1 //===-- ClangExpressionParser.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/Builtins.h"
14 #include "clang/Basic/DiagnosticIDs.h"
15 #include "clang/Basic/SourceLocation.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Basic/Version.h"
18 #include "clang/CodeGen/CodeGenAction.h"
19 #include "clang/CodeGen/ModuleBuilder.h"
20 #include "clang/Edit/Commit.h"
21 #include "clang/Edit/EditedSource.h"
22 #include "clang/Edit/EditsReceiver.h"
23 #include "clang/Frontend/CompilerInstance.h"
24 #include "clang/Frontend/CompilerInvocation.h"
25 #include "clang/Frontend/FrontendActions.h"
26 #include "clang/Frontend/FrontendDiagnostic.h"
27 #include "clang/Frontend/FrontendPluginRegistry.h"
28 #include "clang/Frontend/TextDiagnosticBuffer.h"
29 #include "clang/Frontend/TextDiagnosticPrinter.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Parse/ParseAST.h"
32 #include "clang/Rewrite/Core/Rewriter.h"
33 #include "clang/Rewrite/Frontend/FrontendActions.h"
34 #include "clang/Sema/CodeCompleteConsumer.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaConsumer.h"
37
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ExecutionEngine/ExecutionEngine.h"
40 #include "llvm/Support/CrashRecoveryContext.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/TargetSelect.h"
44
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/DynamicLibrary.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Host.h"
50 #include "llvm/Support/MemoryBuffer.h"
51 #include "llvm/Support/Signals.h"
52
53 #include "ClangDiagnostic.h"
54 #include "ClangExpressionParser.h"
55 #include "ClangUserExpression.h"
56
57 #include "ASTUtils.h"
58 #include "ClangASTSource.h"
59 #include "ClangDiagnostic.h"
60 #include "ClangExpressionDeclMap.h"
61 #include "ClangExpressionHelper.h"
62 #include "ClangExpressionParser.h"
63 #include "ClangHost.h"
64 #include "ClangModulesDeclVendor.h"
65 #include "ClangPersistentVariables.h"
66 #include "IRDynamicChecks.h"
67 #include "IRForTarget.h"
68 #include "ModuleDependencyCollector.h"
69
70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
71 #include "lldb/Core/Debugger.h"
72 #include "lldb/Core/Disassembler.h"
73 #include "lldb/Core/Module.h"
74 #include "lldb/Core/StreamFile.h"
75 #include "lldb/Expression/IRExecutionUnit.h"
76 #include "lldb/Expression/IRInterpreter.h"
77 #include "lldb/Host/File.h"
78 #include "lldb/Host/HostInfo.h"
79 #include "lldb/Symbol/SymbolVendor.h"
80 #include "lldb/Target/ExecutionContext.h"
81 #include "lldb/Target/Language.h"
82 #include "lldb/Target/Process.h"
83 #include "lldb/Target/Target.h"
84 #include "lldb/Target/ThreadPlanCallFunction.h"
85 #include "lldb/Utility/DataBufferHeap.h"
86 #include "lldb/Utility/LLDBAssert.h"
87 #include "lldb/Utility/LLDBLog.h"
88 #include "lldb/Utility/Log.h"
89 #include "lldb/Utility/Stream.h"
90 #include "lldb/Utility/StreamString.h"
91 #include "lldb/Utility/StringList.h"
92
93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h"
95
96 #include <cctype>
97 #include <memory>
98 #include <optional>
99
100 using namespace clang;
101 using namespace llvm;
102 using namespace lldb_private;
103
104 //===----------------------------------------------------------------------===//
105 // Utility Methods for Clang
106 //===----------------------------------------------------------------------===//
107
108 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
109 ClangModulesDeclVendor &m_decl_vendor;
110 ClangPersistentVariables &m_persistent_vars;
111 clang::SourceManager &m_source_mgr;
112 StreamString m_error_stream;
113 bool m_has_errors = false;
114
115 public:
LLDBPreprocessorCallbacks(ClangModulesDeclVendor & decl_vendor,ClangPersistentVariables & persistent_vars,clang::SourceManager & source_mgr)116 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
117 ClangPersistentVariables &persistent_vars,
118 clang::SourceManager &source_mgr)
119 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars),
120 m_source_mgr(source_mgr) {}
121
moduleImport(SourceLocation import_location,clang::ModuleIdPath path,const clang::Module *)122 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
123 const clang::Module * /*null*/) override {
124 // Ignore modules that are imported in the wrapper code as these are not
125 // loaded by the user.
126 llvm::StringRef filename =
127 m_source_mgr.getPresumedLoc(import_location).getFilename();
128 if (filename == ClangExpressionSourceCode::g_prefix_file_name)
129 return;
130
131 SourceModule module;
132
133 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
134 module.path.push_back(ConstString(component.first->getName()));
135
136 StreamString error_stream;
137
138 ClangModulesDeclVendor::ModuleVector exported_modules;
139 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
140 m_has_errors = true;
141
142 for (ClangModulesDeclVendor::ModuleID module : exported_modules)
143 m_persistent_vars.AddHandLoadedClangModule(module);
144 }
145
hasErrors()146 bool hasErrors() { return m_has_errors; }
147
getErrorString()148 llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
149 };
150
AddAllFixIts(ClangDiagnostic * diag,const clang::Diagnostic & Info)151 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) {
152 for (auto &fix_it : Info.getFixItHints()) {
153 if (fix_it.isNull())
154 continue;
155 diag->AddFixitHint(fix_it);
156 }
157 }
158
159 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
160 public:
ClangDiagnosticManagerAdapter(DiagnosticOptions & opts)161 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) {
162 DiagnosticOptions *options = new DiagnosticOptions(opts);
163 options->ShowPresumedLoc = true;
164 options->ShowLevel = false;
165 m_os = std::make_shared<llvm::raw_string_ostream>(m_output);
166 m_passthrough =
167 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options);
168 }
169
ResetManager(DiagnosticManager * manager=nullptr)170 void ResetManager(DiagnosticManager *manager = nullptr) {
171 m_manager = manager;
172 }
173
174 /// Returns the last ClangDiagnostic message that the DiagnosticManager
175 /// received or a nullptr if the DiagnosticMangager hasn't seen any
176 /// Clang diagnostics yet.
