1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/TypePromotion.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Target/TargetMachine.h"
41 
42 #define DEBUG_TYPE "type-promotion"
43 #define PASS_NAME "Type Promotion"
44 
45 using namespace llvm;
46 
47 static cl::opt<bool> DisablePromotion("disable-type-promotion", cl::Hidden,
48                                       cl::init(false),
49                                       cl::desc("Disable type promotion pass"));
50 
51 // The goal of this pass is to enable more efficient code generation for
52 // operations on narrow types (i.e. types with < 32-bits) and this is a
53 // motivating IR code example:
54 //
55 //   define hidden i32 @cmp(i8 zeroext) {
56 //     %2 = add i8 %0, -49
57 //     %3 = icmp ult i8 %2, 3
58 //     ..
59 //   }
60 //
61 // The issue here is that i8 is type-legalized to i32 because i8 is not a
62 // legal type. Thus, arithmetic is done in integer-precision, but then the
63 // byte value is masked out as follows:
64 //
65 //   t19: i32 = add t4, Constant:i32<-49>
66 //     t24: i32 = and t19, Constant:i32<255>
67 //
68 // Consequently, we generate code like this:
69 //
70 //   subs  r0, #49
71 //   uxtb  r1, r0
72 //   cmp r1, #3
73 //
74 // This shows that masking out the byte value results in generation of
75 // the UXTB instruction. This is not optimal as r0 already contains the byte
76 // value we need, and so instead we can just generate:
77 //
78 //   sub.w r1, r0, #49
79 //   cmp r1, #3
80 //
81 // We achieve this by type promoting the IR to i32 like so for this example:
82 //
83 //   define i32 @cmp(i8 zeroext %c) {
84 //     %0 = zext i8 %c to i32
85 //     %c.off = add i32 %0, -49
86 //     %1 = icmp ult i32 %c.off, 3
87 //     ..
88 //   }
89 //
90 // For this to be valid and legal, we need to prove that the i32 add is
91 // producing the same value as the i8 addition, and that e.g. no overflow
92 // happens.
93 //
94 // A brief sketch of the algorithm and some terminology.
95 // We pattern match interesting IR patterns:
96 // - which have "sources": instructions producing narrow values (i8, i16), and
97 // - they have "sinks": instructions consuming these narrow values.
98 //
99 // We collect all instruction connecting sources and sinks in a worklist, so
100 // that we can mutate these instruction and perform type promotion when it is
101 // legal to do so.
102 
103 namespace {
104 class IRPromoter {
105   LLVMContext &Ctx;
106   unsigned PromotedWidth = 0;
107   SetVector<Value *> &Visited;
108   SetVector<Value *> &Sources;
109   SetVector<Instruction *> &Sinks;
110   SmallPtrSetImpl<Instruction *> &SafeWrap;
111   SmallPtrSetImpl<Instruction *> &InstsToRemove;
112   IntegerType *ExtTy = nullptr;
113   SmallPtrSet<Value *, 8> NewInsts;
114   DenseMap<Value *, SmallVector<Type *, 4>> TruncTysMap;
115   SmallPtrSet<Value *, 8> Promoted;
116 
117   void ReplaceAllUsersOfWith(Value *From, Value *To);
118   void ExtendSources();
119   void ConvertTruncs();
120   void PromoteTree();
121   void TruncateSinks();
122   void Cleanup();
123 
124 public:
IRPromoter(LLVMContext & C,unsigned Width,SetVector<Value * > & visited,SetVector<Value * > & sources,SetVector<Instruction * > & sinks,SmallPtrSetImpl<Instruction * > & wrap,SmallPtrSetImpl<Instruction * > & instsToRemove)125   IRPromoter(LLVMContext &C, unsigned Width, SetVector<Value *> &visited,
126              SetVector<Value *> &sources, SetVector<Instruction *> &sinks,
127              SmallPtrSetImpl<Instruction *> &wrap,
128              SmallPtrSetImpl<Instruction *> &instsToRemove)
129       : Ctx(C), PromotedWidth(Width), Visited(visited), Sources(sources),
130         Sinks(sinks), SafeWrap(wrap), InstsToRemove(instsToRemove) {
131     ExtTy = IntegerType::get(Ctx, PromotedWidth);
132   }
133 
134   void Mutate();
135 };
136 
137 class TypePromotionImpl {
138   unsigned TypeSize = 0;
139   LLVMContext *Ctx = nullptr;
140   unsigned RegisterBitWidth = 0;
141   SmallPtrSet<Value *, 16> AllVisited;
142   SmallPtrSet<Instruction *, 8> SafeToPromote;
143   SmallPtrSet<Instruction *, 4> SafeWrap;
144   SmallPtrSet<Instruction *, 4> InstsToRemove;
145 
146   // Does V have the same size result type as TypeSize.
