHash->pHMACInfo->pbOuterString,
721 pCryptHash->pHMACInfo->cbOuterString);
722 update_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
723 abHashValue, pCryptHash->dwHashSize);
724 finalize_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->context,
725 pCryptHash->abHashValue);
726 }
727 break;
728
729 case CALG_MAC:
730 dwDataLen = 0;
731 RSAENH_CPEncrypt(pCryptHash->hProv, pCryptHash->hKey, 0, TRUE, 0,
732 pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize);
733 break;
734
735 default:
736 finalize_hash_impl(pCryptHash->aiAlgid, &pCryptHash->context, pCryptHash->abHashValue);
737 }
738 }
739
740 /******************************************************************************
741 * destroy_key [Internal]
742 *
743 * Destructor for key objects
744 *
745 * PARAMS
746 * pCryptKey [I] Pointer to the key object to be destroyed.
747 * Will be invalid after function returns!
748 */
destroy_key(OBJECTHDR * pObject)749 static void destroy_key(OBJECTHDR *pObject)
750 {
751 CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
752
753 free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
754 free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
755 free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
756 free_data_blob(&pCryptKey->blobHmacKey);
757 HeapFree(GetProcessHeap(), 0, pCryptKey);
758 }
759
760 /******************************************************************************
761 * setup_key [Internal]
762 *
763 * Initialize (or reset) a key object
764 *
765 * PARAMS
766 * pCryptKey [I] The key object to be initialized.
767 */
setup_key(CRYPTKEY * pCryptKey)768 static inline void setup_key(CRYPTKEY *pCryptKey) {
769 pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
770 memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
771 setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen,
772 pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
773 pCryptKey->abKeyValue);
774 }
775
776 /******************************************************************************
777 * new_key [Internal]
778 *
779 * Creates a new key object without assigning the actual binary key value.
780 * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
781 *
782 * PARAMS
783 * hProv [I] Handle to the provider to which the created key will belong.
784 * aiAlgid [I] The new key shall use the crypto algorithm identified by aiAlgid.
785 * dwFlags [I] Upper 16 bits give the key length.
786 * Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
787 * CRYPT_NO_SALT
788 * ppCryptKey [O] Pointer to the created key
789 *
790 * RETURNS
791 * Success: Handle to the created key.
792 * Failure: INVALID_HANDLE_VALUE
793 */
new_key(HCRYPTPROV hProv,ALG_ID aiAlgid,DWORD dwFlags,CRYPTKEY ** ppCryptKey)794 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
795 {
796 HCRYPTKEY hCryptKey;
797 CRYPTKEY *pCryptKey;
798 DWORD dwKeyLen = HIWORD(dwFlags), bKeyLen = dwKeyLen;
799 const PROV_ENUMALGS_EX *peaAlgidInfo;
800
801 *ppCryptKey = NULL;
802
803 /*
804 * Retrieve the CSP's capabilities for the given ALG_ID value
805 */
806 peaAlgidInfo = get_algid_info(hProv, aiAlgid);
807 if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
808
809 TRACE("alg = %s, dwKeyLen = %d\n", debugstr_a(peaAlgidInfo->szName),
810 dwKeyLen);
811 /*
812 * Assume the default key length, if none is specified explicitly
813 */
814 if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
815
816 /*
817 * Check if the requested key length is supported by the current CSP.
818 * Adjust key length's for DES algorithms.
819 */
820 switch (aiAlgid) {
821 case CALG_DES:
822 if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
823 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
824 }
825 if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
826 SetLastError(NTE_BAD_FLAGS);
827 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
828 }
829 break;
830
831 case CALG_3DES_112:
832 if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
833 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
834 }
835 if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
836 SetLastError(NTE_BAD_FLAGS);
837 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
838 }
839 break;
840
841 case CALG_3DES:
842 if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
843 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
844 }
845 if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
846 SetLastError(NTE_BAD_FLAGS);
847 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
848 }
849 break;
850
851 case CALG_HMAC:
852 /* Avoid the key length check for HMAC keys, which have unlimited
853 * length.
854 */
855 break;
856
857 case CALG_AES:
858 if (!bKeyLen)
859 {
860 TRACE("missing key len for CALG_AES\n");
861 SetLastError(NTE_BAD_ALGID);
862 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
863 }
864 /* fall through */
865 default:
866 if (dwKeyLen % 8 ||
867 dwKeyLen > peaAlgidInfo->dwMaxLen ||
868 dwKeyLen < peaAlgidInfo->dwMinLen)
869 {
870 TRACE("key len %d out of bounds (%d, %d)\n", dwKeyLen,
871 peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen);
872 SetLastError(NTE_BAD_DATA);
873 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
874 }
875 }
876
877 hCryptKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
878 destroy_key, (OBJECTHDR**)&pCryptKey);
879 if (hCryptKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
880 {
881 KEYCONTAINER *pKeyContainer = get_key_container(hProv);
882 pCryptKey->aiAlgid = aiAlgid;
883 pCryptKey->hProv = hProv;
884 pCryptKey->dwModeBits = 0;
885 pCryptKey->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE |
886 CRYPT_MAC;
887 if (dwFlags & CRYPT_EXPORTABLE)
888 pCryptKey->dwPermissions |= CRYPT_EXPORT;
889 pCryptKey->dwKeyLen = dwKeyLen >> 3;
890 pCryptKey->dwEffectiveKeyLen = 0;
891
892 /*
893 * For compatibility reasons a 40 bit key on the Enhanced
894 * provider will not have salt
895 */
896 if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_ENHANCED
897 && (aiAlgid == CALG_RC2 || aiAlgid == CALG_RC4)
898 && (dwFlags & CRYPT_CREATE_SALT) && dwKeyLen == 40)
899 pCryptKey->dwSaltLen = 0;
900 else if ((dwFlags & CRYPT_CREATE_SALT) || (dwKeyLen == 40 && !(dwFlags & CRYPT_NO_SALT)))
901 pCryptKey->dwSaltLen = 16 /*FIXME*/ - pCryptKey->dwKeyLen;
902 else
903 pCryptKey->dwSaltLen = 0;
904 memset(pCryptKey->abKeyValue, 0, sizeof(pCryptKey->abKeyValue));
905 memset(pCryptKey->abInitVector, 0, sizeof(pCryptKey->abInitVector));
906 memset(&pCryptKey->siSChannelInfo.saEncAlg, 0, sizeof(pCryptKey->siSChannelInfo.saEncAlg));
907 memset(&pCryptKey->siSChannelInfo.saMACAlg, 0, sizeof(pCryptKey->siSChannelInfo.saMACAlg));
908 init_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
909 init_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
910 init_data_blob(&pCryptKey->blobHmacKey);
911
912 switch(aiAlgid)
913 {
914 case CALG_PCT1_MASTER:
915 case CALG_SSL2_MASTER:
916 case CALG_SSL3_MASTER:
917 case CALG_TLS1_MASTER:
918 case CALG_RC4:
919 pCryptKey->dwBlockLen = 0;
920 pCryptKey->dwMode = 0;
921 break;
922
923 case CALG_RC2:
924 case CALG_DES:
925 case CALG_3DES_112:
926 case CALG_3DES:
927 pCryptKey->dwBlockLen = 8;
928 pCryptKey->dwMode = CRYPT_MODE_CBC;
929 break;
930
931 case CALG_AES:
932 case CALG_AES_128:
933 case CALG_AES_192:
934 case CALG_AES_256:
935 pCryptKey->dwBlockLen = 16;
936 pCryptKey->dwMode = CRYPT_MODE_CBC;
937 break;
938
939 case CALG_RSA_KEYX:
940 case CALG_RSA_SIGN:
941 pCryptKey->dwBlockLen = dwKeyLen >> 3;
942 pCryptKey->dwMode = 0;
943 break;
944
945 case CALG_HMAC:
946 pCryptKey->dwBlockLen = 0;
947 pCryptKey->dwMode = 0;
948 break;
949 }
950
951 *ppCryptKey = pCryptKey;
952 }
953
954 return hCryptKey;
955 }
956
957 /******************************************************************************
958 * map_key_spec_to_key_pair_name [Internal]
959 *
960 * Returns the name of the registry value associated with a key spec.
961 *
962 * PARAMS
963 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
964 *
965 * RETURNS
966 * Success: Name of registry value.
967 * Failure: NULL
968 */
map_key_spec_to_key_pair_name(DWORD dwKeySpec)969 static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
970 {
971 LPCSTR szValueName;
972
973 switch (dwKeySpec)
974 {
975 case AT_KEYEXCHANGE:
976 szValueName = "KeyExchangeKeyPair";
977 break;
978 case AT_SIGNATURE:
979 szValueName = "SignatureKeyPair";
980 break;
981 default:
982 WARN("invalid key spec %d\n", dwKeySpec);
983 szValueName = NULL;
984 }
985 return szValueName;
986 }
987
988 /******************************************************************************
989 * store_key_pair [Internal]
990 *
991 * Stores a key pair to the registry
992 *
993 * PARAMS
994 * hCryptKey [I] Handle to the key to be stored
995 * hKey [I] Registry key where the key pair is to be stored
996 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
997 * dwFlags [I] Flags for protecting the key
998 */
store_key_pair(HCRYPTKEY hCryptKey,HKEY hKey,DWORD dwKeySpec,DWORD dwFlags)999 static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
1000 {
1001 LPCSTR szValueName;
1002 DATA_BLOB blobIn, blobOut;
1003 CRYPTKEY *pKey;
1004 DWORD dwLen;
1005 BYTE *pbKey;
1006
1007 if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1008 return;
1009 if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1010 (OBJECTHDR**)&pKey))
1011 {
1012 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
1013 {
1014 pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1015 if (pbKey)
1016 {
1017 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
1018 &dwLen))
1019 {
1020 blobIn.pbData = pbKey;
1021 blobIn.cbData = dwLen;
1022
1023 if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
1024 dwFlags, &blobOut))
1025 {
1026 RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
1027 blobOut.pbData, blobOut.cbData);
1028 LocalFree(blobOut.pbData);
1029 }
1030 }
1031 HeapFree(GetProcessHeap(), 0, pbKey);
1032 }
1033 }
1034 }
1035 }
1036
1037 /******************************************************************************
1038 * map_key_spec_to_permissions_name [Internal]
1039 *
1040 * Returns the name of the registry value associated with the permissions for
1041 * a key spec.
1042 *
1043 * PARAMS
1044 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1045 *
1046 * RETURNS
1047 * Success: Name of registry value.
1048 * Failure: NULL
1049 */
map_key_spec_to_permissions_name(DWORD dwKeySpec)1050 static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
1051 {
1052 LPCSTR szValueName;
1053
1054 switch (dwKeySpec)
1055 {
1056 case AT_KEYEXCHANGE:
1057 szValueName = "KeyExchangePermissions";
1058 break;
1059 case AT_SIGNATURE:
1060 szValueName = "SignaturePermissions";
1061 break;
1062 default:
1063 WARN("invalid key spec %d\n", dwKeySpec);
1064 szValueName = NULL;
1065 }
1066 return szValueName;
1067 }
1068
1069 /******************************************************************************
1070 * store_key_permissions [Internal]
1071 *
1072 * Stores a key's permissions to the registry
1073 *
1074 * PARAMS
1075 * hCryptKey [I] Handle to the key whose permissions are to be stored
1076 * hKey [I] Registry key where the key permissions are to be stored
1077 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1078 */
store_key_permissions(HCRYPTKEY hCryptKey,HKEY hKey,DWORD dwKeySpec)1079 static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
1080 {
1081 LPCSTR szValueName;
1082 CRYPTKEY *pKey;
1083
1084 if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1085 return;
1086 if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1087 (OBJECTHDR**)&pKey))
1088 RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
1089 (BYTE *)&pKey->dwPermissions,
1090 sizeof(pKey->dwPermissions));
1091 }
1092
1093 /******************************************************************************
1094 * create_container_key [Internal]
1095 *
1096 * Creates the registry key for a key container's persistent storage.
1097 *
1098 * PARAMS
1099 * pKeyContainer [I] Pointer to the key container
1100 * sam [I] Desired registry access
1101 * phKey [O] Returned key
1102 */
create_container_key(KEYCONTAINER * pKeyContainer,REGSAM sam,HKEY * phKey)1103 static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
1104 {
1105 CHAR szRSABase[MAX_PATH];
1106 HKEY hRootKey;
1107
1108 StringCbPrintfA(szRSABase, sizeof(szRSABase), RSAENH_REGKEY, pKeyContainer->szName);
1109
1110 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1111 hRootKey = HKEY_LOCAL_MACHINE;
1112 else
1113 hRootKey = HKEY_CURRENT_USER;
1114
1115 /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1116 /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1117 return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
1118 REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
1119 == ERROR_SUCCESS;
1120 }
1121
1122 /******************************************************************************
1123 * open_container_key [Internal]
1124 *
1125 * Opens a key container's persistent storage for reading.
1126 *
1127 * PARAMS
1128 * pszContainerName [I] Name of the container to be opened. May be the empty
1129 * string if the parent key of all containers is to be
1130 * opened.
1131 * dwFlags [I] Flags indicating which keyset to be opened.
1132 * phKey [O] Returned key
1133 */
open_container_key(LPCSTR pszContainerName,DWORD dwFlags,REGSAM access,HKEY * phKey)1134 static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, REGSAM access, HKEY *phKey)
1135 {
1136 CHAR szRSABase[MAX_PATH];
1137 HKEY hRootKey;
1138
1139 sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1140
1141 if (dwFlags & CRYPT_MACHINE_KEYSET)
1142 hRootKey = HKEY_LOCAL_MACHINE;
1143 else
1144 hRootKey = HKEY_CURRENT_USER;
1145
1146 /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1147 /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1148 return RegOpenKeyExA(hRootKey, szRSABase, 0, access, phKey) ==
1149 ERROR_SUCCESS;
1150 }
1151
1152 /******************************************************************************
1153 * delete_container_key [Internal]
1154 *
1155 * Deletes a key container's persistent storage.
1156 *
1157 * PARAMS
1158 * pszContainerName [I] Name of the container to be opened.
1159 * dwFlags [I] Flags indicating which keyset to be opened.
1160 */
delete_container_key(LPCSTR pszContainerName,DWORD dwFlags)1161 static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
1162 {
1163 CHAR szRegKey[MAX_PATH];
1164
1165 if (snprintf(szRegKey, MAX_PATH, RSAENH_REGKEY, pszContainerName) >= MAX_PATH) {
1166 SetLastError(NTE_BAD_KEYSET_PARAM);
1167 return FALSE;
1168 } else {
1169 HKEY hRootKey;
1170 if (dwFlags & CRYPT_MACHINE_KEYSET)
1171 hRootKey = HKEY_LOCAL_MACHINE;
1172 else
1173 hRootKey = HKEY_CURRENT_USER;
1174 if (!RegDeleteKeyA(hRootKey, szRegKey)) {
1175 SetLastError(ERROR_SUCCESS);
1176 return TRUE;
1177 } else {
1178 SetLastError(NTE_BAD_KEYSET);
1179 return FALSE;
1180 }
1181 }
1182 }
1183
1184 /******************************************************************************
1185 * store_key_container_keys [Internal]
1186 *
1187 * Stores key container's keys in a persistent location.
1188 *
1189 * PARAMS
1190 * pKeyContainer [I] Pointer to the key container whose keys are to be saved
1191 */
store_key_container_keys(KEYCONTAINER * pKeyContainer)1192 static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
1193 {
1194 HKEY hKey;
1195 DWORD dwFlags;
1196
1197 /* On WinXP, persistent keys are stored in a file located at:
1198 * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1199 */
1200
1201 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1202 dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1203 else
1204 dwFlags = 0;
1205
1206 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1207 {
1208 store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
1209 AT_KEYEXCHANGE, dwFlags);
1210 store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
1211 AT_SIGNATURE, dwFlags);
1212 RegCloseKey(hKey);
1213 }
1214 }
1215
1216 /******************************************************************************
1217 * store_key_container_permissions [Internal]
1218 *
1219 * Stores key container's key permissions in a persistent location.
