1 //! This module contains `TyKind` and its major components.
2 
3 #![allow(rustc::usage_of_ty_tykind)]
4 
5 use self::TyKind::*;
6 
7 use crate::infer::canonical::Canonical;
8 use crate::ty::fold::ValidateBoundVars;
9 use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
10 use crate::ty::InferTy::{self, *};
11 use crate::ty::{
12     self, AdtDef, DefIdTree, Discr, Ty, TyCtxt, TypeFlags, TypeFoldable, WithConstness,
13 };
14 use crate::ty::{DelaySpanBugEmitted, List, ParamEnv, TyS};
15 use polonius_engine::Atom;
16 use rustc_data_structures::captures::Captures;
17 use rustc_hir as hir;
18 use rustc_hir::def_id::DefId;
19 use rustc_index::vec::Idx;
20 use rustc_macros::HashStable;
21 use rustc_span::symbol::{kw, Symbol};
22 use rustc_target::abi::VariantIdx;
23 use rustc_target::spec::abi;
24 use std::borrow::Cow;
25 use std::cmp::Ordering;
26 use std::marker::PhantomData;
27 use std::ops::Range;
28 use ty::util::IntTypeExt;
29 
30 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
31 #[derive(HashStable, TypeFoldable, Lift)]
32 pub struct TypeAndMut<'tcx> {
33     pub ty: Ty<'tcx>,
34     pub mutbl: hir::Mutability,
35 }
36 
37 #[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, TyEncodable, TyDecodable, Copy)]
38 #[derive(HashStable)]
39 /// A "free" region `fr` can be interpreted as "some region
40 /// at least as big as the scope `fr.scope`".
41 pub struct FreeRegion {
42     pub scope: DefId,
43     pub bound_region: BoundRegionKind,
44 }
45 
46 #[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, TyEncodable, TyDecodable, Copy)]
47 #[derive(HashStable)]
48 pub enum BoundRegionKind {
49     /// An anonymous region parameter for a given fn (&T)
50     BrAnon(u32),
51 
52     /// Named region parameters for functions (a in &'a T)
53     ///
54     /// The `DefId` is needed to distinguish free regions in
55     /// the event of shadowing.
56     BrNamed(DefId, Symbol),
57 
58     /// Anonymous region for the implicit env pointer parameter
59     /// to a closure
60     BrEnv,
61 }
62 
63 #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, Debug, PartialOrd, Ord)]
64 #[derive(HashStable)]
65 pub struct BoundRegion {
66     pub var: BoundVar,
67     pub kind: BoundRegionKind,
68 }
69 
70 impl BoundRegionKind {
is_named(&self) -> bool71     pub fn is_named(&self) -> bool {
72         match *self {
73             BoundRegionKind::BrNamed(_, name) => name != kw::UnderscoreLifetime,
74             _ => false,
75         }
76     }
77 }
78 
79 /// Defines the kinds of types.
80 ///
81 /// N.B., if you change this, you'll probably want to change the corresponding
82 /// AST structure in `rustc_ast/src/ast.rs` as well.
83 #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable, Debug)]
84 #[derive(HashStable)]
85 #[rustc_diagnostic_item = "TyKind"]
86 pub enum TyKind<'tcx> {
87     /// The primitive boolean type. Written as `bool`.
88     Bool,
89 
90     /// The primitive character type; holds a Unicode scalar value
91     /// (a non-surrogate code point). Written as `char`.
92     Char,
93 
94     /// A primitive signed integer type. For example, `i32`.
95     Int(ty::IntTy),
96 
97     /// A primitive unsigned integer type. For example, `u32`.
98     Uint(ty::UintTy),
99 
100     /// A primitive floating-point type. For example, `f64`.
101     Float(ty::FloatTy),
102 
103     /// Algebraic data types (ADT). For example: structures, enumerations and unions.
104     ///
105     /// InternalSubsts here, possibly against intuition, *may* contain `Param`s.
106     /// That is, even after substitution it is possible that there are type
107     /// variables. This happens when the `Adt` corresponds to an ADT
108     /// definition and not a concrete use of it.
109     Adt(&'tcx AdtDef, SubstsRef<'tcx>),
110 
111     /// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
112     Foreign(DefId),
113 
114     /// The pointee of a string slice. Written as `str`.
115     Str,
116 
117     /// An array with the given length. Written as `[T; n]`.
118     Array(Ty<'tcx>, &'tcx ty::Const<'tcx>),
119 
120     /// The pointee of an array slice. Written as `[T]`.
121     Slice(Ty<'tcx>),
122 
123     /// A raw pointer. Written as `*mut T` or `*const T`
124     RawPtr(TypeAndMut<'tcx>),
125 
126     /// A reference; a pointer with an associated lifetime. Written as
127     /// `&'a mut T` or `&'a T`.
128     Ref(Region<'tcx>, Ty<'tcx>, hir::Mutability),
129 
130     /// The anonymous type of a function declaration/definition. Each
131     /// function has a unique type, which is output (for a function
132     /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
133     ///
134     /// For example the type of `bar` here:
135     ///
136     /// ```rust
137     /// fn foo() -> i32 { 1 }
138     /// let bar = foo; // bar: fn() -> i32 {foo}
139     /// ```
140     FnDef(DefId, SubstsRef<'tcx>),
141 
142     /// A pointer to a function. Written as `fn() -> i32`.
143     ///
144     /// For example the type of `bar` here:
145     ///
146     /// ```rust
147     /// fn foo() -> i32 { 1 }
148     /// let bar: fn() -> i32 = foo;
149     /// ```
150     FnPtr(PolyFnSig<'tcx>),
151 
152     /// A trait object. Written as `dyn for<'b> Trait<'b, Assoc = u32> + Send + 'a`.
153     Dynamic(&'tcx List<Binder<'tcx, ExistentialPredicate<'tcx>>>, ty::Region<'tcx>),
154 
155     /// The anonymous type of a closure. Used to represent the type of
156     /// `|a| a`.
157     Closure(DefId, SubstsRef<'tcx>),
158 
159     /// The anonymous type of a generator. Used to represent the type of
160     /// `|a| yield a`.
161     Generator(DefId, SubstsRef<'tcx>, hir::Movability),
162 
163     /// A type representing the types stored inside a generator.
164     /// This should only appear in GeneratorInteriors.
165     GeneratorWitness(Binder<'tcx, &'tcx List<Ty<'tcx>>>),
166 
167     /// The never type `!`.
168     Never,
169 
170     /// A tuple type. For example, `(i32, bool)`.
171     /// Use `TyS::tuple_fields` to iterate over the field types.
172     Tuple(SubstsRef<'tcx>),
173 
174     /// The projection of an associated type. For example,
175     /// `<T as Trait<..>>::N`.
176     Projection(ProjectionTy<'tcx>),
177 
178     /// Opaque (`impl Trait`) type found in a return type.
179     /// The `DefId` comes either from
180     /// * the `impl Trait` ast::Ty node,
181     /// * or the `type Foo = impl Trait` declaration
182     /// The substitutions are for the generics of the function in question.
183     /// After typeck, the concrete type can be found in the `types` map.
184     Opaque(DefId, SubstsRef<'tcx>),
185 
186     /// A type parameter; for example, `T` in `fn f<T>(x: T) {}`.
187     Param(ParamTy),
188 
189     /// Bound type variable, used only when preparing a trait query.
190     Bound(ty::DebruijnIndex, BoundTy),
191 
192     /// A placeholder type - universally quantified higher-ranked type.
193     Placeholder(ty::PlaceholderType),
194 
195     /// A type variable used during type checking.
196     Infer(InferTy),
197 
198     /// A placeholder for a type which could not be computed; this is
199     /// propagated to avoid useless error messages.
200     Error(DelaySpanBugEmitted),
201 }
202 
203 impl TyKind<'tcx> {
204     #[inline]
is_primitive(&self) -> bool205     pub fn is_primitive(&self) -> bool {
206         matches!(self, Bool | Char | Int(_) | Uint(_) | Float(_))
207     }
208 
209     /// Get the article ("a" or "an") to use with this type.
article(&self) -> &'static str210     pub fn article(&self) -> &'static str {
211         match self {
212             Int(_) | Float(_) | Array(_, _) => "an",
213             Adt(def, _) if def.is_enum() => "an",
214             // This should never happen, but ICEing and causing the user's code
215             // to not compile felt too harsh.
216             Error(_) => "a",
217             _ => "a",
218         }
219     }
220 }
221 
222 // `TyKind` is used a lot. Make sure it doesn't unintentionally get bigger.
223 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
224 static_assert_size!(TyKind<'_>, 32);
225 
226 /// A closure can be modeled as a struct that looks like:
227 ///
228 ///     struct Closure<'l0...'li, T0...Tj, CK, CS, U>(...U);
229 ///
230 /// where:
231 ///
232 /// - 'l0...'li and T0...Tj are the generic parameters
233 ///   in scope on the function that defined the closure,
234 /// - CK represents the *closure kind* (Fn vs FnMut vs FnOnce). This
235 ///   is rather hackily encoded via a scalar type. See
236 ///   `TyS::to_opt_closure_kind` for details.
237 /// - CS represents the *closure signature*, representing as a `fn()`
238 ///   type. For example, `fn(u32, u32) -> u32` would mean that the closure
239 ///   implements `CK<(u32, u32), Output = u32>`, where `CK` is the trait
240 ///   specified above.
241 /// - U is a type parameter representing the types of its upvars, tupled up
242 ///   (borrowed, if appropriate; that is, if a U field represents a by-ref upvar,
243 ///    and the up-var has the type `Foo`, then that field of U will be `&Foo`).
244 ///
245 /// So, for example, given this function:
246 ///
247 ///     fn foo<'a, T>(data: &'a mut T) {
248 ///          do(|| data.count += 1)
249 ///     }
250 ///
251 /// the type of the closure would be something like:
252 ///
253 ///     struct Closure<'a, T, U>(...U);
254 ///
255 /// Note that the type of the upvar is not specified in the struct.
256 /// You may wonder how the impl would then be able to use the upvar,
257 /// if it doesn't know it's type? The answer is that the impl is
258 /// (conceptually) not fully generic over Closure but rather tied to
259 /// instances with the expected upvar types:
260 ///
261 ///     impl<'b, 'a, T> FnMut() for Closure<'a, T, (&'b mut &'a mut T,)> {
262 ///         ...
263 ///     }
264 ///
265 /// You can see that the *impl* fully specified the type of the upvar
266 /// and thus knows full well that `data` has type `&'b mut &'a mut T`.
267 /// (Here, I am assuming that `data` is mut-borrowed.)
268 ///
269 /// Now, the last question you may ask is: Why include the upvar types
270 /// in an extra type parameter? The reason for this design is that the
271 /// upvar types can reference lifetimes that are internal to the
272 /// creating function. In my example above, for example, the lifetime
273 /// `'b` represents the scope of the closure itself; this is some
274 /// subset of `foo`, probably just the scope of the call to the to
275 /// `do()`. If we just had the lifetime/type parameters from the
276 /// enclosing function, we couldn't name this lifetime `'b`. Note that
277 /// there can also be lifetimes in the types of the upvars themselves,
278 /// if one of them happens to be a reference to something that the
279 /// creating fn owns.
280 ///
281 /// OK, you say, so why not create a more minimal set of parameters
282 /// that just includes the extra lifetime parameters? The answer is
283 /// primarily that it would be hard --- we don't know at the time when
284 /// we create the closure type what the full types of the upvars are,
285 /// nor do we know which are borrowed and which are not. In this
286 /// design, we can just supply a fresh type parameter and figure that
287 /// out later.
288 ///
289 /// All right, you say, but why include the type parameters from the
290 /// original function then? The answer is that codegen may need them
291 /// when monomorphizing, and they may not appear in the upvars. A
292 /// closure could capture no variables but still make use of some
293 /// in-scope type parameter with a bound (e.g., if our example above
294 /// had an extra `U: Default`, and the closure called `U::default()`).
295 ///
296 /// There is another reason. This design (implicitly) prohibits
297 /// closures from capturing themselves (except via a trait
298 /// object). This simplifies closure inference considerably, since it
299 /// means that when we infer the kind of a closure or its upvars, we
300 /// don't have to handle cycles where the decisions we make for
301 /// closure C wind up influencing the decisions we ought to make for
302 /// closure C (which would then require fixed point iteration to
303 /// handle). Plus it fixes an ICE. :P
304 ///
305 /// ## Generators
306 ///
307 /// Generators are handled similarly in `GeneratorSubsts`.  The set of
308 /// type parameters is similar, but `CK` and `CS` are replaced by the
309 /// following type parameters:
310 ///
311 /// * `GS`: The generator's "resume type", which is the type of the
312 ///   argument passed to `resume`, and the type of `yield` expressions
313 ///   inside the generator.