147   bool EqualTypeSize(Value *V);
148   // Does V have the same size, or narrower, result type as TypeSize.
149   bool LessOrEqualTypeSize(Value *V);
150   // Does V have a result type that is wider than TypeSize.
151   bool GreaterThanTypeSize(Value *V);
152   // Does V have a result type that is narrower than TypeSize.
153   bool LessThanTypeSize(Value *V);
154   // Should V be a leaf in the promote tree?
155   bool isSource(Value *V);
156   // Should V be a root in the promotion tree?
157   bool isSink(Value *V);
158   // Should we change the result type of V? It will result in the users of V
159   // being visited.
160   bool shouldPromote(Value *V);
161   // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
162   // result won't affect the computation?
163   bool isSafeWrap(Instruction *I);
164   // Can V have its integer type promoted, or can the type be ignored.
165   bool isSupportedType(Value *V);
166   // Is V an instruction with a supported opcode or another value that we can
167   // handle, such as constants and basic blocks.
168   bool isSupportedValue(Value *V);
169   // Is V an instruction thats result can trivially promoted, or has safe
170   // wrapping.
171   bool isLegalToPromote(Value *V);
172   bool TryToPromote(Value *V, unsigned PromotedWidth, const LoopInfo &LI);
173 
174 public:
175   bool run(Function &F, const TargetMachine *TM,
176            const TargetTransformInfo &TTI, const LoopInfo &LI);
177 };
178 
179 class TypePromotionLegacy : public FunctionPass {
180 public:
181   static char ID;
182 
TypePromotionLegacy()183   TypePromotionLegacy() : FunctionPass(ID) {}
184 
getAnalysisUsage(AnalysisUsage & AU) const185   void getAnalysisUsage(AnalysisUsage &AU) const override {
186     AU.addRequired<LoopInfoWrapperPass>();
187     AU.addRequired<TargetTransformInfoWrapperPass>();
188     AU.addRequired<TargetPassConfig>();
189     AU.setPreservesCFG();
190     AU.addPreserved<LoopInfoWrapperPass>();
191   }
192 
getPassName() const193   StringRef getPassName() const override { return PASS_NAME; }
194 
195   bool runOnFunction(Function &F) override;
196 };
197 
198 } // namespace
199 
GenerateSignBits(Instruction * I)200 static bool GenerateSignBits(Instruction *I) {
201   unsigned Opc = I->getOpcode();
202   return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
203          Opc == Instruction::SRem || Opc == Instruction::SExt;
204 }
205 
EqualTypeSize(Value * V)206 bool TypePromotionImpl::EqualTypeSize(Value *V) {
207   return V->getType()->getScalarSizeInBits() == TypeSize;
208 }
209 
LessOrEqualTypeSize(Value * V)210 bool TypePromotionImpl::LessOrEqualTypeSize(Value *V) {
211   return V->getType()->getScalarSizeInBits() <= TypeSize;
212 }
213 
GreaterThanTypeSize(Value * V)214 bool TypePromotionImpl::GreaterThanTypeSize(Value *V) {
215   return V->getType()->getScalarSizeInBits() > TypeSize;
216 }
217 
LessThanTypeSize(Value * V)218 bool TypePromotionImpl::LessThanTypeSize(Value *V) {
219   return V->getType()->getScalarSizeInBits() < TypeSize;
220 }
221 
222 /// Return true if the given value is a source in the use-def chain, producing
223 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
224 /// of the tree to i32. We guarantee that these won't populate the upper bits
225 /// of the register. ZExt on the loads will be free, and the same for call
226 /// return values because we only accept ones that guarantee a zeroext ret val.
227 /// Many arguments will have the zeroext attribute too, so those would be free
228 /// too.
isSource(Value * V)229 bool TypePromotionImpl::isSource(Value *V) {
230   if (!isa<IntegerType>(V->getType()))
231     return false;
232 
233   // TODO Allow zext to be sources.
234   if (isa<Argument>(V))
235     return true;
236   else if (isa<LoadInst>(V))
237     return true;
238   else if (auto *Call = dyn_cast<CallInst>(V))
239     return Call->hasRetAttr(Attribute::AttrKind::ZExt);
240   else if (auto *Trunc = dyn_cast<TruncInst>(V))
241     return EqualTypeSize(Trunc);
242   return false;
243 }
244 
245 /// Return true if V will require any promoted values to be truncated for the
246 /// the IR to remain valid. We can't mutate the value type of these
247 /// instructions.
isSink(Value * V)248 bool TypePromotionImpl::isSink(Value *V) {
249   // TODO The truncate also isn't actually necessary because we would already
250   // proved that the data value is kept within the range of the original data
251   // type. We currently remove any truncs inserted for handling zext sinks.
