1 /*
2 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice including the dates of first publication and
13 * either this permission notice or a reference to
14 * http://oss.sgi.com/projects/FreeB/
15 * shall be included in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Except as contained in this notice, the name of Silicon Graphics, Inc.
26 * shall not be used in advertising or otherwise to promote the sale, use or
27 * other dealings in this Software without prior written authorization from
28 * Silicon Graphics, Inc.
29 */
30 /*
31 ** Author: Eric Veach, July 1994.
32 **
33 */
34
35 #include "gluos.h"
36 #include <assert.h>
37 //#include <stddef.h>
38 //#include "mesh.h"
39 #include "tess.h"
40 //#include "render.h"
41
42 #ifndef TRUE
43 #define TRUE 1
44 #endif
45 #ifndef FALSE
46 #define FALSE 0
47 #endif
48
49 /* This structure remembers the information we need about a primitive
50 * to be able to render it later, once we have determined which
51 * primitive is able to use the most triangles.
52 */
53 struct FaceCount {
54 long size; /* number of triangles used */
55 GLUhalfEdge *eStart; /* edge where this primitive starts */
56 void (*render)(GLUtesselator *, GLUhalfEdge *, long);
57 /* routine to render this primitive */
58 };
59
60 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
61 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );
62
63 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
64 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
65 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
66 long size );
67
68 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
69 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
70
71
72
73 /************************ Strips and Fans decomposition ******************/
74
75 /* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
76 * fans, strips, and separate triangles. A substantial effort is made
77 * to use as few rendering primitives as possible (ie. to make the fans
78 * and strips as large as possible).
79 *
80 * The rendering output is provided as callbacks (see the api).
81 */
__gl_renderMesh(GLUtesselator * tess,GLUmesh * mesh)82 void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
83 {
84 GLUface *f;
85
86 /* Make a list of separate triangles so we can render them all at once */
87 tess->lonelyTriList = NULL;
88
89 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
90 f->marked = FALSE;
91 }
92 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
93
94 /* We examine all faces in an arbitrary order. Whenever we find
95 * an unprocessed face F, we output a group of faces including F
96 * whose size is maximum.
97 */
98 if( f->inside && ! f->marked ) {
99 RenderMaximumFaceGroup( tess, f );
100 assert( f->marked );
101 }
102 }
103 if( tess->lonelyTriList != NULL ) {
104 RenderLonelyTriangles( tess, tess->lonelyTriList );
105 tess->lonelyTriList = NULL;
106 }
107 }
108
109
RenderMaximumFaceGroup(GLUtesselator * tess,GLUface * fOrig)110 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
111 {
112 /* We want to find the largest triangle fan or strip of unmarked faces
113 * which includes the given face fOrig. There are 3 possible fans
114 * passing through fOrig (one centered at each vertex), and 3 possible
115 * strips (one for each CCW permutation of the vertices). Our strategy
116 * is to try all of these, and take the primitive which uses the most
117 * triangles (a greedy approach).
118 */
119 GLUhalfEdge *e = fOrig->anEdge;
120 struct FaceCount max, newFace;
121
122 max.size = 1;
123 max.eStart = e;
124 max.render = &RenderTriangle;
125
126 if( ! tess->flagBoundary ) {
127 newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
128 newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
129 newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
130
131 newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
132 newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
133 newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
134 }
135 (*(max.render))( tess, max.eStart, max.size );
136 }
137
138
139 /* Macros which keep track of faces we have marked temporarily, and allow
140 * us to backtrack when necessary. With triangle fans, this is not
141 * really necessary, since the only awkward case is a loop of triangles
142 * around a single origin vertex. However with strips the situation is
143 * more complicated, and we need a general tracking method like the
144 * one here.
