1 // Copyright (c) 2006-2012 The Chromium Authors. All rights reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions
5 // are met:
6 //  * Redistributions of source code must retain the above copyright
7 //    notice, this list of conditions and the following disclaimer.
8 //  * Redistributions in binary form must reproduce the above copyright
9 //    notice, this list of conditions and the following disclaimer in
10 //    the documentation and/or other materials provided with the
11 //    distribution.
12 //  * Neither the name of Google, Inc. nor the names of its contributors
13 //    may be used to endorse or promote products derived from this
14 //    software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
19 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
20 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
21 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
22 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
23 // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
24 // AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 // OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 // SUCH DAMAGE.
28 
29 #include "base/basictypes.h"
30 
31 #include <algorithm>
32 #include <cmath>
33 #include <limits>
34 
35 #include "image_operations.h"
36 
37 #include "base/stack_container.h"
38 #include "convolver.h"
39 #include "skia/include/core/SkColorPriv.h"
40 #include "skia/include/core/SkBitmap.h"
41 #include "skia/include/core/SkRect.h"
42 #include "skia/include/core/SkFontLCDConfig.h"
43 
44 namespace skia {
45 
46 namespace resize {
47 
48 // TODO(egouriou): Take advantage of periods in the convolution.
49 // Practical resizing filters are periodic outside of the border area.
50 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
51 // source become p pixels in the destination) will have a period of p.
52 // A nice consequence is a period of 1 when downscaling by an integral
53 // factor. Downscaling from typical display resolutions is also bound
54 // to produce interesting periods as those are chosen to have multiple
55 // small factors.
56 // Small periods reduce computational load and improve cache usage if
57 // the coefficients can be shared. For periods of 1 we can consider
58 // loading the factors only once outside the borders.
ComputeFilters(ImageOperations::ResizeMethod method,int src_size,int dst_size,int dest_subset_lo,int dest_subset_size,ConvolutionFilter1D * output)59 void ComputeFilters(ImageOperations::ResizeMethod method,
60                     int src_size, int dst_size,
61                     int dest_subset_lo, int dest_subset_size,
62                     ConvolutionFilter1D* output) {
63   // method_ will only ever refer to an "algorithm method".
64   SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
65            (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
66 
67   float scale = static_cast<float>(dst_size) / static_cast<float>(src_size);
68 
69   int dest_subset_hi = dest_subset_lo + dest_subset_size;  // [lo, hi)
70 
71   // When we're doing a magnification, the scale will be larger than one. This
72   // means the destination pixels are much smaller than the source pixels, and
73   // that the range covered by the filter won't necessarily cover any source
74   // pixel boundaries. Therefore, we use these clamped values (max of 1) for
75   // some computations.
76   float clamped_scale = std::min(1.0f, scale);
77 
78   float src_support = GetFilterSupport(method, clamped_scale) / clamped_scale;
79 
80   // Speed up the divisions below by turning them into multiplies.
81   float inv_scale = 1.0f / scale;
82 
83   StackVector<float, 64> filter_values;
84   StackVector<int16_t, 64> fixed_filter_values;
85 
86   // Loop over all pixels in the output range. We will generate one set of
87   // filter values for each one. Those values will tell us how to blend the
88   // source pixels to compute the destination pixel.
89   for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi;
90        dest_subset_i++) {
91     // Reset the arrays. We don't declare them inside so they can re-use the
92     // same malloc-ed buffer.
93     filter_values->clear();
94     fixed_filter_values->clear();
95 
96     // This is the pixel in the source directly under the pixel in the dest.
97     // Note that we base computations on the "center" of the pixels. To see
98     // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
99     // downscale should "cover" the pixels around the pixel with *its center*
100     // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
101     // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
102     float src_pixel = (static_cast<float>(dest_subset_i) + 0.5f) * inv_scale;
103 
104     // Compute the (inclusive) range of source pixels the filter covers.
105     int src_begin = std::max(0, FloorInt(src_pixel - src_support));
106     int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support));
107 
108     // Compute the unnormalized filter value at each location of the source
109     // it covers.