252 
253   // Sinks are:
254   // - points where the value in the register is being observed, such as an
255   //   icmp, switch or store.
256   // - points where value types have to match, such as calls and returns.
257   // - zext are included to ease the transformation and are generally removed
258   //   later on.
259   if (auto *Store = dyn_cast<StoreInst>(V))
260     return LessOrEqualTypeSize(Store->getValueOperand());
261   if (auto *Return = dyn_cast<ReturnInst>(V))
262     return LessOrEqualTypeSize(Return->getReturnValue());
263   if (auto *ZExt = dyn_cast<ZExtInst>(V))
264     return GreaterThanTypeSize(ZExt);
265   if (auto *Switch = dyn_cast<SwitchInst>(V))
266     return LessThanTypeSize(Switch->getCondition());
267   if (auto *ICmp = dyn_cast<ICmpInst>(V))
268     return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
269 
270   return isa<CallInst>(V);
271 }
272 
273 /// Return whether this instruction can safely wrap.
isSafeWrap(Instruction * I)274 bool TypePromotionImpl::isSafeWrap(Instruction *I) {
275   // We can support a potentially wrapping instruction (I) if:
276   // - It is only used by an unsigned icmp.
277   // - The icmp uses a constant.
278   // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
279   //   around zero to become a larger number than before.
280   // - The wrapping instruction (I) also uses a constant.
281   //
282   // We can then use the two constants to calculate whether the result would
283   // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
284   // just underflows the range, the icmp would give the same result whether the
285   // result has been truncated or not. We calculate this by:
286   // - Zero extending both constants, if needed, to RegisterBitWidth.
287   // - Take the absolute value of I's constant, adding this to the icmp const.
288   // - Check that this value is not out of range for small type. If it is, it
289   //   means that it has underflowed enough to wrap around the icmp constant.
290   //
291   // For example:
292   //
293   // %sub = sub i8 %a, 2
294   // %cmp = icmp ule i8 %sub, 254
295   //
296   // If %a = 0, %sub = -2 == FE == 254
297   // But if this is evalulated as a i32
298   // %sub = -2 == FF FF FF FE == 4294967294
299   // So the unsigned compares (i8 and i32) would not yield the same result.
300   //
301   // Another way to look at it is:
302   // %a - 2 <= 254
303   // %a + 2 <= 254 + 2
304   // %a <= 256
305   // And we can't represent 256 in the i8 format, so we don't support it.
306   //
307   // Whereas:
308   //
309   // %sub i8 %a, 1
310   // %cmp = icmp ule i8 %sub, 254
311   //
312   // If %a = 0, %sub = -1 == FF == 255
313   // As i32:
314   // %sub = -1 == FF FF FF FF == 4294967295
315   //
316   // In this case, the unsigned compare results would be the same and this
317   // would also be true for ult, uge and ugt:
318   // - (255 < 254) == (0xFFFFFFFF < 254) == false
319   // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
320   // - (255 > 254) == (0xFFFFFFFF > 254) == true
321   // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
322   //
323   // To demonstrate why we can't handle increasing values:
324   //
325   // %add = add i8 %a, 2
326   // %cmp = icmp ult i8 %add, 127
327   //
328   // If %a = 254, %add = 256 == (i8 1)
329   // As i32:
330   // %add = 256
331   //
332   // (1 < 127) != (256 < 127)
333 
334   unsigned Opc = I->getOpcode();
335   if (Opc != Instruction::Add && Opc != Instruction::Sub)
336     return false;
337 
338   if (!I->hasOneUse() || !isa<ICmpInst>(*I->user_begin()) ||
339       !isa<ConstantInt>(I->getOperand(1)))
340     return false;
341 
342   // Don't support an icmp that deals with sign bits.
343   auto *CI = cast<ICmpInst>(*I->user_begin());
344   if (CI->isSigned() || CI->isEquality())
345     return false;
346 
347   ConstantInt *ICmpConstant = nullptr;
348   if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
349     ICmpConstant = Const;
350   else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
351     ICmpConstant = Const;
352   else
353     return false;
354 
355   const APInt &ICmpConst = ICmpConstant->getValue();
356   APInt OverflowConst = cast<ConstantInt>(I->getOperand(1))->getValue();
357   if (Opc == Instruction::Sub)
358     OverflowConst = -OverflowConst;
359   if (!OverflowConst.isNonPositive())
360     return false;
361 
362   // Using C1 = OverflowConst and C2 = ICmpConst, we can either prove that:
363   //   zext(x) + sext(C1) <u zext(C2)  if C1 < 0 and C1 >s C2
364   //   zext(x) + sext(C1) <u sext(C2)  if C1 < 0 and C1 <=s C2
365   if (OverflowConst.sgt(ICmpConst)) {
366     LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
367                       << "const of " << *I << "\n");
368     SafeWrap.insert(I);
369     return true;
370   } else {
371     LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
372                       << "const of " << *I << " and " << *CI << "\n");
373     SafeWrap.insert(I);
374     SafeWrap.insert(CI);
375     return true;
376   }
377   return false;
378 }
379 
shouldPromote(Value * V)380 bool TypePromotionImpl::shouldPromote(Value *V) {
381   if (!isa<IntegerType>(V->getType()) || isSink(V))
382     return false;
383 
384   if (isSource(V))
385     return true;
386 
387   auto *I = dyn_cast<Instruction>(V);
388   if (!I)
389     return false;
390 
391   if (isa<ICmpInst>(I))
392     return false;
393 
394   return true;
395 }
396 
397 /// Return whether we can safely mutate V's type to ExtTy without having to be
398 /// concerned with zero extending or truncation.