145 */
146 #define Marked(f) (! (f)->inside || (f)->marked)
147
148 #define AddToTrail(f,t) ((f)->trail = (t), (t) = (f), (f)->marked = TRUE)
149
150 #define FreeTrail(t) do { \
151 while( (t) != NULL ) { \
152 (t)->marked = FALSE; t = (t)->trail; \
153 } \
154 } while(0) /* absorb trailing semicolon */
155
156
157
MaximumFan(GLUhalfEdge * eOrig)158 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
159 {
160 /* eOrig->Lface is the face we want to render. We want to find the size
161 * of a maximal fan around eOrig->Org. To do this we just walk around
162 * the origin vertex as far as possible in both directions.
163 */
164 struct FaceCount newFace = { 0, NULL, &RenderFan };
165 GLUface *trail = NULL;
166 GLUhalfEdge *e;
167
168 for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
169 AddToTrail( e->Lface, trail );
170 ++newFace.size;
171 }
172 for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
173 AddToTrail( e->Rface, trail );
174 ++newFace.size;
175 }
176 newFace.eStart = e;
177 /*LINTED*/
178 FreeTrail( trail );
179 return newFace;
180 }
181
182
183 #define IsEven(n) (((n) & 1) == 0)
184
MaximumStrip(GLUhalfEdge * eOrig)185 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
186 {
187 /* Here we are looking for a maximal strip that contains the vertices
188 * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
189 * reverse, such that all triangles are oriented CCW).
190 *
191 * Again we walk forward and backward as far as possible. However for
192 * strips there is a twist: to get CCW orientations, there must be
193 * an *even* number of triangles in the strip on one side of eOrig.
194 * We walk the strip starting on a side with an even number of triangles;
195 * if both side have an odd number, we are forced to shorten one side.
196 */
197 struct FaceCount newFace = { 0, NULL, &RenderStrip };
198 long headSize = 0, tailSize = 0;
199 GLUface *trail = NULL;
200 GLUhalfEdge *e, *eTail, *eHead;
201
202 for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
203 AddToTrail( e->Lface, trail );
204 ++tailSize;
205 e = e->Dprev;
206 if( Marked( e->Lface )) break;
207 AddToTrail( e->Lface, trail );
208 }
209 eTail = e;
210
211 for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
212 AddToTrail( e->Rface, trail );
213 ++headSize;
214 e = e->Oprev;
215 if( Marked( e->Rface )) break;
216 AddToTrail( e->Rface, trail );
217 }
218 eHead = e;
219
220 newFace.size = tailSize + headSize;
221 if( IsEven( tailSize )) {
222 newFace.eStart = eTail->Sym;
223 } else if( IsEven( headSize )) {
224 newFace.eStart = eHead;
225 } else {
226 /* Both sides have odd length, we must shorten one of them. In fact,
227 * we must start from eHead to guarantee inclusion of eOrig->Lface.
228 */
229 --newFace.size;
230 newFace.eStart = eHead->Onext;
231 }
232 /*LINTED*/
233 FreeTrail( trail );
234 return newFace;
235 }
236
237
RenderTriangle(GLUtesselator * tess,GLUhalfEdge * e,long size)238 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
239 {
240 /* Just add the triangle to a triangle list, so we can render all
241 * the separate triangles at once.
242 */
243 assert( size == 1 );
244 AddToTrail( e->Lface, tess->lonelyTriList );
245 }
246
247
RenderLonelyTriangles(GLUtesselator * tess,GLUface * f)248 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
249 {
250 /* Now we render all the separate triangles which could not be
251 * grouped into a triangle fan or strip.
252 */
253 GLUhalfEdge *e;
254 int newState;
255 int edgeState = -1; /* force edge state output for first vertex */
256
257 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );
258
259 for( ; f != NULL; f = f->trail ) {
260 /* Loop once for each edge (there will always be 3 edges) */
261
262 e = f->anEdge;
263 do {
264 if( tess->flagBoundary ) {
265 /* Set the "edge state" to TRUE just before we output the
266 * first vertex of each edge on the polygon boundary.