314 /// * `GY`: The "yield type", which is the type of values passed to
315 ///   `yield` inside the generator.
316 /// * `GR`: The "return type", which is the type of value returned upon
317 ///   completion of the generator.
318 /// * `GW`: The "generator witness".
319 #[derive(Copy, Clone, Debug, TypeFoldable)]
320 pub struct ClosureSubsts<'tcx> {
321     /// Lifetime and type parameters from the enclosing function,
322     /// concatenated with a tuple containing the types of the upvars.
323     ///
324     /// These are separated out because codegen wants to pass them around
325     /// when monomorphizing.
326     pub substs: SubstsRef<'tcx>,
327 }
328 
329 /// Struct returned by `split()`.
330 pub struct ClosureSubstsParts<'tcx, T> {
331     pub parent_substs: &'tcx [GenericArg<'tcx>],
332     pub closure_kind_ty: T,
333     pub closure_sig_as_fn_ptr_ty: T,
334     pub tupled_upvars_ty: T,
335 }
336 
337 impl<'tcx> ClosureSubsts<'tcx> {
338     /// Construct `ClosureSubsts` from `ClosureSubstsParts`, containing `Substs`
339     /// for the closure parent, alongside additional closure-specific components.
new( tcx: TyCtxt<'tcx>, parts: ClosureSubstsParts<'tcx, Ty<'tcx>>, ) -> ClosureSubsts<'tcx>340     pub fn new(
341         tcx: TyCtxt<'tcx>,
342         parts: ClosureSubstsParts<'tcx, Ty<'tcx>>,
343     ) -> ClosureSubsts<'tcx> {
344         ClosureSubsts {
345             substs: tcx.mk_substs(
346                 parts.parent_substs.iter().copied().chain(
347                     [parts.closure_kind_ty, parts.closure_sig_as_fn_ptr_ty, parts.tupled_upvars_ty]
348                         .iter()
349                         .map(|&ty| ty.into()),
350                 ),
351             ),
352         }
353     }
354 
355     /// Divides the closure substs into their respective components.
356     /// The ordering assumed here must match that used by `ClosureSubsts::new` above.
split(self) -> ClosureSubstsParts<'tcx, GenericArg<'tcx>>357     fn split(self) -> ClosureSubstsParts<'tcx, GenericArg<'tcx>> {
358         match self.substs[..] {
359             [ref parent_substs @ .., closure_kind_ty, closure_sig_as_fn_ptr_ty, tupled_upvars_ty] => {
360                 ClosureSubstsParts {
361                     parent_substs,
362                     closure_kind_ty,
363                     closure_sig_as_fn_ptr_ty,
364                     tupled_upvars_ty,
365                 }
366             }
367             _ => bug!("closure substs missing synthetics"),
368         }
369     }
370 
371     /// Returns `true` only if enough of the synthetic types are known to
372     /// allow using all of the methods on `ClosureSubsts` without panicking.
373     ///
374     /// Used primarily by `ty::print::pretty` to be able to handle closure
375     /// types that haven't had their synthetic types substituted in.
is_valid(self) -> bool376     pub fn is_valid(self) -> bool {
377         self.substs.len() >= 3
378             && matches!(self.split().tupled_upvars_ty.expect_ty().kind(), Tuple(_))
379     }
380 
381     /// Returns the substitutions of the closure's parent.
parent_substs(self) -> &'tcx [GenericArg<'tcx>]382     pub fn parent_substs(self) -> &'tcx [GenericArg<'tcx>] {
383         self.split().parent_substs
384     }
385 
386     /// Returns an iterator over the list of types of captured paths by the closure.
387     /// In case there was a type error in figuring out the types of the captured path, an
388     /// empty iterator is returned.
389     #[inline]
upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx390     pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
391         match self.tupled_upvars_ty().kind() {
392             TyKind::Error(_) => None,
393             TyKind::Tuple(..) => Some(self.tupled_upvars_ty().tuple_fields()),
394             TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
395             ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
396         }
397         .into_iter()
398         .flatten()
399     }
400 
401     /// Returns the tuple type representing the upvars for this closure.
402     #[inline]
tupled_upvars_ty(self) -> Ty<'tcx>403     pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
404         self.split().tupled_upvars_ty.expect_ty()
405     }
406 
407     /// Returns the closure kind for this closure; may return a type
408     /// variable during inference. To get the closure kind during
409     /// inference, use `infcx.closure_kind(substs)`.
kind_ty(self) -> Ty<'tcx>410     pub fn kind_ty(self) -> Ty<'tcx> {
411         self.split().closure_kind_ty.expect_ty()
412     }
413 
414     /// Returns the `fn` pointer type representing the closure signature for this
415     /// closure.
416     // FIXME(eddyb) this should be unnecessary, as the shallowly resolved
417     // type is known at the time of the creation of `ClosureSubsts`,
418     // see `rustc_typeck::check::closure`.
sig_as_fn_ptr_ty(self) -> Ty<'tcx>419     pub fn sig_as_fn_ptr_ty(self) -> Ty<'tcx> {
420         self.split().closure_sig_as_fn_ptr_ty.expect_ty()
421     }
422 
423     /// Returns the closure kind for this closure; only usable outside
424     /// of an inference context, because in that context we know that
425     /// there are no type variables.
426     ///
427     /// If you have an inference context, use `infcx.closure_kind()`.
kind(self) -> ty::ClosureKind428     pub fn kind(self) -> ty::ClosureKind {
429         self.kind_ty().to_opt_closure_kind().unwrap()
430     }
431 
432     /// Extracts the signature from the closure.
sig(self) -> ty::PolyFnSig<'tcx>433     pub fn sig(self) -> ty::PolyFnSig<'tcx> {
434         let ty = self.sig_as_fn_ptr_ty();
435         match ty.kind() {
436             ty::FnPtr(sig) => *sig,
437             _ => bug!("closure_sig_as_fn_ptr_ty is not a fn-ptr: {:?}", ty.kind()),
438         }
439     }
440 }
441 
442 /// Similar to `ClosureSubsts`; see the above documentation for more.
443 #[derive(Copy, Clone, Debug, TypeFoldable)]
444 pub struct GeneratorSubsts<'tcx> {
445     pub substs: SubstsRef<'tcx>,
446 }
447 
448 pub struct GeneratorSubstsParts<'tcx, T> {
449     pub parent_substs: &'tcx [GenericArg<'tcx>],
450     pub resume_ty: T,
451     pub yield_ty: T,
452     pub return_ty: T,
453     pub witness: T,
454     pub tupled_upvars_ty: T,
455 }
456 
457 impl<'tcx> GeneratorSubsts<'tcx> {
458     /// Construct `GeneratorSubsts` from `GeneratorSubstsParts`, containing `Substs`
459     /// for the generator parent, alongside additional generator-specific components.
new( tcx: TyCtxt<'tcx>, parts: GeneratorSubstsParts<'tcx, Ty<'tcx>>, ) -> GeneratorSubsts<'tcx>460     pub fn new(
461         tcx: TyCtxt<'tcx>,
462         parts: GeneratorSubstsParts<'tcx, Ty<'tcx>>,
463     ) -> GeneratorSubsts<'tcx> {
464         GeneratorSubsts {
465             substs: tcx.mk_substs(
466                 parts.parent_substs.iter().copied().chain(
467                     [
468                         parts.resume_ty,
469                         parts.yield_ty,
470                         parts.return_ty,
471                         parts.witness,
472                         parts.tupled_upvars_ty,
473                     ]
474                     .iter()
475                     .map(|&ty| ty.into()),
476                 ),
477             ),
478         }
479     }
480 
481     /// Divides the generator substs into their respective components.
482     /// The ordering assumed here must match that used by `GeneratorSubsts::new` above.
split(self) -> GeneratorSubstsParts<'tcx, GenericArg<'tcx>>483     fn split(self) -> GeneratorSubstsParts<'tcx, GenericArg<'tcx>> {
484         match self.substs[..] {
485             [ref parent_substs @ .., resume_ty, yield_ty, return_ty, witness, tupled_upvars_ty] => {
486                 GeneratorSubstsParts {
487                     parent_substs,
488                     resume_ty,
489                     yield_ty,
490                     return_ty,
491                     witness,
492                     tupled_upvars_ty,
493                 }
494             }
495             _ => bug!("generator substs missing synthetics"),
496         }
497     }
498 
499     /// Returns `true` only if enough of the synthetic types are known to
500     /// allow using all of the methods on `GeneratorSubsts` without panicking.
501     ///
502     /// Used primarily by `ty::print::pretty` to be able to handle generator
503     /// types that haven't had their synthetic types substituted in.
is_valid(self) -> bool504     pub fn is_valid(self) -> bool {
505         self.substs.len() >= 5
506             && matches!(self.split().tupled_upvars_ty.expect_ty().kind(), Tuple(_))
507     }
508 
509     /// Returns the substitutions of the generator's parent.
parent_substs(self) -> &'tcx [GenericArg<'tcx>]510     pub fn parent_substs(self) -> &'tcx [GenericArg<'tcx>] {
511         self.split().parent_substs
512     }
513 
514     /// This describes the types that can be contained in a generator.
515     /// It will be a type variable initially and unified in the last stages of typeck of a body.
516     /// It contains a tuple of all the types that could end up on a generator frame.
517     /// The state transformation MIR pass may only produce layouts which mention types
518     /// in this tuple. Upvars are not counted here.
witness(self) -> Ty<'tcx>519     pub fn witness(self) -> Ty<'tcx> {
520         self.split().witness.expect_ty()
521     }
522 
523     /// Returns an iterator over the list of types of captured paths by the generator.
524     /// In case there was a type error in figuring out the types of the captured path, an
525     /// empty iterator is returned.
526     #[inline]
upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx527     pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
528         match self.tupled_upvars_ty().kind() {
529             TyKind::Error(_) => None,
530             TyKind::Tuple(..) => Some(self.tupled_upvars_ty().tuple_fields()),
531             TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
532             ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
533         }
534         .into_iter()
535         .flatten()
536     }
537 
538     /// Returns the tuple type representing the upvars for this generator.
539     #[inline]
tupled_upvars_ty(self) -> Ty<'tcx>540     pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
541         self.split().tupled_upvars_ty.expect_ty()
542     }
543 
544     /// Returns the type representing the resume type of the generator.
resume_ty(self) -> Ty<'tcx>545     pub fn resume_ty(self) -> Ty<'tcx> {
546         self.split().resume_ty.expect_ty()
547     }
548 
549     /// Returns the type representing the yield type of the generator.
yield_ty(self) -> Ty<'tcx>550     pub fn yield_ty(self) -> Ty<'tcx> {
551         self.split().yield_ty.expect_ty()
552     }
553 
554     /// Returns the type representing the return type of the generator.
return_ty(self) -> Ty<'tcx>555     pub fn return_ty(self) -> Ty<'tcx> {
556         self.split().return_ty.expect_ty()
557     }
558 
559     /// Returns the "generator signature", which consists of its yield
560     /// and return types.
561     ///
562     /// N.B., some bits of the code prefers to see this wrapped in a
563     /// binder, but it never contains bound regions. Probably this
564     /// function should be removed.
poly_sig(self) -> PolyGenSig<'tcx>565     pub fn poly_sig(self) -> PolyGenSig<'tcx> {
566         ty::Binder::dummy(self.sig())
567     }
568 
569     /// Returns the "generator signature", which consists of its resume, yield
570     /// and return types.
sig(self) -> GenSig<'tcx>571     pub fn sig(self) -> GenSig<'tcx> {
572         ty::GenSig {
573             resume_ty: self.resume_ty(),
574             yield_ty: self.yield_ty(),
575             return_ty: self.return_ty(),
576         }
577     }
578 }
579 
580 impl<'tcx> GeneratorSubsts<'tcx> {
581     /// Generator has not been resumed yet.
582     pub const UNRESUMED: usize = 0;
583     /// Generator has returned or is completed.
584     pub const RETURNED: usize = 1;
585     /// Generator has been poisoned.
586     pub const POISONED: usize = 2;
587 
588     const UNRESUMED_NAME: &'static str = "Unresumed";
589     const RETURNED_NAME: &'static str = "Returned";
590     const POISONED_NAME: &'static str = "Panicked";
591 
592     /// The valid variant indices of this generator.
