1 //===- llvm/Transforms/Vectorize/LoopVectorizationLegality.h ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file defines the LoopVectorizationLegality class. Original code
11 /// in Loop Vectorizer has been moved out to its own file for modularity
12 /// and reusability.
13 ///
14 /// Currently, it works for innermost loop vectorization. Extending this to
15 /// outer loop vectorization is a TODO item.
16 ///
17 /// Also provides:
18 /// 1) LoopVectorizeHints class which keeps a number of loop annotations
19 /// locally for easy look up. It has the ability to write them back as
20 /// loop metadata, upon request.
21 /// 2) LoopVectorizationRequirements class for lazy bail out for the purpose
22 /// of reporting useful failure to vectorize message.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H
27 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H
28 
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/Analysis/LoopAccessAnalysis.h"
31 #include "llvm/Support/TypeSize.h"
32 #include "llvm/Transforms/Utils/LoopUtils.h"
33 
34 namespace llvm {
35 class AssumptionCache;
36 class BasicBlock;
37 class BlockFrequencyInfo;
38 class DemandedBits;
39 class DominatorTree;
40 class Function;
41 class Loop;
42 class LoopInfo;
43 class Metadata;
44 class OptimizationRemarkEmitter;
45 class PredicatedScalarEvolution;
46 class ProfileSummaryInfo;
47 class TargetLibraryInfo;
48 class TargetTransformInfo;
49 class Type;
50 
51 /// Utility class for getting and setting loop vectorizer hints in the form
52 /// of loop metadata.
53 /// This class keeps a number of loop annotations locally (as member variables)
54 /// and can, upon request, write them back as metadata on the loop. It will
55 /// initially scan the loop for existing metadata, and will update the local
56 /// values based on information in the loop.
57 /// We cannot write all values to metadata, as the mere presence of some info,
58 /// for example 'force', means a decision has been made. So, we need to be
59 /// careful NOT to add them if the user hasn't specifically asked so.
60 class LoopVectorizeHints {
61   enum HintKind {
62     HK_WIDTH,
63     HK_INTERLEAVE,
64     HK_FORCE,
65     HK_ISVECTORIZED,
66     HK_PREDICATE,
67     HK_SCALABLE
68   };
69 
70   /// Hint - associates name and validation with the hint value.
71   struct Hint {
72     const char *Name;
73     unsigned Value; // This may have to change for non-numeric values.
74     HintKind Kind;
75 
HintHint76     Hint(const char *Name, unsigned Value, HintKind Kind)
77         : Name(Name), Value(Value), Kind(Kind) {}
78 
79     bool validate(unsigned Val);
80   };
81 
82   /// Vectorization width.
83   Hint Width;
84 
85   /// Vectorization interleave factor.
86   Hint Interleave;
87 
88   /// Vectorization forced
89   Hint Force;
90 
91   /// Already Vectorized
92   Hint IsVectorized;
93 
94   /// Vector Predicate
95   Hint Predicate;
96 
97   /// Says whether we should use fixed width or scalable vectorization.
98   Hint Scalable;
99 
100   /// Return the loop metadata prefix.
Prefix()101   static StringRef Prefix() { return "llvm.loop."; }
102 
103   /// True if there is any unsafe math in the loop.
104   bool PotentiallyUnsafe = false;
105 
106 public:
107   enum ForceKind {
108     FK_Undefined = -1, ///< Not selected.
109     FK_Disabled = 0,   ///< Forcing disabled.
110     FK_Enabled = 1,    ///< Forcing enabled.
111   };
112 
113   enum ScalableForceKind {
114     /// Not selected.
115     SK_Unspecified = -1,
116     /// Disables vectorization with scalable vectors.
117     SK_FixedWidthOnly = 0,
118     /// Vectorize loops using scalable vectors or fixed-width vectors, but favor
119     /// scalable vectors when the cost-model is inconclusive. This is the
120     /// default when the scalable.enable hint is enabled through a pragma.