isPromotedResultSafe(Instruction * I)399 static bool isPromotedResultSafe(Instruction *I) {
400   if (GenerateSignBits(I))
401     return false;
402 
403   if (!isa<OverflowingBinaryOperator>(I))
404     return true;
405 
406   return I->hasNoUnsignedWrap();
407 }
408 
ReplaceAllUsersOfWith(Value * From,Value * To)409 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
410   SmallVector<Instruction *, 4> Users;
411   Instruction *InstTo = dyn_cast<Instruction>(To);
412   bool ReplacedAll = true;
413 
414   LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
415                     << "\n");
416 
417   for (Use &U : From->uses()) {
418     auto *User = cast<Instruction>(U.getUser());
419     if (InstTo && User->isIdenticalTo(InstTo)) {
420       ReplacedAll = false;
421       continue;
422     }
423     Users.push_back(User);
424   }
425 
426   for (auto *U : Users)
427     U->replaceUsesOfWith(From, To);
428 
429   if (ReplacedAll)
430     if (auto *I = dyn_cast<Instruction>(From))
431       InstsToRemove.insert(I);
432 }
433 
ExtendSources()434 void IRPromoter::ExtendSources() {
435   IRBuilder<> Builder{Ctx};
436 
437   auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
438     assert(V->getType() != ExtTy && "zext already extends to i32");
439     LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
440     Builder.SetInsertPoint(InsertPt);
441     if (auto *I = dyn_cast<Instruction>(V))
442       Builder.SetCurrentDebugLocation(I->getDebugLoc());
443 
444     Value *ZExt = Builder.CreateZExt(V, ExtTy);
445     if (auto *I = dyn_cast<Instruction>(ZExt)) {
446       if (isa<Argument>(V))
447         I->moveBefore(InsertPt);
448       else
449         I->moveAfter(InsertPt);
450       NewInsts.insert(I);
451     }
452 
453     ReplaceAllUsersOfWith(V, ZExt);
454   };
455 
456   // Now, insert extending instructions between the sources and their users.
457   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
458   for (auto *V : Sources) {
459     LLVM_DEBUG(dbgs() << " - " << *V << "\n");
460     if (auto *I = dyn_cast<Instruction>(V))
461       InsertZExt(I, I);
462     else if (auto *Arg = dyn_cast<Argument>(V)) {
463       BasicBlock &BB = Arg->getParent()->front();
464       InsertZExt(Arg, &*BB.getFirstInsertionPt());
465     } else {
466       llvm_unreachable("unhandled source that needs extending");
467     }
468     Promoted.insert(V);
469   }
470 }
471 
PromoteTree()472 void IRPromoter::PromoteTree() {
473   LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
474 
475   // Mutate the types of the instructions within the tree. Here we handle
476   // constant operands.
477   for (auto *V : Visited) {
478     if (Sources.count(V))
479       continue;
480 
481     auto *I = cast<Instruction>(V);
482     if (Sinks.count(I))
483       continue;
484 
485     for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
486       Value *Op = I->getOperand(i);
487       if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
488         continue;
489 
490       if (auto *Const = dyn_cast<ConstantInt>(Op)) {
491         // For subtract, we don't need to sext the constant. We only put it in
492         // SafeWrap because SafeWrap.size() is used elsewhere.
493         // For cmp, we need to sign extend a constant appearing in either
494         // operand. For add, we should only sign extend the RHS.
495         Constant *NewConst =
496             ConstantInt::get(Const->getContext(),
497                              (SafeWrap.contains(I) &&
498                               (I->getOpcode() == Instruction::ICmp || i == 1) &&
499                               I->getOpcode() != Instruction::Sub)
500                                  ? Const->getValue().sext(PromotedWidth)
501                                  : Const->getValue().zext(PromotedWidth));
502         I->setOperand(i, NewConst);
503       } else if (isa<UndefValue>(Op))
504         I->setOperand(i, ConstantInt::get(ExtTy, 0));
505     }
506 
507     // Mutate the result type, unless this is an icmp or switch.