593     #[inline]
variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx>594     pub fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
595         // FIXME requires optimized MIR
596         let num_variants = tcx.generator_layout(def_id).unwrap().variant_fields.len();
597         VariantIdx::new(0)..VariantIdx::new(num_variants)
598     }
599 
600     /// The discriminant for the given variant. Panics if the `variant_index` is
601     /// out of range.
602     #[inline]
discriminant_for_variant( &self, def_id: DefId, tcx: TyCtxt<'tcx>, variant_index: VariantIdx, ) -> Discr<'tcx>603     pub fn discriminant_for_variant(
604         &self,
605         def_id: DefId,
606         tcx: TyCtxt<'tcx>,
607         variant_index: VariantIdx,
608     ) -> Discr<'tcx> {
609         // Generators don't support explicit discriminant values, so they are
610         // the same as the variant index.
611         assert!(self.variant_range(def_id, tcx).contains(&variant_index));
612         Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
613     }
614 
615     /// The set of all discriminants for the generator, enumerated with their
616     /// variant indices.
617     #[inline]
discriminants( self, def_id: DefId, tcx: TyCtxt<'tcx>, ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx>618     pub fn discriminants(
619         self,
620         def_id: DefId,
621         tcx: TyCtxt<'tcx>,
622     ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
623         self.variant_range(def_id, tcx).map(move |index| {
624             (index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
625         })
626     }
627 
628     /// Calls `f` with a reference to the name of the enumerator for the given
629     /// variant `v`.
variant_name(v: VariantIdx) -> Cow<'static, str>630     pub fn variant_name(v: VariantIdx) -> Cow<'static, str> {
631         match v.as_usize() {
632             Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
633             Self::RETURNED => Cow::from(Self::RETURNED_NAME),
634             Self::POISONED => Cow::from(Self::POISONED_NAME),
635             _ => Cow::from(format!("Suspend{}", v.as_usize() - 3)),
636         }
637     }
638 
639     /// The type of the state discriminant used in the generator type.
640     #[inline]
discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>641     pub fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
642         tcx.types.u32
643     }
644 
645     /// This returns the types of the MIR locals which had to be stored across suspension points.
646     /// It is calculated in rustc_const_eval::transform::generator::StateTransform.
647     /// All the types here must be in the tuple in GeneratorInterior.
648     ///
649     /// The locals are grouped by their variant number. Note that some locals may
650     /// be repeated in multiple variants.
651     #[inline]
state_tys( self, def_id: DefId, tcx: TyCtxt<'tcx>, ) -> impl Iterator<Item = impl Iterator<Item = Ty<'tcx>> + Captures<'tcx>>652     pub fn state_tys(
653         self,
654         def_id: DefId,
655         tcx: TyCtxt<'tcx>,
656     ) -> impl Iterator<Item = impl Iterator<Item = Ty<'tcx>> + Captures<'tcx>> {
657         let layout = tcx.generator_layout(def_id).unwrap();
658         layout.variant_fields.iter().map(move |variant| {
659             variant.iter().map(move |field| layout.field_tys[*field].subst(tcx, self.substs))
660         })
661     }
662 
663     /// This is the types of the fields of a generator which are not stored in a
664     /// variant.
665     #[inline]
prefix_tys(self) -> impl Iterator<Item = Ty<'tcx>>666     pub fn prefix_tys(self) -> impl Iterator<Item = Ty<'tcx>> {
667         self.upvar_tys()
668     }
669 }
670 
671 #[derive(Debug, Copy, Clone, HashStable)]
672 pub enum UpvarSubsts<'tcx> {
673     Closure(SubstsRef<'tcx>),
674     Generator(SubstsRef<'tcx>),
675 }
676 
677 impl<'tcx> UpvarSubsts<'tcx> {
678     /// Returns an iterator over the list of types of captured paths by the closure/generator.
679     /// In case there was a type error in figuring out the types of the captured path, an
680     /// empty iterator is returned.
681     #[inline]
upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx682     pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
683         let tupled_tys = match self {
684             UpvarSubsts::Closure(substs) => substs.as_closure().tupled_upvars_ty(),
685             UpvarSubsts::Generator(substs) => substs.as_generator().tupled_upvars_ty(),
686         };
687 
688         match tupled_tys.kind() {
689             TyKind::Error(_) => None,
690             TyKind::Tuple(..) => Some(self.tupled_upvars_ty().tuple_fields()),
691             TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
692             ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
693         }
694         .into_iter()
695         .flatten()
696     }
697 
698     #[inline]
tupled_upvars_ty(self) -> Ty<'tcx>699     pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
700         match self {
701             UpvarSubsts::Closure(substs) => substs.as_closure().tupled_upvars_ty(),
702             UpvarSubsts::Generator(substs) => substs.as_generator().tupled_upvars_ty(),
703         }
704     }
705 }
706 
707 /// An inline const is modeled like
708 ///
709 ///     const InlineConst<'l0...'li, T0...Tj, R>: R;
710 ///
711 /// where:
712 ///
713 /// - 'l0...'li and T0...Tj are the generic parameters
714 ///   inherited from the item that defined the inline const,
715 /// - R represents the type of the constant.
716 ///
717 /// When the inline const is instantiated, `R` is substituted as the actual inferred
718 /// type of the constant. The reason that `R` is represented as an extra type parameter
719 /// is the same reason that [`ClosureSubsts`] have `CS` and `U` as type parameters:
720 /// inline const can reference lifetimes that are internal to the creating function.
721 #[derive(Copy, Clone, Debug, TypeFoldable)]
722 pub struct InlineConstSubsts<'tcx> {
723     /// Generic parameters from the enclosing item,
724     /// concatenated with the inferred type of the constant.
725     pub substs: SubstsRef<'tcx>,
726 }
727 
728 /// Struct returned by `split()`.
729 pub struct InlineConstSubstsParts<'tcx, T> {
730     pub parent_substs: &'tcx [GenericArg<'tcx>],
731     pub ty: T,
732 }
733 
734 impl<'tcx> InlineConstSubsts<'tcx> {
735     /// Construct `InlineConstSubsts` from `InlineConstSubstsParts`.
new( tcx: TyCtxt<'tcx>, parts: InlineConstSubstsParts<'tcx, Ty<'tcx>>, ) -> InlineConstSubsts<'tcx>736     pub fn new(
737         tcx: TyCtxt<'tcx>,
738         parts: InlineConstSubstsParts<'tcx, Ty<'tcx>>,
739     ) -> InlineConstSubsts<'tcx> {
740         InlineConstSubsts {
741             substs: tcx.mk_substs(
742                 parts.parent_substs.iter().copied().chain(std::iter::once(parts.ty.into())),
743             ),
744         }
745     }
746 
747     /// Divides the inline const substs into their respective components.
748     /// The ordering assumed here must match that used by `InlineConstSubsts::new` above.
split(self) -> InlineConstSubstsParts<'tcx, GenericArg<'tcx>>749     fn split(self) -> InlineConstSubstsParts<'tcx, GenericArg<'tcx>> {
750         match self.substs[..] {
751             [ref parent_substs @ .., ty] => InlineConstSubstsParts { parent_substs, ty },
752             _ => bug!("inline const substs missing synthetics"),
753         }
754     }
755 
756     /// Returns the substitutions of the inline const's parent.
parent_substs(self) -> &'tcx [GenericArg<'tcx>]757     pub fn parent_substs(self) -> &'tcx [GenericArg<'tcx>] {
758         self.split().parent_substs
759     }
760 
761     /// Returns the type of this inline const.
ty(self) -> Ty<'tcx>762     pub fn ty(self) -> Ty<'tcx> {
763         self.split().ty.expect_ty()
764     }
765 }
766 
767 #[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Ord, Eq, Hash, TyEncodable, TyDecodable)]
768 #[derive(HashStable, TypeFoldable)]
769 pub enum ExistentialPredicate<'tcx> {
770     /// E.g., `Iterator`.
771     Trait(ExistentialTraitRef<'tcx>),
772     /// E.g., `Iterator::Item = T`.
773     Projection(ExistentialProjection<'tcx>),
774     /// E.g., `Send`.
775     AutoTrait(DefId),
776 }
777 
778 impl<'tcx> ExistentialPredicate<'tcx> {
779     /// Compares via an ordering that will not change if modules are reordered or other changes are
780     /// made to the tree. In particular, this ordering is preserved across incremental compilations.
stable_cmp(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Ordering781     pub fn stable_cmp(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Ordering {
782         use self::ExistentialPredicate::*;
783         match (*self, *other) {
784             (Trait(_), Trait(_)) => Ordering::Equal,
785             (Projection(ref a), Projection(ref b)) => {
786                 tcx.def_path_hash(a.item_def_id).cmp(&tcx.def_path_hash(b.item_def_id))
787             }
788             (AutoTrait(ref a), AutoTrait(ref b)) => {
789                 tcx.trait_def(*a).def_path_hash.cmp(&tcx.trait_def(*b).def_path_hash)
790             }
791             (Trait(_), _) => Ordering::Less,
792             (Projection(_), Trait(_)) => Ordering::Greater,
793             (Projection(_), _) => Ordering::Less,
794             (AutoTrait(_), _) => Ordering::Greater,
795         }
796     }
797 }
798 
799 impl<'tcx> Binder<'tcx, ExistentialPredicate<'tcx>> {
with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::Predicate<'tcx>800     pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::Predicate<'tcx> {
801         use crate::ty::ToPredicate;
802         match self.skip_binder() {
803             ExistentialPredicate::Trait(tr) => {
804                 self.rebind(tr).with_self_ty(tcx, self_ty).without_const().to_predicate(tcx)
805             }
806             ExistentialPredicate::Projection(p) => {
807                 self.rebind(p.with_self_ty(tcx, self_ty)).to_predicate(tcx)
808             }
809             ExistentialPredicate::AutoTrait(did) => {
810                 let trait_ref = self.rebind(ty::TraitRef {
811                     def_id: did,
812                     substs: tcx.mk_substs_trait(self_ty, &[]),
813                 });
814                 trait_ref.without_const().to_predicate(tcx)
815             }
816         }
817     }
818 }
819 
820 impl<'tcx> List<ty::Binder<'tcx, ExistentialPredicate<'tcx>>> {
821     /// Returns the "principal `DefId`" of this set of existential predicates.
822     ///
823     /// A Rust trait object type consists (in addition to a lifetime bound)
824     /// of a set of trait bounds, which are separated into any number
825     /// of auto-trait bounds, and at most one non-auto-trait bound. The
826     /// non-auto-trait bound is called the "principal" of the trait
827     /// object.
828     ///
829     /// Only the principal can have methods or type parameters (because
830     /// auto traits can have neither of them). This is important, because
831     /// it means the auto traits can be treated as an unordered set (methods
832     /// would force an order for the vtable, while relating traits with
833     /// type parameters without knowing the order to relate them in is
834     /// a rather non-trivial task).
835     ///
836     /// For example, in the trait object `dyn fmt::Debug + Sync`, the
837     /// principal bound is `Some(fmt::Debug)`, while the auto-trait bounds
838     /// are the set `{Sync}`.
839     ///
840     /// It is also possible to have a "trivial" trait object that
841     /// consists only of auto traits, with no principal - for example,
842     /// `dyn Send + Sync`. In that case, the set of auto-trait bounds
843     /// is `{Send, Sync}`, while there is no principal. These trait objects
844     /// have a "trivial" vtable consisting of just the size, alignment,
845     /// and destructor.
principal(&self) -> Option<ty::Binder<'tcx, ExistentialTraitRef<'tcx>>>846     pub fn principal(&self) -> Option<ty::Binder<'tcx, ExistentialTraitRef<'tcx>>> {
847         self[0]
848             .map_bound(|this| match this {
849                 ExistentialPredicate::Trait(tr) => Some(tr),
850                 _ => None,
851             })
852             .transpose()
853     }
854 
principal_def_id(&self) -> Option<DefId>855     pub fn principal_def_id(&self) -> Option<DefId> {
856         self.principal().map(|trait_ref| trait_ref.skip_binder().def_id)
857     }
858 
859     #[inline]
projection_bounds<'a>( &'a self, ) -> impl Iterator<Item = ty::Binder<'tcx, ExistentialProjection<'tcx>>> + 'a860     pub fn projection_bounds<'a>(
861         &'a self,
862     ) -> impl Iterator<Item = ty::Binder<'tcx, ExistentialProjection<'tcx>>> + 'a {
863         self.iter().filter_map(|predicate| {
864             predicate
865                 .map_bound(|pred| match pred {
866                     ExistentialPredicate::Projection(projection) => Some(projection),
867                     _ => None,
868                 })
869                 .transpose()
870         })
871     }
872 
873     #[inline]
auto_traits<'a>(&'a self) -> impl Iterator<Item = DefId> + 'a874     pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item = DefId> + 'a {
875         self.iter().filter_map(|predicate| match predicate.skip_binder() {
876             ExistentialPredicate::AutoTrait(did) => Some(did),
877             _ => None,
878         })
879     }
880 }
881 
882 /// A complete reference to a trait. These take numerous guises in syntax,
883 /// but perhaps the most recognizable form is in a where-clause:
884 ///
885 ///     T: Foo<U>
886 ///
887 /// This would be represented by a trait-reference where the `DefId` is the
888 /// `DefId` for the trait `Foo` and the substs define `T` as parameter 0,
889 /// and `U` as parameter 1.