121     SK_PreferScalable = 1
122   };
123 
124   LoopVectorizeHints(const Loop *L, bool InterleaveOnlyWhenForced,
125                      OptimizationRemarkEmitter &ORE,
126                      const TargetTransformInfo *TTI = nullptr);
127 
128   /// Mark the loop L as already vectorized by setting the width to 1.
129   void setAlreadyVectorized();
130 
131   bool allowVectorization(Function *F, Loop *L,
132                           bool VectorizeOnlyWhenForced) const;
133 
134   /// Dumps all the hint information.
135   void emitRemarkWithHints() const;
136 
getWidth()137   ElementCount getWidth() const {
138     return ElementCount::get(Width.Value, (ScalableForceKind)Scalable.Value ==
139                                               SK_PreferScalable);
140   }
141 
getInterleave()142   unsigned getInterleave() const {
143     if (Interleave.Value)
144       return Interleave.Value;
145     // If interleaving is not explicitly set, assume that if we do not want
146     // unrolling, we also don't want any interleaving.
147     if (llvm::hasUnrollTransformation(TheLoop) & TM_Disable)
148       return 1;
149     return 0;
150   }
getIsVectorized()151   unsigned getIsVectorized() const { return IsVectorized.Value; }
getPredicate()152   unsigned getPredicate() const { return Predicate.Value; }
getForce()153   enum ForceKind getForce() const {
154     if ((ForceKind)Force.Value == FK_Undefined &&
155         hasDisableAllTransformsHint(TheLoop))
156       return FK_Disabled;
157     return (ForceKind)Force.Value;
158   }
159 
160   /// \return true if scalable vectorization has been explicitly disabled.
isScalableVectorizationDisabled()161   bool isScalableVectorizationDisabled() const {
162     return (ScalableForceKind)Scalable.Value == SK_FixedWidthOnly;
163   }
164 
165   /// If hints are provided that force vectorization, use the AlwaysPrint
166   /// pass name to force the frontend to print the diagnostic.
167   const char *vectorizeAnalysisPassName() const;
168 
169   /// When enabling loop hints are provided we allow the vectorizer to change
170   /// the order of operations that is given by the scalar loop. This is not
171   /// enabled by default because can be unsafe or inefficient. For example,
172   /// reordering floating-point operations will change the way round-off
173   /// error accumulates in the loop.
174   bool allowReordering() const;
175 
isPotentiallyUnsafe()176   bool isPotentiallyUnsafe() const {
177     // Avoid FP vectorization if the target is unsure about proper support.
178     // This may be related to the SIMD unit in the target not handling
179     // IEEE 754 FP ops properly, or bad single-to-double promotions.
180     // Otherwise, a sequence of vectorized loops, even without reduction,
181     // could lead to different end results on the destination vectors.
182     return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
183   }
184 
setPotentiallyUnsafe()185   void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
186 
187 private:
188   /// Find hints specified in the loop metadata and update local values.
189   void getHintsFromMetadata();
190 
191   /// Checks string hint with one operand and set value if valid.
192   void setHint(StringRef Name, Metadata *Arg);
193 
194   /// The loop these hints belong to.
195   const Loop *TheLoop;
196 
197   /// Interface to emit optimization remarks.
198   OptimizationRemarkEmitter &ORE;
199 };
200 
201 /// This holds vectorization requirements that must be verified late in
202 /// the process. The requirements are set by legalize and costmodel. Once
203 /// vectorization has been determined to be possible and profitable the
204 /// requirements can be verified by looking for metadata or compiler options.
205 /// For example, some loops require FP commutativity which is only allowed if
206 /// vectorization is explicitly specified or if the fast-math compiler option
207 /// has been provided.
208 /// Late evaluation of these requirements allows helpful diagnostics to be
209 /// composed that tells the user what need to be done to vectorize the loop. For
210 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
211 /// evaluation should be used only when diagnostics can generated that can be
212 /// followed by a non-expert user.