508     if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) {
509       I->mutateType(ExtTy);
510       Promoted.insert(I);
511     }
512   }
513 }
514 
TruncateSinks()515 void IRPromoter::TruncateSinks() {
516   LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
517 
518   IRBuilder<> Builder{Ctx};
519 
520   auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction * {
521     if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
522       return nullptr;
523 
524     if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
525       return nullptr;
526 
527     LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
528                       << *V << "\n");
529     Builder.SetInsertPoint(cast<Instruction>(V));
530     auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
531     if (Trunc)
532       NewInsts.insert(Trunc);
533     return Trunc;
534   };
535 
536   // Fix up any stores or returns that use the results of the promoted
537   // chain.
538   for (auto *I : Sinks) {
539     LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
540 
541     // Handle calls separately as we need to iterate over arg operands.
542     if (auto *Call = dyn_cast<CallInst>(I)) {
543       for (unsigned i = 0; i < Call->arg_size(); ++i) {
544         Value *Arg = Call->getArgOperand(i);
545         Type *Ty = TruncTysMap[Call][i];
546         if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
547           Trunc->moveBefore(Call);
548           Call->setArgOperand(i, Trunc);
549         }
550       }
551       continue;
552     }
553 
554     // Special case switches because we need to truncate the condition.
555     if (auto *Switch = dyn_cast<SwitchInst>(I)) {
556       Type *Ty = TruncTysMap[Switch][0];
557       if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
558         Trunc->moveBefore(Switch);
559         Switch->setCondition(Trunc);
560       }
561       continue;
562     }
563 
564     // Don't insert a trunc for a zext which can still legally promote.
565     // Nor insert a trunc when the input value to that trunc has the same width
566     // as the zext we are inserting it for.  When this happens the input operand
567     // for the zext will be promoted to the same width as the zext's return type
568     // rendering that zext unnecessary.  This zext gets removed before the end
569     // of the pass.
570     if (auto ZExt = dyn_cast<ZExtInst>(I))
571       if (ZExt->getType()->getScalarSizeInBits() >= PromotedWidth)
572         continue;
573 
574     // Now handle the others.
575     for (unsigned i = 0; i < I->getNumOperands(); ++i) {
576       Type *Ty = TruncTysMap[I][i];
577       if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
578         Trunc->moveBefore(I);
579         I->setOperand(i, Trunc);
580       }
581     }
582   }
583 }
584 
Cleanup()585 void IRPromoter::Cleanup() {
586   LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
587   // Some zexts will now have become redundant, along with their trunc
588   // operands, so remove them.
589   for (auto *V : Visited) {
590     if (!isa<ZExtInst>(V))
591       continue;
592 
593     auto ZExt = cast<ZExtInst>(V);
594     if (ZExt->getDestTy() != ExtTy)
595       continue;
596 
597     Value *Src = ZExt->getOperand(0);
598     if (ZExt->getSrcTy() == ZExt->getDestTy()) {
599       LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
600                         << "\n");
601       ReplaceAllUsersOfWith(ZExt, Src);
602       continue;
603     }
604 
605     // We've inserted a trunc for a zext sink, but we already know that the
606     // input is in range, negating the need for the trunc.
607     if (NewInsts.count(Src) && isa<TruncInst>(Src)) {
608       auto *Trunc = cast<TruncInst>(Src);
609       assert(Trunc->getOperand(0)->getType() == ExtTy &&
610              "expected inserted trunc to be operating on i32");
611       ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
612     }
613   }
614 
615   for (auto *I : InstsToRemove) {
616     LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
617     I->dropAllReferences();
618   }
619 }
620 
ConvertTruncs()621 void IRPromoter::ConvertTruncs() {
622   LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
623   IRBuilder<> Builder{Ctx};
624 
625   for (auto *V : Visited) {
626     if (!isa<TruncInst>(V) || Sources.count(V))
627       continue;
628 
629     auto *Trunc = cast<TruncInst>(V);
630     Builder.SetInsertPoint(Trunc);
631     IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
632     IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
633 
634     unsigned NumBits = DestTy->getScalarSizeInBits();
635     ConstantInt *Mask =
636         ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
637     Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
638     if (SrcTy != ExtTy)
639       Masked = Builder.CreateTrunc(Masked, ExtTy);
640 
641     if (auto *I = dyn_cast<Instruction>(Masked))
642       NewInsts.insert(I);
643 
644     ReplaceAllUsersOfWith(Trunc, Masked);
645   }
646 }
647 
Mutate()648 void IRPromoter::Mutate() {
649   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains to "
650                     << PromotedWidth << "-bits\n");
651 
652   // Cache original types of the values that will likely need truncating
653   for (auto *I : Sinks) {
654     if (auto *Call = dyn_cast<CallInst>(I)) {
655       for (Value *Arg : Call->args())
656         TruncTysMap[Call].push_back(Arg->getType());
657     } else if (auto *Switch = dyn_cast<SwitchInst>(I))
658       TruncTysMap[I].push_back(Switch->getCondition()->getType());
659     else {
660       for (unsigned i = 0; i < I->getNumOperands(); ++i)
661         TruncTysMap[I].push_back(I->getOperand(i)->getType());
662     }
663   }
664   for (auto *V : Visited) {
665     if (!isa<TruncInst>(V) || Sources.count(V))
666       continue;
667     auto *Trunc = cast<TruncInst>(V);
668     TruncTysMap[Trunc].push_back(Trunc->getDestTy());
669   }
670 
671   // Insert zext instructions between sources and their users.