MaybeGetLastClangDiag() const177 ClangDiagnostic *MaybeGetLastClangDiag() const {
178 if (m_manager->Diagnostics().empty())
179 return nullptr;
180 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get();
181 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag);
182 return clang_diag;
183 }
184
HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,const clang::Diagnostic & Info)185 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
186 const clang::Diagnostic &Info) override {
187 if (!m_manager) {
188 // We have no DiagnosticManager before/after parsing but we still could
189 // receive diagnostics (e.g., by the ASTImporter failing to copy decls
190 // when we move the expression result ot the ScratchASTContext). Let's at
191 // least log these diagnostics until we find a way to properly render
192 // them and display them to the user.
193 Log *log = GetLog(LLDBLog::Expressions);
194 if (log) {
195 llvm::SmallVector<char, 32> diag_str;
196 Info.FormatDiagnostic(diag_str);
197 diag_str.push_back('\0');
198 const char *plain_diag = diag_str.data();
199 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag);
200 }
201 return;
202 }
203
204 // Update error/warning counters.
205 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info);
206
207 // Render diagnostic message to m_output.
208 m_output.clear();
209 m_passthrough->HandleDiagnostic(DiagLevel, Info);
210 m_os->flush();
211
212 lldb_private::DiagnosticSeverity severity;
213 bool make_new_diagnostic = true;
214
215 switch (DiagLevel) {
216 case DiagnosticsEngine::Level::Fatal:
217 case DiagnosticsEngine::Level::Error:
218 severity = eDiagnosticSeverityError;
219 break;
220 case DiagnosticsEngine::Level::Warning:
221 severity = eDiagnosticSeverityWarning;
222 break;
223 case DiagnosticsEngine::Level::Remark:
224 case DiagnosticsEngine::Level::Ignored:
225 severity = eDiagnosticSeverityRemark;
226 break;
227 case DiagnosticsEngine::Level::Note:
228 m_manager->AppendMessageToDiagnostic(m_output);
229 make_new_diagnostic = false;
230
231 // 'note:' diagnostics for errors and warnings can also contain Fix-Its.
232 // We add these Fix-Its to the last error diagnostic to make sure
233 // that we later have all Fix-Its related to an 'error' diagnostic when
234 // we apply them to the user expression.
235 auto *clang_diag = MaybeGetLastClangDiag();
236 // If we don't have a previous diagnostic there is nothing to do.
237 // If the previous diagnostic already has its own Fix-Its, assume that
238 // the 'note:' Fix-It is just an alternative way to solve the issue and
239 // ignore these Fix-Its.
240 if (!clang_diag || clang_diag->HasFixIts())
241 break;
242 // Ignore all Fix-Its that are not associated with an error.
243 if (clang_diag->GetSeverity() != eDiagnosticSeverityError)
244 break;
245 AddAllFixIts(clang_diag, Info);
246 break;
247 }
248 if (make_new_diagnostic) {
249 // ClangDiagnostic messages are expected to have no whitespace/newlines
250 // around them.
251 std::string stripped_output =
252 std::string(llvm::StringRef(m_output).trim());
253
254 auto new_diagnostic = std::make_unique<ClangDiagnostic>(
255 stripped_output, severity, Info.getID());
256
257 // Don't store away warning fixits, since the compiler doesn't have
258 // enough context in an expression for the warning to be useful.
259 // FIXME: Should we try to filter out FixIts that apply to our generated
260 // code, and not the user's expression?
261 if (severity == eDiagnosticSeverityError)
262 AddAllFixIts(new_diagnostic.get(), Info);
263
264 m_manager->AddDiagnostic(std::move(new_diagnostic));
265 }
266 }
267
BeginSourceFile(const LangOptions & LO,const Preprocessor * PP)268 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override {
269 m_passthrough->BeginSourceFile(LO, PP);
270 }
271
EndSourceFile()272 void EndSourceFile() override { m_passthrough->EndSourceFile(); }
273
274 private:
275 DiagnosticManager *m_manager = nullptr;
276 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough;
277 /// Output stream of m_passthrough.
278 std::shared_ptr<llvm::raw_string_ostream> m_os;
279 /// Output string filled by m_os.
280 std::string m_output;
281 };
282
SetupModuleHeaderPaths(CompilerInstance * compiler,std::vector<std::string> include_directories,lldb::TargetSP target_sp)283 static void SetupModuleHeaderPaths(CompilerInstance *compiler,
284 std::vector<std::string> include_directories,
285 lldb::TargetSP target_sp) {
286 Log *log = GetLog(LLDBLog::Expressions);
287
288 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
289
290 for (const std::string &dir : include_directories) {
291 search_opts.AddPath(dir, frontend::System, false, true);
292 LLDB_LOG(log, "Added user include dir: {0}", dir);
293 }
294
295 llvm::SmallString<128> module_cache;
296 const auto &props = ModuleList::GetGlobalModuleListProperties();
297 props.GetClangModulesCachePath().GetPath(module_cache);
298 search_opts.ModuleCachePath = std::string(module_cache.str());
299 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
300
301 search_opts.ResourceDir = GetClangResourceDir().GetPath();
302
303 search_opts.ImplicitModuleMaps = true;
304 }
305
306 /// Iff the given identifier is a C++ keyword, remove it from the
307 /// identifier table (i.e., make the token a normal identifier).