890 ///
891 /// Trait references also appear in object types like `Foo<U>`, but in
892 /// that case the `Self` parameter is absent from the substitutions.
893 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
894 #[derive(HashStable, TypeFoldable)]
895 pub struct TraitRef<'tcx> {
896     pub def_id: DefId,
897     pub substs: SubstsRef<'tcx>,
898 }
899 
900 impl<'tcx> TraitRef<'tcx> {
new(def_id: DefId, substs: SubstsRef<'tcx>) -> TraitRef<'tcx>901     pub fn new(def_id: DefId, substs: SubstsRef<'tcx>) -> TraitRef<'tcx> {
902         TraitRef { def_id, substs }
903     }
904 
905     /// Returns a `TraitRef` of the form `P0: Foo<P1..Pn>` where `Pi`
906     /// are the parameters defined on trait.
identity(tcx: TyCtxt<'tcx>, def_id: DefId) -> Binder<'tcx, TraitRef<'tcx>>907     pub fn identity(tcx: TyCtxt<'tcx>, def_id: DefId) -> Binder<'tcx, TraitRef<'tcx>> {
908         ty::Binder::dummy(TraitRef {
909             def_id,
910             substs: InternalSubsts::identity_for_item(tcx, def_id),
911         })
912     }
913 
914     #[inline]
self_ty(&self) -> Ty<'tcx>915     pub fn self_ty(&self) -> Ty<'tcx> {
916         self.substs.type_at(0)
917     }
918 
from_method( tcx: TyCtxt<'tcx>, trait_id: DefId, substs: SubstsRef<'tcx>, ) -> ty::TraitRef<'tcx>919     pub fn from_method(
920         tcx: TyCtxt<'tcx>,
921         trait_id: DefId,
922         substs: SubstsRef<'tcx>,
923     ) -> ty::TraitRef<'tcx> {
924         let defs = tcx.generics_of(trait_id);
925 
926         ty::TraitRef { def_id: trait_id, substs: tcx.intern_substs(&substs[..defs.params.len()]) }
927     }
928 }
929 
930 pub type PolyTraitRef<'tcx> = Binder<'tcx, TraitRef<'tcx>>;
931 
932 impl<'tcx> PolyTraitRef<'tcx> {
self_ty(&self) -> Binder<'tcx, Ty<'tcx>>933     pub fn self_ty(&self) -> Binder<'tcx, Ty<'tcx>> {
934         self.map_bound_ref(|tr| tr.self_ty())
935     }
936 
def_id(&self) -> DefId937     pub fn def_id(&self) -> DefId {
938         self.skip_binder().def_id
939     }
940 
to_poly_trait_predicate(&self) -> ty::PolyTraitPredicate<'tcx>941     pub fn to_poly_trait_predicate(&self) -> ty::PolyTraitPredicate<'tcx> {
942         self.map_bound(|trait_ref| ty::TraitPredicate {
943             trait_ref,
944             constness: ty::BoundConstness::NotConst,
945             polarity: ty::ImplPolarity::Positive,
946         })
947     }
948 }
949 
950 /// An existential reference to a trait, where `Self` is erased.
951 /// For example, the trait object `Trait<'a, 'b, X, Y>` is:
952 ///
953 ///     exists T. T: Trait<'a, 'b, X, Y>
954 ///
955 /// The substitutions don't include the erased `Self`, only trait
956 /// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
957 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
958 #[derive(HashStable, TypeFoldable)]
959 pub struct ExistentialTraitRef<'tcx> {
960     pub def_id: DefId,
961     pub substs: SubstsRef<'tcx>,
962 }
963 
964 impl<'tcx> ExistentialTraitRef<'tcx> {
erase_self_ty( tcx: TyCtxt<'tcx>, trait_ref: ty::TraitRef<'tcx>, ) -> ty::ExistentialTraitRef<'tcx>965     pub fn erase_self_ty(
966         tcx: TyCtxt<'tcx>,
967         trait_ref: ty::TraitRef<'tcx>,
968     ) -> ty::ExistentialTraitRef<'tcx> {
969         // Assert there is a Self.
970         trait_ref.substs.type_at(0);
971 
972         ty::ExistentialTraitRef {
973             def_id: trait_ref.def_id,
974             substs: tcx.intern_substs(&trait_ref.substs[1..]),
975         }
976     }
977 
978     /// Object types don't have a self type specified. Therefore, when
979     /// we convert the principal trait-ref into a normal trait-ref,
980     /// you must give *some* self type. A common choice is `mk_err()`
981     /// or some placeholder type.
with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::TraitRef<'tcx>982     pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::TraitRef<'tcx> {
983         // otherwise the escaping vars would be captured by the binder
984         // debug_assert!(!self_ty.has_escaping_bound_vars());
985 
986         ty::TraitRef { def_id: self.def_id, substs: tcx.mk_substs_trait(self_ty, self.substs) }
987     }
988 }
989 
990 pub type PolyExistentialTraitRef<'tcx> = Binder<'tcx, ExistentialTraitRef<'tcx>>;
991 
992 impl<'tcx> PolyExistentialTraitRef<'tcx> {
def_id(&self) -> DefId993     pub fn def_id(&self) -> DefId {
994         self.skip_binder().def_id
995     }
996 
997     /// Object types don't have a self type specified. Therefore, when
998     /// we convert the principal trait-ref into a normal trait-ref,
999     /// you must give *some* self type. A common choice is `mk_err()`
1000     /// or some placeholder type.
with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::PolyTraitRef<'tcx>1001     pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::PolyTraitRef<'tcx> {
1002         self.map_bound(|trait_ref| trait_ref.with_self_ty(tcx, self_ty))
1003     }
1004 }
1005 
1006 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
1007 #[derive(HashStable)]
1008 pub enum BoundVariableKind {
1009     Ty(BoundTyKind),
1010     Region(BoundRegionKind),
1011     Const,
1012 }
1013 
1014 /// Binder is a binder for higher-ranked lifetimes or types. It is part of the
1015 /// compiler's representation for things like `for<'a> Fn(&'a isize)`
1016 /// (which would be represented by the type `PolyTraitRef ==
1017 /// Binder<'tcx, TraitRef>`). Note that when we instantiate,
1018 /// erase, or otherwise "discharge" these bound vars, we change the
1019 /// type from `Binder<'tcx, T>` to just `T` (see
1020 /// e.g., `liberate_late_bound_regions`).
1021 ///
1022 /// `Decodable` and `Encodable` are implemented for `Binder<T>` using the `impl_binder_encode_decode!` macro.
1023 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
1024 pub struct Binder<'tcx, T>(T, &'tcx List<BoundVariableKind>);
1025 
1026 impl<'tcx, T> Binder<'tcx, T>
1027 where
1028     T: TypeFoldable<'tcx>,
1029 {
1030     /// Wraps `value` in a binder, asserting that `value` does not
1031     /// contain any bound vars that would be bound by the
1032     /// binder. This is commonly used to 'inject' a value T into a
1033     /// different binding level.
dummy(value: T) -> Binder<'tcx, T>1034     pub fn dummy(value: T) -> Binder<'tcx, T> {
1035         assert!(!value.has_escaping_bound_vars());
1036         Binder(value, ty::List::empty())
1037     }
1038 
bind_with_vars(value: T, vars: &'tcx List<BoundVariableKind>) -> Binder<'tcx, T>1039     pub fn bind_with_vars(value: T, vars: &'tcx List<BoundVariableKind>) -> Binder<'tcx, T> {
1040         if cfg!(debug_assertions) {
1041             let mut validator = ValidateBoundVars::new(vars);
1042             value.visit_with(&mut validator);
1043         }
1044         Binder(value, vars)
1045     }
1046 }
1047 
1048 impl<'tcx, T> Binder<'tcx, T> {
1049     /// Skips the binder and returns the "bound" value. This is a
1050     /// risky thing to do because it's easy to get confused about
1051     /// De Bruijn indices and the like. It is usually better to
1052     /// discharge the binder using `no_bound_vars` or
1053     /// `replace_late_bound_regions` or something like
1054     /// that. `skip_binder` is only valid when you are either
1055     /// extracting data that has nothing to do with bound vars, you
1056     /// are doing some sort of test that does not involve bound
1057     /// regions, or you are being very careful about your depth
1058     /// accounting.
1059     ///
1060     /// Some examples where `skip_binder` is reasonable:
1061     ///
1062     /// - extracting the `DefId` from a PolyTraitRef;
1063     /// - comparing the self type of a PolyTraitRef to see if it is equal to
1064     ///   a type parameter `X`, since the type `X` does not reference any regions
skip_binder(self) -> T1065     pub fn skip_binder(self) -> T {
1066         self.0
1067     }
1068 
bound_vars(&self) -> &'tcx List<BoundVariableKind>1069     pub fn bound_vars(&self) -> &'tcx List<BoundVariableKind> {
1070         self.1
1071     }
1072 
as_ref(&self) -> Binder<'tcx, &T>1073     pub fn as_ref(&self) -> Binder<'tcx, &T> {
1074         Binder(&self.0, self.1)
1075     }
1076 
map_bound_ref_unchecked<F, U>(&self, f: F) -> Binder<'tcx, U> where F: FnOnce(&T) -> U,1077     pub fn map_bound_ref_unchecked<F, U>(&self, f: F) -> Binder<'tcx, U>
1078     where
1079         F: FnOnce(&T) -> U,
1080     {
1081         let value = f(&self.0);
1082         Binder(value, self.1)
1083     }
1084 
map_bound_ref<F, U: TypeFoldable<'tcx>>(&self, f: F) -> Binder<'tcx, U> where F: FnOnce(&T) -> U,1085     pub fn map_bound_ref<F, U: TypeFoldable<'tcx>>(&self, f: F) -> Binder<'tcx, U>
1086     where
1087         F: FnOnce(&T) -> U,
1088     {
1089         self.as_ref().map_bound(f)
1090     }
1091 
map_bound<F, U: TypeFoldable<'tcx>>(self, f: F) -> Binder<'tcx, U> where F: FnOnce(T) -> U,1092     pub fn map_bound<F, U: TypeFoldable<'tcx>>(self, f: F) -> Binder<'tcx, U>
1093     where
1094         F: FnOnce(T) -> U,
1095     {
1096         let value = f(self.0);
1097         if cfg!(debug_assertions) {
1098             let mut validator = ValidateBoundVars::new(self.1);
1099             value.visit_with(&mut validator);
1100         }
1101         Binder(value, self.1)
1102     }
1103 
1104     /// Wraps a `value` in a binder, using the same bound variables as the
1105     /// current `Binder`. This should not be used if the new value *changes*
1106     /// the bound variables. Note: the (old or new) value itself does not
1107     /// necessarily need to *name* all the bound variables.
1108     ///
1109     /// This currently doesn't do anything different than `bind`, because we
1110     /// don't actually track bound vars. However, semantically, it is different
1111     /// because bound vars aren't allowed to change here, whereas they are
1112     /// in `bind`. This may be (debug) asserted in the future.
rebind<U>(&self, value: U) -> Binder<'tcx, U> where U: TypeFoldable<'tcx>,1113     pub fn rebind<U>(&self, value: U) -> Binder<'tcx, U>
1114     where
1115         U: TypeFoldable<'tcx>,
1116     {
1117         if cfg!(debug_assertions) {
1118             let mut validator = ValidateBoundVars::new(self.bound_vars());
1119             value.visit_with(&mut validator);
1120         }
1121         Binder(value, self.1)
1122     }
1123 
1124     /// Unwraps and returns the value within, but only if it contains
1125     /// no bound vars at all. (In other words, if this binder --
1126     /// and indeed any enclosing binder -- doesn't bind anything at
1127     /// all.) Otherwise, returns `None`.