672   ExtendSources();
673 
674   // Promote visited instructions, mutating their types in place.
675   PromoteTree();
676 
677   // Convert any truncs, that aren't sources, into AND masks.
678   ConvertTruncs();
679 
680   // Insert trunc instructions for use by calls, stores etc...
681   TruncateSinks();
682 
683   // Finally, remove unecessary zexts and truncs, delete old instructions and
684   // clear the data structures.
685   Cleanup();
686 
687   LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
688 }
689 
690 /// We disallow booleans to make life easier when dealing with icmps but allow
691 /// any other integer that fits in a scalar register. Void types are accepted
692 /// so we can handle switches.
isSupportedType(Value * V)693 bool TypePromotionImpl::isSupportedType(Value *V) {
694   Type *Ty = V->getType();
695 
696   // Allow voids and pointers, these won't be promoted.
697   if (Ty->isVoidTy() || Ty->isPointerTy())
698     return true;
699 
700   if (!isa<IntegerType>(Ty) || cast<IntegerType>(Ty)->getBitWidth() == 1 ||
701       cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
702     return false;
703 
704   return LessOrEqualTypeSize(V);
705 }
706 
707 /// We accept most instructions, as well as Arguments and ConstantInsts. We
708 /// Disallow casts other than zext and truncs and only allow calls if their
709 /// return value is zeroext. We don't allow opcodes that can introduce sign
710 /// bits.
isSupportedValue(Value * V)711 bool TypePromotionImpl::isSupportedValue(Value *V) {
712   if (auto *I = dyn_cast<Instruction>(V)) {
713     switch (I->getOpcode()) {
714     default:
715       return isa<BinaryOperator>(I) && isSupportedType(I) &&
716              !GenerateSignBits(I);
717     case Instruction::GetElementPtr:
718     case Instruction::Store:
719     case Instruction::Br:
720     case Instruction::Switch:
721       return true;
722     case Instruction::PHI:
723     case Instruction::Select:
724     case Instruction::Ret:
725     case Instruction::Load:
726     case Instruction::Trunc:
727       return isSupportedType(I);
728     case Instruction::BitCast:
729       return I->getOperand(0)->getType() == I->getType();
730     case Instruction::ZExt:
731       return isSupportedType(I->getOperand(0));
732     case Instruction::ICmp:
733       // Now that we allow small types than TypeSize, only allow icmp of
734       // TypeSize because they will require a trunc to be legalised.
735       // TODO: Allow icmp of smaller types, and calculate at the end
736       // whether the transform would be beneficial.
737       if (isa<PointerType>(I->getOperand(0)->getType()))
738         return true;
739       return EqualTypeSize(I->getOperand(0));
740     case Instruction::Call: {
741       // Special cases for calls as we need to check for zeroext
742       // TODO We should accept calls even if they don't have zeroext, as they
743       // can still be sinks.
744       auto *Call = cast<CallInst>(I);
745       return isSupportedType(Call) &&
746              Call->hasRetAttr(Attribute::AttrKind::ZExt);
747     }
748     }
749   } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
750     return isSupportedType(V);
751   } else if (isa<Argument>(V))
752     return isSupportedType(V);
753 
754   return isa<BasicBlock>(V);
755 }
756 
757 /// Check that the type of V would be promoted and that the original type is
758 /// smaller than the targeted promoted type. Check that we're not trying to
759 /// promote something larger than our base 'TypeSize' type.
isLegalToPromote(Value * V)760 bool TypePromotionImpl::isLegalToPromote(Value *V) {
761   auto *I = dyn_cast<Instruction>(V);
762   if (!I)
763     return true;
764 
765   if (SafeToPromote.count(I))
766     return true;
767 
768   if (isPromotedResultSafe(I) || isSafeWrap(I)) {
769     SafeToPromote.insert(I);
770     return true;
771   }
772   return false;
773 }
774 
TryToPromote(Value * V,unsigned PromotedWidth,const LoopInfo & LI)775 bool TypePromotionImpl::TryToPromote(Value *V, unsigned PromotedWidth,
776                                  const LoopInfo &LI) {
777   Type *OrigTy = V->getType();
778   TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedValue();
779   SafeToPromote.clear();
780   SafeWrap.clear();
781 
782   if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
783     return false;
784 
785   LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
786                     << TypeSize << " bits to " << PromotedWidth << "\n");
787 
788   SetVector<Value *> WorkList;
789   SetVector<Value *> Sources;
790   SetVector<Instruction *> Sinks;
791   SetVector<Value *> CurrentVisited;
792   WorkList.insert(V);
793 
794   // Return true if V was added to the worklist as a supported instruction,
795   // if it was already visited, or if we don't need to explore it (e.g.