267 */
268 newState = ! e->Rface->inside;
269 if( edgeState != newState ) {
270 edgeState = newState;
271 CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
272 }
273 }
274 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
275
276 e = e->Lnext;
277 } while( e != f->anEdge );
278 }
279 CALL_END_OR_END_DATA();
280 }
281
282
RenderFan(GLUtesselator * tess,GLUhalfEdge * e,long size)283 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
284 {
285 /* Render as many CCW triangles as possible in a fan starting from
286 * edge "e". The fan *should* contain exactly "size" triangles
287 * (otherwise we've goofed up somewhere).
288 */
289 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN );
290 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
291 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
292
293 while( ! Marked( e->Lface )) {
294 e->Lface->marked = TRUE;
295 --size;
296 e = e->Onext;
297 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
298 }
299
300 assert( size == 0 );
301 CALL_END_OR_END_DATA();
302 }
303
304
RenderStrip(GLUtesselator * tess,GLUhalfEdge * e,long size)305 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
306 {
307 /* Render as many CCW triangles as possible in a strip starting from
308 * edge "e". The strip *should* contain exactly "size" triangles
309 * (otherwise we've goofed up somewhere).
310 */
311 CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
312 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
313 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
314
315 while( ! Marked( e->Lface )) {
316 e->Lface->marked = TRUE;
317 --size;
318 e = e->Dprev;
319 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
320 if( Marked( e->Lface )) break;
321
322 e->Lface->marked = TRUE;
323 --size;
324 e = e->Onext;
325 CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
326 }
327
328 assert( size == 0 );
329 CALL_END_OR_END_DATA();
330 }
331
332
333 /************************ Boundary contour decomposition ******************/
334
335 /* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
336 * contour for each face marked "inside". The rendering output is
337 * provided as callbacks (see the api).
338 */
__gl_renderBoundary(GLUtesselator * tess,GLUmesh * mesh)339 void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
340 {
341 GLUface *f;
342 GLUhalfEdge *e;
343
344 for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
345 if( f->inside ) {
346 CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
347 e = f->anEdge;
348 do {
349 CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
350 e = e->Lnext;
351 } while( e != f->anEdge );
352 CALL_END_OR_END_DATA();
353 }
354 }
355 }
356
357
358 /************************ Quick-and-dirty decomposition ******************/
359
360 #define SIGN_INCONSISTENT 2
361
ComputeNormal(GLUtesselator * tess,GLdouble norm[3],int check)362 static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
363 /*
364 * If check==FALSE, we compute the polygon normal and place it in norm[].
365 * If check==TRUE, we check that each triangle in the fan from v0 has a
366 * consistent orientation with respect to norm[]. If triangles are
367 * consistently oriented CCW, return 1; if CW, return -1; if all triangles
368 * are degenerate return 0; otherwise (no consistent orientation) return
369 * SIGN_INCONSISTENT.
370 */
371 {
372 CachedVertex *v0 = tess->cache;
373 CachedVertex *vn = v0 + tess->cacheCount;
374 CachedVertex *vc;
375 GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
376 int sign = 0;
377
378 /* Find the polygon normal. It is important to get a reasonable
379 * normal even when the polygon is self-intersecting (eg. a bowtie).
380 * Otherwise, the computed normal could be very tiny, but perpendicular
381 * to the true plane of the polygon due to numerical noise. Then all
382 * the triangles would appear to be degenerate and we would incorrectly
383 * decompose the polygon as a fan (or simply not render it at all).
384 *
385 * We use a sum-of-triangles normal algorithm rather than the more
386 * efficient sum-of-trapezoids method (used in CheckOrientation()
387 * in normal.c). This lets us explicitly reverse the signed area
388 * of some triangles to get a reasonable normal in the self-intersecting
389 * case.