1220 *
1221 * PARAMS
1222 * pKeyContainer [I] Pointer to the key container whose key permissions are to
1223 * be saved
1224 */
store_key_container_permissions(KEYCONTAINER * pKeyContainer)1225 static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
1226 {
1227 HKEY hKey;
1228
1229 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1230 {
1231 store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
1232 AT_KEYEXCHANGE);
1233 store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
1234 AT_SIGNATURE);
1235 RegCloseKey(hKey);
1236 }
1237 }
1238
1239 /******************************************************************************
1240 * release_key_container_keys [Internal]
1241 *
1242 * Releases key container's keys.
1243 *
1244 * PARAMS
1245 * pKeyContainer [I] Pointer to the key container whose keys are to be released.
1246 */
release_key_container_keys(KEYCONTAINER * pKeyContainer)1247 static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
1248 {
1249 release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
1250 RSAENH_MAGIC_KEY);
1251 release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
1252 RSAENH_MAGIC_KEY);
1253 }
1254
1255 /******************************************************************************
1256 * destroy_key_container [Internal]
1257 *
1258 * Destructor for key containers.
1259 *
1260 * PARAMS
1261 * pObjectHdr [I] Pointer to the key container to be destroyed.
1262 */
destroy_key_container(OBJECTHDR * pObjectHdr)1263 static void destroy_key_container(OBJECTHDR *pObjectHdr)
1264 {
1265 KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
1266
1267 if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
1268 {
1269 store_key_container_keys(pKeyContainer);
1270 store_key_container_permissions(pKeyContainer);
1271 release_key_container_keys(pKeyContainer);
1272 }
1273 else
1274 release_key_container_keys(pKeyContainer);
1275 HeapFree( GetProcessHeap(), 0, pKeyContainer );
1276 }
1277
1278 /******************************************************************************
1279 * new_key_container [Internal]
1280 *
1281 * Create a new key container. The personality (RSA Base, Strong or Enhanced CP)
1282 * of the CSP is determined via the pVTable->pszProvName string.
1283 *
1284 * PARAMS
1285 * pszContainerName [I] Name of the key container.
1286 * pVTable [I] Callback functions and context info provided by the OS
1287 *
1288 * RETURNS
1289 * Success: Handle to the new key container.
1290 * Failure: INVALID_HANDLE_VALUE
1291 */
new_key_container(PCCH pszContainerName,DWORD dwFlags,const VTableProvStruc * pVTable)1292 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1293 {
1294 KEYCONTAINER *pKeyContainer;
1295 HCRYPTPROV hKeyContainer;
1296
1297 hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
1298 destroy_key_container, (OBJECTHDR**)&pKeyContainer);
1299 if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1300 {
1301 lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
1302 pKeyContainer->dwFlags = dwFlags;
1303 pKeyContainer->dwEnumAlgsCtr = 0;
1304 pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1305 pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1306 if (pVTable && pVTable->pszProvName) {
1307 lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
1308 if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
1309 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
1310 } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
1311 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
1312 } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) {
1313 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1314 } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A) ||
1315 !strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_XP_A)) {
1316 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
1317 } else {
1318 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1319 }
1320 }
1321
1322 /* The new key container has to be inserted into the CSP immediately
1323 * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1324 if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1325 HKEY hKey;
1326
1327 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1328 RegCloseKey(hKey);
1329 }
1330 }
1331
1332 return hKeyContainer;
1333 }
1334
1335 /******************************************************************************
1336 * read_key_value [Internal]
1337 *
1338 * Reads a key pair value from the registry
1339 *
1340 * PARAMS
1341 * hKeyContainer [I] Crypt provider to use to import the key
1342 * hKey [I] Registry key from which to read the key pair
1343 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1344 * dwFlags [I] Flags for unprotecting the key
1345 * phCryptKey [O] Returned key
1346 */
read_key_value(HCRYPTPROV hKeyContainer,HKEY hKey,DWORD dwKeySpec,DWORD dwFlags,HCRYPTKEY * phCryptKey)1347 static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
1348 {
1349 LPCSTR szValueName;
1350 DWORD dwValueType, dwLen;
1351 BYTE *pbKey;
1352 DATA_BLOB blobIn, blobOut;
1353 BOOL ret = FALSE;
1354
1355 if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1356 return FALSE;
1357 if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
1358 ERROR_SUCCESS)
1359 {
1360 pbKey = HeapAlloc(GetProcessHeap(), 0, dwLen);
1361 if (pbKey)
1362 {
1363 if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
1364 ERROR_SUCCESS)
1365 {
1366 blobIn.pbData = pbKey;
1367 blobIn.cbData = dwLen;
1368
1369 if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
1370 dwFlags, &blobOut))
1371 {
1372 ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1373 FALSE, phCryptKey);
1374 LocalFree(blobOut.pbData);
1375 }
1376 }
1377 HeapFree(GetProcessHeap(), 0, pbKey);
1378 }
1379 }
1380 if (ret)
1381 {
1382 CRYPTKEY *pKey;
1383
1384 if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
1385 (OBJECTHDR**)&pKey))
1386 {
1387 if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1388 {
1389 dwLen = sizeof(pKey->dwPermissions);
1390 RegQueryValueExA(hKey, szValueName, 0, NULL,
1391 (BYTE *)&pKey->dwPermissions, &dwLen);
1392 }
1393 }
1394 }
1395 return ret;
1396 }
1397
1398 /******************************************************************************
1399 * read_key_container [Internal]
1400 *
1401 * Tries to read the persistent state of the key container (mainly the signature
1402 * and key exchange private keys) given by pszContainerName.
1403 *
1404 * PARAMS
1405 * pszContainerName [I] Name of the key container to read from the registry
1406 * pVTable [I] Pointer to context data provided by the operating system
1407 *
1408 * RETURNS
1409 * Success: Handle to the key container read from the registry
1410 * Failure: INVALID_HANDLE_VALUE
1411 */
read_key_container(PCHAR pszContainerName,DWORD dwFlags,const VTableProvStruc * pVTable)1412 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1413 {
1414 HKEY hKey;
1415 KEYCONTAINER *pKeyContainer;
1416 HCRYPTPROV hKeyContainer;
1417 HCRYPTKEY hCryptKey;
1418
1419 if (!open_container_key(pszContainerName, dwFlags, KEY_READ, &hKey))
1420 {
1421 SetLastError(NTE_BAD_KEYSET);
1422 return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1423 }
1424
1425 hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1426 if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1427 {
1428 DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
1429 CRYPTPROTECT_LOCAL_MACHINE : 0;
1430
1431 if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER,
1432 (OBJECTHDR**)&pKeyContainer))
1433 return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1434
1435 /* read_key_value calls import_key, which calls import_private_key,
1436 * which implicitly installs the key value into the appropriate key
1437 * container key. Thus the ref count is incremented twice, once for
1438 * the output key value, and once for the implicit install, and needs
1439 * to be decremented to balance the two.
1440 */
1441 if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
1442 dwProtectFlags, &hCryptKey))
1443 release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1444 if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
1445 dwProtectFlags, &hCryptKey))
1446 release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1447 }
1448
1449 return hKeyContainer;
1450 }
1451
1452 /******************************************************************************
1453 * build_hash_signature [Internal]
1454 *
1455 * Builds a padded version of a hash to match the length of the RSA key modulus.
1456 *
1457 * PARAMS
1458 * pbSignature [O] The padded hash object is stored here.
1459 * dwLen [I] Length of the pbSignature buffer.
1460 * aiAlgid [I] Algorithm identifier of the hash to be padded.
1461 * abHashValue [I] The value of the hash object.
1462 * dwHashLen [I] Length of the hash value.
1463 * dwFlags [I] Selection of padding algorithm.
1464 *
1465 * RETURNS
1466 * Success: TRUE
1467 * Failure: FALSE (NTE_BAD_ALGID)
1468 */
build_hash_signature(BYTE * pbSignature,DWORD dwLen,ALG_ID aiAlgid,const BYTE * abHashValue,DWORD dwHashLen,DWORD dwFlags)1469 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid,
1470 const BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags)
1471 {
1472 /* These prefixes are meant to be concatenated with hash values of the
1473 * respective kind to form a PKCS #7 DigestInfo. */
1474 static const struct tagOIDDescriptor {
1475 ALG_ID aiAlgid;
1476 DWORD dwLen;
1477 const BYTE abOID[19];
1478 } aOIDDescriptor[] = {
1479 { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1480 0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1481 { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1482 0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1483 { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1484 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1485 { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03,
1486 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1487 { CALG_SHA_256, 19, { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1488 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1489 0x05, 0x00, 0x04, 0x20 } },
1490 { CALG_SHA_384, 19, { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1491 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
1492 0x05, 0x00, 0x04, 0x30 } },
1493 { CALG_SHA_512, 19, { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1494 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
1495 0x05, 0x00, 0x04, 0x40 } },
1496 { CALG_SSL3_SHAMD5, 0, { 0 } },
1497 { 0, 0, { 0 } }
1498 };
1499 DWORD dwIdxOID, i, j;
1500
1501 for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1502 if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1503 }
1504
1505 if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1506 SetLastError(NTE_BAD_ALGID);
1507 return FALSE;
1508 }
1509
1510 /* Build the padded signature */
1511 if (dwFlags & CRYPT_X931_FORMAT) {
1512 pbSignature[0] = 0x6b;
1513 for (i=1; i < dwLen - dwHashLen - 3; i++) {
1514 pbSignature[i] = 0xbb;
1515 }
1516 pbSignature[i++] = 0xba;
1517 for (j=0; j < dwHashLen; j++, i++) {
1518 pbSignature[i] = abHashValue[j];
1519 }
1520 pbSignature[i++] = 0x33;
1521 pbSignature[i++] = 0xcc;
1522 } else {
1523 pbSignature[0] = 0x00;
1524 pbSignature[1] = 0x01;
1525 if (dwFlags & CRYPT_NOHASHOID) {
1526 for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1527 pbSignature[i] = 0xff;
1528 }
1529 pbSignature[i++] = 0x00;
1530 } else {
1531 for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1532 pbSignature[i] = 0xff;
1533 }
1534 pbSignature[i++] = 0x00;
1535 for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1536 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1537 }
1538 }
1539 for (j=0; j < dwHashLen; j++) {
1540 pbSignature[i++] = abHashValue[j];
1541 }
1542 }
1543
1544 return TRUE;
1545 }
1546
1547 /******************************************************************************
1548 * tls1_p [Internal]
1549 *
1550 * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1551 * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1552 * The pseudo random stream generated by this function is exclusive or'ed with
1553 * the data in pbBuffer.
1554 *
1555 * PARAMS
1556 * hHMAC [I] HMAC object, which will be used in pseudo random generation
1557 * pblobSeed [I] Seed value
1558 * pbBuffer [I/O] Pseudo random stream will be xor'ed to the provided data
1559 * dwBufferLen [I] Number of pseudo random bytes desired
1560 *
1561 * RETURNS
1562 * Success: TRUE
1563 * Failure: FALSE
1564 */
tls1_p(HCRYPTHASH hHMAC,const PCRYPT_DATA_BLOB pblobSeed,BYTE * pbBuffer,DWORD dwBufferLen)1565 static BOOL tls1_p(HCRYPTHASH hHMAC, const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer,
1566 DWORD dwBufferLen)
1567 {
1568 CRYPTHASH *pHMAC;
1569 BYTE abAi[RSAENH_MAX_HASH_SIZE];
1570 DWORD i = 0;
1571
1572 if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1573 SetLastError(NTE_BAD_HASH);
1574 return FALSE;
1575 }
1576
1577 /* compute A_1 = HMAC(seed) */
1578 init_hash(pHMAC);
1579 update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1580 finalize_hash(pHMAC);
1581 memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1582
1583 do {
1584 /* compute HMAC(A_i + seed) */
1585 init_hash(pHMAC);
1586 update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1587 update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1588 finalize_hash(pHMAC);
1589
1590 /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1591 do {
1592 if (i >= dwBufferLen) break;
1593 pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1594 i++;
1595 } while (i % pHMAC->dwHashSize);
1596
1597 /* compute A_{i+1} = HMAC(A_i) */
1598 init_hash(pHMAC);
1599 update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1600 finalize_hash(pHMAC);
1601 memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1602 } while (i < dwBufferLen);
1603
1604 return TRUE;
1605 }
1606
1607 /******************************************************************************
1608 * tls1_prf [Internal]
1609 *
1610 * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1611 *
1612 * PARAMS
1613 * hProv [I] Key container used to compute the pseudo random stream
1614 * hSecret [I] Key that holds the (pre-)master secret
1615 * pblobLabel [I] Descriptive label
1616 * pblobSeed [I] Seed value
1617 * pbBuffer [O] Pseudo random numbers will be stored here
1618 * dwBufferLen [I] Number of pseudo random bytes desired
1619 *
1620 * RETURNS
1621 * Success: TRUE
1622 * Failure: FALSE
1623 */
tls1_prf(HCRYPTPROV hProv,HCRYPTPROV hSecret,const PCRYPT_DATA_BLOB pblobLabel,const PCRYPT_DATA_BLOB pblobSeed,BYTE * pbBuffer,DWORD dwBufferLen)1624 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, const PCRYPT_DATA_BLOB pblobLabel,
1625 const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer, DWORD dwBufferLen)
1626 {
1627 HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1628 HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1629 HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1630 CRYPTKEY *pHalfSecret, *pSecret;
1631 DWORD dwHalfSecretLen;
1632 BOOL result = FALSE;
1633 CRYPT_DATA_BLOB blobLabelSeed;
1634
1635 TRACE("(hProv=%08lx, hSecret=%08lx, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%d)\n",
1636 hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1637
1638 if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1639 SetLastError(NTE_FAIL);
1640 return FALSE;
1641 }
1642
1643 dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1644
1645 /* concatenation of the label and the seed */
1646 if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1647
1648 /* zero out the buffer, since two random streams will be xor'ed into it. */
1649 memset(pbBuffer, 0, dwBufferLen);
1650
1651 /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1652 * the biggest range of valid key lengths. */
1653 hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1654 if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1655
1656 /* Derive an HMAC_MD5 hash and call the helper function. */
1657 memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1658 if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1659 hmacInfo.HashAlgid = CALG_MD5;
1660 if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1661 if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1662
1663 /* Reconfigure to HMAC_SHA hash and call helper function again. */
1664 memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1665 hmacInfo.HashAlgid = CALG_SHA;
1666 if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1667 if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1668
1669 result = TRUE;
1670 exit:
1671 release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1672 if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1673 free_data_blob(&blobLabelSeed);
1674 return result;
1675 }
1676
1677 /******************************************************************************
1678 * pad_data [Internal]
1679 *
1680 * Helper function for data padding according to PKCS1 #2
1681 *
1682 * PARAMS
1683 * abData [I] The data to be padded
1684 * dwDataLen [I] Length of the data
1685 * abBuffer [O] Padded data will be stored here
1686 * dwBufferLen [I] Length of the buffer (also length of padded data)
1687 * dwFlags [I] Padding format (CRYPT_SSL2_FALLBACK)
1688 *
1689 * RETURN
1690 * Success: TRUE
1691 * Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1692 */
pad_data(const BYTE * abData,DWORD dwDataLen,BYTE * abBuffer,DWORD dwBufferLen,DWORD dwFlags)1693 static BOOL pad_data(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen,
1694 DWORD dwFlags)
1695 {
1696 DWORD i;
1697
1698 /* Ensure there is enough space for PKCS1 #2 padding */
1699 if (dwDataLen > dwBufferLen-11) {
1700 SetLastError(NTE_BAD_LEN);
1701 return FALSE;
1702 }
1703
1704 memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);
1705
1706 abBuffer[0] = 0x00;
1707 abBuffer[1] = RSAENH_PKC_BLOCKTYPE;
1708 for (i=2; i < dwBufferLen - dwDataLen - 1; i++)
1709 do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1710 if (dwFlags & CRYPT_SSL2_FALLBACK)
1711 for (i-=8; i < dwBufferLen - dwDataLen - 1; i++)
1712 abBuffer[i] = 0x03;
1713 abBuffer[i] = 0x00;
1714
1715 return TRUE;
1716 }
1717
1718 /******************************************************************************
1719 * unpad_data [Internal]
1720 *
1721 * Remove the PKCS1 padding from RSA decrypted data
1722 *
1723 * PARAMS
1724 * abData [I] The padded data
1725 * dwDataLen [I] Length of the padded data
1726 * abBuffer [O] Data without padding will be stored here
1727 * dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
1728 * dwFlags [I] Currently none defined
1729 *
1730 * RETURNS
1731 * Success: TRUE
1732 * Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
1733 */
unpad_data(const BYTE * abData,DWORD dwDataLen,BYTE * abBuffer,DWORD * dwBufferLen,DWORD dwFlags)1734 static BOOL unpad_data(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen,
1735 DWORD dwFlags)
1736 {
1737 DWORD i;
1738
1739 if (dwDataLen < 3)
1740 {
1741 SetLastError(NTE_BAD_DATA);
1742 return FALSE;
1743 }
1744 for (i=2; i<dwDataLen; i++)
1745 if (!abData[i])
1746 break;
1747
1748 if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
1749 (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
1750 {
1751 SetLastError(NTE_BAD_DATA);
1752 return FALSE;
1753 }
1754
1755 *dwBufferLen = dwDataLen - i - 1;
1756 memmove(abBuffer, abData + i + 1, *dwBufferLen);
1757 return TRUE;
1758 }
1759
1760 /******************************************************************************
1761 * CPAcquireContext (RSAENH.@)
1762 *
1763 * Acquire a handle to the key container specified by pszContainer
1764 *
1765 * PARAMS
1766 * phProv [O] Pointer to the location the acquired handle will be written to.