1128     ///
1129     /// (One could imagine having a method that just unwraps a single
1130     /// binder, but permits late-bound vars bound by enclosing
1131     /// binders, but that would require adjusting the debruijn
1132     /// indices, and given the shallow binding structure we often use,
1133     /// would not be that useful.)
no_bound_vars(self) -> Option<T> where T: TypeFoldable<'tcx>,1134     pub fn no_bound_vars(self) -> Option<T>
1135     where
1136         T: TypeFoldable<'tcx>,
1137     {
1138         if self.0.has_escaping_bound_vars() { None } else { Some(self.skip_binder()) }
1139     }
1140 
1141     /// Splits the contents into two things that share the same binder
1142     /// level as the original, returning two distinct binders.
1143     ///
1144     /// `f` should consider bound regions at depth 1 to be free, and
1145     /// anything it produces with bound regions at depth 1 will be
1146     /// bound in the resulting return values.
split<U, V, F>(self, f: F) -> (Binder<'tcx, U>, Binder<'tcx, V>) where F: FnOnce(T) -> (U, V),1147     pub fn split<U, V, F>(self, f: F) -> (Binder<'tcx, U>, Binder<'tcx, V>)
1148     where
1149         F: FnOnce(T) -> (U, V),
1150     {
1151         let (u, v) = f(self.0);
1152         (Binder(u, self.1), Binder(v, self.1))
1153     }
1154 }
1155 
1156 impl<'tcx, T> Binder<'tcx, Option<T>> {
transpose(self) -> Option<Binder<'tcx, T>>1157     pub fn transpose(self) -> Option<Binder<'tcx, T>> {
1158         let bound_vars = self.1;
1159         self.0.map(|v| Binder(v, bound_vars))
1160     }
1161 }
1162 
1163 /// Represents the projection of an associated type. In explicit UFCS
1164 /// form this would be written `<T as Trait<..>>::N`.
1165 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
1166 #[derive(HashStable, TypeFoldable)]
1167 pub struct ProjectionTy<'tcx> {
1168     /// The parameters of the associated item.
1169     pub substs: SubstsRef<'tcx>,
1170 
1171     /// The `DefId` of the `TraitItem` for the associated type `N`.
1172     ///
1173     /// Note that this is not the `DefId` of the `TraitRef` containing this
1174     /// associated type, which is in `tcx.associated_item(item_def_id).container`.
1175     pub item_def_id: DefId,
1176 }
1177 
1178 impl<'tcx> ProjectionTy<'tcx> {
trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId1179     pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
1180         tcx.associated_item(self.item_def_id).container.id()
1181     }
1182 
1183     /// Extracts the underlying trait reference and own substs from this projection.
1184     /// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
1185     /// then this function would return a `T: Iterator` trait reference and `['a]` as the own substs
trait_ref_and_own_substs( &self, tcx: TyCtxt<'tcx>, ) -> (ty::TraitRef<'tcx>, &'tcx [ty::GenericArg<'tcx>])1186     pub fn trait_ref_and_own_substs(
1187         &self,
1188         tcx: TyCtxt<'tcx>,
1189     ) -> (ty::TraitRef<'tcx>, &'tcx [ty::GenericArg<'tcx>]) {
1190         let def_id = tcx.associated_item(self.item_def_id).container.id();
1191         let trait_generics = tcx.generics_of(def_id);
1192         (
1193             ty::TraitRef { def_id, substs: self.substs.truncate_to(tcx, trait_generics) },
1194             &self.substs[trait_generics.count()..],
1195         )
1196     }
1197 
1198     /// Extracts the underlying trait reference from this projection.
1199     /// For example, if this is a projection of `<T as Iterator>::Item`,
1200     /// then this function would return a `T: Iterator` trait reference.
1201     ///
1202     /// WARNING: This will drop the substs for generic associated types
1203     /// consider calling [Self::trait_ref_and_own_substs] to get those
1204     /// as well.
trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx>1205     pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
1206         let def_id = self.trait_def_id(tcx);
1207         ty::TraitRef { def_id, substs: self.substs.truncate_to(tcx, tcx.generics_of(def_id)) }
1208     }
1209 
self_ty(&self) -> Ty<'tcx>1210     pub fn self_ty(&self) -> Ty<'tcx> {
1211         self.substs.type_at(0)
1212     }
1213 }
1214 
1215 #[derive(Copy, Clone, Debug, TypeFoldable)]
1216 pub struct GenSig<'tcx> {
1217     pub resume_ty: Ty<'tcx>,
1218     pub yield_ty: Ty<'tcx>,
1219     pub return_ty: Ty<'tcx>,
1220 }
1221 
1222 pub type PolyGenSig<'tcx> = Binder<'tcx, GenSig<'tcx>>;
1223 
1224 /// Signature of a function type, which we have arbitrarily
1225 /// decided to use to refer to the input/output types.
1226 ///
1227 /// - `inputs`: is the list of arguments and their modes.
1228 /// - `output`: is the return type.
1229 /// - `c_variadic`: indicates whether this is a C-variadic function.
1230 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
1231 #[derive(HashStable, TypeFoldable)]
1232 pub struct FnSig<'tcx> {
1233     pub inputs_and_output: &'tcx List<Ty<'tcx>>,
1234     pub c_variadic: bool,
1235     pub unsafety: hir::Unsafety,
1236     pub abi: abi::Abi,
1237 }
1238 
1239 impl<'tcx> FnSig<'tcx> {
inputs(&self) -> &'tcx [Ty<'tcx>]1240     pub fn inputs(&self) -> &'tcx [Ty<'tcx>] {
1241         &self.inputs_and_output[..self.inputs_and_output.len() - 1]
1242     }
1243 
output(&self) -> Ty<'tcx>1244     pub fn output(&self) -> Ty<'tcx> {
1245         self.inputs_and_output[self.inputs_and_output.len() - 1]
1246     }
1247 
1248     // Creates a minimal `FnSig` to be used when encountering a `TyKind::Error` in a fallible
1249     // method.
fake() -> FnSig<'tcx>1250     fn fake() -> FnSig<'tcx> {
1251         FnSig {
1252             inputs_and_output: List::empty(),
1253             c_variadic: false,
1254             unsafety: hir::Unsafety::Normal,
1255             abi: abi::Abi::Rust,
1256         }
1257     }
1258 }
1259 
1260 pub type PolyFnSig<'tcx> = Binder<'tcx, FnSig<'tcx>>;
1261 
1262 impl<'tcx> PolyFnSig<'tcx> {
1263     #[inline]
inputs(&self) -> Binder<'tcx, &'tcx [Ty<'tcx>]>1264     pub fn inputs(&self) -> Binder<'tcx, &'tcx [Ty<'tcx>]> {
1265         self.map_bound_ref_unchecked(|fn_sig| fn_sig.inputs())
1266     }
1267     #[inline]
input(&self, index: usize) -> ty::Binder<'tcx, Ty<'tcx>>1268     pub fn input(&self, index: usize) -> ty::Binder<'tcx, Ty<'tcx>> {
1269         self.map_bound_ref(|fn_sig| fn_sig.inputs()[index])
1270     }
inputs_and_output(&self) -> ty::Binder<'tcx, &'tcx List<Ty<'tcx>>>1271     pub fn inputs_and_output(&self) -> ty::Binder<'tcx, &'tcx List<Ty<'tcx>>> {
1272         self.map_bound_ref(|fn_sig| fn_sig.inputs_and_output)
1273     }
1274     #[inline]
output(&self) -> ty::Binder<'tcx, Ty<'tcx>>1275     pub fn output(&self) -> ty::Binder<'tcx, Ty<'tcx>> {
1276         self.map_bound_ref(|fn_sig| fn_sig.output())
1277     }
c_variadic(&self) -> bool1278     pub fn c_variadic(&self) -> bool {
1279         self.skip_binder().c_variadic
1280     }
unsafety(&self) -> hir::Unsafety1281     pub fn unsafety(&self) -> hir::Unsafety {
1282         self.skip_binder().unsafety
1283     }
abi(&self) -> abi::Abi1284     pub fn abi(&self) -> abi::Abi {
1285         self.skip_binder().abi
1286     }
1287 }
1288 
1289 pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<'tcx, FnSig<'tcx>>>;
1290 
1291 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
1292 #[derive(HashStable)]
1293 pub struct ParamTy {
1294     pub index: u32,
1295     pub name: Symbol,
1296 }
1297 
1298 impl<'tcx> ParamTy {
new(index: u32, name: Symbol) -> ParamTy1299     pub fn new(index: u32, name: Symbol) -> ParamTy {
1300         ParamTy { index, name }
1301     }
1302 
for_def(def: &ty::GenericParamDef) -> ParamTy1303     pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
1304         ParamTy::new(def.index, def.name)
1305     }
1306 
1307     #[inline]
to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>1308     pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1309         tcx.mk_ty_param(self.index, self.name)
1310     }
1311 }
1312 
1313 #[derive(Copy, Clone, Hash, TyEncodable, TyDecodable, Eq, PartialEq, Ord, PartialOrd)]
1314 #[derive(HashStable)]
1315 pub struct ParamConst {
1316     pub index: u32,
1317     pub name: Symbol,
1318 }
1319 
1320 impl ParamConst {
new(index: u32, name: Symbol) -> ParamConst1321     pub fn new(index: u32, name: Symbol) -> ParamConst {
1322         ParamConst { index, name }
1323     }
1324 
for_def(def: &ty::GenericParamDef) -> ParamConst1325     pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
1326         ParamConst::new(def.index, def.name)
1327     }
1328 }
1329 
1330 pub type Region<'tcx> = &'tcx RegionKind;
1331 
1332 /// Representation of regions. Note that the NLL checker uses a distinct
1333 /// representation of regions. For this reason, it internally replaces all the
1334 /// regions with inference variables -- the index of the variable is then used
1335 /// to index into internal NLL data structures. See `rustc_const_eval::borrow_check`
1336 /// module for more information.
1337 ///
1338 /// ## The Region lattice within a given function
1339 ///
1340 /// In general, the region lattice looks like
1341 ///
1342 /// ```
1343 /// static ----------+-----...------+       (greatest)
1344 /// |                |              |
1345 /// early-bound and  |              |
1346 /// free regions     |              |
1347 /// |                |              |
1348 /// |                |              |
1349 /// empty(root)   placeholder(U1)   |
1350 /// |            /                  |
1351 /// |           /         placeholder(Un)
1352 /// empty(U1) --         /
1353 /// |                   /
1354 /// ...                /
1355 /// |                 /
1356 /// empty(Un) --------                      (smallest)
1357 /// ```
1358 ///
1359 /// Early-bound/free regions are the named lifetimes in scope from the
1360 /// function declaration. They have relationships to one another
1361 /// determined based on the declared relationships from the
1362 /// function.
1363 ///
1364 /// Note that inference variables and bound regions are not included
1365 /// in this diagram. In the case of inference variables, they should
1366 /// be inferred to some other region from the diagram.  In the case of
1367 /// bound regions, they are excluded because they don't make sense to
1368 /// include -- the diagram indicates the relationship between free
1369 /// regions.
1370 ///
1371 /// ## Inference variables
1372 ///
1373 /// During region inference, we sometimes create inference variables,
1374 /// represented as `ReVar`. These will be inferred by the code in
1375 /// `infer::lexical_region_resolve` to some free region from the
1376 /// lattice above (the minimal region that meets the
1377 /// constraints).
1378 ///
1379 /// During NLL checking, where regions are defined differently, we
1380 /// also use `ReVar` -- in that case, the index is used to index into
1381 /// the NLL region checker's data structures. The variable may in fact
1382 /// represent either a free region or an inference variable, in that
1383 /// case.
1384 ///
1385 /// ## Bound Regions
1386 ///
1387 /// These are regions that are stored behind a binder and must be substituted
1388 /// with some concrete region before being used. There are two kind of
1389 /// bound regions: early-bound, which are bound in an item's `Generics`,
1390 /// and are substituted by an `InternalSubsts`, and late-bound, which are part of
1391 /// higher-ranked types (e.g., `for<'a> fn(&'a ())`), and are substituted by
1392 /// the likes of `liberate_late_bound_regions`. The distinction exists
1393 /// because higher-ranked lifetimes aren't supported in all places. See [1][2].
1394 ///
1395 /// Unlike `Param`s, bound regions are not supposed to exist "in the wild"
1396 /// outside their binder, e.g., in types passed to type inference, and
1397 /// should first be substituted (by placeholder regions, free regions,
1398 /// or region variables).
1399 ///
1400 /// ## Placeholder and Free Regions
1401 ///
1402 /// One often wants to work with bound regions without knowing their precise
1403 /// identity. For example, when checking a function, the lifetime of a borrow
1404 /// can end up being assigned to some region parameter. In these cases,
1405 /// it must be ensured that bounds on the region can't be accidentally
1406 /// assumed without being checked.