213 class LoopVectorizationRequirements {
214 public:
215   /// Track the 1st floating-point instruction that can not be reassociated.
addExactFPMathInst(Instruction * I)216   void addExactFPMathInst(Instruction *I) {
217     if (I && !ExactFPMathInst)
218       ExactFPMathInst = I;
219   }
220 
getExactFPInst()221   Instruction *getExactFPInst() { return ExactFPMathInst; }
222 
223 private:
224   Instruction *ExactFPMathInst = nullptr;
225 };
226 
227 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
228 /// to what vectorization factor.
229 /// This class does not look at the profitability of vectorization, only the
230 /// legality. This class has two main kinds of checks:
231 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
232 ///   will change the order of memory accesses in a way that will change the
233 ///   correctness of the program.
234 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
235 /// checks for a number of different conditions, such as the availability of a
236 /// single induction variable, that all types are supported and vectorize-able,
237 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
238 /// This class is also used by InnerLoopVectorizer for identifying
239 /// induction variable and the different reduction variables.
240 class LoopVectorizationLegality {
241 public:
LoopVectorizationLegality(Loop * L,PredicatedScalarEvolution & PSE,DominatorTree * DT,TargetTransformInfo * TTI,TargetLibraryInfo * TLI,Function * F,LoopAccessInfoManager & LAIs,LoopInfo * LI,OptimizationRemarkEmitter * ORE,LoopVectorizationRequirements * R,LoopVectorizeHints * H,DemandedBits * DB,AssumptionCache * AC,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI)242   LoopVectorizationLegality(
243       Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
244       TargetTransformInfo *TTI, TargetLibraryInfo *TLI, Function *F,
245       LoopAccessInfoManager &LAIs, LoopInfo *LI, OptimizationRemarkEmitter *ORE,
246       LoopVectorizationRequirements *R, LoopVectorizeHints *H, DemandedBits *DB,
247       AssumptionCache *AC, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI)
248       : TheLoop(L), LI(LI), PSE(PSE), TTI(TTI), TLI(TLI), DT(DT), LAIs(LAIs),
249         ORE(ORE), Requirements(R), Hints(H), DB(DB), AC(AC), BFI(BFI),
250         PSI(PSI) {}
251 
252   /// ReductionList contains the reduction descriptors for all
253   /// of the reductions that were found in the loop.
254   using ReductionList = MapVector<PHINode *, RecurrenceDescriptor>;
255 
256   /// InductionList saves induction variables and maps them to the
257   /// induction descriptor.
258   using InductionList = MapVector<PHINode *, InductionDescriptor>;
259 
260   /// RecurrenceSet contains the phi nodes that are recurrences other than
261   /// inductions and reductions.
262   using RecurrenceSet = SmallPtrSet<const PHINode *, 8>;
263 
264   /// Returns true if it is legal to vectorize this loop.
265   /// This does not mean that it is profitable to vectorize this
266   /// loop, only that it is legal to do so.
267   /// Temporarily taking UseVPlanNativePath parameter. If true, take
268   /// the new code path being implemented for outer loop vectorization
269   /// (should be functional for inner loop vectorization) based on VPlan.
270   /// If false, good old LV code.
271   bool canVectorize(bool UseVPlanNativePath);
272 
273   /// Returns true if it is legal to vectorize the FP math operations in this
274   /// loop. Vectorizing is legal if we allow reordering of FP operations, or if
275   /// we can use in-order reductions.
276   bool canVectorizeFPMath(bool EnableStrictReductions);
277 
278   /// Return true if we can vectorize this loop while folding its tail by
279   /// masking, and mark all respective loads/stores for masking.
280   /// This object's state is only modified iff this function returns true.