1767 * pszContainer [I] Name of the desired key container. See Notes
1768 * dwFlags [I] Flags. See Notes.
1769 * pVTable [I] Pointer to a PVTableProvStruct containing callbacks.
1770 *
1771 * RETURNS
1772 * Success: TRUE
1773 * Failure: FALSE
1774 *
1775 * NOTES
1776 * If pszContainer is NULL or points to a zero length string the user's login
1777 * name will be used as the key container name.
1778 *
1779 * If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
1780 * If a keyset with the given name already exists, the function fails and sets
1781 * last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
1782 * key container does not exist, function fails and sets last error to
1783 * NTE_BAD_KEYSET.
1784 */
RSAENH_CPAcquireContext(HCRYPTPROV * phProv,LPSTR pszContainer,DWORD dwFlags,PVTableProvStruc pVTable)1785 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
1786 DWORD dwFlags, PVTableProvStruc pVTable)
1787 {
1788 CHAR szKeyContainerName[MAX_PATH];
1789
1790 TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08x, pVTable=%p)\n", phProv,
1791 debugstr_a(pszContainer), dwFlags, pVTable);
1792
1793 if (pszContainer && *pszContainer)
1794 {
1795 lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
1796 }
1797 else
1798 {
1799 DWORD dwLen = sizeof(szKeyContainerName);
1800 if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
1801 }
1802
1803 switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET))
1804 {
1805 case 0:
1806 *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1807 break;
1808
1809 case CRYPT_DELETEKEYSET:
1810 return delete_container_key(szKeyContainerName, dwFlags);
1811
1812 case CRYPT_NEWKEYSET:
1813 *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
1814 if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1815 {
1816 release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
1817 TRACE("Can't create new keyset, already exists\n");
1818 SetLastError(NTE_EXISTS);
1819 return FALSE;
1820 }
1821 *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
1822 break;
1823
1824 case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
1825 case CRYPT_VERIFYCONTEXT:
1826 if (pszContainer && *pszContainer) {
1827 TRACE("pszContainer should be empty\n");
1828 SetLastError(NTE_BAD_FLAGS);
1829 return FALSE;
1830 }
1831 *phProv = new_key_container("", dwFlags, pVTable);
1832 break;
1833
1834 default:
1835 *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
1836 SetLastError(NTE_BAD_FLAGS);
1837 return FALSE;
1838 }
1839
1840 if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
1841 SetLastError(ERROR_SUCCESS);
1842 return TRUE;
1843 } else {
1844 return FALSE;
1845 }
1846 }
1847
1848 /******************************************************************************
1849 * CPCreateHash (RSAENH.@)
1850 *
1851 * CPCreateHash creates and initializes a new hash object.
1852 *
1853 * PARAMS
1854 * hProv [I] Handle to the key container to which the new hash will belong.
1855 * Algid [I] Identifies the hash algorithm, which will be used for the hash.
1856 * hKey [I] Handle to a session key applied for keyed hashes.
1857 * dwFlags [I] Currently no flags defined. Must be zero.
1858 * phHash [O] Points to the location where a handle to the new hash will be stored.
1859 *
1860 * RETURNS
1861 * Success: TRUE
1862 * Failure: FALSE
1863 *
1864 * NOTES
1865 * hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
1866 * If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
1867 */
RSAENH_CPCreateHash(HCRYPTPROV hProv,ALG_ID Algid,HCRYPTKEY hKey,DWORD dwFlags,HCRYPTHASH * phHash)1868 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags,
1869 HCRYPTHASH *phHash)
1870 {
1871 CRYPTKEY *pCryptKey;
1872 CRYPTHASH *pCryptHash;
1873 const PROV_ENUMALGS_EX *peaAlgidInfo;
1874
1875 TRACE("(hProv=%08lx, Algid=%08x, hKey=%08lx, dwFlags=%08x, phHash=%p)\n", hProv, Algid, hKey,
1876 dwFlags, phHash);
1877
1878 peaAlgidInfo = get_algid_info(hProv, Algid);
1879 if (!peaAlgidInfo) return FALSE;
1880
1881 if (dwFlags)
1882 {
1883 SetLastError(NTE_BAD_FLAGS);
1884 return FALSE;
1885 }
1886
1887 if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH ||
1888 Algid == CALG_TLS1PRF)
1889 {
1890 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
1891 SetLastError(NTE_BAD_KEY);
1892 return FALSE;
1893 }
1894
1895 if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
1896 SetLastError(NTE_BAD_KEY);
1897 return FALSE;
1898 }
1899
1900 if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) &&
1901 (pCryptKey->aiAlgid != CALG_TLS1_MASTER))
1902 {
1903 SetLastError(NTE_BAD_KEY);
1904 return FALSE;
1905 }
1906 if (Algid == CALG_SCHANNEL_MASTER_HASH &&
1907 ((!pCryptKey->siSChannelInfo.blobClientRandom.cbData) ||
1908 (!pCryptKey->siSChannelInfo.blobServerRandom.cbData)))
1909 {
1910 SetLastError(ERROR_INVALID_PARAMETER);
1911 return FALSE;
1912 }
1913
1914 if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
1915 SetLastError(NTE_BAD_KEY_STATE);
1916 return FALSE;
1917 }
1918 }
1919
1920 *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
1921 destroy_hash, (OBJECTHDR**)&pCryptHash);
1922 if (!pCryptHash) return FALSE;
1923
1924 pCryptHash->aiAlgid = Algid;
1925 pCryptHash->hKey = hKey;
1926 pCryptHash->hProv = hProv;
1927 pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
1928 pCryptHash->pHMACInfo = NULL;
1929 pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
1930 init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
1931 init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
1932
1933 if (Algid == CALG_SCHANNEL_MASTER_HASH) {
1934 static const char keyex[] = "key expansion";
1935 BYTE key_expansion[sizeof keyex];
1936 CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
1937
1938 memcpy( key_expansion, keyex, sizeof keyex );
1939
1940 if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
1941 static const char msec[] = "master secret";
1942 BYTE master_secret[sizeof msec];
1943 CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
1944 BYTE abKeyValue[48];
1945
1946 memcpy( master_secret, msec, sizeof msec );
1947
1948 /* See RFC 2246, chapter 8.1 */
1949 if (!concat_data_blobs(&blobRandom,
1950 &pCryptKey->siSChannelInfo.blobClientRandom,
1951 &pCryptKey->siSChannelInfo.blobServerRandom))
1952 {
1953 return FALSE;
1954 }
1955 tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
1956 pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY;
1957 memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
1958 free_data_blob(&blobRandom);
1959 }
1960
1961 /* See RFC 2246, chapter 6.3 */
1962 if (!concat_data_blobs(&blobRandom,
1963 &pCryptKey->siSChannelInfo.blobServerRandom,
1964 &pCryptKey->siSChannelInfo.blobClientRandom))
1965 {
1966 return FALSE;
1967 }
1968 tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue,
1969 RSAENH_MAX_HASH_SIZE);
1970 free_data_blob(&blobRandom);
1971 }
1972
1973 return init_hash(pCryptHash);
1974 }
1975
1976 /******************************************************************************
1977 * CPDestroyHash (RSAENH.@)
1978 *
1979 * Releases the handle to a hash object. The object is destroyed if its reference
1980 * count reaches zero.
1981 *
1982 * PARAMS
1983 * hProv [I] Handle to the key container to which the hash object belongs.
1984 * hHash [I] Handle to the hash object to be released.
1985 *
1986 * RETURNS
1987 * Success: TRUE
1988 * Failure: FALSE
1989 */
RSAENH_CPDestroyHash(HCRYPTPROV hProv,HCRYPTHASH hHash)1990 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
1991 {
1992 TRACE("(hProv=%08lx, hHash=%08lx)\n", hProv, hHash);
1993
1994 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
1995 {
1996 SetLastError(NTE_BAD_UID);
1997 return FALSE;
1998 }
1999
2000 if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH))
2001 {
2002 SetLastError(NTE_BAD_HASH);
2003 return FALSE;
2004 }
2005
2006 return TRUE;
2007 }
2008
2009 /******************************************************************************
2010 * CPDestroyKey (RSAENH.@)
2011 *
2012 * Releases the handle to a key object. The object is destroyed if its reference
2013 * count reaches zero.
2014 *
2015 * PARAMS
2016 * hProv [I] Handle to the key container to which the key object belongs.
2017 * hKey [I] Handle to the key object to be released.
2018 *
2019 * RETURNS
2020 * Success: TRUE
2021 * Failure: FALSE
2022 */
RSAENH_CPDestroyKey(HCRYPTPROV hProv,HCRYPTKEY hKey)2023 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
2024 {
2025 TRACE("(hProv=%08lx, hKey=%08lx)\n", hProv, hKey);
2026
2027 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2028 {
2029 SetLastError(NTE_BAD_UID);
2030 return FALSE;
2031 }
2032
2033 if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY))
2034 {
2035 SetLastError(NTE_BAD_KEY);
2036 return FALSE;
2037 }
2038
2039 return TRUE;
2040 }
2041
2042 /******************************************************************************
2043 * CPDuplicateHash (RSAENH.@)
2044 *
2045 * Clones a hash object including its current state.
2046 *
2047 * PARAMS
2048 * hUID [I] Handle to the key container the hash belongs to.
2049 * hHash [I] Handle to the hash object to be cloned.
2050 * pdwReserved [I] Reserved. Must be NULL.
2051 * dwFlags [I] No flags are currently defined. Must be 0.
2052 * phHash [O] Handle to the cloned hash object.
2053 *
2054 * RETURNS
2055 * Success: TRUE.
2056 * Failure: FALSE.
2057 */
RSAENH_CPDuplicateHash(HCRYPTPROV hUID,HCRYPTHASH hHash,DWORD * pdwReserved,DWORD dwFlags,HCRYPTHASH * phHash)2058 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved,
2059 DWORD dwFlags, HCRYPTHASH *phHash)
2060 {
2061 CRYPTHASH *pSrcHash, *pDestHash;
2062
2063 TRACE("(hUID=%08lx, hHash=%08lx, pdwReserved=%p, dwFlags=%08x, phHash=%p)\n", hUID, hHash,
2064 pdwReserved, dwFlags, phHash);
2065
2066 if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2067 {
2068 SetLastError(NTE_BAD_UID);
2069 return FALSE;
2070 }
2071
2072 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
2073 {
2074 SetLastError(NTE_BAD_HASH);
2075 return FALSE;
2076 }
2077
2078 if (!phHash || pdwReserved || dwFlags)
2079 {
2080 SetLastError(ERROR_INVALID_PARAMETER);
2081 return FALSE;
2082 }
2083
2084 *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
2085 destroy_hash, (OBJECTHDR**)&pDestHash);
2086 if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
2087 {
2088 *pDestHash = *pSrcHash;
2089 duplicate_hash_impl(pSrcHash->aiAlgid, &pSrcHash->context, &pDestHash->context);
2090 copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
2091 copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
2092 copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
2093 }
2094
2095 return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
2096 }
2097
2098 /******************************************************************************
2099 * CPDuplicateKey (RSAENH.@)
2100 *
2101 * Clones a key object including its current state.
2102 *
2103 * PARAMS
2104 * hUID [I] Handle to the key container the hash belongs to.
2105 * hKey [I] Handle to the key object to be cloned.
2106 * pdwReserved [I] Reserved. Must be NULL.
2107 * dwFlags [I] No flags are currently defined. Must be 0.
2108 * phHash [O] Handle to the cloned key object.
2109 *
2110 * RETURNS
2111 * Success: TRUE.
2112 * Failure: FALSE.
2113 */
RSAENH_CPDuplicateKey(HCRYPTPROV hUID,HCRYPTKEY hKey,DWORD * pdwReserved,DWORD dwFlags,HCRYPTKEY * phKey)2114 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved,
2115 DWORD dwFlags, HCRYPTKEY *phKey)
2116 {
2117 CRYPTKEY *pSrcKey, *pDestKey;
2118
2119 TRACE("(hUID=%08lx, hKey=%08lx, pdwReserved=%p, dwFlags=%08x, phKey=%p)\n", hUID, hKey,
2120 pdwReserved, dwFlags, phKey);
2121
2122 if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2123 {
2124 SetLastError(NTE_BAD_UID);
2125 return FALSE;
2126 }
2127
2128 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
2129 {
2130 SetLastError(NTE_BAD_KEY);
2131 return FALSE;
2132 }
2133
2134 if (!phKey || pdwReserved || dwFlags)
2135 {
2136 SetLastError(ERROR_INVALID_PARAMETER);
2137 return FALSE;
2138 }
2139
2140 *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
2141 (OBJECTHDR**)&pDestKey);
2142 if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
2143 {
2144 *pDestKey = *pSrcKey;
2145 copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
2146 &pSrcKey->siSChannelInfo.blobServerRandom);
2147 copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom,
2148 &pSrcKey->siSChannelInfo.blobClientRandom);
2149 duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
2150 return TRUE;
2151 }
2152 else
2153 {
2154 return FALSE;
2155 }
2156 }
2157
2158 /******************************************************************************
2159 * CPEncrypt (RSAENH.@)
2160 *
2161 * Encrypt data.
2162 *
2163 * PARAMS
2164 * hProv [I] The key container hKey and hHash belong to.
2165 * hKey [I] The key used to encrypt the data.
2166 * hHash [I] An optional hash object for parallel hashing. See notes.
2167 * Final [I] Indicates if this is the last block of data to encrypt.
2168 * dwFlags [I] Currently no flags defined. Must be zero.
2169 * pbData [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there.
2170 * pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
2171 * dwBufLen [I] Size of the buffer at pbData.
2172 *
2173 * RETURNS
2174 * Success: TRUE.
2175 * Failure: FALSE.
2176 *
2177 * NOTES
2178 * If a hash object handle is provided in hHash, it will be updated with the plaintext.
2179 * This is useful for message signatures.
2180 *
2181 * This function uses the standard WINAPI protocol for querying data of dynamic length.