796   // pointer values and GEPs), and false otherwise.
797   auto AddLegalInst = [&](Value *V) {
798     if (CurrentVisited.count(V))
799       return true;
800 
801     // Ignore GEPs because they don't need promoting and the constant indices
802     // will prevent the transformation.
803     if (isa<GetElementPtrInst>(V))
804       return true;
805 
806     if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
807       LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
808       return false;
809     }
810 
811     WorkList.insert(V);
812     return true;
813   };
814 
815   // Iterate through, and add to, a tree of operands and users in the use-def.
816   while (!WorkList.empty()) {
817     Value *V = WorkList.pop_back_val();
818     if (CurrentVisited.count(V))
819       continue;
820 
821     // Ignore non-instructions, other than arguments.
822     if (!isa<Instruction>(V) && !isSource(V))
823       continue;
824 
825     // If we've already visited this value from somewhere, bail now because
826     // the tree has already been explored.
827     // TODO: This could limit the transform, ie if we try to promote something
828     // from an i8 and fail first, before trying an i16.
829     if (AllVisited.count(V))
830       return false;
831 
832     CurrentVisited.insert(V);
833     AllVisited.insert(V);
834 
835     // Calls can be both sources and sinks.
836     if (isSink(V))
837       Sinks.insert(cast<Instruction>(V));
838 
839     if (isSource(V))
840       Sources.insert(V);
841 
842     if (!isSink(V) && !isSource(V)) {
843       if (auto *I = dyn_cast<Instruction>(V)) {
844         // Visit operands of any instruction visited.
845         for (auto &U : I->operands()) {
846           if (!AddLegalInst(U))
847             return false;
848         }
849       }
850     }
851 
852     // Don't visit users of a node which isn't going to be mutated unless its a
853     // source.
854     if (isSource(V) || shouldPromote(V)) {
855       for (Use &U : V->uses()) {
856         if (!AddLegalInst(U.getUser()))
857           return false;
858       }
859     }
860   }
861 
862   LLVM_DEBUG({
863     dbgs() << "IR Promotion: Visited nodes:\n";
864     for (auto *I : CurrentVisited)
865       I->dump();
866   });
867 
868   unsigned ToPromote = 0;
869   unsigned NonFreeArgs = 0;
870   unsigned NonLoopSources = 0, LoopSinks = 0;
871   SmallPtrSet<BasicBlock *, 4> Blocks;
872   for (auto *CV : CurrentVisited) {
873     if (auto *I = dyn_cast<Instruction>(CV))
874       Blocks.insert(I->getParent());
875 
876     if (Sources.count(CV)) {
877       if (auto *Arg = dyn_cast<Argument>(CV))
878         if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
879           ++NonFreeArgs;
880       if (!isa<Instruction>(CV) ||
881           !LI.getLoopFor(cast<Instruction>(CV)->getParent()))
882         ++NonLoopSources;
883       continue;
884     }
885 
886     if (isa<PHINode>(CV))
887       continue;
888     if (LI.getLoopFor(cast<Instruction>(CV)->getParent()))
889       ++LoopSinks;
890     if (Sinks.count(cast<Instruction>(CV)))
891       continue;
892     ++ToPromote;
893   }
894 
895   // DAG optimizations should be able to handle these cases better, especially
896   // for function arguments.
897   if (!isa<PHINode>(V) && !(LoopSinks && NonLoopSources) &&
898       (ToPromote < 2 || (Blocks.size() == 1 && NonFreeArgs > SafeWrap.size())))
899     return false;
900 
901   IRPromoter Promoter(*Ctx, PromotedWidth, CurrentVisited, Sources, Sinks,
902                       SafeWrap, InstsToRemove);
903   Promoter.Mutate();
904   return true;
905 }
906 
run(Function & F,const TargetMachine * TM,const TargetTransformInfo & TTI,const LoopInfo & LI)907 bool TypePromotionImpl::run(Function &F, const TargetMachine *TM,
908                             const TargetTransformInfo &TTI,
909                             const LoopInfo &LI) {
910   if (DisablePromotion)
911     return false;
912 
913   LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
914 
915   AllVisited.clear();
916   SafeToPromote.clear();
917   SafeWrap.clear();
918   bool MadeChange = false;
919   const DataLayout &DL = F.getParent()->getDataLayout();
920   const TargetSubtargetInfo *SubtargetInfo = TM->getSubtargetImpl(F);
921   const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
922   RegisterBitWidth =
923       TTI.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedValue();
924   Ctx = &F.getParent()->getContext();
925 
926   // Return the preferred integer width of the instruction, or zero if we
927   // shouldn't try.