281   bool prepareToFoldTailByMasking();
282 
283   /// Returns the primary induction variable.
getPrimaryInduction()284   PHINode *getPrimaryInduction() { return PrimaryInduction; }
285 
286   /// Returns the reduction variables found in the loop.
getReductionVars()287   const ReductionList &getReductionVars() const { return Reductions; }
288 
289   /// Returns the induction variables found in the loop.
getInductionVars()290   const InductionList &getInductionVars() const { return Inductions; }
291 
292   /// Return the fixed-order recurrences found in the loop.
getFixedOrderRecurrences()293   RecurrenceSet &getFixedOrderRecurrences() { return FixedOrderRecurrences; }
294 
295   /// Returns the widest induction type.
getWidestInductionType()296   Type *getWidestInductionType() { return WidestIndTy; }
297 
298   /// Returns True if given store is a final invariant store of one of the
299   /// reductions found in the loop.
300   bool isInvariantStoreOfReduction(StoreInst *SI);
301 
302   /// Returns True if given address is invariant and is used to store recurrent
303   /// expression
304   bool isInvariantAddressOfReduction(Value *V);
305 
306   /// Returns True if V is a Phi node of an induction variable in this loop.
307   bool isInductionPhi(const Value *V) const;
308 
309   /// Returns a pointer to the induction descriptor, if \p Phi is an integer or
310   /// floating point induction.
311   const InductionDescriptor *getIntOrFpInductionDescriptor(PHINode *Phi) const;
312 
313   /// Returns a pointer to the induction descriptor, if \p Phi is pointer
314   /// induction.
315   const InductionDescriptor *getPointerInductionDescriptor(PHINode *Phi) const;
316 
317   /// Returns True if V is a cast that is part of an induction def-use chain,
318   /// and had been proven to be redundant under a runtime guard (in other
319   /// words, the cast has the same SCEV expression as the induction phi).
320   bool isCastedInductionVariable(const Value *V) const;
321 
322   /// Returns True if V can be considered as an induction variable in this
323   /// loop. V can be the induction phi, or some redundant cast in the def-use
324   /// chain of the inducion phi.
325   bool isInductionVariable(const Value *V) const;
326 
327   /// Returns True if PN is a reduction variable in this loop.
isReductionVariable(PHINode * PN)328   bool isReductionVariable(PHINode *PN) const { return Reductions.count(PN); }
329 
330   /// Returns True if Phi is a fixed-order recurrence in this loop.
331   bool isFixedOrderRecurrence(const PHINode *Phi) const;
332 
333   /// Return true if the block BB needs to be predicated in order for the loop
334   /// to be vectorized.
335   bool blockNeedsPredication(BasicBlock *BB) const;
336 
337   /// Check if this pointer is consecutive when vectorizing. This happens
338   /// when the last index of the GEP is the induction variable, or that the
339   /// pointer itself is an induction variable.
340   /// This check allows us to vectorize A[idx] into a wide load/store.
341   /// Returns:
342   /// 0 - Stride is unknown or non-consecutive.
343   /// 1 - Address is consecutive.
344   /// -1 - Address is consecutive, and decreasing.
345   /// NOTE: This method must only be used before modifying the original scalar
346   /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965).
347   int isConsecutivePtr(Type *AccessTy, Value *Ptr) const;
348 
349   /// Returns true if value V is uniform across \p VF lanes, when \p VF is
350   /// provided, and otherwise if \p V is invariant across all loop iterations.
351   bool isInvariant(Value *V) const;
352 
353   /// Returns true if value V is uniform across \p VF lanes, when \p VF is
354   /// provided, and otherwise if \p V is invariant across all loop iterations.
355   bool isUniform(Value *V, ElementCount VF) const;
356 
357   /// A uniform memory op is a load or store which accesses the same memory
358   /// location on all \p VF lanes, if \p VF is provided and otherwise if the
359   /// memory location is invariant.