RemoveCppKeyword(IdentifierTable & idents,llvm::StringRef token)308 static void RemoveCppKeyword(IdentifierTable &idents, llvm::StringRef token) {
309 // FIXME: 'using' is used by LLDB for local variables, so we can't remove
310 // this keyword without breaking this functionality.
311 if (token == "using")
312 return;
313 // GCC's '__null' is used by LLDB to define NULL/Nil/nil.
314 if (token == "__null")
315 return;
316
317 LangOptions cpp_lang_opts;
318 cpp_lang_opts.CPlusPlus = true;
319 cpp_lang_opts.CPlusPlus11 = true;
320 cpp_lang_opts.CPlusPlus20 = true;
321
322 clang::IdentifierInfo &ii = idents.get(token);
323 // The identifier has to be a C++-exclusive keyword. if not, then there is
324 // nothing to do.
325 if (!ii.isCPlusPlusKeyword(cpp_lang_opts))
326 return;
327 // If the token is already an identifier, then there is nothing to do.
328 if (ii.getTokenID() == clang::tok::identifier)
329 return;
330 // Otherwise the token is a C++ keyword, so turn it back into a normal
331 // identifier.
332 ii.revertTokenIDToIdentifier();
333 }
334
335 /// Remove all C++ keywords from the given identifier table.
RemoveAllCppKeywords(IdentifierTable & idents)336 static void RemoveAllCppKeywords(IdentifierTable &idents) {
337 #define KEYWORD(NAME, FLAGS) RemoveCppKeyword(idents, llvm::StringRef(#NAME));
338 #include "clang/Basic/TokenKinds.def"
339 }
340
341 /// Configures Clang diagnostics for the expression parser.
SetupDefaultClangDiagnostics(CompilerInstance & compiler)342 static void SetupDefaultClangDiagnostics(CompilerInstance &compiler) {
343 // List of Clang warning groups that are not useful when parsing expressions.
344 const std::vector<const char *> groupsToIgnore = {
345 "unused-value",
346 "odr",
347 "unused-getter-return-value",
348 };
349 for (const char *group : groupsToIgnore) {
350 compiler.getDiagnostics().setSeverityForGroup(
351 clang::diag::Flavor::WarningOrError, group,
352 clang::diag::Severity::Ignored, SourceLocation());
353 }
354 }
355
356 //===----------------------------------------------------------------------===//
357 // Implementation of ClangExpressionParser
358 //===----------------------------------------------------------------------===//
359
ClangExpressionParser(ExecutionContextScope * exe_scope,Expression & expr,bool generate_debug_info,std::vector<std::string> include_directories,std::string filename)360 ClangExpressionParser::ClangExpressionParser(
361 ExecutionContextScope *exe_scope, Expression &expr,
362 bool generate_debug_info, std::vector<std::string> include_directories,
363 std::string filename)
364 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
365 m_pp_callbacks(nullptr),
366 m_include_directories(std::move(include_directories)),
367 m_filename(std::move(filename)) {
368 Log *log = GetLog(LLDBLog::Expressions);
369
370 // We can't compile expressions without a target. So if the exe_scope is
371 // null or doesn't have a target, then we just need to get out of here. I'll
372 // lldbassert and not make any of the compiler objects since
373 // I can't return errors directly from the constructor. Further calls will
374 // check if the compiler was made and
375 // bag out if it wasn't.
376
377 if (!exe_scope) {
378 lldbassert(exe_scope &&
379 "Can't make an expression parser with a null scope.");
380 return;
381 }
382
383 lldb::TargetSP target_sp;
384 target_sp = exe_scope->CalculateTarget();
385 if (!target_sp) {
386 lldbassert(target_sp.get() &&
387 "Can't make an expression parser with a null target.");
388 return;
389 }
390
391 // 1. Create a new compiler instance.
392 m_compiler = std::make_unique<CompilerInstance>();
393
394 // Make sure clang uses the same VFS as LLDB.
395 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
396
397 lldb::LanguageType frame_lang =
398 expr.Language(); // defaults to lldb::eLanguageTypeUnknown
399 bool overridden_target_opts = false;
400 lldb_private::LanguageRuntime *lang_rt = nullptr;
401
402 std::string abi;
403 ArchSpec target_arch;
404 target_arch = target_sp->GetArchitecture();
405
406 const auto target_machine = target_arch.GetMachine();
407
408 // If the expression is being evaluated in the context of an existing stack
409 // frame, we introspect to see if the language runtime is available.
410
411 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
412 lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
413
414 // Make sure the user hasn't provided a preferred execution language with
415 // `expression --language X -- ...`
416 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
417 frame_lang = frame_sp->GetLanguage();
418
419 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
420 lang_rt = process_sp->GetLanguageRuntime(frame_lang);
421 LLDB_LOGF(log, "Frame has language of type %s",
422 Language::GetNameForLanguageType(frame_lang));
423 }
424
425 // 2. Configure the compiler with a set of default options that are
426 // appropriate for most situations.