928   auto GetPromoteWidth = [&](Instruction *I) -> uint32_t {
929     if (!isa<IntegerType>(I->getType()))
930       return 0;
931 
932     EVT SrcVT = TLI->getValueType(DL, I->getType());
933     if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
934       return 0;
935 
936     if (TLI->getTypeAction(*Ctx, SrcVT) != TargetLowering::TypePromoteInteger)
937       return 0;
938 
939     EVT PromotedVT = TLI->getTypeToTransformTo(*Ctx, SrcVT);
940     if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
941       LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
942                         << "for promoted type\n");
943       return 0;
944     }
945 
946     // TODO: Should we prefer to use RegisterBitWidth instead?
947     return PromotedVT.getFixedSizeInBits();
948   };
949 
950   auto BBIsInLoop = [&](BasicBlock *BB) -> bool {
951     for (auto *L : LI)
952       if (L->contains(BB))
953         return true;
954     return false;
955   };
956 
957   for (BasicBlock &BB : F) {
958     for (Instruction &I : BB) {
959       if (AllVisited.count(&I))
960         continue;
961 
962       if (isa<ZExtInst>(&I) && isa<PHINode>(I.getOperand(0)) &&
963           isa<IntegerType>(I.getType()) && BBIsInLoop(&BB)) {
964         LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: "
965                           << *I.getOperand(0) << "\n");
966         EVT ZExtVT = TLI->getValueType(DL, I.getType());
967         Instruction *Phi = static_cast<Instruction *>(I.getOperand(0));
968         auto PromoteWidth = ZExtVT.getFixedSizeInBits();
969         if (RegisterBitWidth < PromoteWidth) {
970           LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target "
971                             << "register for ZExt type\n");
972           continue;
973         }
974         MadeChange |= TryToPromote(Phi, PromoteWidth, LI);
975       } else if (auto *ICmp = dyn_cast<ICmpInst>(&I)) {
976         // Search up from icmps to try to promote their operands.
977         // Skip signed or pointer compares
978         if (ICmp->isSigned())
979           continue;
980 
981         LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
982 
983         for (auto &Op : ICmp->operands()) {
984           if (auto *OpI = dyn_cast<Instruction>(Op)) {
985             if (auto PromotedWidth = GetPromoteWidth(OpI)) {
986               MadeChange |= TryToPromote(OpI, PromotedWidth, LI);
987               break;
988             }
989           }
990         }
991       }
992     }
993     if (!InstsToRemove.empty()) {
994       for (auto *I : InstsToRemove)
995         I->eraseFromParent();
996       InstsToRemove.clear();
997     }
998   }
999 
1000   AllVisited.clear();
1001   SafeToPromote.clear();
1002   SafeWrap.clear();
1003 
1004   return MadeChange;
1005 }
1006 
1007 INITIALIZE_PASS_BEGIN(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false)
1008 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1009 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1010 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1011 INITIALIZE_PASS_END(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false)
1012 
1013 char TypePromotionLegacy::ID = 0;
1014 
runOnFunction(Function & F)1015 bool TypePromotionLegacy::runOnFunction(Function &F) {
1016   if (skipFunction(F))
1017     return false;
1018 
1019   auto &TPC = getAnalysis<TargetPassConfig>();
1020   auto *TM = &TPC.getTM<TargetMachine>();
1021   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1022   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1023 
1024   TypePromotionImpl TP;
1025   return TP.run(F, TM, TTI, LI);
1026 }
1027 
createTypePromotionLegacyPass()1028 FunctionPass *llvm::createTypePromotionLegacyPass() {
1029   return new TypePromotionLegacy();
1030 }
1031 
run(Function & F,FunctionAnalysisManager & AM)1032 PreservedAnalyses TypePromotionPass::run(Function &F,
1033                                          FunctionAnalysisManager &AM) {
1034   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1035   auto &LI = AM.getResult<LoopAnalysis>(F);
1036   TypePromotionImpl TP;
1037 
1038   bool Changed = TP.run(F, TM, TTI, LI);
1039   if (!Changed)
1040     return PreservedAnalyses::all();
1041 
1042   PreservedAnalyses PA;
1043   PA.preserveSet<CFGAnalyses>();
1044   PA.preserve<LoopAnalysis>();
1045   return PA;
1046 }
1047