2182 */
RSAENH_CPEncrypt(HCRYPTPROV hProv,HCRYPTKEY hKey,HCRYPTHASH hHash,BOOL Final,DWORD dwFlags,BYTE * pbData,DWORD * pdwDataLen,DWORD dwBufLen)2183 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2184 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
2185 {
2186 CRYPTKEY *pCryptKey;
2187 BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2188 DWORD dwEncryptedLen, i, j, k;
2189
2190 TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2191 "pdwDataLen=%p, dwBufLen=%d)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
2192 dwBufLen);
2193
2194 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2195 {
2196 SetLastError(NTE_BAD_UID);
2197 return FALSE;
2198 }
2199
2200 if (dwFlags)
2201 {
2202 SetLastError(NTE_BAD_FLAGS);
2203 return FALSE;
2204 }
2205
2206 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2207 {
2208 SetLastError(NTE_BAD_KEY);
2209 return FALSE;
2210 }
2211
2212 if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2213 pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2214
2215 if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2216 {
2217 SetLastError(NTE_BAD_DATA);
2218 return FALSE;
2219 }
2220
2221 if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2222 if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2223 }
2224
2225 if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2226 if (!Final && (*pdwDataLen % pCryptKey->dwBlockLen)) {
2227 SetLastError(NTE_BAD_DATA);
2228 return FALSE;
2229 }
2230
2231 dwEncryptedLen = (*pdwDataLen/pCryptKey->dwBlockLen+(Final?1:0))*pCryptKey->dwBlockLen;
2232
2233 if (pbData == NULL) {
2234 *pdwDataLen = dwEncryptedLen;
2235 return TRUE;
2236 }
2237 else if (dwEncryptedLen > dwBufLen) {
2238 *pdwDataLen = dwEncryptedLen;
2239 SetLastError(ERROR_MORE_DATA);
2240 return FALSE;
2241 }
2242
2243 /* Pad final block with length bytes */
2244 for (i=*pdwDataLen; i<dwEncryptedLen; i++) pbData[i] = dwEncryptedLen - *pdwDataLen;
2245 *pdwDataLen = dwEncryptedLen;
2246
2247 for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2248 switch (pCryptKey->dwMode) {
2249 case CRYPT_MODE_ECB:
2250 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2251 RSAENH_ENCRYPT);
2252 break;
2253
2254 case CRYPT_MODE_CBC:
2255 for (j=0; j<pCryptKey->dwBlockLen; j++) in[j] ^= pCryptKey->abChainVector[j];
2256 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2257 RSAENH_ENCRYPT);
2258 memcpy(pCryptKey->abChainVector, out, pCryptKey->dwBlockLen);
2259 break;
2260
2261 case CRYPT_MODE_CFB:
2262 for (j=0; j<pCryptKey->dwBlockLen; j++) {
2263 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2264 pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2265 out[j] = in[j] ^ o[0];
2266 for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2267 pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2268 pCryptKey->abChainVector[k] = out[j];
2269 }
2270 break;
2271
2272 default:
2273 SetLastError(NTE_BAD_ALGID);
2274 return FALSE;
2275 }
2276 memcpy(in, out, pCryptKey->dwBlockLen);
2277 }
2278 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2279 if (pbData == NULL) {
2280 *pdwDataLen = dwBufLen;
2281 return TRUE;
2282 }
2283 encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2284 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2285 if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2286 SetLastError(NTE_BAD_KEY);
2287 return FALSE;
2288 }
2289 if (!pbData) {
2290 *pdwDataLen = pCryptKey->dwBlockLen;
2291 return TRUE;
2292 }
2293 if (dwBufLen < pCryptKey->dwBlockLen) {
2294 SetLastError(ERROR_MORE_DATA);
2295 return FALSE;
2296 }
2297 if (!pad_data(pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
2298 encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
2299 *pdwDataLen = pCryptKey->dwBlockLen;
2300 Final = TRUE;
2301 } else {
2302 SetLastError(NTE_BAD_TYPE);
2303 return FALSE;
2304 }
2305
2306 if (Final) setup_key(pCryptKey);
2307
2308 return TRUE;
2309 }
2310
2311 /******************************************************************************
2312 * CPDecrypt (RSAENH.@)
2313 *
2314 * Decrypt data.
2315 *
2316 * PARAMS
2317 * hProv [I] The key container hKey and hHash belong to.
2318 * hKey [I] The key used to decrypt the data.
2319 * hHash [I] An optional hash object for parallel hashing. See notes.
2320 * Final [I] Indicates if this is the last block of data to decrypt.
2321 * dwFlags [I] Currently no flags defined. Must be zero.
2322 * pbData [I/O] Pointer to the data to decrypt. Plaintext will also be stored there.
2323 * pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
2324 *
2325 * RETURNS
2326 * Success: TRUE.
2327 * Failure: FALSE.
2328 *
2329 * NOTES
2330 * If a hash object handle is provided in hHash, it will be updated with the plaintext.
2331 * This is useful for message signatures.
2332 *
2333 * This function uses the standard WINAPI protocol for querying data of dynamic length.
2334 */
RSAENH_CPDecrypt(HCRYPTPROV hProv,HCRYPTKEY hKey,HCRYPTHASH hHash,BOOL Final,DWORD dwFlags,BYTE * pbData,DWORD * pdwDataLen)2335 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2336 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2337 {
2338 CRYPTKEY *pCryptKey;
2339 BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2340 DWORD i, j, k;
2341 DWORD dwMax;
2342
2343 TRACE("(hProv=%08lx, hKey=%08lx, hHash=%08lx, Final=%d, dwFlags=%08x, pbData=%p, "
2344 "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2345
2346 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2347 {
2348 SetLastError(NTE_BAD_UID);
2349 return FALSE;
2350 }
2351
2352 if (dwFlags)
2353 {
2354 SetLastError(NTE_BAD_FLAGS);
2355 return FALSE;
2356 }
2357
2358 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2359 {
2360 SetLastError(NTE_BAD_KEY);
2361 return FALSE;
2362 }
2363
2364 if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2365 pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2366
2367 if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2368 {
2369 SetLastError(NTE_BAD_DATA);
2370 return FALSE;
2371 }
2372
2373 dwMax=*pdwDataLen;
2374
2375 if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2376 for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2377 switch (pCryptKey->dwMode) {
2378 case CRYPT_MODE_ECB:
2379 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2380 RSAENH_DECRYPT);
2381 break;
2382
2383 case CRYPT_MODE_CBC:
2384 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2385 RSAENH_DECRYPT);
2386 for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2387 memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2388 break;
2389
2390 case CRYPT_MODE_CFB:
2391 for (j=0; j<pCryptKey->dwBlockLen; j++) {
2392 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2393 pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2394 out[j] = in[j] ^ o[0];
2395 for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2396 pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2397 pCryptKey->abChainVector[k] = in[j];
2398 }
2399 break;
2400
2401 default:
2402 SetLastError(NTE_BAD_ALGID);
2403 return FALSE;
2404 }
2405 memcpy(in, out, pCryptKey->dwBlockLen);
2406 }
2407 if (Final) {
2408 if (pbData[*pdwDataLen-1] &&
2409 pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
2410 pbData[*pdwDataLen-1] <= *pdwDataLen) {
2411 BOOL padOkay = TRUE;
2412
2413 /* check that every bad byte has the same value */
2414 for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
2415 if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
2416 padOkay = FALSE;
2417 if (padOkay)
2418 *pdwDataLen -= pbData[*pdwDataLen-1];
2419 else {
2420 SetLastError(NTE_BAD_DATA);
2421 setup_key(pCryptKey);
2422 return FALSE;
2423 }
2424 }
2425 else {
2426 SetLastError(NTE_BAD_DATA);
2427 setup_key(pCryptKey);
2428 return FALSE;
2429 }
2430 }
2431
2432 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2433 encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2434 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2435 if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2436 SetLastError(NTE_BAD_KEY);
2437 return FALSE;
2438 }
2439 encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2440 if (!unpad_data(pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2441 Final = TRUE;
2442 } else {
2443 SetLastError(NTE_BAD_TYPE);
2444 return FALSE;
2445 }
2446
2447 if (Final) setup_key(pCryptKey);
2448
2449 if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2450 if (*pdwDataLen>dwMax ||
2451 !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2452 }
2453
2454 return TRUE;
2455 }
2456
crypt_export_simple(CRYPTKEY * pCryptKey,CRYPTKEY * pPubKey,DWORD dwFlags,BYTE * pbData,DWORD * pdwDataLen)2457 static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
2458 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2459 {
2460 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2461 ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2462 DWORD dwDataLen;
2463
2464 if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2465 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2466 return FALSE;
2467 }
2468
2469 dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2470 if (pbData) {
2471 if (*pdwDataLen < dwDataLen) {
2472 SetLastError(ERROR_MORE_DATA);
2473 *pdwDataLen = dwDataLen;
2474 return FALSE;
2475 }
2476
2477 pBlobHeader->bType = SIMPLEBLOB;
2478 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2479 pBlobHeader->reserved = 0;
2480 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2481
2482 *pAlgid = pPubKey->aiAlgid;
2483
2484 if (!pad_data(pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
2485 pPubKey->dwBlockLen, dwFlags))
2486 {
2487 return FALSE;
2488 }
2489
2490 encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
2491 (BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
2492 }
2493 *pdwDataLen = dwDataLen;
2494 return TRUE;
2495 }
2496
crypt_export_public_key(CRYPTKEY * pCryptKey,BYTE * pbData,DWORD * pdwDataLen)2497 static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2498 DWORD *pdwDataLen)
2499 {
2500 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2501 RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2502 DWORD dwDataLen;
2503
2504 if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2505 SetLastError(NTE_BAD_KEY);
2506 return FALSE;
2507 }
2508
2509 dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2510 if (pbData) {
2511 if (*pdwDataLen < dwDataLen) {
2512 SetLastError(ERROR_MORE_DATA);
2513 *pdwDataLen = dwDataLen;
2514 return FALSE;
2515 }
2516
2517 pBlobHeader->bType = PUBLICKEYBLOB;
2518 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2519 pBlobHeader->reserved = 0;
2520 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2521
2522 pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
2523 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2524
2525 export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2526 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2527 }
2528 *pdwDataLen = dwDataLen;
2529 return TRUE;
2530 }
2531
crypt_export_private_key(CRYPTKEY * pCryptKey,BOOL force,BYTE * pbData,DWORD * pdwDataLen)2532 static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
2533 BYTE *pbData, DWORD *pdwDataLen)
2534 {
2535 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2536 RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2537 DWORD dwDataLen;
2538
2539 if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2540 SetLastError(NTE_BAD_KEY);
2541 return FALSE;
2542 }
2543 if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
2544 {
2545 SetLastError(NTE_BAD_KEY_STATE);
2546 return FALSE;
2547 }
2548
2549 dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2550 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2551 if (pbData) {
2552 if (*pdwDataLen < dwDataLen) {
2553 SetLastError(ERROR_MORE_DATA);
2554 *pdwDataLen = dwDataLen;
2555 return FALSE;
2556 }
2557
2558 pBlobHeader->bType = PRIVATEKEYBLOB;
2559 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2560 pBlobHeader->reserved = 0;
2561 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2562
2563 pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2564 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2565
2566 export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2567 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2568 }
2569 *pdwDataLen = dwDataLen;
2570 return TRUE;
2571 }
2572
crypt_export_plaintext_key(CRYPTKEY * pCryptKey,BYTE * pbData,DWORD * pdwDataLen)2573 static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2574 DWORD *pdwDataLen)
2575 {
2576 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2577 DWORD *pKeyLen = (DWORD*)(pBlobHeader+1);
2578 BYTE *pbKey = (BYTE*)(pKeyLen+1);
2579 DWORD dwDataLen;
2580
2581 dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen;
2582 if (pbData) {
2583 if (*pdwDataLen < dwDataLen) {
2584 SetLastError(ERROR_MORE_DATA);
2585 *pdwDataLen = dwDataLen;
2586 return FALSE;
2587 }
2588
2589 pBlobHeader->bType = PLAINTEXTKEYBLOB;
2590 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2591 pBlobHeader->reserved = 0;
2592 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2593
2594 *pKeyLen = pCryptKey->dwKeyLen;
2595 memcpy(pbKey, pCryptKey->abKeyValue, pCryptKey->dwKeyLen);
2596 }
2597 *pdwDataLen = dwDataLen;
2598 return TRUE;
2599 }
2600 /******************************************************************************
2601 * crypt_export_key [Internal]
2602 *
2603 * Export a key into a binary large object (BLOB). Called by CPExportKey and
2604 * by store_key_pair.
2605 *
2606 * PARAMS
2607 * pCryptKey [I] Key to be exported.
2608 * hPubKey [I] Key used to encrypt sensitive BLOB data.
2609 * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2610 * dwFlags [I] Currently none defined.
2611 * force [I] If TRUE, the key is written no matter what the key's
2612 * permissions are. Otherwise the key's permissions are
2613 * checked before exporting.
2614 * pbData [O] Pointer to a buffer where the BLOB will be written to.
2615 * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2616 *
2617 * RETURNS
2618 * Success: TRUE.
2619 * Failure: FALSE.
2620 */
crypt_export_key(CRYPTKEY * pCryptKey,HCRYPTKEY hPubKey,DWORD dwBlobType,DWORD dwFlags,BOOL force,BYTE * pbData,DWORD * pdwDataLen)2621 static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
2622 DWORD dwBlobType, DWORD dwFlags, BOOL force,
2623 BYTE *pbData, DWORD *pdwDataLen)
2624 {
2625 CRYPTKEY *pPubKey;
2626
2627 if (dwFlags & CRYPT_SSL2_FALLBACK) {
2628 if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
2629 SetLastError(NTE_BAD_KEY);
2630 return FALSE;
2631 }
2632 }
2633
2634 switch ((BYTE)dwBlobType)
2635 {
2636 case SIMPLEBLOB:
2637 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
2638 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
2639 return FALSE;
2640 }
2641 return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
2642 pdwDataLen);
2643
2644 case PUBLICKEYBLOB:
2645 if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
2646 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2647 return FALSE;
2648 }
2649
2650 return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
2651
2652 case PRIVATEKEYBLOB:
2653 return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
2654
2655 case PLAINTEXTKEYBLOB:
2656 return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen);
2657
2658 default:
2659 SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
2660 return FALSE;
2661 }
2662 }
2663
2664 /******************************************************************************
2665 * CPExportKey (RSAENH.@)
2666 *
2667 * Export a key into a binary large object (BLOB).
2668 *
2669 * PARAMS
2670 * hProv [I] Key container from which a key is to be exported.
2671 * hKey [I] Key to be exported.
2672 * hPubKey [I] Key used to encrypt sensitive BLOB data.
2673 * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
2674 * dwFlags [I] Currently none defined.
2675 * pbData [O] Pointer to a buffer where the BLOB will be written to.
2676 * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
2677 *
2678 * RETURNS
2679 * Success: TRUE.
2680 * Failure: FALSE.
2681 */
RSAENH_CPExportKey(HCRYPTPROV hProv,HCRYPTKEY hKey,HCRYPTKEY hPubKey,DWORD dwBlobType,DWORD dwFlags,BYTE * pbData,DWORD * pdwDataLen)2682 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
2683 DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2684 {
2685 CRYPTKEY *pCryptKey;
2686
2687 TRACE("(hProv=%08lx, hKey=%08lx, hPubKey=%08lx, dwBlobType=%08x, dwFlags=%08x, pbData=%p,"
2688 "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
2689
2690 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2691 {
2692 SetLastError(NTE_BAD_UID);
2693 return FALSE;
2694 }
2695
2696 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2697 {
2698 SetLastError(NTE_BAD_KEY);
2699 return FALSE;
2700 }
2701
2702 return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
2703 pbData, pdwDataLen);
2704 }
2705
2706 /******************************************************************************
2707 * release_and_install_key [Internal]
2708 *
2709 * Release an existing key, if present, and replaces it with a new one.
2710 *
2711 * PARAMS
2712 * hProv [I] Key container into which the key is to be imported.