427 if (target_arch.IsValid()) {
428 std::string triple = target_arch.GetTriple().str();
429 m_compiler->getTargetOpts().Triple = triple;
430 LLDB_LOGF(log, "Using %s as the target triple",
431 m_compiler->getTargetOpts().Triple.c_str());
432 } else {
433 // If we get here we don't have a valid target and just have to guess.
434 // Sometimes this will be ok to just use the host target triple (when we
435 // evaluate say "2+3", but other expressions like breakpoint conditions and
436 // other things that _are_ target specific really shouldn't just be using
437 // the host triple. In such a case the language runtime should expose an
438 // overridden options set (3), below.
439 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
440 LLDB_LOGF(log, "Using default target triple of %s",
441 m_compiler->getTargetOpts().Triple.c_str());
442 }
443 // Now add some special fixes for known architectures: Any arm32 iOS
444 // environment, but not on arm64
445 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
446 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
447 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
448 m_compiler->getTargetOpts().ABI = "apcs-gnu";
449 }
450 // Supported subsets of x86
451 if (target_machine == llvm::Triple::x86 ||
452 target_machine == llvm::Triple::x86_64) {
453 m_compiler->getTargetOpts().Features.push_back("+sse");
454 m_compiler->getTargetOpts().Features.push_back("+sse2");
455 }
456
457 // Set the target CPU to generate code for. This will be empty for any CPU
458 // that doesn't really need to make a special
459 // CPU string.
460 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
461
462 // Set the target ABI
463 abi = GetClangTargetABI(target_arch);
464 if (!abi.empty())
465 m_compiler->getTargetOpts().ABI = abi;
466
467 // 3. Now allow the runtime to provide custom configuration options for the
468 // target. In this case, a specialized language runtime is available and we
469 // can query it for extra options. For 99% of use cases, this will not be
470 // needed and should be provided when basic platform detection is not enough.
471 // FIXME: Generalize this. Only RenderScriptRuntime currently supports this
472 // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime
473 // having knowledge of clang::TargetOpts.
474 if (auto *renderscript_rt =
475 llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt))
476 overridden_target_opts =
477 renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
478
479 if (overridden_target_opts)
480 if (log && log->GetVerbose()) {
481 LLDB_LOGV(
482 log, "Using overridden target options for the expression evaluation");
483
484 auto opts = m_compiler->getTargetOpts();
485 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
486 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
487 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
488 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
489 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
490 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
491 StringList::LogDump(log, opts.Features, "Features");
492 }
493
494 // 4. Create and install the target on the compiler.
495 m_compiler->createDiagnostics();
496 // Limit the number of error diagnostics we emit.
497 // A value of 0 means no limit for both LLDB and Clang.
498 m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit());
499
500 auto target_info = TargetInfo::CreateTargetInfo(
501 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
502 if (log) {
503 LLDB_LOGF(log, "Using SIMD alignment: %d",
504 target_info->getSimdDefaultAlign());
505 LLDB_LOGF(log, "Target datalayout string: '%s'",
506 target_info->getDataLayoutString());
507 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
508 LLDB_LOGF(log, "Target vector alignment: %d",
509 target_info->getMaxVectorAlign());
510 }
511 m_compiler->setTarget(target_info);
512
513 assert(m_compiler->hasTarget());
514
515 // 5. Set language options.
516 lldb::LanguageType language = expr.Language();
517 LangOptions &lang_opts = m_compiler->getLangOpts();
518
519 switch (language) {
520 case lldb::eLanguageTypeC:
521 case lldb::eLanguageTypeC89:
522 case lldb::eLanguageTypeC99:
523 case lldb::eLanguageTypeC11:
524 // FIXME: the following language option is a temporary workaround,
525 // to "ask for C, get C++."
526 // For now, the expression parser must use C++ anytime the language is a C
527 // family language, because the expression parser uses features of C++ to
528 // capture values.
529 lang_opts.CPlusPlus = true;
530 break;
531 case lldb::eLanguageTypeObjC:
532 lang_opts.ObjC = true;
533 // FIXME: the following language option is a temporary workaround,
534 // to "ask for ObjC, get ObjC++" (see comment above).
535 lang_opts.CPlusPlus = true;
536
537 // Clang now sets as default C++14 as the default standard (with
538 // GNU extensions), so we do the same here to avoid mismatches that
539 // cause compiler error when evaluating expressions (e.g. nullptr not found
540 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
541 // two lines below) so we decide to be consistent with that, but this could
542 // be re-evaluated in the future.
543 lang_opts.CPlusPlus11 = true;
544 break;
545 case lldb::eLanguageTypeC_plus_plus:
546 case lldb::eLanguageTypeC_plus_plus_11:
547 case lldb::eLanguageTypeC_plus_plus_14:
548 lang_opts.CPlusPlus11 = true;
549 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
550 [[fallthrough]];
551 case lldb::eLanguageTypeC_plus_plus_03:
552 lang_opts.CPlusPlus = true;
553 if (process_sp)
554 lang_opts.ObjC =
555 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
556 break;
557 case lldb::eLanguageTypeObjC_plus_plus:
558 case lldb::eLanguageTypeUnknown:
559 default:
560 lang_opts.ObjC = true;
561 lang_opts.CPlusPlus = true;
562 lang_opts.CPlusPlus11 = true;
563 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
564 break;
565 }
566
567 lang_opts.Bool = true;
568 lang_opts.WChar = true;
569 lang_opts.Blocks = true;
570 lang_opts.DebuggerSupport =
571 true; // Features specifically for debugger clients
572 if (expr.DesiredResultType() == Expression::eResultTypeId)
573 lang_opts.DebuggerCastResultToId = true;
574
575 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
576 .CharIsSignedByDefault();
577
578 // Spell checking is a nice feature, but it ends up completing a lot of types
579 // that we didn't strictly speaking need to complete. As a result, we spend a
580 // long time parsing and importing debug information.