360   bool isUniformMemOp(Instruction &I, ElementCount VF) const;
361 
362   /// Returns the information that we collected about runtime memory check.
getRuntimePointerChecking()363   const RuntimePointerChecking *getRuntimePointerChecking() const {
364     return LAI->getRuntimePointerChecking();
365   }
366 
getLAI()367   const LoopAccessInfo *getLAI() const { return LAI; }
368 
isSafeForAnyVectorWidth()369   bool isSafeForAnyVectorWidth() const {
370     return LAI->getDepChecker().isSafeForAnyVectorWidth();
371   }
372 
getMaxSafeVectorWidthInBits()373   uint64_t getMaxSafeVectorWidthInBits() const {
374     return LAI->getDepChecker().getMaxSafeVectorWidthInBits();
375   }
376 
377   /// Returns true if vector representation of the instruction \p I
378   /// requires mask.
isMaskRequired(const Instruction * I)379   bool isMaskRequired(const Instruction *I) const {
380     return MaskedOp.contains(I);
381   }
382 
383   /// Returns true if there is at least one function call in the loop which
384   /// has a vectorized variant available.
hasVectorCallVariants()385   bool hasVectorCallVariants() const { return VecCallVariantsFound; }
386 
getNumStores()387   unsigned getNumStores() const { return LAI->getNumStores(); }
getNumLoads()388   unsigned getNumLoads() const { return LAI->getNumLoads(); }
389 
getPredicatedScalarEvolution()390   PredicatedScalarEvolution *getPredicatedScalarEvolution() const {
391     return &PSE;
392   }
393 
getLoop()394   Loop *getLoop() const { return TheLoop; }
395 
getLoopInfo()396   LoopInfo *getLoopInfo() const { return LI; }
397 
getAssumptionCache()398   AssumptionCache *getAssumptionCache() const { return AC; }
399 
getScalarEvolution()400   ScalarEvolution *getScalarEvolution() const { return PSE.getSE(); }
401 
getDominatorTree()402   DominatorTree *getDominatorTree() const { return DT; }
403 
404 private:
405   /// Return true if the pre-header, exiting and latch blocks of \p Lp and all
406   /// its nested loops are considered legal for vectorization. These legal
407   /// checks are common for inner and outer loop vectorization.
408   /// Temporarily taking UseVPlanNativePath parameter. If true, take
409   /// the new code path being implemented for outer loop vectorization
410   /// (should be functional for inner loop vectorization) based on VPlan.
411   /// If false, good old LV code.
412   bool canVectorizeLoopNestCFG(Loop *Lp, bool UseVPlanNativePath);
413 
414   /// Set up outer loop inductions by checking Phis in outer loop header for
415   /// supported inductions (int inductions). Return false if any of these Phis
416   /// is not a supported induction or if we fail to find an induction.
417   bool setupOuterLoopInductions();
418 
419   /// Return true if the pre-header, exiting and latch blocks of \p Lp
420   /// (non-recursive) are considered legal for vectorization.
421   /// Temporarily taking UseVPlanNativePath parameter. If true, take
422   /// the new code path being implemented for outer loop vectorization
423   /// (should be functional for inner loop vectorization) based on VPlan.
424   /// If false, good old LV code.
425   bool canVectorizeLoopCFG(Loop *Lp, bool UseVPlanNativePath);
426 
427   /// Check if a single basic block loop is vectorizable.
428   /// At this point we know that this is a loop with a constant trip count
429   /// and we only need to check individual instructions.
430   bool canVectorizeInstrs();
431 
432   /// When we vectorize loops we may change the order in which
433   /// we read and write from memory. This method checks if it is
434   /// legal to vectorize the code, considering only memory constrains.
435   /// Returns true if the loop is vectorizable
436   bool canVectorizeMemory();
437 
438   /// Return true if we can vectorize this loop using the IF-conversion
439   /// transformation.
440   bool canVectorizeWithIfConvert();
441 
442   /// Return true if we can vectorize this outer loop. The method performs
443   /// specific checks for outer loop vectorization.
444   bool canVectorizeOuterLoop();
445 
446   /// Return true if all of the instructions in the block can be speculatively
447   /// executed, and record the loads/stores that require masking.
448   /// \p SafePtrs is a list of addresses that are known to be legal and we know
449   /// that we can read from them without segfault.