390 */
391 if( ! check ) {
392 norm[0] = norm[1] = norm[2] = 0.0;
393 }
394
395 vc = v0 + 1;
396 xc = vc->coords[0] - v0->coords[0];
397 yc = vc->coords[1] - v0->coords[1];
398 zc = vc->coords[2] - v0->coords[2];
399 while( ++vc < vn ) {
400 xp = xc; yp = yc; zp = zc;
401 xc = vc->coords[0] - v0->coords[0];
402 yc = vc->coords[1] - v0->coords[1];
403 zc = vc->coords[2] - v0->coords[2];
404
405 /* Compute (vp - v0) cross (vc - v0) */
406 n[0] = yp*zc - zp*yc;
407 n[1] = zp*xc - xp*zc;
408 n[2] = xp*yc - yp*xc;
409
410 dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
411 if( ! check ) {
412 /* Reverse the contribution of back-facing triangles to get
413 * a reasonable normal for self-intersecting polygons (see above)
414 */
415 if( dot >= 0 ) {
416 norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
417 } else {
418 norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
419 }
420 } else if( dot != 0 ) {
421 /* Check the new orientation for consistency with previous triangles */
422 if( dot > 0 ) {
423 if( sign < 0 ) return SIGN_INCONSISTENT;
424 sign = 1;
425 } else {
426 if( sign > 0 ) return SIGN_INCONSISTENT;
427 sign = -1;
428 }
429 }
430 }
431 return sign;
432 }
433
434 /* __gl_renderCache( tess ) takes a single contour and tries to render it
435 * as a triangle fan. This handles convex polygons, as well as some
436 * non-convex polygons if we get lucky.
437 *
438 * Returns TRUE if the polygon was successfully rendered. The rendering
439 * output is provided as callbacks (see the api).
440 */
__gl_renderCache(GLUtesselator * tess)441 GLboolean __gl_renderCache( GLUtesselator *tess )
442 {
443 CachedVertex *v0 = tess->cache;
444 CachedVertex *vn = v0 + tess->cacheCount;
445 CachedVertex *vc;
446 GLdouble norm[3];
447 int sign;
448
449 if( tess->cacheCount < 3 ) {
450 /* Degenerate contour -- no output */
451 return TRUE;
452 }
453
454 norm[0] = tess->normal[0];
455 norm[1] = tess->normal[1];
456 norm[2] = tess->normal[2];
457 if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
458 ComputeNormal( tess, norm, FALSE );
459 }
460
461 sign = ComputeNormal( tess, norm, TRUE );
462 if( sign == SIGN_INCONSISTENT ) {
463 /* Fan triangles did not have a consistent orientation */
464 return FALSE;
465 }
466 if( sign == 0 ) {
467 /* All triangles were degenerate */
468 return TRUE;
469 }
470
471 /* Make sure we do the right thing for each winding rule */
472 switch( tess->windingRule ) {
473 case GLU_TESS_WINDING_ODD:
474 case GLU_TESS_WINDING_NONZERO:
475 break;
476 case GLU_TESS_WINDING_POSITIVE:
477 if( sign < 0 ) return TRUE;
478 break;
479 case GLU_TESS_WINDING_NEGATIVE:
480 if( sign > 0 ) return TRUE;
481 break;
482 case GLU_TESS_WINDING_ABS_GEQ_TWO:
483 return TRUE;
484 }
485
486 CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
487 : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
488 : GL_TRIANGLES );
489
490 CALL_VERTEX_OR_VERTEX_DATA( v0->data );
491 if( sign > 0 ) {
492 for( vc = v0+1; vc < vn; ++vc ) {
493 CALL_VERTEX_OR_VERTEX_DATA( vc->data );
494 }
495 } else {
496 for( vc = vn-1; vc > v0; --vc ) {
497 CALL_VERTEX_OR_VERTEX_DATA( vc->data );
498 }
499 }
500 CALL_END_OR_END_DATA();
501 return TRUE;
502 }
503