581 lang_opts.SpellChecking = false;
582
583 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
584 if (clang_expr && clang_expr->DidImportCxxModules()) {
585 LLDB_LOG(log, "Adding lang options for importing C++ modules");
586
587 lang_opts.Modules = true;
588 // We want to implicitly build modules.
589 lang_opts.ImplicitModules = true;
590 // To automatically import all submodules when we import 'std'.
591 lang_opts.ModulesLocalVisibility = false;
592
593 // We use the @import statements, so we need this:
594 // FIXME: We could use the modules-ts, but that currently doesn't work.
595 lang_opts.ObjC = true;
596
597 // Options we need to parse libc++ code successfully.
598 // FIXME: We should ask the driver for the appropriate default flags.
599 lang_opts.GNUMode = true;
600 lang_opts.GNUKeywords = true;
601 lang_opts.DoubleSquareBracketAttributes = true;
602 lang_opts.CPlusPlus11 = true;
603
604 // The Darwin libc expects this macro to be set.
605 lang_opts.GNUCVersion = 40201;
606
607 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
608 target_sp);
609 }
610
611 if (process_sp && lang_opts.ObjC) {
612 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
613 if (runtime->GetRuntimeVersion() ==
614 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
615 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
616 else
617 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
618 VersionTuple(10, 7));
619
620 if (runtime->HasNewLiteralsAndIndexing())
621 lang_opts.DebuggerObjCLiteral = true;
622 }
623 }
624
625 lang_opts.ThreadsafeStatics = false;
626 lang_opts.AccessControl = false; // Debuggers get universal access
627 lang_opts.DollarIdents = true; // $ indicates a persistent variable name
628 // We enable all builtin functions beside the builtins from libc/libm (e.g.
629 // 'fopen'). Those libc functions are already correctly handled by LLDB, and
630 // additionally enabling them as expandable builtins is breaking Clang.
631 lang_opts.NoBuiltin = true;
632
633 // Set CodeGen options
634 m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
635 m_compiler->getCodeGenOpts().InstrumentFunctions = false;
636 m_compiler->getCodeGenOpts().setFramePointer(
637 CodeGenOptions::FramePointerKind::All);
638 if (generate_debug_info)
639 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
640 else
641 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
642
643 // Disable some warnings.
644 SetupDefaultClangDiagnostics(*m_compiler);
645
646 // Inform the target of the language options
647 //
648 // FIXME: We shouldn't need to do this, the target should be immutable once
649 // created. This complexity should be lifted elsewhere.
650 m_compiler->getTarget().adjust(m_compiler->getDiagnostics(),
651 m_compiler->getLangOpts());
652
653 // 6. Set up the diagnostic buffer for reporting errors
654
655 auto diag_mgr = new ClangDiagnosticManagerAdapter(
656 m_compiler->getDiagnostics().getDiagnosticOptions());
657 m_compiler->getDiagnostics().setClient(diag_mgr);
658
659 // 7. Set up the source management objects inside the compiler
660 m_compiler->createFileManager();
661 if (!m_compiler->hasSourceManager())
662 m_compiler->createSourceManager(m_compiler->getFileManager());
663 m_compiler->createPreprocessor(TU_Complete);
664
665 switch (language) {
666 case lldb::eLanguageTypeC:
667 case lldb::eLanguageTypeC89:
668 case lldb::eLanguageTypeC99:
669 case lldb::eLanguageTypeC11:
670 case lldb::eLanguageTypeObjC:
671 // This is not a C++ expression but we enabled C++ as explained above.
672 // Remove all C++ keywords from the PP so that the user can still use
673 // variables that have C++ keywords as names (e.g. 'int template;').
674 RemoveAllCppKeywords(m_compiler->getPreprocessor().getIdentifierTable());
675 break;
676 default:
677 break;
678 }
679
680 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>(
681 target_sp->GetPersistentExpressionStateForLanguage(
682 lldb::eLanguageTypeC))) {
683 if (std::shared_ptr<ClangModulesDeclVendor> decl_vendor =
684 clang_persistent_vars->GetClangModulesDeclVendor()) {
685 std::unique_ptr<PPCallbacks> pp_callbacks(
686 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars,
687 m_compiler->getSourceManager()));
688 m_pp_callbacks =
689 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
690 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
691 }
692 }
693
694 // 8. Most of this we get from the CompilerInstance, but we also want to give
695 // the context an ExternalASTSource.
696
697 auto &PP = m_compiler->getPreprocessor();
698 auto &builtin_context = PP.getBuiltinInfo();
699 builtin_context.initializeBuiltins(PP.getIdentifierTable(),
700 m_compiler->getLangOpts());
701
702 m_compiler->createASTContext();
703 clang::ASTContext &ast_context = m_compiler->getASTContext();
704
705 m_ast_context = std::make_shared<TypeSystemClang>(
706 "Expression ASTContext for '" + m_filename + "'", ast_context);
707
708 std::string module_name("$__lldb_module");
709
710 m_llvm_context = std::make_unique<LLVMContext>();
711 m_code_generator.reset(CreateLLVMCodeGen(
712 m_compiler->getDiagnostics(), module_name,
713 &m_compiler->getVirtualFileSystem(), m_compiler->getHeaderSearchOpts(),
714 m_compiler->getPreprocessorOpts(), m_compiler->getCodeGenOpts(),
715 *m_llvm_context));
716 }
717
718 ClangExpressionParser::~ClangExpressionParser() = default;
719
720 namespace {
721
722 /// \class CodeComplete
723 ///
724 /// A code completion consumer for the clang Sema that is responsible for
725 /// creating the completion suggestions when a user requests completion
726 /// of an incomplete `expr` invocation.