110     float filter_sum = 0.0f;  // Sub of the filter values for normalizing.
111     for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end;
112          cur_filter_pixel++) {
113       // Distance from the center of the filter, this is the filter coordinate
114       // in source space. We also need to consider the center of the pixel
115       // when comparing distance against 'src_pixel'. In the 5x downscale
116       // example used above the distance from the center of the filter to
117       // the pixel with coordinates (2, 2) should be 0, because its center
118       // is at (2.5, 2.5).
119       float src_filter_dist =
120            ((static_cast<float>(cur_filter_pixel) + 0.5f) - src_pixel);
121 
122       // Since the filter really exists in dest space, map it there.
123       float dest_filter_dist = src_filter_dist * clamped_scale;
124 
125       // Compute the filter value at that location.
126       float filter_value = ComputeFilter(method, dest_filter_dist);
127       filter_values->push_back(filter_value);
128 
129       filter_sum += filter_value;
130     }
131 
132     // The filter must be normalized so that we don't affect the brightness of
133     // the image. Convert to normalized fixed point.
134     int16_t fixed_sum = 0;
135     for (size_t i = 0; i < filter_values->size(); i++) {
136       int16_t cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum);
137       fixed_sum += cur_fixed;
138       fixed_filter_values->push_back(cur_fixed);
139     }
140 
141     // The conversion to fixed point will leave some rounding errors, which
142     // we add back in to avoid affecting the brightness of the image. We
143     // arbitrarily add this to the center of the filter array (this won't always
144     // be the center of the filter function since it could get clipped on the
145     // edges, but it doesn't matter enough to worry about that case).
146     int16_t leftovers = output->FloatToFixed(1.0f) - fixed_sum;
147     fixed_filter_values[fixed_filter_values->size() / 2] += leftovers;
148 
149     // Now it's ready to go.
150     output->AddFilter(src_begin, &fixed_filter_values[0],
151                       static_cast<int>(fixed_filter_values->size()));
152   }
153 
154   output->PaddingForSIMD(8);
155 }
156 
157 } // namespace resize
158 
ResizeMethodToAlgorithmMethod(ImageOperations::ResizeMethod method)159 ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod(
160     ImageOperations::ResizeMethod method) {
161   // Convert any "Quality Method" into an "Algorithm Method"
162   if (method >= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD &&
163       method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD) {
164     return method;
165   }
166   // The call to ImageOperationsGtv::Resize() above took care of
167   // GPU-acceleration in the cases where it is possible. So now we just
168   // pick the appropriate software method for each resize quality.
169   switch (method) {
170     // Users of RESIZE_GOOD are willing to trade a lot of quality to
171     // get speed, allowing the use of linear resampling to get hardware
172     // acceleration (SRB). Hence any of our "good" software filters
173     // will be acceptable, and we use the fastest one, Hamming-1.
174     case ImageOperations::RESIZE_GOOD:
175       // Users of RESIZE_BETTER are willing to trade some quality in order
176       // to improve performance, but are guaranteed not to devolve to a linear
177       // resampling. In visual tests we see that Hamming-1 is not as good as
178       // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
179       // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
180       // an acceptable trade-off between quality and speed.
181     case ImageOperations::RESIZE_BETTER:
182       return ImageOperations::RESIZE_HAMMING1;
183     default:
184       return ImageOperations::RESIZE_LANCZOS3;
185   }
186 }
187 
188 // Resize ----------------------------------------------------------------------
189 
190 // static
Resize(const SkBitmap & source,ResizeMethod method,int dest_width,int dest_height,const SkIRect & dest_subset,void * dest_pixels)191 SkBitmap ImageOperations::Resize(const SkBitmap& source,
192                                  ResizeMethod method,
193                                  int dest_width, int dest_height,
194                                  const SkIRect& dest_subset,
195                                  void* dest_pixels /* = nullptr */) {
196   if (method == ImageOperations::RESIZE_SUBPIXEL)
197     return ResizeSubpixel(source, dest_width, dest_height, dest_subset);
198   else
199     return ResizeBasic(source, method, dest_width, dest_height, dest_subset,
200                        dest_pixels);
201 }
202 
203 // static
ResizeSubpixel(const SkBitmap & source,int dest_width,int dest_height,const SkIRect & dest_subset)204 SkBitmap ImageOperations::ResizeSubpixel(const SkBitmap& source,
205                                          int dest_width, int dest_height,
206                                          const SkIRect& dest_subset) {
207   // Currently only works on Linux/BSD because these are the only platforms
208   // where SkFontLCDConfig::GetSubpixelOrder is defined.