2713 * src [I] Key which will replace *dest
2714 * dest [I] Points to key to be released and replaced with src
2715 * fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
2716 */
release_and_install_key(HCRYPTPROV hProv,HCRYPTKEY src,HCRYPTKEY * dest,DWORD fStoreKey)2717 static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
2718 HCRYPTKEY *dest, DWORD fStoreKey)
2719 {
2720 RSAENH_CPDestroyKey(hProv, *dest);
2721 copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
2722 if (fStoreKey)
2723 {
2724 KEYCONTAINER *pKeyContainer;
2725
2726 if ((pKeyContainer = get_key_container(hProv)))
2727 {
2728 store_key_container_keys(pKeyContainer);
2729 store_key_container_permissions(pKeyContainer);
2730 }
2731 }
2732 }
2733
2734 /******************************************************************************
2735 * import_private_key [Internal]
2736 *
2737 * Import a BLOB'ed private key into a key container.
2738 *
2739 * PARAMS
2740 * hProv [I] Key container into which the private key is to be imported.
2741 * pbData [I] Pointer to a buffer which holds the private key BLOB.
2742 * dwDataLen [I] Length of data in buffer at pbData.
2743 * dwFlags [I] One of:
2744 * CRYPT_EXPORTABLE: the imported key is marked exportable
2745 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
2746 * phKey [O] Handle to the imported key.
2747 *
2748 *
2749 * NOTES
2750 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2751 * it's a PRIVATEKEYBLOB.
2752 *
2753 * RETURNS
2754 * Success: TRUE.
2755 * Failure: FALSE.
2756 */
import_private_key(HCRYPTPROV hProv,const BYTE * pbData,DWORD dwDataLen,DWORD dwFlags,BOOL fStoreKey,HCRYPTKEY * phKey)2757 static BOOL import_private_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
2758 DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
2759 {
2760 KEYCONTAINER *pKeyContainer;
2761 CRYPTKEY *pCryptKey;
2762 const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
2763 const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1);
2764 BOOL ret;
2765
2766 if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
2767 {
2768 FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
2769 SetLastError(NTE_BAD_FLAGS);
2770 return FALSE;
2771 }
2772 if (!(pKeyContainer = get_key_container(hProv)))
2773 return FALSE;
2774
2775 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)))
2776 {
2777 ERR("datalen %d not long enough for a BLOBHEADER + RSAPUBKEY\n",
2778 dwDataLen);
2779 SetLastError(NTE_BAD_DATA);
2780 return FALSE;
2781 }
2782 if (pRSAPubKey->magic != RSAENH_MAGIC_RSA2)
2783 {
2784 ERR("unexpected magic %08x\n", pRSAPubKey->magic);
2785 SetLastError(NTE_BAD_DATA);
2786 return FALSE;
2787 }
2788 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2789 (pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
2790 {
2791 DWORD expectedLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2792 (pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4));
2793
2794 ERR("blob too short for pub key: expect %d, got %d\n",
2795 expectedLen, dwDataLen);
2796 SetLastError(NTE_BAD_DATA);
2797 return FALSE;
2798 }
2799
2800 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2801 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2802 setup_key(pCryptKey);
2803 ret = import_private_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2804 pRSAPubKey->bitlen/8, dwDataLen, pRSAPubKey->pubexp);
2805 if (ret) {
2806 if (dwFlags & CRYPT_EXPORTABLE)
2807 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2808 switch (pBlobHeader->aiKeyAlg)
2809 {
2810 case AT_SIGNATURE:
2811 case CALG_RSA_SIGN:
2812 TRACE("installing signing key\n");
2813 release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
2814 fStoreKey);
2815 break;
2816 case AT_KEYEXCHANGE:
2817 case CALG_RSA_KEYX:
2818 TRACE("installing key exchange key\n");
2819 release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
2820 fStoreKey);
2821 break;
2822 }
2823 }
2824 return ret;
2825 }
2826
2827 /******************************************************************************
2828 * import_public_key [Internal]
2829 *
2830 * Import a BLOB'ed public key.
2831 *
2832 * PARAMS
2833 * hProv [I] A CSP.
2834 * pbData [I] Pointer to a buffer which holds the public key BLOB.
2835 * dwDataLen [I] Length of data in buffer at pbData.
2836 * dwFlags [I] One of:
2837 * CRYPT_EXPORTABLE: the imported key is marked exportable
2838 * phKey [O] Handle to the imported key.
2839 *
2840 *
2841 * NOTES
2842 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2843 * it's a PUBLICKEYBLOB.
2844 *
2845 * RETURNS
2846 * Success: TRUE.
2847 * Failure: FALSE.
2848 */
import_public_key(HCRYPTPROV hProv,const BYTE * pbData,DWORD dwDataLen,DWORD dwFlags,HCRYPTKEY * phKey)2849 static BOOL import_public_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
2850 DWORD dwFlags, HCRYPTKEY *phKey)
2851 {
2852 CRYPTKEY *pCryptKey;
2853 const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
2854 const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1);
2855 ALG_ID algID;
2856 BOOL ret;
2857
2858 if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
2859 {
2860 FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
2861 SetLastError(NTE_BAD_FLAGS);
2862 return FALSE;
2863 }
2864
2865 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
2866 (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
2867 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
2868 {
2869 SetLastError(NTE_BAD_DATA);
2870 return FALSE;
2871 }
2872
2873 /* Since this is a public key blob, only the public key is
2874 * available, so only signature verification is possible.
2875 */
2876 algID = pBlobHeader->aiKeyAlg;
2877 *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
2878 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
2879 setup_key(pCryptKey);
2880 ret = import_public_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2881 pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
2882 if (ret) {
2883 if (dwFlags & CRYPT_EXPORTABLE)
2884 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2885 }
2886 return ret;
2887 }
2888
2889 /******************************************************************************
2890 * import_symmetric_key [Internal]
2891 *
2892 * Import a BLOB'ed symmetric key into a key container.
2893 *
2894 * PARAMS
2895 * hProv [I] Key container into which the symmetric key is to be imported.
2896 * pbData [I] Pointer to a buffer which holds the symmetric key BLOB.
2897 * dwDataLen [I] Length of data in buffer at pbData.
2898 * hPubKey [I] Key used to decrypt sensitive BLOB data.
2899 * dwFlags [I] One of:
2900 * CRYPT_EXPORTABLE: the imported key is marked exportable
2901 * phKey [O] Handle to the imported key.
2902 *
2903 *
2904 * NOTES
2905 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2906 * it's a SIMPLEBLOB.
2907 *
2908 * RETURNS
2909 * Success: TRUE.
2910 * Failure: FALSE.
2911 */
import_symmetric_key(HCRYPTPROV hProv,const BYTE * pbData,DWORD dwDataLen,HCRYPTKEY hPubKey,DWORD dwFlags,HCRYPTKEY * phKey)2912 static BOOL import_symmetric_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
2913 HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
2914 {
2915 CRYPTKEY *pCryptKey, *pPubKey;
2916 const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
2917 const ALG_ID *pAlgid = (const ALG_ID*)(pBlobHeader+1);
2918 const BYTE *pbKeyStream = (const BYTE*)(pAlgid + 1);
2919 BYTE *pbDecrypted;
2920 DWORD dwKeyLen;
2921
2922 if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
2923 {
2924 FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
2925 SetLastError(NTE_BAD_FLAGS);
2926 return FALSE;
2927 }
2928 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
2929 pPubKey->aiAlgid != CALG_RSA_KEYX)
2930 {
2931 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
2932 return FALSE;
2933 }
2934
2935 if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
2936 {
2937 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2938 return FALSE;
2939 }
2940
2941 pbDecrypted = HeapAlloc(GetProcessHeap(), 0, pPubKey->dwBlockLen);
2942 if (!pbDecrypted) return FALSE;
2943 encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
2944 RSAENH_DECRYPT);
2945
2946 dwKeyLen = RSAENH_MAX_KEY_SIZE;
2947 if (!unpad_data(pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
2948 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2949 return FALSE;
2950 }
2951
2952 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
2953 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
2954 {
2955 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2956 return FALSE;
2957 }
2958 memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
2959 HeapFree(GetProcessHeap(), 0, pbDecrypted);
2960 setup_key(pCryptKey);
2961 if (dwFlags & CRYPT_EXPORTABLE)
2962 pCryptKey->dwPermissions |= CRYPT_EXPORT;
2963 return TRUE;
2964 }
2965
2966 /******************************************************************************
2967 * import_plaintext_key [Internal]
2968 *
2969 * Import a plaintext key into a key container.
2970 *
2971 * PARAMS
2972 * hProv [I] Key container into which the symmetric key is to be imported.
2973 * pbData [I] Pointer to a buffer which holds the plaintext key BLOB.
2974 * dwDataLen [I] Length of data in buffer at pbData.
2975 * dwFlags [I] One of:
2976 * CRYPT_EXPORTABLE: the imported key is marked exportable
2977 * phKey [O] Handle to the imported key.
2978 *
2979 *
2980 * NOTES
2981 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
2982 * it's a PLAINTEXTKEYBLOB.
2983 *
2984 * RETURNS
2985 * Success: TRUE.
2986 * Failure: FALSE.
2987 */
import_plaintext_key(HCRYPTPROV hProv,const BYTE * pbData,DWORD dwDataLen,DWORD dwFlags,HCRYPTKEY * phKey)2988 static BOOL import_plaintext_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
2989 DWORD dwFlags, HCRYPTKEY *phKey)
2990 {
2991 CRYPTKEY *pCryptKey;
2992 const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
2993 const DWORD *pKeyLen = (const DWORD *)(pBlobHeader + 1);
2994 const BYTE *pbKeyStream = (const BYTE*)(pKeyLen + 1);
2995
2996 if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen)
2997 {
2998 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
2999 return FALSE;
3000 }
3001
3002 if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
3003 {
3004 *phKey = new_key(hProv, CALG_HMAC, 0, &pCryptKey);
3005 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3006 return FALSE;
3007 if (*pKeyLen <= RSAENH_MIN(sizeof(pCryptKey->abKeyValue), RSAENH_HMAC_BLOCK_LEN))
3008 {
3009 memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
3010 pCryptKey->dwKeyLen = *pKeyLen;
3011 }
3012 else
3013 {
3014 CRYPT_DATA_BLOB blobHmacKey = { *pKeyLen, (BYTE *)pbKeyStream };
3015
3016 /* In order to initialize an HMAC key, the key material is hashed,
3017 * and the output of the hash function is used as the key material.
3018 * Unfortunately, the way the Crypto API is designed, we don't know
3019 * the hash algorithm yet, so we have to copy the entire key
3020 * material.
3021 */
3022 if (!copy_data_blob(&pCryptKey->blobHmacKey, &blobHmacKey))
3023 {
3024 release_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY);
3025 *phKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
3026 return FALSE;
3027 }
3028 }
3029 setup_key(pCryptKey);
3030 if (dwFlags & CRYPT_EXPORTABLE)
3031 pCryptKey->dwPermissions |= CRYPT_EXPORT;
3032 }
3033 else
3034 {
3035 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey);
3036 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3037 return FALSE;
3038 memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
3039 setup_key(pCryptKey);
3040 if (dwFlags & CRYPT_EXPORTABLE)
3041 pCryptKey->dwPermissions |= CRYPT_EXPORT;
3042 }
3043 return TRUE;
3044 }
3045
3046 /******************************************************************************
3047 * import_key [Internal]
3048 *
3049 * Import a BLOB'ed key into a key container, optionally storing the key's
3050 * value to the registry.
3051 *
3052 * PARAMS
3053 * hProv [I] Key container into which the key is to be imported.
3054 * pbData [I] Pointer to a buffer which holds the BLOB.
3055 * dwDataLen [I] Length of data in buffer at pbData.
3056 * hPubKey [I] Key used to decrypt sensitive BLOB data.
3057 * dwFlags [I] One of:
3058 * CRYPT_EXPORTABLE: the imported key is marked exportable
3059 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
3060 * phKey [O] Handle to the imported key.
3061 *
3062 * RETURNS
3063 * Success: TRUE.
3064 * Failure: FALSE.
3065 */
import_key(HCRYPTPROV hProv,const BYTE * pbData,DWORD dwDataLen,HCRYPTKEY hPubKey,DWORD dwFlags,BOOL fStoreKey,HCRYPTKEY * phKey)3066 static BOOL import_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, HCRYPTKEY hPubKey,
3067 DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
3068 {
3069 KEYCONTAINER *pKeyContainer;
3070 const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
3071
3072 if (!(pKeyContainer = get_key_container(hProv)))
3073 return FALSE;
3074
3075 if (dwDataLen < sizeof(BLOBHEADER) ||
3076 pBlobHeader->bVersion != CUR_BLOB_VERSION ||
3077 pBlobHeader->reserved != 0)
3078 {
3079 TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion,
3080 pBlobHeader->reserved);
3081 SetLastError(NTE_BAD_DATA);
3082 return FALSE;
3083 }
3084
3085 /* If this is a verify-only context, the key is not persisted regardless of
3086 * fStoreKey's original value.
3087 */
3088 fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
3089 TRACE("blob type: %x\n", pBlobHeader->bType);
3090 switch (pBlobHeader->bType)
3091 {
3092 case PRIVATEKEYBLOB:
3093 return import_private_key(hProv, pbData, dwDataLen, dwFlags,
3094 fStoreKey, phKey);
3095
3096 case PUBLICKEYBLOB:
3097 return import_public_key(hProv, pbData, dwDataLen, dwFlags,
3098 phKey);
3099
3100 case SIMPLEBLOB:
3101 return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
3102 dwFlags, phKey);
3103
3104 case PLAINTEXTKEYBLOB:
3105 return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags,
3106 phKey);
3107
3108 default:
3109 SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
3110 return FALSE;
3111 }
3112 }
3113
3114 /******************************************************************************
3115 * CPImportKey (RSAENH.@)
3116 *
3117 * Import a BLOB'ed key into a key container.
3118 *
3119 * PARAMS
3120 * hProv [I] Key container into which the key is to be imported.
3121 * pbData [I] Pointer to a buffer which holds the BLOB.
3122 * dwDataLen [I] Length of data in buffer at pbData.
3123 * hPubKey [I] Key used to decrypt sensitive BLOB data.
3124 * dwFlags [I] One of:
3125 * CRYPT_EXPORTABLE: the imported key is marked exportable
3126 * phKey [O] Handle to the imported key.
3127 *
3128 * RETURNS
3129 * Success: TRUE.
3130 * Failure: FALSE.
3131 */
RSAENH_CPImportKey(HCRYPTPROV hProv,const BYTE * pbData,DWORD dwDataLen,HCRYPTKEY hPubKey,DWORD dwFlags,HCRYPTKEY * phKey)3132 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
3133 HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
3134 {
3135 TRACE("(hProv=%08lx, pbData=%p, dwDataLen=%d, hPubKey=%08lx, dwFlags=%08x, phKey=%p)\n",
3136 hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
3137
3138 return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
3139 }
3140
3141 /******************************************************************************
3142 * CPGenKey (RSAENH.@)
3143 *
3144 * Generate a key in the key container
3145 *
3146 * PARAMS
3147 * hProv [I] Key container for which a key is to be generated.
3148 * Algid [I] Crypto algorithm identifier for the key to be generated.
3149 * dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
3150 * phKey [O] Handle to the generated key.
3151 *
3152 * RETURNS
3153 * Success: TRUE.
3154 * Failure: FALSE.
3155 *
3156 * FIXME
3157 * Flags currently not considered.
3158 *
3159 * NOTES
3160 * Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
3161 * and AT_SIGNATURE values.