1407 ///
1408 /// To do this, we replace the bound regions with placeholder markers,
1409 /// which don't satisfy any relation not explicitly provided.
1410 ///
1411 /// There are two kinds of placeholder regions in rustc: `ReFree` and
1412 /// `RePlaceholder`. When checking an item's body, `ReFree` is supposed
1413 /// to be used. These also support explicit bounds: both the internally-stored
1414 /// *scope*, which the region is assumed to outlive, as well as other
1415 /// relations stored in the `FreeRegionMap`. Note that these relations
1416 /// aren't checked when you `make_subregion` (or `eq_types`), only by
1417 /// `resolve_regions_and_report_errors`.
1418 ///
1419 /// When working with higher-ranked types, some region relations aren't
1420 /// yet known, so you can't just call `resolve_regions_and_report_errors`.
1421 /// `RePlaceholder` is designed for this purpose. In these contexts,
1422 /// there's also the risk that some inference variable laying around will
1423 /// get unified with your placeholder region: if you want to check whether
1424 /// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
1425 /// with a placeholder region `'%a`, the variable `'_` would just be
1426 /// instantiated to the placeholder region `'%a`, which is wrong because
1427 /// the inference variable is supposed to satisfy the relation
1428 /// *for every value of the placeholder region*. To ensure that doesn't
1429 /// happen, you can use `leak_check`. This is more clearly explained
1430 /// by the [rustc dev guide].
1431 ///
1432 /// [1]: https://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
1433 /// [2]: https://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
1434 /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
1435 #[derive(Clone, PartialEq, Eq, Hash, Copy, TyEncodable, TyDecodable, PartialOrd, Ord)]
1436 pub enum RegionKind {
1437     /// Region bound in a type or fn declaration which will be
1438     /// substituted 'early' -- that is, at the same time when type
1439     /// parameters are substituted.
1440     ReEarlyBound(EarlyBoundRegion),
1441 
1442     /// Region bound in a function scope, which will be substituted when the
1443     /// function is called.
1444     ReLateBound(ty::DebruijnIndex, BoundRegion),
1445 
1446     /// When checking a function body, the types of all arguments and so forth
1447     /// that refer to bound region parameters are modified to refer to free
1448     /// region parameters.
1449     ReFree(FreeRegion),
1450 
1451     /// Static data that has an "infinite" lifetime. Top in the region lattice.
1452     ReStatic,
1453 
1454     /// A region variable. Should not exist after typeck.
1455     ReVar(RegionVid),
1456 
1457     /// A placeholder region -- basically, the higher-ranked version of `ReFree`.
1458     /// Should not exist after typeck.
1459     RePlaceholder(ty::PlaceholderRegion),
1460 
1461     /// Empty lifetime is for data that is never accessed.  We tag the
1462     /// empty lifetime with a universe -- the idea is that we don't
1463     /// want `exists<'a> { forall<'b> { 'b: 'a } }` to be satisfiable.
1464     /// Therefore, the `'empty` in a universe `U` is less than all
1465     /// regions visible from `U`, but not less than regions not visible
1466     /// from `U`.
1467     ReEmpty(ty::UniverseIndex),
1468 
1469     /// Erased region, used by trait selection, in MIR and during codegen.
1470     ReErased,
1471 }
1472 
1473 #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, Debug, PartialOrd, Ord)]
1474 pub struct EarlyBoundRegion {
1475     pub def_id: DefId,
1476     pub index: u32,
1477     pub name: Symbol,
1478 }
1479 
1480 /// A **`const`** **v**ariable **ID**.
1481 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
1482 pub struct ConstVid<'tcx> {
1483     pub index: u32,
1484     pub phantom: PhantomData<&'tcx ()>,
1485 }
1486 
1487 rustc_index::newtype_index! {
1488     /// A **region** (lifetime) **v**ariable **ID**.
1489     pub struct RegionVid {
1490         DEBUG_FORMAT = custom,
1491     }
1492 }
1493 
1494 impl Atom for RegionVid {
index(self) -> usize1495     fn index(self) -> usize {
1496         Idx::index(self)
1497     }
1498 }
1499 
1500 rustc_index::newtype_index! {
1501     pub struct BoundVar { .. }
1502 }
1503 
1504 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
1505 #[derive(HashStable)]
1506 pub struct BoundTy {
1507     pub var: BoundVar,
1508     pub kind: BoundTyKind,
1509 }
1510 
1511 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
1512 #[derive(HashStable)]
1513 pub enum BoundTyKind {
1514     Anon,
1515     Param(Symbol),
1516 }
1517 
1518 impl From<BoundVar> for BoundTy {
from(var: BoundVar) -> Self1519     fn from(var: BoundVar) -> Self {
1520         BoundTy { var, kind: BoundTyKind::Anon }
1521     }
1522 }
1523 
1524 /// A `ProjectionPredicate` for an `ExistentialTraitRef`.
1525 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
1526 #[derive(HashStable, TypeFoldable)]
1527 pub struct ExistentialProjection<'tcx> {
1528     pub item_def_id: DefId,
1529     pub substs: SubstsRef<'tcx>,
1530     pub ty: Ty<'tcx>,
1531 }
1532 
1533 pub type PolyExistentialProjection<'tcx> = Binder<'tcx, ExistentialProjection<'tcx>>;
1534 
1535 impl<'tcx> ExistentialProjection<'tcx> {
1536     /// Extracts the underlying existential trait reference from this projection.
1537     /// For example, if this is a projection of `exists T. <T as Iterator>::Item == X`,
1538     /// then this function would return an `exists T. T: Iterator` existential trait
1539     /// reference.
trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::ExistentialTraitRef<'tcx>1540     pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::ExistentialTraitRef<'tcx> {
1541         let def_id = tcx.associated_item(self.item_def_id).container.id();
1542         let subst_count = tcx.generics_of(def_id).count() - 1;
1543         let substs = tcx.intern_substs(&self.substs[..subst_count]);
1544         ty::ExistentialTraitRef { def_id, substs }
1545     }
1546 
with_self_ty( &self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>, ) -> ty::ProjectionPredicate<'tcx>1547     pub fn with_self_ty(
1548         &self,
1549         tcx: TyCtxt<'tcx>,
1550         self_ty: Ty<'tcx>,
1551     ) -> ty::ProjectionPredicate<'tcx> {
1552         // otherwise the escaping regions would be captured by the binders
1553         debug_assert!(!self_ty.has_escaping_bound_vars());
1554 
1555         ty::ProjectionPredicate {
1556             projection_ty: ty::ProjectionTy {
1557                 item_def_id: self.item_def_id,
1558                 substs: tcx.mk_substs_trait(self_ty, self.substs),
1559             },
1560             ty: self.ty,
1561         }
1562     }
1563 
erase_self_ty( tcx: TyCtxt<'tcx>, projection_predicate: ty::ProjectionPredicate<'tcx>, ) -> Self1564     pub fn erase_self_ty(
1565         tcx: TyCtxt<'tcx>,
1566         projection_predicate: ty::ProjectionPredicate<'tcx>,
1567     ) -> Self {
1568         // Assert there is a Self.
1569         projection_predicate.projection_ty.substs.type_at(0);
1570 
1571         Self {
1572             item_def_id: projection_predicate.projection_ty.item_def_id,
1573             substs: tcx.intern_substs(&projection_predicate.projection_ty.substs[1..]),
1574             ty: projection_predicate.ty,
1575         }
1576     }
1577 }
1578 
1579 impl<'tcx> PolyExistentialProjection<'tcx> {
with_self_ty( &self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>, ) -> ty::PolyProjectionPredicate<'tcx>1580     pub fn with_self_ty(
1581         &self,
1582         tcx: TyCtxt<'tcx>,
1583         self_ty: Ty<'tcx>,
1584     ) -> ty::PolyProjectionPredicate<'tcx> {
1585         self.map_bound(|p| p.with_self_ty(tcx, self_ty))
1586     }
1587 
item_def_id(&self) -> DefId1588     pub fn item_def_id(&self) -> DefId {
1589         self.skip_binder().item_def_id
1590     }
1591 }
1592 
1593 /// Region utilities
1594 impl RegionKind {
1595     /// Is this region named by the user?
has_name(&self) -> bool1596     pub fn has_name(&self) -> bool {
1597         match *self {
1598             RegionKind::ReEarlyBound(ebr) => ebr.has_name(),
1599             RegionKind::ReLateBound(_, br) => br.kind.is_named(),
1600             RegionKind::ReFree(fr) => fr.bound_region.is_named(),
1601             RegionKind::ReStatic => true,
1602             RegionKind::ReVar(..) => false,
1603             RegionKind::RePlaceholder(placeholder) => placeholder.name.is_named(),
1604             RegionKind::ReEmpty(_) => false,
1605             RegionKind::ReErased => false,
1606         }
1607     }
1608 
1609     #[inline]
is_late_bound(&self) -> bool1610     pub fn is_late_bound(&self) -> bool {
1611         matches!(*self, ty::ReLateBound(..))
1612     }
1613 
1614     #[inline]
is_placeholder(&self) -> bool1615     pub fn is_placeholder(&self) -> bool {
1616         matches!(*self, ty::RePlaceholder(..))
1617     }
1618 
1619     #[inline]
bound_at_or_above_binder(&self, index: ty::DebruijnIndex) -> bool1620     pub fn bound_at_or_above_binder(&self, index: ty::DebruijnIndex) -> bool {
1621         match *self {
1622             ty::ReLateBound(debruijn, _) => debruijn >= index,
1623             _ => false,
1624         }
1625     }
1626 
type_flags(&self) -> TypeFlags1627     pub fn type_flags(&self) -> TypeFlags {
1628         let mut flags = TypeFlags::empty();
1629 
1630         match *self {
1631             ty::ReVar(..) => {
1632                 flags = flags | TypeFlags::HAS_KNOWN_FREE_REGIONS;
1633                 flags = flags | TypeFlags::HAS_KNOWN_FREE_LOCAL_REGIONS;
1634                 flags = flags | TypeFlags::HAS_RE_INFER;
1635             }
1636             ty::RePlaceholder(..) => {
1637                 flags = flags | TypeFlags::HAS_KNOWN_FREE_REGIONS;
1638                 flags = flags | TypeFlags::HAS_KNOWN_FREE_LOCAL_REGIONS;
1639                 flags = flags | TypeFlags::HAS_RE_PLACEHOLDER;
1640             }
1641             ty::ReEarlyBound(..) => {
1642                 flags = flags | TypeFlags::HAS_KNOWN_FREE_REGIONS;
1643                 flags = flags | TypeFlags::HAS_KNOWN_FREE_LOCAL_REGIONS;
1644                 flags = flags | TypeFlags::HAS_KNOWN_RE_PARAM;
1645             }
1646             ty::ReFree { .. } => {
1647                 flags = flags | TypeFlags::HAS_KNOWN_FREE_REGIONS;
1648                 flags = flags | TypeFlags::HAS_KNOWN_FREE_LOCAL_REGIONS;
1649             }
1650             ty::ReEmpty(_) | ty::ReStatic => {
1651                 flags = flags | TypeFlags::HAS_KNOWN_FREE_REGIONS;
1652             }
1653             ty::ReLateBound(..) => {
1654                 flags = flags | TypeFlags::HAS_RE_LATE_BOUND;
1655             }
1656             ty::ReErased => {
1657                 flags = flags | TypeFlags::HAS_RE_ERASED;
1658             }
1659         }
1660 
1661         debug!("type_flags({:?}) = {:?}", self, flags);
1662 
1663         flags
1664     }
1665 
1666     /// Given an early-bound or free region, returns the `DefId` where it was bound.