209 #if defined(XP_UNIX)
210   // Understand the display.
211   const SkFontLCDConfig::LCDOrder order = SkFontLCDConfig::GetSubpixelOrder();
212   const SkFontLCDConfig::LCDOrientation orientation =
213       SkFontLCDConfig::GetSubpixelOrientation();
214 
215   // Decide on which dimension, if any, to deploy subpixel rendering.
216   int w = 1;
217   int h = 1;
218   switch (orientation) {
219     case SkFontLCDConfig::kHorizontal_LCDOrientation:
220       w = dest_width < source.width() ? 3 : 1;
221       break;
222     case SkFontLCDConfig::kVertical_LCDOrientation:
223       h = dest_height < source.height() ? 3 : 1;
224       break;
225   }
226 
227   // Resize the image.
228   const int width = dest_width * w;
229   const int height = dest_height * h;
230   SkIRect subset = { dest_subset.fLeft, dest_subset.fTop,
231                      dest_subset.fLeft + dest_subset.width() * w,
232                      dest_subset.fTop + dest_subset.height() * h };
233   SkBitmap img = ResizeBasic(source, ImageOperations::RESIZE_LANCZOS3, width,
234                              height, subset);
235   const int row_words = img.rowBytes() / 4;
236   if (w == 1 && h == 1)
237     return img;
238 
239   // Render into subpixels.
240   SkBitmap result;
241   SkImageInfo info = SkImageInfo::Make(dest_subset.width(),
242                                        dest_subset.height(),
243                                        kBGRA_8888_SkColorType,
244                                        kPremul_SkAlphaType);
245 
246 
247   result.allocPixels(info);
248   if (!result.readyToDraw())
249     return img;
250 
251   SkAutoLockPixels locker(img);
252   if (!img.readyToDraw())
253     return img;
254 
255   uint32_t* src_row = img.getAddr32(0, 0);
256   uint32_t* dst_row = result.getAddr32(0, 0);
257   for (int y = 0; y < dest_subset.height(); y++) {
258     uint32_t* src = src_row;
259     uint32_t* dst = dst_row;
260     for (int x = 0; x < dest_subset.width(); x++, src += w, dst++) {
261       uint8_t r = 0, g = 0, b = 0, a = 0;
262       switch (order) {
263         case SkFontLCDConfig::kRGB_LCDOrder:
264           switch (orientation) {
265             case SkFontLCDConfig::kHorizontal_LCDOrientation:
266               r = SkGetPackedR32(src[0]);
267               g = SkGetPackedG32(src[1]);
268               b = SkGetPackedB32(src[2]);
269               a = SkGetPackedA32(src[1]);
270               break;
271             case SkFontLCDConfig::kVertical_LCDOrientation:
272               r = SkGetPackedR32(src[0 * row_words]);
273               g = SkGetPackedG32(src[1 * row_words]);
274               b = SkGetPackedB32(src[2 * row_words]);
275               a = SkGetPackedA32(src[1 * row_words]);
276               break;
277           }
278           break;
279         case SkFontLCDConfig::kBGR_LCDOrder:
280           switch (orientation) {
281             case SkFontLCDConfig::kHorizontal_LCDOrientation:
282               b = SkGetPackedB32(src[0]);
283               g = SkGetPackedG32(src[1]);
284               r = SkGetPackedR32(src[2]);
285               a = SkGetPackedA32(src[1]);
286               break;
287             case SkFontLCDConfig::kVertical_LCDOrientation:
288               b = SkGetPackedB32(src[0 * row_words]);
289               g = SkGetPackedG32(src[1 * row_words]);
290               r = SkGetPackedR32(src[2 * row_words]);
291               a = SkGetPackedA32(src[1 * row_words]);
292               break;
293           }
294           break;
295         case SkFontLCDConfig::kNONE_LCDOrder:
296           break;
297       }
298       // Premultiplied alpha is very fragile.