727 class CodeComplete : public CodeCompleteConsumer {
728 CodeCompletionTUInfo m_info;
729
730 std::string m_expr;
731 unsigned m_position = 0;
732 /// The printing policy we use when printing declarations for our completion
733 /// descriptions.
734 clang::PrintingPolicy m_desc_policy;
735
736 struct CompletionWithPriority {
737 CompletionResult::Completion completion;
738 /// See CodeCompletionResult::Priority;
739 unsigned Priority;
740
741 /// Establishes a deterministic order in a list of CompletionWithPriority.
742 /// The order returned here is the order in which the completions are
743 /// displayed to the user.
operator <__anon4328c24d0111::CodeComplete::CompletionWithPriority744 bool operator<(const CompletionWithPriority &o) const {
745 // High priority results should come first.
746 if (Priority != o.Priority)
747 return Priority > o.Priority;
748
749 // Identical priority, so just make sure it's a deterministic order.
750 return completion.GetUniqueKey() < o.completion.GetUniqueKey();
751 }
752 };
753
754 /// The stored completions.
755 /// Warning: These are in a non-deterministic order until they are sorted
756 /// and returned back to the caller.
757 std::vector<CompletionWithPriority> m_completions;
758
759 /// Returns true if the given character can be used in an identifier.
760 /// This also returns true for numbers because for completion we usually
761 /// just iterate backwards over iterators.
762 ///
763 /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
IsIdChar(char c)764 static bool IsIdChar(char c) {
765 return c == '_' || std::isalnum(c) || c == '$';
766 }
767
768 /// Returns true if the given character is used to separate arguments
769 /// in the command line of lldb.
IsTokenSeparator(char c)770 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
771
772 /// Drops all tokens in front of the expression that are unrelated for
773 /// the completion of the cmd line. 'unrelated' means here that the token
774 /// is not interested for the lldb completion API result.
dropUnrelatedFrontTokens(StringRef cmd) const775 StringRef dropUnrelatedFrontTokens(StringRef cmd) const {
776 if (cmd.empty())
777 return cmd;
778
779 // If we are at the start of a word, then all tokens are unrelated to
780 // the current completion logic.
781 if (IsTokenSeparator(cmd.back()))
782 return StringRef();
783
784 // Remove all previous tokens from the string as they are unrelated
785 // to completing the current token.
786 StringRef to_remove = cmd;
787 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
788 to_remove = to_remove.drop_back();
789 }
790 cmd = cmd.drop_front(to_remove.size());
791
792 return cmd;
793 }
794
795 /// Removes the last identifier token from the given cmd line.
removeLastToken(StringRef cmd) const796 StringRef removeLastToken(StringRef cmd) const {
797 while (!cmd.empty() && IsIdChar(cmd.back())) {
798 cmd = cmd.drop_back();
799 }
800 return cmd;
801 }
802
803 /// Attempts to merge the given completion from the given position into the
804 /// existing command. Returns the completion string that can be returned to
805 /// the lldb completion API.
mergeCompletion(StringRef existing,unsigned pos,StringRef completion) const806 std::string mergeCompletion(StringRef existing, unsigned pos,
807 StringRef completion) const {
808 StringRef existing_command = existing.substr(0, pos);
809 // We rewrite the last token with the completion, so let's drop that
810 // token from the command.
811 existing_command = removeLastToken(existing_command);
812 // We also should remove all previous tokens from the command as they
813 // would otherwise be added to the completion that already has the
814 // completion.
815 existing_command = dropUnrelatedFrontTokens(existing_command);
816 return existing_command.str() + completion.str();
817 }
818
819 public:
820 /// Constructs a CodeComplete consumer that can be attached to a Sema.
821 ///
822 /// \param[out] expr
823 /// The whole expression string that we are currently parsing. This
824 /// string needs to be equal to the input the user typed, and NOT the
825 /// final code that Clang is parsing.
826 /// \param[out] position
827 /// The character position of the user cursor in the `expr` parameter.
828 ///
CodeComplete(clang::LangOptions ops,std::string expr,unsigned position)829 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position)
830 : CodeCompleteConsumer(CodeCompleteOptions()),
831 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
832 m_position(position), m_desc_policy(ops) {
833
834 // Ensure that the printing policy is producing a description that is as
835 // short as possible.
836 m_desc_policy.SuppressScope = true;
837 m_desc_policy.SuppressTagKeyword = true;
838 m_desc_policy.FullyQualifiedName = false;
839 m_desc_policy.TerseOutput = true;
840 m_desc_policy.IncludeNewlines = false;
841 m_desc_policy.UseVoidForZeroParams = false;
842 m_desc_policy.Bool = true;
843 }
844
845 /// \name Code-completion filtering
846 /// Check if the result should be filtered out.
isResultFilteredOut(StringRef Filter,CodeCompletionResult Result)847 bool isResultFilteredOut(StringRef Filter,
848 CodeCompletionResult Result) override {
849 // This code is mostly copied from CodeCompleteConsumer.