1667     /// For example, consider the regions in this snippet of code:
1668     ///
1669     /// ```
1670     /// impl<'a> Foo {
1671     ///      ^^ -- early bound, declared on an impl
1672     ///
1673     ///     fn bar<'b, 'c>(x: &self, y: &'b u32, z: &'c u64) where 'static: 'c
1674     ///            ^^  ^^     ^ anonymous, late-bound
1675     ///            |   early-bound, appears in where-clauses
1676     ///            late-bound, appears only in fn args
1677     ///     {..}
1678     /// }
1679     /// ```
1680     ///
1681     /// Here, `free_region_binding_scope('a)` would return the `DefId`
1682     /// of the impl, and for all the other highlighted regions, it
1683     /// would return the `DefId` of the function. In other cases (not shown), this
1684     /// function might return the `DefId` of a closure.
free_region_binding_scope(&self, tcx: TyCtxt<'_>) -> DefId1685     pub fn free_region_binding_scope(&self, tcx: TyCtxt<'_>) -> DefId {
1686         match self {
1687             ty::ReEarlyBound(br) => tcx.parent(br.def_id).unwrap(),
1688             ty::ReFree(fr) => fr.scope,
1689             _ => bug!("free_region_binding_scope invoked on inappropriate region: {:?}", self),
1690         }
1691     }
1692 }
1693 
1694 /// Type utilities
1695 impl<'tcx> TyS<'tcx> {
1696     #[inline(always)]
kind(&self) -> &TyKind<'tcx>1697     pub fn kind(&self) -> &TyKind<'tcx> {
1698         &self.kind
1699     }
1700 
1701     #[inline(always)]
flags(&self) -> TypeFlags1702     pub fn flags(&self) -> TypeFlags {
1703         self.flags
1704     }
1705 
1706     #[inline]
is_unit(&self) -> bool1707     pub fn is_unit(&self) -> bool {
1708         match self.kind() {
1709             Tuple(ref tys) => tys.is_empty(),
1710             _ => false,
1711         }
1712     }
1713 
1714     #[inline]
is_never(&self) -> bool1715     pub fn is_never(&self) -> bool {
1716         matches!(self.kind(), Never)
1717     }
1718 
1719     #[inline]
is_primitive(&self) -> bool1720     pub fn is_primitive(&self) -> bool {
1721         self.kind().is_primitive()
1722     }
1723 
1724     #[inline]
is_adt(&self) -> bool1725     pub fn is_adt(&self) -> bool {
1726         matches!(self.kind(), Adt(..))
1727     }
1728 
1729     #[inline]
is_ref(&self) -> bool1730     pub fn is_ref(&self) -> bool {
1731         matches!(self.kind(), Ref(..))
1732     }
1733 
1734     #[inline]
is_ty_var(&self) -> bool1735     pub fn is_ty_var(&self) -> bool {
1736         matches!(self.kind(), Infer(TyVar(_)))
1737     }
1738 
1739     #[inline]
ty_vid(&self) -> Option<ty::TyVid>1740     pub fn ty_vid(&self) -> Option<ty::TyVid> {
1741         match self.kind() {
1742             &Infer(TyVar(vid)) => Some(vid),
1743             _ => None,
1744         }
1745     }
1746 
1747     #[inline]
is_ty_infer(&self) -> bool1748     pub fn is_ty_infer(&self) -> bool {
1749         matches!(self.kind(), Infer(_))
1750     }
1751 
1752     #[inline]
is_phantom_data(&self) -> bool1753     pub fn is_phantom_data(&self) -> bool {
1754         if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false }
1755     }
1756 
1757     #[inline]
is_bool(&self) -> bool1758     pub fn is_bool(&self) -> bool {
1759         *self.kind() == Bool
1760     }
1761 
1762     /// Returns `true` if this type is a `str`.
1763     #[inline]
is_str(&self) -> bool1764     pub fn is_str(&self) -> bool {
1765         *self.kind() == Str
1766     }
1767 
1768     #[inline]
is_param(&self, index: u32) -> bool1769     pub fn is_param(&self, index: u32) -> bool {
1770         match self.kind() {
1771             ty::Param(ref data) => data.index == index,
1772             _ => false,
1773         }
1774     }
1775 
1776     #[inline]
is_slice(&self) -> bool1777     pub fn is_slice(&self) -> bool {
1778         match self.kind() {
1779             RawPtr(TypeAndMut { ty, .. }) | Ref(_, ty, _) => matches!(ty.kind(), Slice(_) | Str),
1780             _ => false,
1781         }
1782     }
1783 
1784     #[inline]
is_array(&self) -> bool1785     pub fn is_array(&self) -> bool {
1786         matches!(self.kind(), Array(..))
1787     }
1788 
1789     #[inline]
is_simd(&self) -> bool1790     pub fn is_simd(&self) -> bool {
1791         match self.kind() {
1792             Adt(def, _) => def.repr.simd(),
1793             _ => false,
1794         }
1795     }
1796 
sequence_element_type(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>1797     pub fn sequence_element_type(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1798         match self.kind() {
1799             Array(ty, _) | Slice(ty) => ty,
1800             Str => tcx.mk_mach_uint(ty::UintTy::U8),
1801             _ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
1802         }
1803     }
1804 
simd_size_and_type(&self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>)1805     pub fn simd_size_and_type(&self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
1806         match self.kind() {
1807             Adt(def, substs) => {
1808                 assert!(def.repr.simd(), "`simd_size_and_type` called on non-SIMD type");
1809                 let variant = def.non_enum_variant();
1810                 let f0_ty = variant.fields[0].ty(tcx, substs);
1811 
1812                 match f0_ty.kind() {
1813                     // If the first field is an array, we assume it is the only field and its
1814                     // elements are the SIMD components.
1815                     Array(f0_elem_ty, f0_len) => {
1816                         // FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112
1817                         // The way we evaluate the `N` in `[T; N]` here only works since we use
1818                         // `simd_size_and_type` post-monomorphization. It will probably start to ICE
1819                         // if we use it in generic code. See the `simd-array-trait` ui test.
1820                         (f0_len.eval_usize(tcx, ParamEnv::empty()) as u64, f0_elem_ty)
1821                     }
1822                     // Otherwise, the fields of this Adt are the SIMD components (and we assume they
1823                     // all have the same type).
1824                     _ => (variant.fields.len() as u64, f0_ty),
1825                 }
1826             }
1827             _ => bug!("`simd_size_and_type` called on invalid type"),
1828         }
1829     }
1830 
1831     #[inline]
is_region_ptr(&self) -> bool1832     pub fn is_region_ptr(&self) -> bool {
1833         matches!(self.kind(), Ref(..))
1834     }
1835 
1836     #[inline]
is_mutable_ptr(&self) -> bool1837     pub fn is_mutable_ptr(&self) -> bool {
1838         matches!(
1839             self.kind(),
1840             RawPtr(TypeAndMut { mutbl: hir::Mutability::Mut, .. })
1841                 | Ref(_, _, hir::Mutability::Mut)
1842         )
1843     }
1844 
1845     /// Get the mutability of the reference or `None` when not a reference
1846     #[inline]
ref_mutability(&self) -> Option<hir::Mutability>1847     pub fn ref_mutability(&self) -> Option<hir::Mutability> {
1848         match self.kind() {
1849             Ref(_, _, mutability) => Some(*mutability),
1850             _ => None,
1851         }
1852     }
1853 
1854     #[inline]
is_unsafe_ptr(&self) -> bool1855     pub fn is_unsafe_ptr(&self) -> bool {
1856         matches!(self.kind(), RawPtr(_))
1857     }
1858 
1859     /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
1860     #[inline]
is_any_ptr(&self) -> bool1861     pub fn is_any_ptr(&self) -> bool {
1862         self.is_region_ptr() || self.is_unsafe_ptr() || self.is_fn_ptr()
1863     }
1864 
1865     #[inline]
is_box(&self) -> bool1866     pub fn is_box(&self) -> bool {
1867         match self.kind() {
1868             Adt(def, _) => def.is_box(),
1869             _ => false,
1870         }
1871     }
1872 
1873     /// Panics if called on any type other than `Box<T>`.
boxed_ty(&self) -> Ty<'tcx>1874     pub fn boxed_ty(&self) -> Ty<'tcx> {
1875         match self.kind() {
1876             Adt(def, substs) if def.is_box() => substs.type_at(0),
1877             _ => bug!("`boxed_ty` is called on non-box type {:?}", self),
1878         }
1879     }
1880 
1881     /// A scalar type is one that denotes an atomic datum, with no sub-components.
1882     /// (A RawPtr is scalar because it represents a non-managed pointer, so its
1883     /// contents are abstract to rustc.)
1884     #[inline]
is_scalar(&self) -> bool1885     pub fn is_scalar(&self) -> bool {
1886         matches!(
1887             self.kind(),
1888             Bool | Char
1889                 | Int(_)
1890                 | Float(_)
1891                 | Uint(_)
1892                 | FnDef(..)
1893                 | FnPtr(_)
1894                 | RawPtr(_)
1895                 | Infer(IntVar(_) | FloatVar(_))
1896         )
1897     }
1898 
1899     /// Returns `true` if this type is a floating point type.
1900     #[inline]
is_floating_point(&self) -> bool1901     pub fn is_floating_point(&self) -> bool {
1902         matches!(self.kind(), Float(_) | Infer(FloatVar(_)))
1903     }
1904 
1905     #[inline]
is_trait(&self) -> bool1906     pub fn is_trait(&self) -> bool {
1907         matches!(self.kind(), Dynamic(..))
1908     }
1909 
1910     #[inline]
is_enum(&self) -> bool1911     pub fn is_enum(&self) -> bool {
1912         matches!(self.kind(), Adt(adt_def, _) if adt_def.is_enum())
1913     }
1914 
1915     #[inline]
is_union(&self) -> bool1916     pub fn is_union(&self) -> bool {
1917         matches!(self.kind(), Adt(adt_def, _) if adt_def.is_union())
1918     }
1919 
1920     #[inline]
is_closure(&self) -> bool1921     pub fn is_closure(&self) -> bool {
1922         matches!(self.kind(), Closure(..))
1923     }
1924 
1925     #[inline]
is_generator(&self) -> bool1926     pub fn is_generator(&self) -> bool {
1927         matches!(self.kind(), Generator(..))
1928     }
1929 
1930     #[inline]
is_integral(&self) -> bool1931     pub fn is_integral(&self) -> bool {
1932         matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_))
1933     }
1934 
1935     #[inline]
is_fresh_ty(&self) -> bool1936     pub fn is_fresh_ty(&self) -> bool {
1937         matches!(self.kind(), Infer(FreshTy(_)))
1938     }
1939 
1940     #[inline]
is_fresh(&self) -> bool1941     pub fn is_fresh(&self) -> bool {
1942         matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)))
1943     }
1944 
1945     #[inline]
is_char(&self) -> bool1946     pub fn is_char(&self) -> bool {
1947         matches!(self.kind(), Char)
1948     }
1949 
1950     #[inline]
is_numeric(&self) -> bool1951     pub fn is_numeric(&self) -> bool {
1952         self.is_integral() || self.is_floating_point()
1953     }
1954 
1955     #[inline]
is_signed(&self) -> bool1956     pub fn is_signed(&self) -> bool {
1957         matches!(self.kind(), Int(_))
1958     }
1959 
1960     #[inline]
is_ptr_sized_integral(&self) -> bool1961     pub fn is_ptr_sized_integral(&self) -> bool {
1962         matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize))
1963     }
1964 
1965     #[inline]
has_concrete_skeleton(&self) -> bool1966     pub fn has_concrete_skeleton(&self) -> bool {
1967         !matches!(self.kind(), Param(_) | Infer(_) | Error(_))
1968     }
1969 
1970     /// Returns the type and mutability of `*ty`.
1971     ///
1972     /// The parameter `explicit` indicates if this is an *explicit* dereference.
1973     /// Some types -- notably unsafe ptrs -- can only be dereferenced explicitly.
builtin_deref(&self, explicit: bool) -> Option<TypeAndMut<'tcx>>1974     pub fn builtin_deref(&self, explicit: bool) -> Option<TypeAndMut<'tcx>> {
1975         match self.kind() {
1976             Adt(def, _) if def.is_box() => {
1977                 Some(TypeAndMut { ty: self.boxed_ty(), mutbl: hir::Mutability::Not })
1978             }
1979             Ref(_, ty, mutbl) => Some(TypeAndMut { ty, mutbl: *mutbl }),
1980             RawPtr(mt) if explicit => Some(*mt),
1981             _ => None,
1982         }
1983     }
1984 
1985     /// Returns the type of `ty[i]`.
builtin_index(&self) -> Option<Ty<'tcx>>1986     pub fn builtin_index(&self) -> Option<Ty<'tcx>> {
1987         match self.kind() {
1988             Array(ty, _) | Slice(ty) => Some(ty),
1989             _ => None,
1990         }
1991     }
1992 
fn_sig(&self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx>1993     pub fn fn_sig(&self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
1994         match self.kind() {
1995             FnDef(def_id, substs) => tcx.fn_sig(*def_id).subst(tcx, substs),
1996             FnPtr(f) => *f,
1997             Error(_) => {
1998                 // ignore errors (#54954)
1999                 ty::Binder::dummy(FnSig::fake())
2000             }
2001             Closure(..) => bug!(
2002                 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
2003             ),
2004             _ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self),
2005         }
2006     }
2007 
2008     #[inline]
is_fn(&self) -> bool2009     pub fn is_fn(&self) -> bool {
2010         matches!(self.kind(), FnDef(..) | FnPtr(_))
2011     }
2012 
2013     #[inline]
is_fn_ptr(&self) -> bool2014     pub fn is_fn_ptr(&self) -> bool {
2015         matches!(self.kind(), FnPtr(_))
2016     }
2017 
2018     #[inline]
is_impl_trait(&self) -> bool2019     pub fn is_impl_trait(&self) -> bool {
2020         matches!(self.kind(), Opaque(..))