299       a = a > r ? a : r;
300       a = a > g ? a : g;
301       a = a > b ? a : b;
302       *dst = SkPackARGB32(a, r, g, b);
303     }
304     src_row += h * row_words;
305     dst_row += result.rowBytes() / 4;
306   }
307   result.setAlphaType(img.alphaType());
308   return result;
309 #else
310   return SkBitmap();
311 #endif  // OS_POSIX && !OS_MACOSX && !defined(OS_ANDROID)
312 }
313 
314 // static
ResizeBasic(const SkBitmap & source,ResizeMethod method,int dest_width,int dest_height,const SkIRect & dest_subset,void * dest_pixels)315 SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source,
316                                       ResizeMethod method,
317                                       int dest_width, int dest_height,
318                                       const SkIRect& dest_subset,
319                                       void* dest_pixels /* = nullptr */) {
320   // Ensure that the ResizeMethod enumeration is sound.
321   SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
322             (method <= RESIZE_LAST_QUALITY_METHOD)) ||
323            ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
324             (method <= RESIZE_LAST_ALGORITHM_METHOD)));
325 
326   // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
327   // return empty.
328   if (source.width() < 1 || source.height() < 1 ||
329       dest_width < 1 || dest_height < 1)
330     return SkBitmap();
331 
332   method = ResizeMethodToAlgorithmMethod(method);
333   // Check that we deal with an "algorithm methods" from this point onward.
334   SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
335            (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
336 
337   SkAutoLockPixels locker(source);
338   if (!source.readyToDraw())
339       return SkBitmap();
340 
341   ConvolutionFilter1D x_filter;
342   ConvolutionFilter1D y_filter;
343 
344   resize::ComputeFilters(method, source.width(), dest_width, dest_subset.fLeft, dest_subset.width(), &x_filter);
345   resize::ComputeFilters(method, source.height(), dest_height, dest_subset.fTop, dest_subset.height(), &y_filter);
346 
347   // Get a source bitmap encompassing this touched area. We construct the
348   // offsets and row strides such that it looks like a new bitmap, while
349   // referring to the old data.
350   const uint8_t* source_subset =
351       reinterpret_cast<const uint8_t*>(source.getPixels());
352 
353   // Convolve into the result.
354   SkBitmap result;
355   SkImageInfo info = SkImageInfo::Make(dest_subset.width(),
356                                        dest_subset.height(),
357                                        kBGRA_8888_SkColorType,
358                                        kPremul_SkAlphaType);
359 
360   if (dest_pixels) {
361     result.installPixels(info, dest_pixels, info.minRowBytes());
362   } else {
363     result.allocPixels(info);
364   }
365 
366   if (!result.readyToDraw())
367     return SkBitmap();
368 
369   BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()),
370                  !source.isOpaque(), x_filter, y_filter,
371                  static_cast<int>(result.rowBytes()),
372                  static_cast<unsigned char*>(result.getPixels()));
373 
374   // Preserve the "opaque" flag for use as an optimization later.
375   result.setAlphaType(source.alphaType());
376 
377   return result;
378 }
379 
380 // static
Resize(const SkBitmap & source,ResizeMethod method,int dest_width,int dest_height,void * dest_pixels)381 SkBitmap ImageOperations::Resize(const SkBitmap& source,
382                                  ResizeMethod method,
383                                  int dest_width, int dest_height,
384                                  void* dest_pixels /* = nullptr */) {
385   SkIRect dest_subset = { 0, 0, dest_width, dest_height };
386   return Resize(source, method, dest_width, dest_height, dest_subset,
387                 dest_pixels);
388 }
389 
390 } // namespace skia
391