850 switch (Result.Kind) {
851 case CodeCompletionResult::RK_Declaration:
852 return !(
853 Result.Declaration->getIdentifier() &&
854 Result.Declaration->getIdentifier()->getName().startswith(Filter));
855 case CodeCompletionResult::RK_Keyword:
856 return !StringRef(Result.Keyword).startswith(Filter);
857 case CodeCompletionResult::RK_Macro:
858 return !Result.Macro->getName().startswith(Filter);
859 case CodeCompletionResult::RK_Pattern:
860 return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
861 }
862 // If we trigger this assert or the above switch yields a warning, then
863 // CodeCompletionResult has been enhanced with more kinds of completion
864 // results. Expand the switch above in this case.
865 assert(false && "Unknown completion result type?");
866 // If we reach this, then we should just ignore whatever kind of unknown
867 // result we got back. We probably can't turn it into any kind of useful
868 // completion suggestion with the existing code.
869 return true;
870 }
871
872 private:
873 /// Generate the completion strings for the given CodeCompletionResult.
874 /// Note that this function has to process results that could come in
875 /// non-deterministic order, so this function should have no side effects.
876 /// To make this easier to enforce, this function and all its parameters
877 /// should always be const-qualified.
878 /// \return Returns std::nullopt if no completion should be provided for the
879 /// given CodeCompletionResult.
880 std::optional<CompletionWithPriority>
getCompletionForResult(const CodeCompletionResult & R) const881 getCompletionForResult(const CodeCompletionResult &R) const {
882 std::string ToInsert;
883 std::string Description;
884 // Handle the different completion kinds that come from the Sema.
885 switch (R.Kind) {
886 case CodeCompletionResult::RK_Declaration: {
887 const NamedDecl *D = R.Declaration;
888 ToInsert = R.Declaration->getNameAsString();
889 // If we have a function decl that has no arguments we want to
890 // complete the empty parantheses for the user. If the function has
891 // arguments, we at least complete the opening bracket.
892 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
893 if (F->getNumParams() == 0)
894 ToInsert += "()";
895 else
896 ToInsert += "(";
897 raw_string_ostream OS(Description);
898 F->print(OS, m_desc_policy, false);
899 OS.flush();
900 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
901 Description = V->getType().getAsString(m_desc_policy);
902 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
903 Description = F->getType().getAsString(m_desc_policy);
904 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
905 // If we try to complete a namespace, then we can directly append
906 // the '::'.
907 if (!N->isAnonymousNamespace())
908 ToInsert += "::";
909 }
910 break;
911 }
912 case CodeCompletionResult::RK_Keyword:
913 ToInsert = R.Keyword;
914 break;
915 case CodeCompletionResult::RK_Macro:
916 ToInsert = R.Macro->getName().str();
917 break;
918 case CodeCompletionResult::RK_Pattern:
919 ToInsert = R.Pattern->getTypedText();
920 break;
921 }
922 // We also filter some internal lldb identifiers here. The user
923 // shouldn't see these.
924 if (llvm::StringRef(ToInsert).startswith("$__lldb_"))
925 return std::nullopt;
926 if (ToInsert.empty())
927 return std::nullopt;
928 // Merge the suggested Token into the existing command line to comply
929 // with the kind of result the lldb API expects.
930 std::string CompletionSuggestion =
931 mergeCompletion(m_expr, m_position, ToInsert);
932
933 CompletionResult::Completion completion(CompletionSuggestion, Description,
934 CompletionMode::Normal);
935 return {{completion, R.Priority}};
936 }
937
938 public:
939 /// Adds the completions to the given CompletionRequest.
GetCompletions(CompletionRequest & request)940 void GetCompletions(CompletionRequest &request) {
941 // Bring m_completions into a deterministic order and pass it on to the
942 // CompletionRequest.
943 llvm::sort(m_completions);
944
945 for (const CompletionWithPriority &C : m_completions)
946 request.AddCompletion(C.completion.GetCompletion(),
947 C.completion.GetDescription(),
948 C.completion.GetMode());
949 }
950
951 /// \name Code-completion callbacks
952 /// Process the finalized code-completion results.
ProcessCodeCompleteResults(Sema & SemaRef,CodeCompletionContext Context,CodeCompletionResult * Results,unsigned NumResults)953 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
954 CodeCompletionResult *Results,
955 unsigned NumResults) override {
956
957 // The Sema put the incomplete token we try to complete in here during
958 // lexing, so we need to retrieve it here to know what we are completing.
959 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
960
961 // Iterate over all the results. Filter out results we don't want and
962 // process the rest.
963 for (unsigned I = 0; I != NumResults; ++I) {
964 // Filter the results with the information from the Sema.
965 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
966 continue;
967
968 CodeCompletionResult &R = Results[I];
969 std::optional<CompletionWithPriority> CompletionAndPriority =
970 getCompletionForResult(R);
971 if (!CompletionAndPriority)
972 continue;
973 m_completions.push_back(*CompletionAndPriority);
974 }
975 }
976
977 /// \param S the semantic-analyzer object for which code-completion is being
978 /// done.
979 ///
980 /// \param CurrentArg the index of the current argument.
981 ///
982 /// \param Candidates an array of overload candidates.
983 ///
984 /// \param NumCandidates the number of overload candidates
ProcessOverloadCandidates(Sema & S,unsigned CurrentArg,OverloadCandidate * Candidates,unsigned NumCandidates,SourceLocation OpenParLoc,bool Braced)985 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
986 OverloadCandidate *Candidates,
987 unsigned NumCandidates,
988 SourceLocation OpenParLoc,
989 bool Braced) override {
990 // At the moment we don't filter out any overloaded candidates.