3162 */
RSAENH_CPGenKey(HCRYPTPROV hProv,ALG_ID Algid,DWORD dwFlags,HCRYPTKEY * phKey)3163 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
3164 {
3165 KEYCONTAINER *pKeyContainer;
3166 CRYPTKEY *pCryptKey;
3167
3168 TRACE("(hProv=%08lx, aiAlgid=%d, dwFlags=%08x, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
3169
3170 if (!(pKeyContainer = get_key_container(hProv)))
3171 {
3172 /* MSDN: hProv not containing valid context handle */
3173 return FALSE;
3174 }
3175
3176 switch (Algid)
3177 {
3178 case AT_SIGNATURE:
3179 case CALG_RSA_SIGN:
3180 *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
3181 if (pCryptKey) {
3182 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3183 setup_key(pCryptKey);
3184 release_and_install_key(hProv, *phKey,
3185 &pKeyContainer->hSignatureKeyPair,
3186 FALSE);
3187 }
3188 break;
3189
3190 case AT_KEYEXCHANGE:
3191 case CALG_RSA_KEYX:
3192 *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
3193 if (pCryptKey) {
3194 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3195 setup_key(pCryptKey);
3196 release_and_install_key(hProv, *phKey,
3197 &pKeyContainer->hKeyExchangeKeyPair,
3198 FALSE);
3199 }
3200 break;
3201
3202 case CALG_RC2:
3203 case CALG_RC4:
3204 case CALG_DES:
3205 case CALG_3DES_112:
3206 case CALG_3DES:
3207 case CALG_AES:
3208 case CALG_AES_128:
3209 case CALG_AES_192:
3210 case CALG_AES_256:
3211 case CALG_PCT1_MASTER:
3212 case CALG_SSL2_MASTER:
3213 case CALG_SSL3_MASTER:
3214 case CALG_TLS1_MASTER:
3215 *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3216 if (pCryptKey) {
3217 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
3218 switch (Algid) {
3219 case CALG_SSL3_MASTER:
3220 pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
3221 pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
3222 break;
3223
3224 case CALG_TLS1_MASTER:
3225 pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
3226 pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
3227 break;
3228 }
3229 setup_key(pCryptKey);
3230 }
3231 break;
3232
3233 default:
3234 /* MSDN: Algorithm not supported specified by Algid */
3235 SetLastError(NTE_BAD_ALGID);
3236 return FALSE;
3237 }
3238
3239 return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
3240 }
3241
3242 /******************************************************************************
3243 * CPGenRandom (RSAENH.@)
3244 *
3245 * Generate a random byte stream.
3246 *
3247 * PARAMS
3248 * hProv [I] Key container that is used to generate random bytes.
3249 * dwLen [I] Specifies the number of requested random data bytes.
3250 * pbBuffer [O] Random bytes will be stored here.
3251 *
3252 * RETURNS
3253 * Success: TRUE
3254 * Failure: FALSE
3255 */
RSAENH_CPGenRandom(HCRYPTPROV hProv,DWORD dwLen,BYTE * pbBuffer)3256 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
3257 {
3258 TRACE("(hProv=%08lx, dwLen=%d, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
3259
3260 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3261 {
3262 /* MSDN: hProv not containing valid context handle */
3263 SetLastError(NTE_BAD_UID);
3264 return FALSE;
3265 }
3266
3267 return gen_rand_impl(pbBuffer, dwLen);
3268 }
3269
3270 /******************************************************************************
3271 * CPGetHashParam (RSAENH.@)
3272 *
3273 * Query parameters of an hash object.
3274 *
3275 * PARAMS
3276 * hProv [I] The kea container, which the hash belongs to.
3277 * hHash [I] The hash object that is to be queried.
3278 * dwParam [I] Specifies the parameter that is to be queried.
3279 * pbData [I] Pointer to the buffer where the parameter value will be stored.
3280 * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3281 * dwFlags [I] None currently defined.
3282 *
3283 * RETURNS
3284 * Success: TRUE
3285 * Failure: FALSE
3286 *
3287 * NOTES
3288 * Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be
3289 * finalized if HP_HASHVALUE is queried.
3290 */
RSAENH_CPGetHashParam(HCRYPTPROV hProv,HCRYPTHASH hHash,DWORD dwParam,BYTE * pbData,DWORD * pdwDataLen,DWORD dwFlags)3291 BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData,
3292 DWORD *pdwDataLen, DWORD dwFlags)
3293 {
3294 CRYPTHASH *pCryptHash;
3295
3296 TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3297 hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
3298
3299 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3300 {
3301 SetLastError(NTE_BAD_UID);
3302 return FALSE;
3303 }
3304
3305 if (dwFlags)
3306 {
3307 SetLastError(NTE_BAD_FLAGS);
3308 return FALSE;
3309 }
3310
3311 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3312 (OBJECTHDR**)&pCryptHash))
3313 {
3314 SetLastError(NTE_BAD_HASH);
3315 return FALSE;
3316 }
3317
3318 if (!pdwDataLen)
3319 {
3320 SetLastError(ERROR_INVALID_PARAMETER);
3321 return FALSE;
3322 }
3323
3324 switch (dwParam)
3325 {
3326 case HP_ALGID:
3327 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->aiAlgid,
3328 sizeof(ALG_ID));
3329
3330 case HP_HASHSIZE:
3331 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->dwHashSize,
3332 sizeof(DWORD));
3333
3334 case HP_HASHVAL:
3335 if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
3336 return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
3337 &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
3338 }
3339
3340 if ( pbData == NULL ) {
3341 *pdwDataLen = pCryptHash->dwHashSize;
3342 return TRUE;
3343 }
3344
3345 if (pbData && (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED))
3346 {
3347 finalize_hash(pCryptHash);
3348 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
3349 }
3350
3351 return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue,
3352 pCryptHash->dwHashSize);
3353
3354 default:
3355 SetLastError(NTE_BAD_TYPE);
3356 return FALSE;
3357 }
3358 }
3359
3360 /******************************************************************************
3361 * CPSetKeyParam (RSAENH.@)
3362 *
3363 * Set a parameter of a key object
3364 *
3365 * PARAMS
3366 * hProv [I] The key container to which the key belongs.
3367 * hKey [I] The key for which a parameter is to be set.
3368 * dwParam [I] Parameter type. See Notes.
3369 * pbData [I] Pointer to the parameter value.
3370 * dwFlags [I] Currently none defined.
3371 *
3372 * RETURNS
3373 * Success: TRUE.
3374 * Failure: FALSE.
3375 *
3376 * NOTES:
3377 * Defined dwParam types are:
3378 * - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3379 * - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
3380 * - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
3381 * CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3382 * - KP_IV: Initialization vector
3383 */
RSAENH_CPSetKeyParam(HCRYPTPROV hProv,HCRYPTKEY hKey,DWORD dwParam,BYTE * pbData,DWORD dwFlags)3384 BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
3385 DWORD dwFlags)
3386 {
3387 CRYPTKEY *pCryptKey;
3388
3389 TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, hKey,
3390 dwParam, pbData, dwFlags);
3391
3392 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3393 {
3394 SetLastError(NTE_BAD_UID);
3395 return FALSE;
3396 }
3397
3398 if (dwFlags) {
3399 SetLastError(NTE_BAD_FLAGS);
3400 return FALSE;
3401 }
3402
3403 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3404 {
3405 SetLastError(NTE_BAD_KEY);
3406 return FALSE;
3407 }
3408
3409 switch (dwParam) {
3410 case KP_PADDING:
3411 /* The MS providers only support PKCS5_PADDING */
3412 if (*(DWORD *)pbData != PKCS5_PADDING) {
3413 SetLastError(NTE_BAD_DATA);
3414 return FALSE;
3415 }
3416 return TRUE;
3417
3418 case KP_MODE:
3419 pCryptKey->dwMode = *(DWORD*)pbData;
3420 return TRUE;
3421
3422 case KP_MODE_BITS:
3423 pCryptKey->dwModeBits = *(DWORD*)pbData;
3424 return TRUE;
3425
3426 case KP_PERMISSIONS:
3427 {
3428 DWORD perms = *(DWORD *)pbData;
3429
3430 if ((perms & CRYPT_EXPORT) &&
3431 !(pCryptKey->dwPermissions & CRYPT_EXPORT))
3432 {
3433 SetLastError(NTE_BAD_DATA);
3434 return FALSE;
3435 }
3436 else if (!(perms & CRYPT_EXPORT) &&
3437 (pCryptKey->dwPermissions & CRYPT_EXPORT))
3438 {
3439 /* Clearing the export permission appears to be ignored,
3440 * see tests.
3441 */
3442 perms |= CRYPT_EXPORT;
3443 }
3444 pCryptKey->dwPermissions = perms;
3445 return TRUE;
3446 }
3447
3448 case KP_IV:
3449 memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
3450 setup_key(pCryptKey);
3451 return TRUE;
3452
3453 case KP_SALT:
3454 switch (pCryptKey->aiAlgid) {
3455 case CALG_RC2:
3456 case CALG_RC4:
3457 {
3458 KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv);
3459 if (!pbData)
3460 {
3461 SetLastError(ERROR_INVALID_PARAMETER);
3462 return FALSE;
3463 }
3464 /* MSDN: the base provider always sets eleven bytes of
3465 * salt value.
3466 */
3467 memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen,
3468 pbData, 11);
3469 pCryptKey->dwSaltLen = 11;
3470 setup_key(pCryptKey);
3471 /* After setting the salt value if the provider is not base or
3472 * strong the salt length will be reset. */
3473 if (pKeyContainer->dwPersonality != RSAENH_PERSONALITY_BASE &&
3474 pKeyContainer->dwPersonality != RSAENH_PERSONALITY_STRONG)
3475 pCryptKey->dwSaltLen = 0;
3476 break;
3477 }
3478 default:
3479 SetLastError(NTE_BAD_KEY);
3480 return FALSE;
3481 }
3482 return TRUE;
3483
3484 case KP_SALT_EX:
3485 {
3486 CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData;
3487
3488 /* salt length can't be greater than 184 bits = 24 bytes */
3489 if (blob->cbData > 24)
3490 {
3491 SetLastError(NTE_BAD_DATA);
3492 return FALSE;
3493 }
3494 memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData,
3495 blob->cbData);
3496 pCryptKey->dwSaltLen = blob->cbData;
3497 setup_key(pCryptKey);
3498 return TRUE;
3499 }
3500
3501 case KP_EFFECTIVE_KEYLEN:
3502 switch (pCryptKey->aiAlgid) {
3503 case CALG_RC2:
3504 {
3505 DWORD keylen, deflen;
3506 BOOL ret = TRUE;
3507 KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv);
3508
3509 if (!pbData)
3510 {
3511 SetLastError(ERROR_INVALID_PARAMETER);
3512 return FALSE;
3513 }
3514 keylen = *(DWORD *)pbData;
3515 if (!keylen || keylen > 1024)
3516 {
3517 SetLastError(NTE_BAD_DATA);
3518 return FALSE;
3519 }
3520
3521 /*
3522 * The Base provider will force the key length to default
3523 * and set an error state if a key length different from
3524 * the default is tried.
3525 */
3526 deflen = aProvEnumAlgsEx[pKeyContainer->dwPersonality]->dwDefaultLen;
3527 if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_BASE
3528 && keylen != deflen)
3529 {
3530 keylen = deflen;
3531 SetLastError(NTE_BAD_DATA);
3532 ret = FALSE;
3533 }
3534 pCryptKey->dwEffectiveKeyLen = keylen;
3535 setup_key(pCryptKey);
3536 return ret;
3537 }
3538 default:
3539 SetLastError(NTE_BAD_TYPE);
3540 return FALSE;
3541 }
3542 return TRUE;
3543
3544 case KP_SCHANNEL_ALG:
3545 switch (((PSCHANNEL_ALG)pbData)->dwUse) {
3546 case SCHANNEL_ENC_KEY:
3547 memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
3548 break;
3549
3550 case SCHANNEL_MAC_KEY:
3551 memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
3552 break;
3553
3554 default:
3555 SetLastError(NTE_FAIL); /* FIXME: error code */
3556 return FALSE;
3557 }
3558 return TRUE;
3559
3560 case KP_CLIENT_RANDOM:
3561 return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
3562
3563 case KP_SERVER_RANDOM:
3564 return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
3565
3566 default:
3567 SetLastError(NTE_BAD_TYPE);
3568 return FALSE;
3569 }
3570 }
3571
3572 /******************************************************************************
3573 * CPGetKeyParam (RSAENH.@)
3574 *
3575 * Query a key parameter.
3576 *
3577 * PARAMS
3578 * hProv [I] The key container, which the key belongs to.
3579 * hHash [I] The key object that is to be queried.
3580 * dwParam [I] Specifies the parameter that is to be queried.
3581 * pbData [I] Pointer to the buffer where the parameter value will be stored.
3582 * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3583 * dwFlags [I] None currently defined.
3584 *
3585 * RETURNS
3586 * Success: TRUE
3587 * Failure: FALSE
3588 *
3589 * NOTES
3590 * Defined dwParam types are:
3591 * - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3592 * - KP_MODE_BITS: Shift width for cipher feedback mode.
3593 * (Currently ignored by MS CSP's - always eight)
3594 * - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
3595 * CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3596 * - KP_IV: Initialization vector.
3597 * - KP_KEYLEN: Bitwidth of the key.
3598 * - KP_BLOCKLEN: Size of a block cipher block.
3599 * - KP_SALT: Salt value.
3600 */
RSAENH_CPGetKeyParam(HCRYPTPROV hProv,HCRYPTKEY hKey,DWORD dwParam,BYTE * pbData,DWORD * pdwDataLen,DWORD dwFlags)3601 BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
3602 DWORD *pdwDataLen, DWORD dwFlags)
3603 {
3604 CRYPTKEY *pCryptKey;
3605 DWORD dwValue;
3606
3607 TRACE("(hProv=%08lx, hKey=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p dwFlags=%08x)\n",
3608 hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
3609
3610 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3611 {
3612 SetLastError(NTE_BAD_UID);
3613 return FALSE;
3614 }
3615
3616 if (dwFlags) {
3617 SetLastError(NTE_BAD_FLAGS);
3618 return FALSE;
3619 }
3620
3621 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3622 {
3623 SetLastError(NTE_BAD_KEY);
3624 return FALSE;
3625 }
3626
3627 switch (dwParam)
3628 {
3629 case KP_IV:
3630 return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector,
3631 pCryptKey->dwBlockLen);
3632
3633 case KP_SALT:
3634 switch (pCryptKey->aiAlgid) {
3635 case CALG_RC2:
3636 case CALG_RC4:
3637 return copy_param(pbData, pdwDataLen,
3638 &pCryptKey->abKeyValue[pCryptKey->dwKeyLen],
3639 pCryptKey->dwSaltLen);
3640 default:
3641 SetLastError(NTE_BAD_KEY);
3642 return FALSE;
3643 }
3644
3645 case KP_PADDING:
3646 dwValue = PKCS5_PADDING;
3647 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
3648
3649 case KP_KEYLEN:
3650 dwValue = pCryptKey->dwKeyLen << 3;
3651 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
3652
3653 case KP_EFFECTIVE_KEYLEN:
3654 if (pCryptKey->dwEffectiveKeyLen)
3655 dwValue = pCryptKey->dwEffectiveKeyLen;
3656 else
3657 dwValue = pCryptKey->dwKeyLen << 3;
3658 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
3659
3660 case KP_BLOCKLEN:
3661 dwValue = pCryptKey->dwBlockLen << 3;
3662 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
3663
3664 case KP_MODE:
3665 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
3666
3667 case KP_MODE_BITS:
3668 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwModeBits,
3669 sizeof(DWORD));
3670
3671 case KP_PERMISSIONS:
3672 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwPermissions,
3673 sizeof(DWORD));
3674
3675 case KP_ALGID:
3676 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
3677
3678 default:
3679 SetLastError(NTE_BAD_TYPE);
3680 return FALSE;
3681 }
3682 }
3683
3684 /******************************************************************************
3685 * CPGetProvParam (RSAENH.@)
3686 *
3687 * Query a CSP parameter.
3688 *
3689 * PARAMS
3690 * hProv [I] The key container that is to be queried.
3691 * dwParam [I] Specifies the parameter that is to be queried.
3692 * pbData [I] Pointer to the buffer where the parameter value will be stored.
3693 * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3694 * dwFlags [I] CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
3695 *
3696 * RETURNS
3697 * Success: TRUE
3698 * Failure: FALSE
3699 * NOTES:
3700 * Defined dwParam types:
3701 * - PP_CONTAINER: Name of the key container.