450   /// \p MaskedOp is a list of instructions that have to be transformed into
451   /// calls to the appropriate masked intrinsic when the loop is vectorized
452   /// or dropped if the instruction is a conditional assume intrinsic.
453   bool
454   blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
455                        SmallPtrSetImpl<const Instruction *> &MaskedOp) const;
456 
457   /// Updates the vectorization state by adding \p Phi to the inductions list.
458   /// This can set \p Phi as the main induction of the loop if \p Phi is a
459   /// better choice for the main induction than the existing one.
460   void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
461                        SmallPtrSetImpl<Value *> &AllowedExit);
462 
463   /// The loop that we evaluate.
464   Loop *TheLoop;
465 
466   /// Loop Info analysis.
467   LoopInfo *LI;
468 
469   /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
470   /// Applies dynamic knowledge to simplify SCEV expressions in the context
471   /// of existing SCEV assumptions. The analysis will also add a minimal set
472   /// of new predicates if this is required to enable vectorization and
473   /// unrolling.
474   PredicatedScalarEvolution &PSE;
475 
476   /// Target Transform Info.
477   TargetTransformInfo *TTI;
478 
479   /// Target Library Info.
480   TargetLibraryInfo *TLI;
481 
482   /// Dominator Tree.
483   DominatorTree *DT;
484 
485   // LoopAccess analysis.
486   LoopAccessInfoManager &LAIs;
487 
488   const LoopAccessInfo *LAI = nullptr;
489 
490   /// Interface to emit optimization remarks.
491   OptimizationRemarkEmitter *ORE;
492 
493   //  ---  vectorization state --- //
494 
495   /// Holds the primary induction variable. This is the counter of the
496   /// loop.
497   PHINode *PrimaryInduction = nullptr;
498 
499   /// Holds the reduction variables.
500   ReductionList Reductions;
501 
502   /// Holds all of the induction variables that we found in the loop.
503   /// Notice that inductions don't need to start at zero and that induction
504   /// variables can be pointers.
505   InductionList Inductions;
506 
507   /// Holds all the casts that participate in the update chain of the induction
508   /// variables, and that have been proven to be redundant (possibly under a
509   /// runtime guard). These casts can be ignored when creating the vectorized
510   /// loop body.
511   SmallPtrSet<Instruction *, 4> InductionCastsToIgnore;
512 
513   /// Holds the phi nodes that are fixed-order recurrences.
514   RecurrenceSet FixedOrderRecurrences;
515 
516   /// Holds the widest induction type encountered.
517   Type *WidestIndTy = nullptr;
518 
519   /// Allowed outside users. This holds the variables that can be accessed from
520   /// outside the loop.
521   SmallPtrSet<Value *, 4> AllowedExit;
522 
523   /// Vectorization requirements that will go through late-evaluation.
524   LoopVectorizationRequirements *Requirements;
525 
526   /// Used to emit an analysis of any legality issues.
527   LoopVectorizeHints *Hints;
528 
529   /// The demanded bits analysis is used to compute the minimum type size in
530   /// which a reduction can be computed.
531   DemandedBits *DB;
532 
533   /// The assumption cache analysis is used to compute the minimum type size in
534   /// which a reduction can be computed.
535   AssumptionCache *AC;
536 
537   /// While vectorizing these instructions we have to generate a
538   /// call to the appropriate masked intrinsic or drop them in case of
539   /// conditional assumes.
540   SmallPtrSet<const Instruction *, 8> MaskedOp;
541 
542   /// BFI and PSI are used to check for profile guided size optimizations.
543   BlockFrequencyInfo *BFI;
544   ProfileSummaryInfo *PSI;
545 
546   /// If we discover function calls within the loop which have a valid
547   /// vectorized variant, record that fact so that LoopVectorize can
548   /// (potentially) make a better decision on the maximum VF and enable
549   /// the use of those function variants.
550   bool VecCallVariantsFound = false;
551 };
552 
553 } // namespace llvm
554 
555 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H
556