2021     }
2022 
2023     #[inline]
ty_adt_def(&self) -> Option<&'tcx AdtDef>2024     pub fn ty_adt_def(&self) -> Option<&'tcx AdtDef> {
2025         match self.kind() {
2026             Adt(adt, _) => Some(adt),
2027             _ => None,
2028         }
2029     }
2030 
2031     /// Iterates over tuple fields.
2032     /// Panics when called on anything but a tuple.
tuple_fields(&self) -> impl DoubleEndedIterator<Item = Ty<'tcx>>2033     pub fn tuple_fields(&self) -> impl DoubleEndedIterator<Item = Ty<'tcx>> {
2034         match self.kind() {
2035             Tuple(substs) => substs.iter().map(|field| field.expect_ty()),
2036             _ => bug!("tuple_fields called on non-tuple"),
2037         }
2038     }
2039 
2040     /// Get the `i`-th element of a tuple.
2041     /// Panics when called on anything but a tuple.
tuple_element_ty(&self, i: usize) -> Option<Ty<'tcx>>2042     pub fn tuple_element_ty(&self, i: usize) -> Option<Ty<'tcx>> {
2043         match self.kind() {
2044             Tuple(substs) => substs.iter().nth(i).map(|field| field.expect_ty()),
2045             _ => bug!("tuple_fields called on non-tuple"),
2046         }
2047     }
2048 
2049     /// If the type contains variants, returns the valid range of variant indices.
2050     //
2051     // FIXME: This requires the optimized MIR in the case of generators.
2052     #[inline]
variant_range(&self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>>2053     pub fn variant_range(&self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
2054         match self.kind() {
2055             TyKind::Adt(adt, _) => Some(adt.variant_range()),
2056             TyKind::Generator(def_id, substs, _) => {
2057                 Some(substs.as_generator().variant_range(*def_id, tcx))
2058             }
2059             _ => None,
2060         }
2061     }
2062 
2063     /// If the type contains variants, returns the variant for `variant_index`.
2064     /// Panics if `variant_index` is out of range.
2065     //
2066     // FIXME: This requires the optimized MIR in the case of generators.
2067     #[inline]
discriminant_for_variant( &self, tcx: TyCtxt<'tcx>, variant_index: VariantIdx, ) -> Option<Discr<'tcx>>2068     pub fn discriminant_for_variant(
2069         &self,
2070         tcx: TyCtxt<'tcx>,
2071         variant_index: VariantIdx,
2072     ) -> Option<Discr<'tcx>> {
2073         match self.kind() {
2074             TyKind::Adt(adt, _) if adt.variants.is_empty() => {
2075                 // This can actually happen during CTFE, see
2076                 // https://github.com/rust-lang/rust/issues/89765.
2077                 None
2078             }
2079             TyKind::Adt(adt, _) if adt.is_enum() => {
2080                 Some(adt.discriminant_for_variant(tcx, variant_index))
2081             }
2082             TyKind::Generator(def_id, substs, _) => {
2083                 Some(substs.as_generator().discriminant_for_variant(*def_id, tcx, variant_index))
2084             }
2085             _ => None,
2086         }
2087     }
2088 
2089     /// Returns the type of the discriminant of this type.
discriminant_ty(&'tcx self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>2090     pub fn discriminant_ty(&'tcx self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
2091         match self.kind() {
2092             ty::Adt(adt, _) if adt.is_enum() => adt.repr.discr_type().to_ty(tcx),
2093             ty::Generator(_, substs, _) => substs.as_generator().discr_ty(tcx),
2094 
2095             ty::Param(_) | ty::Projection(_) | ty::Opaque(..) | ty::Infer(ty::TyVar(_)) => {
2096                 let assoc_items = tcx.associated_item_def_ids(
2097                     tcx.require_lang_item(hir::LangItem::DiscriminantKind, None),
2098                 );
2099                 tcx.mk_projection(assoc_items[0], tcx.intern_substs(&[self.into()]))
2100             }
2101 
2102             ty::Bool
2103             | ty::Char
2104             | ty::Int(_)
2105             | ty::Uint(_)
2106             | ty::Float(_)
2107             | ty::Adt(..)
2108             | ty::Foreign(_)
2109             | ty::Str
2110             | ty::Array(..)
2111             | ty::Slice(_)
2112             | ty::RawPtr(_)
2113             | ty::Ref(..)
2114             | ty::FnDef(..)
2115             | ty::FnPtr(..)
2116             | ty::Dynamic(..)
2117             | ty::Closure(..)
2118             | ty::GeneratorWitness(..)
2119             | ty::Never
2120             | ty::Tuple(_)
2121             | ty::Error(_)
2122             | ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8,
2123 
2124             ty::Bound(..)
2125             | ty::Placeholder(_)
2126             | ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2127                 bug!("`discriminant_ty` applied to unexpected type: {:?}", self)
2128             }
2129         }
2130     }
2131 
2132     /// Returns the type of metadata for (potentially fat) pointers to this type.
ptr_metadata_ty(&'tcx self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>2133     pub fn ptr_metadata_ty(&'tcx self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
2134         // FIXME: should this normalize?
2135         let tail = tcx.struct_tail_without_normalization(self);
2136         match tail.kind() {
2137             // Sized types
2138             ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2139             | ty::Uint(_)
2140             | ty::Int(_)
2141             | ty::Bool
2142             | ty::Float(_)
2143             | ty::FnDef(..)
2144             | ty::FnPtr(_)
2145             | ty::RawPtr(..)
2146             | ty::Char
2147             | ty::Ref(..)
2148             | ty::Generator(..)
2149             | ty::GeneratorWitness(..)
2150             | ty::Array(..)
2151             | ty::Closure(..)
2152             | ty::Never
2153             | ty::Error(_)
2154             | ty::Foreign(..)
2155             // If returned by `struct_tail_without_normalization` this is a unit struct
2156             // without any fields, or not a struct, and therefore is Sized.
2157             | ty::Adt(..)
2158             // If returned by `struct_tail_without_normalization` this is the empty tuple,
2159             // a.k.a. unit type, which is Sized
2160             | ty::Tuple(..) => tcx.types.unit,
2161 
2162             ty::Str | ty::Slice(_) => tcx.types.usize,
2163             ty::Dynamic(..) => {
2164                 let dyn_metadata = tcx.lang_items().dyn_metadata().unwrap();
2165                 tcx.type_of(dyn_metadata).subst(tcx, &[tail.into()])
2166             },
2167 
2168             ty::Projection(_)
2169             | ty::Param(_)
2170             | ty::Opaque(..)
2171             | ty::Infer(ty::TyVar(_))
2172             | ty::Bound(..)
2173             | ty::Placeholder(..)
2174             | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2175                 bug!("`ptr_metadata_ty` applied to unexpected type: {:?}", tail)
2176             }
2177         }
2178     }
2179 
2180     /// When we create a closure, we record its kind (i.e., what trait
2181     /// it implements) into its `ClosureSubsts` using a type
2182     /// parameter. This is kind of a phantom type, except that the
2183     /// most convenient thing for us to are the integral types. This
2184     /// function converts such a special type into the closure
2185     /// kind. To go the other way, use
2186     /// `tcx.closure_kind_ty(closure_kind)`.
2187     ///
2188     /// Note that during type checking, we use an inference variable
2189     /// to represent the closure kind, because it has not yet been
2190     /// inferred. Once upvar inference (in `rustc_typeck/src/check/upvar.rs`)
2191     /// is complete, that type variable will be unified.
to_opt_closure_kind(&self) -> Option<ty::ClosureKind>2192     pub fn to_opt_closure_kind(&self) -> Option<ty::ClosureKind> {
2193         match self.kind() {
2194             Int(int_ty) => match int_ty {
2195                 ty::IntTy::I8 => Some(ty::ClosureKind::Fn),
2196                 ty::IntTy::I16 => Some(ty::ClosureKind::FnMut),
2197                 ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
2198                 _ => bug!("cannot convert type `{:?}` to a closure kind", self),
2199             },
2200 
2201             // "Bound" types appear in canonical queries when the
2202             // closure type is not yet known
2203             Bound(..) | Infer(_) => None,
2204 
2205             Error(_) => Some(ty::ClosureKind::Fn),
2206 
2207             _ => bug!("cannot convert type `{:?}` to a closure kind", self),
2208         }
2209     }
2210 
2211     /// Fast path helper for testing if a type is `Sized`.
2212     ///
2213     /// Returning true means the type is known to be sized. Returning
2214     /// `false` means nothing -- could be sized, might not be.
2215     ///
2216     /// Note that we could never rely on the fact that a type such as `[_]` is
2217     /// trivially `!Sized` because we could be in a type environment with a
2218     /// bound such as `[_]: Copy`. A function with such a bound obviously never
2219     /// can be called, but that doesn't mean it shouldn't typecheck. This is why
2220     /// this method doesn't return `Option<bool>`.
is_trivially_sized(&self, tcx: TyCtxt<'tcx>) -> bool2221     pub fn is_trivially_sized(&self, tcx: TyCtxt<'tcx>) -> bool {
2222         match self.kind() {
2223             ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2224             | ty::Uint(_)
2225             | ty::Int(_)
2226             | ty::Bool
2227             | ty::Float(_)
2228             | ty::FnDef(..)
2229             | ty::FnPtr(_)
2230             | ty::RawPtr(..)
2231             | ty::Char
2232             | ty::Ref(..)
2233             | ty::Generator(..)
2234             | ty::GeneratorWitness(..)
2235             | ty::Array(..)
2236             | ty::Closure(..)
2237             | ty::Never
2238             | ty::Error(_) => true,
2239 
2240             ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => false,
2241 
2242             ty::Tuple(tys) => tys.iter().all(|ty| ty.expect_ty().is_trivially_sized(tcx)),
2243 
2244             ty::Adt(def, _substs) => def.sized_constraint(tcx).is_empty(),
2245 
2246             ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => false,
2247 
2248             ty::Infer(ty::TyVar(_)) => false,
2249 
2250             ty::Bound(..)
2251             | ty::Placeholder(..)
2252             | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2253                 bug!("`is_trivially_sized` applied to unexpected type: {:?}", self)
2254             }
2255         }
2256     }
2257 }
2258 
2259 /// Extra information about why we ended up with a particular variance.
2260 /// This is only used to add more information to error messages, and
2261 /// has no effect on soundness. While choosing the 'wrong' `VarianceDiagInfo`
2262 /// may lead to confusing notes in error messages, it will never cause
2263 /// a miscompilation or unsoundness.
2264 ///
2265 /// When in doubt, use `VarianceDiagInfo::default()`
2266 #[derive(Copy, Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
2267 pub enum VarianceDiagInfo<'tcx> {
2268     /// No additional information - this is the default.
2269     /// We will not add any additional information to error messages.
2270     #[default]
2271     None,
2272     /// We switched our variance because a type occurs inside
2273     /// the generic argument of a mutable reference or pointer
2274     /// (`*mut T` or `&mut T`). In either case, our variance
2275     /// will always be `Invariant`.
2276     Mut {
2277         /// Tracks whether we had a mutable pointer or reference,
2278         /// for better error messages
2279         kind: VarianceDiagMutKind,
2280         /// The type parameter of the mutable pointer/reference
2281         /// (the `T` in `&mut T` or `*mut T`).
2282         ty: Ty<'tcx>,
2283     },
2284 }
2285 
2286 #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
2287 pub enum VarianceDiagMutKind {
2288     /// A mutable raw pointer (`*mut T`)
2289     RawPtr,
2290     /// A mutable reference (`&mut T`)
2291     Ref,
2292 }
2293 
2294 impl<'tcx> VarianceDiagInfo<'tcx> {
2295     /// Mirrors `Variance::xform` - used to 'combine' the existing
2296     /// and new `VarianceDiagInfo`s when our variance changes.
xform(self, other: VarianceDiagInfo<'tcx>) -> VarianceDiagInfo<'tcx>2297     pub fn xform(self, other: VarianceDiagInfo<'tcx>) -> VarianceDiagInfo<'tcx> {
2298         // For now, just use the first `VarianceDiagInfo::Mut` that we see
2299         match self {
2300             VarianceDiagInfo::None => other,
2301             VarianceDiagInfo::Mut { .. } => self,
2302         }
2303     }
2304 }
2305