3702 * - PP_NAME: Name of the cryptographic service provider.
3703 * - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
3704 * - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
3705 * - PP_ENUMALGS{_EX}: Query provider capabilities.
3706 * - PP_KEYSET_SEC_DESCR: Retrieve security descriptor on container.
3707 */
RSAENH_CPGetProvParam(HCRYPTPROV hProv,DWORD dwParam,BYTE * pbData,DWORD * pdwDataLen,DWORD dwFlags)3708 BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData,
3709 DWORD *pdwDataLen, DWORD dwFlags)
3710 {
3711 KEYCONTAINER *pKeyContainer;
3712 PROV_ENUMALGS provEnumalgs;
3713 DWORD dwTemp;
3714 HKEY hKey;
3715
3716 /* This is for dwParam PP_CRYPT_COUNT_KEY_USE.
3717 * IE6 SP1 asks for it in the 'About' dialog.
3718 * Returning this BLOB seems to satisfy IE. The marked 0x00 seem
3719 * to be 'don't care's. If you know anything more specific about
3720 * this provider parameter, please report to wine-devel@winehq.org */
3721 static const BYTE abWTF[96] = {
3722 0xb0, 0x25, 0x63, 0x86, 0x9c, 0xab, 0xb6, 0x37,
3723 0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b,
3724 0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82,
3725 0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde,
3726 0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8,
3727 0x12, 0x1e, 0xd4, 0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01,
3728 0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33,
3729 0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d,
3730 0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05,
3731 0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa,
3732 0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03,
3733 0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca
3734 };
3735
3736 TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, pdwDataLen=%p, dwFlags=%08x)\n",
3737 hProv, dwParam, pbData, pdwDataLen, dwFlags);
3738
3739 if (!pdwDataLen) {
3740 SetLastError(ERROR_INVALID_PARAMETER);
3741 return FALSE;
3742 }
3743
3744 if (!(pKeyContainer = get_key_container(hProv)))
3745 {
3746 /* MSDN: hProv not containing valid context handle */
3747 return FALSE;
3748 }
3749
3750 switch (dwParam)
3751 {
3752 case PP_CONTAINER:
3753 case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */
3754 return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szName,
3755 strlen(pKeyContainer->szName)+1);
3756
3757 case PP_NAME:
3758 return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szProvName,
3759 strlen(pKeyContainer->szProvName)+1);
3760
3761 case PP_PROVTYPE:
3762 dwTemp = PROV_RSA_FULL;
3763 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3764
3765 case PP_KEYSPEC:
3766 dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE;
3767 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3768
3769 case PP_KEYSET_TYPE:
3770 dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET;
3771 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3772
3773 case PP_KEYSTORAGE:
3774 dwTemp = CRYPT_SEC_DESCR;
3775 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3776
3777 case PP_SIG_KEYSIZE_INC:
3778 case PP_KEYX_KEYSIZE_INC:
3779 dwTemp = 8;
3780 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3781
3782 case PP_IMPTYPE:
3783 dwTemp = CRYPT_IMPL_SOFTWARE;
3784 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3785
3786 case PP_VERSION:
3787 dwTemp = 0x00000200;
3788 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
3789
3790 case PP_ENUMCONTAINERS:
3791 if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
3792
3793 if (!pbData) {
3794 *pdwDataLen = (DWORD)MAX_PATH + 1;
3795 return TRUE;
3796 }
3797
3798 if (!open_container_key("", dwFlags, KEY_READ, &hKey))
3799 {
3800 SetLastError(ERROR_NO_MORE_ITEMS);
3801 return FALSE;
3802 }
3803
3804 dwTemp = *pdwDataLen;
3805 switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
3806 NULL, NULL, NULL, NULL))
3807 {
3808 case ERROR_MORE_DATA:
3809 *pdwDataLen = (DWORD)MAX_PATH + 1;
3810
3811 case ERROR_SUCCESS:
3812 pKeyContainer->dwEnumContainersCtr++;
3813 RegCloseKey(hKey);
3814 return TRUE;
3815
3816 case ERROR_NO_MORE_ITEMS:
3817 default:
3818 SetLastError(ERROR_NO_MORE_ITEMS);
3819 RegCloseKey(hKey);
3820 return FALSE;
3821 }
3822
3823 case PP_ENUMALGS:
3824 case PP_ENUMALGS_EX:
3825 if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
3826 (!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
3827 [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) &&
3828 ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
3829 {
3830 SetLastError(ERROR_NO_MORE_ITEMS);
3831 return FALSE;
3832 }
3833
3834 if (dwParam == PP_ENUMALGS) {
3835 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS)))
3836 pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
3837 0 : pKeyContainer->dwEnumAlgsCtr+1;
3838
3839 provEnumalgs.aiAlgid = aProvEnumAlgsEx
3840 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
3841 provEnumalgs.dwBitLen = aProvEnumAlgsEx
3842 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
3843 provEnumalgs.dwNameLen = aProvEnumAlgsEx
3844 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
3845 memcpy(provEnumalgs.szName, aProvEnumAlgsEx
3846 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName,
3847 20*sizeof(CHAR));
3848
3849 return copy_param(pbData, pdwDataLen, (const BYTE*)&provEnumalgs,
3850 sizeof(PROV_ENUMALGS));
3851 } else {
3852 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX)))
3853 pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
3854 0 : pKeyContainer->dwEnumAlgsCtr+1;
3855
3856 return copy_param(pbData, pdwDataLen,
3857 (const BYTE*)&aProvEnumAlgsEx
3858 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr],
3859 sizeof(PROV_ENUMALGS_EX));
3860 }
3861
3862 case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */
3863 return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
3864
3865 case PP_KEYSET_SEC_DESCR:
3866 {
3867 SECURITY_DESCRIPTOR *sd;
3868 DWORD err, len, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET);
3869
3870 if (!open_container_key(pKeyContainer->szName, flags, KEY_READ, &hKey))
3871 {
3872 SetLastError(NTE_BAD_KEYSET);
3873 return FALSE;
3874 }
3875
3876 err = GetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, NULL, NULL, NULL, NULL, (void **)&sd);
3877 RegCloseKey(hKey);
3878 if (err)
3879 {
3880 SetLastError(err);
3881 return FALSE;
3882 }
3883
3884 len = GetSecurityDescriptorLength(sd);
3885 if (*pdwDataLen >= len) memcpy(pbData, sd, len);
3886 else SetLastError(ERROR_INSUFFICIENT_BUFFER);
3887 *pdwDataLen = len;
3888
3889 LocalFree(sd);
3890 return TRUE;
3891 }
3892
3893 default:
3894 /* MSDN: Unknown parameter number in dwParam */
3895 SetLastError(NTE_BAD_TYPE);
3896 return FALSE;
3897 }
3898 }
3899
3900 /******************************************************************************
3901 * CPDeriveKey (RSAENH.@)
3902 *
3903 * Derives a key from a hash value.
3904 *
3905 * PARAMS
3906 * hProv [I] Key container for which a key is to be generated.
3907 * Algid [I] Crypto algorithm identifier for the key to be generated.
3908 * hBaseData [I] Hash from whose value the key will be derived.
3909 * dwFlags [I] See Notes.
3910 * phKey [O] The generated key.
3911 *
3912 * RETURNS
3913 * Success: TRUE
3914 * Failure: FALSE
3915 *
3916 * NOTES
3917 * Defined flags:
3918 * - CRYPT_EXPORTABLE: Key can be exported.
3919 * - CRYPT_NO_SALT: No salt is used for 40 bit keys.
3920 * - CRYPT_CREATE_SALT: Use remaining bits as salt value.
3921 */
RSAENH_CPDeriveKey(HCRYPTPROV hProv,ALG_ID Algid,HCRYPTHASH hBaseData,DWORD dwFlags,HCRYPTKEY * phKey)3922 BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData,
3923 DWORD dwFlags, HCRYPTKEY *phKey)
3924 {
3925 CRYPTKEY *pCryptKey, *pMasterKey;
3926 CRYPTHASH *pCryptHash;
3927 BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
3928 DWORD dwLen;
3929
3930 TRACE("(hProv=%08lx, Algid=%d, hBaseData=%08lx, dwFlags=%08x phKey=%p)\n", hProv, Algid,
3931 hBaseData, dwFlags, phKey);
3932
3933 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3934 {
3935 SetLastError(NTE_BAD_UID);
3936 return FALSE;
3937 }
3938
3939 if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH,
3940 (OBJECTHDR**)&pCryptHash))
3941 {
3942 SetLastError(NTE_BAD_HASH);
3943 return FALSE;
3944 }
3945
3946 if (!phKey)
3947 {
3948 SetLastError(ERROR_INVALID_PARAMETER);
3949 return FALSE;
3950 }
3951
3952 switch (GET_ALG_CLASS(Algid))
3953 {
3954 case ALG_CLASS_DATA_ENCRYPT:
3955 {
3956 int need_padding, copy_len;
3957 *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3958 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3959
3960 /*
3961 * We derive the key material from the hash.
3962 * If the hash value is not large enough for the claimed key, we have to construct
3963 * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
3964 */
3965 dwLen = RSAENH_MAX_HASH_SIZE;
3966 RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
3967
3968 /*
3969 * The usage of padding seems to vary from algorithm to algorithm.
3970 * For now the only different case found was for AES with 128 bit key.
3971 */
3972 switch(Algid)
3973 {
3974 case CALG_AES_128:
3975 /* To reduce the chance of regressions we will only deviate
3976 * from the old behavior for the tested hash lengths */
3977 if (dwLen == 16 || dwLen == 20)
3978 {
3979 need_padding = 1;
3980 break;
3981 }
3982 default:
3983 need_padding = dwLen < pCryptKey->dwKeyLen;
3984 }
3985
3986 copy_len = pCryptKey->dwKeyLen;
3987 if (need_padding)
3988 {
3989 BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
3990 BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
3991 DWORD i;
3992
3993 memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
3994
3995 for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
3996 pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3997 pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
3998 }
3999
4000 init_hash(pCryptHash);
4001 update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
4002 finalize_hash(pCryptHash);
4003 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
4004
4005 init_hash(pCryptHash);
4006 update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
4007 finalize_hash(pCryptHash);
4008 memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue,
4009 pCryptHash->dwHashSize);
4010
4011 memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
4012 }
4013 /*
4014 * Padding was not required, we have more hash than needed.
4015 * Do we need to use the remaining hash as salt?
4016 */
4017 else if((dwFlags & CRYPT_CREATE_SALT) &&
4018 (Algid == CALG_RC2 || Algid == CALG_RC4))
4019 {
4020 copy_len += pCryptKey->dwSaltLen;
4021 }
4022
4023 memcpy(pCryptKey->abKeyValue, abHashValue,
4024 RSAENH_MIN(copy_len, sizeof(pCryptKey->abKeyValue)));
4025 break;
4026 }
4027 case ALG_CLASS_MSG_ENCRYPT:
4028 if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
4029 (OBJECTHDR**)&pMasterKey))
4030 {
4031 SetLastError(NTE_FAIL); /* FIXME error code */
4032 return FALSE;
4033 }
4034
4035 switch (Algid)
4036 {
4037 /* See RFC 2246, chapter 6.3 Key calculation */
4038 case CALG_SCHANNEL_ENC_KEY:
4039 if (!pMasterKey->siSChannelInfo.saEncAlg.Algid ||
4040 !pMasterKey->siSChannelInfo.saEncAlg.cBits)
4041 {
4042 SetLastError(NTE_BAD_FLAGS);
4043 return FALSE;
4044 }
4045 *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid,
4046 MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
4047 &pCryptKey);
4048 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
4049 memcpy(pCryptKey->abKeyValue,
4050 pCryptHash->abHashValue + (
4051 2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
4052 ((dwFlags & CRYPT_SERVER) ?
4053 (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
4054 pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
4055 memcpy(pCryptKey->abInitVector,
4056 pCryptHash->abHashValue + (
4057 2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
4058 2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
4059 ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
4060 pCryptKey->dwBlockLen);
4061 break;
4062
4063 case CALG_SCHANNEL_MAC_KEY:
4064 *phKey = new_key(hProv, Algid,
4065 MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
4066 &pCryptKey);
4067 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
4068 memcpy(pCryptKey->abKeyValue,
4069 pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ?
4070 pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
4071 pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
4072 break;
4073
4074 default:
4075 SetLastError(NTE_BAD_ALGID);
4076 return FALSE;
4077 }
4078 break;
4079
4080 default:
4081 SetLastError(NTE_BAD_ALGID);
4082 return FALSE;
4083 }
4084
4085 setup_key(pCryptKey);
4086 return TRUE;
4087 }
4088
4089 /******************************************************************************
4090 * CPGetUserKey (RSAENH.@)
4091 *
4092 * Returns a handle to the user's private key-exchange- or signature-key.
4093 *
4094 * PARAMS
4095 * hProv [I] The key container from which a user key is requested.
4096 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
4097 * phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
4098 *
4099 * RETURNS
4100 * Success: TRUE.
4101 * Failure: FALSE.
4102 *
4103 * NOTE
4104 * A newly created key container does not contain private user key. Create them with CPGenKey.
4105 */
RSAENH_CPGetUserKey(HCRYPTPROV hProv,DWORD dwKeySpec,HCRYPTKEY * phUserKey)4106 BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
4107 {
4108 KEYCONTAINER *pKeyContainer;
4109
4110 TRACE("(hProv=%08lx, dwKeySpec=%08x, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
4111
4112 if (!(pKeyContainer = get_key_container(hProv)))
4113 {
4114 /* MSDN: hProv not containing valid context handle */
4115 return FALSE;
4116 }
4117
4118 switch (dwKeySpec)
4119 {
4120 case AT_KEYEXCHANGE:
4121 copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY,
4122 phUserKey);
4123 break;
4124
4125 case AT_SIGNATURE:
4126 copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY,
4127 phUserKey);
4128 break;
4129
4130 default:
4131 *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
4132 }
4133
4134 if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
4135 {
4136 /* MSDN: dwKeySpec parameter specifies nonexistent key */
4137 SetLastError(NTE_NO_KEY);
4138 return FALSE;
4139 }
4140
4141 return TRUE;
4142 }
4143
4144 /******************************************************************************
4145 * CPHashData (RSAENH.@)
4146 *
4147 * Updates a hash object with the given data.
4148 *
4149 * PARAMS
4150 * hProv [I] Key container to which the hash object belongs.
4151 * hHash [I] Hash object which is to be updated.
4152 * pbData [I] Pointer to data with which the hash object is to be updated.
4153 * dwDataLen [I] Length of the data.
4154 * dwFlags [I] Currently none defined.
4155 *
4156 * RETURNS
4157 * Success: TRUE.
4158 * Failure: FALSE.
4159 *
4160 * NOTES
4161 * The actual hash value is queried with CPGetHashParam, which will finalize
4162 * the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
4163 */
RSAENH_CPHashData(HCRYPTPROV hProv,HCRYPTHASH hHash,const BYTE * pbData,DWORD dwDataLen,DWORD dwFlags)4164 BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbData,
4165 DWORD dwDataLen, DWORD dwFlags)
4166 {
4167 CRYPTHASH *pCryptHash;
4168
4169 TRACE("(hProv=%08lx, hHash=%08lx, pbData=%p, dwDataLen=%d, dwFlags=%08x)\n",
4170 hProv, hHash, pbData, dwDataLen, dwFlags);
4171
4172 if (dwFlags & ~CRYPT_USERDATA)
4173 {
4174 SetLastError(NTE_BAD_FLAGS);
4175 return FALSE;
4176 }
4177
4178 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
4179 (OBJECTHDR**)&pCryptHash))
4180 {
4181 SetLastError(NTE_BAD_HASH);
4182 return FALSE;
4183 }
4184
4185 if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
4186 {
4187 SetLastError(NTE_BAD_ALGID);
4188 return FALSE;
4189 }
4190
4191 if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
4192 {
4193 SetLastError(NTE_BAD_HASH_STATE);
4194 return FALSE;
4195 }
4196
4197 update_hash(pCryptHash, pbData, dwDataLen);
4198 return TRUE;
4199 }
4200
4201 /******************************************************************************
4202 * CPHashSessionKey (RSAENH.@)
4203 *
4204 * Updates a hash object with the binary representation of a symmetric key.
4205 *
4206 * PARAMS
4207 * hProv [I] Key container to which the hash object belongs.
4208 * hHash [I] Hash object which is to be updated.
4209 * hKey [I] The symmetric key, whose binary value will be added to the hash.
4210 * dwFlags [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
4211 *
4212 * RETURNS
4213 * Success: TRUE.
4214 * Failure: FALSE.
4215 */
RSAENH_CPHashSessionKey(HCRYPTPROV hProv,HCRYPTHASH hHash,HCRYPTKEY hKey,DWORD dwFlags)4216 BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey,
4217 DWORD dwFlags)
4218 {
4219 BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
4220 CRYPTKEY *pKey;
4221 DWORD i;
4222
4223 TRACE("(hProv=%08lx, hHash=%08lx, hKey=%08lx, dwFlags=%08x)\n", hProv, hHash, hKey, dwFlags);
4224
4225 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
4226 (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT))
4227 {
4228 SetLastError(NTE_BAD_KEY);
4229 return FALSE;
4230 }
4231
4232 if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
4233 SetLastError(NTE_BAD_FLAGS);
4234 return FALSE;
4235 }
4236
4237 memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
4238 if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
4239 for (i=0; i<pKey->dwKeyLen/2; i++) {
4240 bTemp = abKeyValue[i];
4241 abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
4242 abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
4243 }
4244 }
4245
4246 return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
4247 }
4248
4249 /******************************************************************************
4250 * CPReleaseContext (RSAENH.@)
4251 *
4252 * Release a key container.
4253 *
4254 * PARAMS
4255 * hProv [I] Key container to be released.
4256 * dwFlags [I] Currently none defined.
4257 *
4258 * RETURNS
4259 * Success: TRUE
4260 * Failure: FALSE
4261 */
RSAENH_CPReleaseContext(HCRYPTPROV hProv,DWORD dwFlags)4262 BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
4263 {
4264 TRACE("(hProv=%08lx, dwFlags=%08x)\n", hProv, dwFlags);
4265
4266 if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4267 {
4268 /* MSDN: hProv not containing valid context handle */
4269 SetLastError(NTE_BAD_UID);
4270 return FALSE;
4271 }
4272
4273 if (dwFlags) {
4274 SetLastError(NTE_BAD_FLAGS);
4275 return FALSE;
4276 }
4277
4278 return TRUE;
4279 }
4280
4281 /******************************************************************************
4282 * CPSetHashParam (RSAENH.@)
4283 *
4284 * Set a parameter of a hash object
4285 *
4286 * PARAMS
4287 * hProv [I] The key container to which the key belongs.
4288 * hHash [I] The hash object for which a parameter is to be set.
4289 * dwParam [I] Parameter type. See Notes.
4290 * pbData [I] Pointer to the parameter value.
4291 * dwFlags [I] Currently none defined.
4292 *
4293 * RETURNS
4294 * Success: TRUE.
4295 * Failure: FALSE.
4296 *
4297 * NOTES
4298 * Currently only the HP_HMAC_INFO dwParam type is defined.
4299 * The HMAC_INFO struct will be deep copied into the hash object.
4300 * See Internet RFC 2104 for details on the HMAC algorithm.
4301 */
RSAENH_CPSetHashParam(HCRYPTPROV hProv,HCRYPTHASH hHash,DWORD dwParam,BYTE * pbData,DWORD dwFlags)4302 BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam,
4303 BYTE *pbData, DWORD dwFlags)
4304 {
4305 CRYPTHASH *pCryptHash;
4306 CRYPTKEY *pCryptKey;
4307 DWORD i;
4308
4309 TRACE("(hProv=%08lx, hHash=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n",
4310 hProv, hHash, dwParam, pbData, dwFlags);
4311
4312 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4313 {
4314 SetLastError(NTE_BAD_UID);
4315 return FALSE;
4316 }
4317
4318 if (dwFlags) {
4319 SetLastError(NTE_BAD_FLAGS);
4320 return FALSE;
4321 }
4322
4323 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
4324 (OBJECTHDR**)&pCryptHash))
4325 {
4326 SetLastError(NTE_BAD_HASH);
4327 return FALSE;
4328 }
4329
4330 switch (dwParam) {
4331 case HP_HMAC_INFO:
4332 free_hmac_info(pCryptHash->pHMACInfo);
4333 if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
4334
4335 if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
4336 (OBJECTHDR**)&pCryptKey))
4337 {
4338 SetLastError(NTE_FAIL); /* FIXME: correct error code? */
4339 return FALSE;
4340 }
4341
4342 if (pCryptKey->aiAlgid == CALG_HMAC && !pCryptKey->dwKeyLen) {
4343 HCRYPTHASH hKeyHash;
4344 DWORD keyLen;
4345
4346 if (!RSAENH_CPCreateHash(hProv, ((PHMAC_INFO)pbData)->HashAlgid, 0, 0,
4347 &hKeyHash))
4348 return FALSE;
4349 if (!RSAENH_CPHashData(hProv, hKeyHash, pCryptKey->blobHmacKey.pbData,
4350 pCryptKey->blobHmacKey.cbData, 0))
4351 {
4352 RSAENH_CPDestroyHash(hProv, hKeyHash);
4353 return FALSE;
4354 }
4355 keyLen = sizeof(pCryptKey->abKeyValue);
4356 if (!RSAENH_CPGetHashParam(hProv, hKeyHash, HP_HASHVAL, pCryptKey->abKeyValue,
4357 &keyLen, 0))
4358 {
4359 RSAENH_CPDestroyHash(hProv, hKeyHash);
4360 return FALSE;
4361 }
4362 pCryptKey->dwKeyLen = keyLen;
4363 RSAENH_CPDestroyHash(hProv, hKeyHash);
4364 }
4365 for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
4366 pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
4367 }
4368 for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
4369 pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
4370 }
4371
4372 init_hash(pCryptHash);
4373 return TRUE;
4374
4375 case HP_HASHVAL:
4376 memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
4377 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
4378 return TRUE;
4379
4380 case HP_TLS1PRF_SEED:
4381 return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
4382
4383 case HP_TLS1PRF_LABEL:
4384 return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
4385
4386 default:
4387 SetLastError(NTE_BAD_TYPE);
4388 return FALSE;
4389 }
4390 }
4391
4392 /******************************************************************************
4393 * CPSetProvParam (RSAENH.@)
4394 */
RSAENH_CPSetProvParam(HCRYPTPROV hProv,DWORD dwParam,BYTE * pbData,DWORD dwFlags)4395 BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
4396 {
4397 KEYCONTAINER *pKeyContainer;
4398 HKEY hKey;
4399
4400 TRACE("(hProv=%08lx, dwParam=%08x, pbData=%p, dwFlags=%08x)\n", hProv, dwParam, pbData, dwFlags);
4401
4402 if (!(pKeyContainer = get_key_container(hProv)))
4403 return FALSE;
4404
4405 switch (dwParam)
4406 {
4407 case PP_KEYSET_SEC_DESCR:
4408 {
4409 SECURITY_DESCRIPTOR *sd = (SECURITY_DESCRIPTOR *)pbData;
4410 DWORD err, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET);
4411 BOOL def, present;
4412 REGSAM access = WRITE_DAC | WRITE_OWNER | ACCESS_SYSTEM_SECURITY;
4413 PSID owner = NULL, group = NULL;
4414 PACL dacl = NULL, sacl = NULL;
4415
4416 if (!open_container_key(pKeyContainer->szName, flags, access, &hKey))
4417 {
4418 SetLastError(NTE_BAD_KEYSET);
4419 return FALSE;
4420 }
4421
4422 if ((dwFlags & OWNER_SECURITY_INFORMATION && !GetSecurityDescriptorOwner(sd, &owner, &def)) ||
4423 (dwFlags & GROUP_SECURITY_INFORMATION && !GetSecurityDescriptorGroup(sd, &group, &def)) ||
4424 (dwFlags & DACL_SECURITY_INFORMATION && !GetSecurityDescriptorDacl(sd, &present, &dacl, &def)) ||
4425 (dwFlags & SACL_SECURITY_INFORMATION && !GetSecurityDescriptorSacl(sd, &present, &sacl, &def)))
4426 {
4427 RegCloseKey(hKey);
4428 return FALSE;
4429 }
4430
4431 err = SetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, owner, group, dacl, sacl);
4432 RegCloseKey(hKey);
4433 if (err)
4434 {
4435 SetLastError(err);
4436 return FALSE;
4437 }
4438 return TRUE;
4439 }
4440 default:
4441 FIXME("unimplemented parameter %08x\n", dwParam);
4442 return FALSE;
4443 }
4444 }
4445
4446 /******************************************************************************
4447 * CPSignHash (RSAENH.@)
4448 *
4449 * Sign a hash object
4450 *
4451 * PARAMS
4452 * hProv [I] The key container, to which the hash object belongs.
4453 * hHash [I] The hash object to be signed.
4454 * dwKeySpec [I] AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
4455 * sDescription [I] Should be NULL for security reasons.
4456 * dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4457 * pbSignature [O] Buffer, to which the signature will be stored. May be NULL to query SigLen.
4458 * pdwSigLen [I/O] Size of the buffer (in), Length of the signature (out)
4459 *
4460 * RETURNS
4461 * Success: TRUE
4462 * Failure: FALSE
4463 */
RSAENH_CPSignHash(HCRYPTPROV hProv,HCRYPTHASH hHash,DWORD dwKeySpec,LPCWSTR sDescription,DWORD dwFlags,BYTE * pbSignature,DWORD * pdwSigLen)4464 BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec,
4465 LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature,
4466 DWORD *pdwSigLen)
4467 {
4468 HCRYPTKEY hCryptKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
4469 CRYPTKEY *pCryptKey;
4470 DWORD dwHashLen;
4471 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4472 ALG_ID aiAlgid;
4473 BOOL ret = FALSE;
4474
4475 TRACE("(hProv=%08lx, hHash=%08lx, dwKeySpec=%08x, sDescription=%s, dwFlags=%08x, "
4476 "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
4477 dwFlags, pbSignature, pdwSigLen);
4478
4479 if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4480 SetLastError(NTE_BAD_FLAGS);
4481 return FALSE;
4482 }
4483
4484 if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
4485
4486 if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
4487 (OBJECTHDR**)&pCryptKey))
4488 {
4489 SetLastError(NTE_NO_KEY);
4490 goto out;
4491 }
4492
4493 if (!pbSignature) {
4494 *pdwSigLen = pCryptKey->dwKeyLen;
4495 ret = TRUE;
4496 goto out;
4497 }
4498 if (pCryptKey->dwKeyLen > *pdwSigLen)
4499 {
4500 SetLastError(ERROR_MORE_DATA);
4501 *pdwSigLen = pCryptKey->dwKeyLen;
4502 goto out;
4503 }
4504 *pdwSigLen = pCryptKey->dwKeyLen;
4505
4506 if (sDescription) {
4507 if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription,
4508 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4509 {
4510 goto out;
4511 }
4512 }
4513
4514 dwHashLen = sizeof(DWORD);
4515 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) goto out;
4516
4517 dwHashLen = RSAENH_MAX_HASH_SIZE;
4518 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) goto out;
4519
4520
4521 if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
4522 goto out;
4523 }
4524
4525 ret = encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
4526 out:
4527 RSAENH_CPDestroyKey(hProv, hCryptKey);
4528 return ret;
4529 }
4530
4531 /******************************************************************************
4532 * CPVerifySignature (RSAENH.@)
4533 *
4534 * Verify the signature of a hash object.
4535 *
4536 * PARAMS
4537 * hProv [I] The key container, to which the hash belongs.
4538 * hHash [I] The hash for which the signature is verified.
4539 * pbSignature [I] The binary signature.
4540 * dwSigLen [I] Length of the signature BLOB.
4541 * hPubKey [I] Public key used to verify the signature.
4542 * sDescription [I] Should be NULL for security reasons.
4543 * dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4544 *
4545 * RETURNS
4546 * Success: TRUE (Signature is valid)
4547 * Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
4548 */
RSAENH_CPVerifySignature(HCRYPTPROV hProv,HCRYPTHASH hHash,const BYTE * pbSignature,DWORD dwSigLen,HCRYPTKEY hPubKey,LPCWSTR sDescription,DWORD dwFlags)4549 BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbSignature,
4550 DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription,
4551 DWORD dwFlags)
4552 {
4553 BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
4554 CRYPTKEY *pCryptKey;
4555 DWORD dwHashLen;
4556 ALG_ID aiAlgid;
4557 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4558 BOOL res = FALSE;
4559
4560 TRACE("(hProv=%08lx, hHash=%08lx, pbSignature=%p, dwSigLen=%d, hPubKey=%08lx, sDescription=%s, "
4561 "dwFlags=%08x)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
4562 dwFlags);
4563
4564 if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4565 SetLastError(NTE_BAD_FLAGS);
4566 return FALSE;
4567 }
4568
4569 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4570 {
4571 SetLastError(NTE_BAD_UID);
4572 return FALSE;
4573 }
4574
4575 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY,
4576 (OBJECTHDR**)&pCryptKey))
4577 {
4578 SetLastError(NTE_BAD_KEY);
4579 return FALSE;
4580 }
4581
4582 /* in Microsoft implementation, the signature length is checked before
4583 * the signature pointer.
4584 */
4585 if (dwSigLen != pCryptKey->dwKeyLen)
4586 {
4587 SetLastError(NTE_BAD_SIGNATURE);
4588 return FALSE;
4589 }
4590
4591 if (!hHash || !pbSignature)
4592 {
4593 SetLastError(ERROR_INVALID_PARAMETER);
4594 return FALSE;
4595 }
4596
4597 if (sDescription) {
4598 if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription,
4599 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4600 {
4601 return FALSE;
4602 }
4603 }
4604
4605 dwHashLen = sizeof(DWORD);
4606 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
4607
4608 dwHashLen = RSAENH_MAX_HASH_SIZE;
4609 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
4610
4611 pbConstructed = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4612 if (!pbConstructed) {
4613 SetLastError(NTE_NO_MEMORY);
4614 goto cleanup;
4615 }
4616
4617 pbDecrypted = HeapAlloc(GetProcessHeap(), 0, dwSigLen);
4618 if (!pbDecrypted) {
4619 SetLastError(NTE_NO_MEMORY);
4620 goto cleanup;
4621 }
4622
4623 if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted,
4624 RSAENH_DECRYPT))
4625 {
4626 goto cleanup;
4627 }
4628
4629 if (build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags) &&
4630 !memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
4631 res = TRUE;
4632 goto cleanup;
4633 }
4634
4635 if (!(dwFlags & CRYPT_NOHASHOID) &&
4636 build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags|CRYPT_NOHASHOID) &&
4637 !memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
4638 res = TRUE;
4639 goto cleanup;
4640 }
4641
4642 SetLastError(NTE_BAD_SIGNATURE);
4643
4644 cleanup:
4645 HeapFree(GetProcessHeap(), 0, pbConstructed);
4646 HeapFree(GetProcessHeap(), 0, pbDecrypted);
4647 return res;
4648 }
4649
4650 /******************************************************************************
4651 * DllRegisterServer (RSAENH.@)
4652 */
DllRegisterServer(void)4653 HRESULT WINAPI DllRegisterServer(void)
4654 {
4655 return __wine_register_resources( instance );
4656 }
4657
4658 /******************************************************************************
4659 * DllUnregisterServer (RSAENH.@)
4660 */
DllUnregisterServer(void)4661 HRESULT WINAPI DllUnregisterServer(void)
4662 {
4663 return __wine_unregister_resources( instance );
4664 }
4665