991 }
992
getAllocator()993 CodeCompletionAllocator &getAllocator() override {
994 return m_info.getAllocator();
995 }
996
getCodeCompletionTUInfo()997 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
998 };
999 } // namespace
1000
Complete(CompletionRequest & request,unsigned line,unsigned pos,unsigned typed_pos)1001 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
1002 unsigned pos, unsigned typed_pos) {
1003 DiagnosticManager mgr;
1004 // We need the raw user expression here because that's what the CodeComplete
1005 // class uses to provide completion suggestions.
1006 // However, the `Text` method only gives us the transformed expression here.
1007 // To actually get the raw user input here, we have to cast our expression to
1008 // the LLVMUserExpression which exposes the right API. This should never fail
1009 // as we always have a ClangUserExpression whenever we call this.
1010 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
1011 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(),
1012 typed_pos);
1013 // We don't need a code generator for parsing.
1014 m_code_generator.reset();
1015 // Start parsing the expression with our custom code completion consumer.
1016 ParseInternal(mgr, &CC, line, pos);
1017 CC.GetCompletions(request);
1018 return true;
1019 }
1020
Parse(DiagnosticManager & diagnostic_manager)1021 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
1022 return ParseInternal(diagnostic_manager);
1023 }
1024
1025 unsigned
ParseInternal(DiagnosticManager & diagnostic_manager,CodeCompleteConsumer * completion_consumer,unsigned completion_line,unsigned completion_column)1026 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
1027 CodeCompleteConsumer *completion_consumer,
1028 unsigned completion_line,
1029 unsigned completion_column) {
1030 ClangDiagnosticManagerAdapter *adapter =
1031 static_cast<ClangDiagnosticManagerAdapter *>(
1032 m_compiler->getDiagnostics().getClient());
1033
1034 adapter->ResetManager(&diagnostic_manager);
1035
1036 const char *expr_text = m_expr.Text();
1037
1038 clang::SourceManager &source_mgr = m_compiler->getSourceManager();
1039 bool created_main_file = false;
1040
1041 // Clang wants to do completion on a real file known by Clang's file manager,
1042 // so we have to create one to make this work.
1043 // TODO: We probably could also simulate to Clang's file manager that there
1044 // is a real file that contains our code.
1045 bool should_create_file = completion_consumer != nullptr;
1046
1047 // We also want a real file on disk if we generate full debug info.
1048 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
1049 codegenoptions::FullDebugInfo;
1050
1051 if (should_create_file) {
1052 int temp_fd = -1;
1053 llvm::SmallString<128> result_path;
1054 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
1055 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
1056 std::string temp_source_path = tmpdir_file_spec.GetPath();
1057 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
1058 } else {
1059 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
1060 }
1061
1062 if (temp_fd != -1) {
1063 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWriteOnly, true);
1064 const size_t expr_text_len = strlen(expr_text);
1065 size_t bytes_written = expr_text_len;
1066 if (file.Write(expr_text, bytes_written).Success()) {
1067 if (bytes_written == expr_text_len) {
1068 file.Close();
1069 if (auto fileEntry = m_compiler->getFileManager().getOptionalFileRef(
1070 result_path)) {
1071 source_mgr.setMainFileID(source_mgr.createFileID(
1072 *fileEntry,
1073 SourceLocation(), SrcMgr::C_User));
1074 created_main_file = true;
1075 }
1076 }
1077 }
1078 }
1079 }
1080
1081 if (!created_main_file) {
1082 std::unique_ptr<MemoryBuffer> memory_buffer =
1083 MemoryBuffer::getMemBufferCopy(expr_text, m_filename);
1084 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
1085 }
1086
1087 adapter->BeginSourceFile(m_compiler->getLangOpts(),
1088 &m_compiler->getPreprocessor());
1089
1090 ClangExpressionHelper *type_system_helper =
1091 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1092
1093 // If we want to parse for code completion, we need to attach our code
1094 // completion consumer to the Sema and specify a completion position.
1095 // While parsing the Sema will call this consumer with the provided
1096 // completion suggestions.
1097 if (completion_consumer) {
1098 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
1099 auto &PP = m_compiler->getPreprocessor();
1100 // Lines and columns start at 1 in Clang, but code completion positions are
1101 // indexed from 0, so we need to add 1 to the line and column here.
1102 ++completion_line;
1103 ++completion_column;
1104 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
1105 }
1106
1107 ASTConsumer *ast_transformer =
1108 type_system_helper->ASTTransformer(m_code_generator.get());
1109
1110 std::unique_ptr<clang::ASTConsumer> Consumer;
1111 if (ast_transformer) {
1112 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer);
1113 } else if (m_code_generator) {
1114 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get());
1115 } else {
1116 Consumer = std::make_unique<ASTConsumer>();
1117 }
1118
1119 clang::ASTContext &ast_context = m_compiler->getASTContext();
1120
1121 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
1122 *Consumer, TU_Complete, completion_consumer));
1123 m_compiler->setASTConsumer(std::move(Consumer));
1124
1125 if (ast_context.getLangOpts().Modules) {
1126 m_compiler->createASTReader();
1127 m_ast_context->setSema(&m_compiler->getSema());
1128 }
1129
1130 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
1131 if (decl_map) {
1132 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
1133 decl_map->InstallDiagnosticManager(diagnostic_manager);
1134
1135 clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
1136
1137 if (ast_context.getExternalSource()) {
1138 auto module_wrapper =
1139 new ExternalASTSourceWrapper(ast_context.getExternalSource());
1140
1141 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
1142
1143 auto multiplexer =
1144 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
1145 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
1146 ast_context.setExternalSource(Source);
1147 } else {
1148 ast_context.setExternalSource(ast_source);
1149 }
1150 decl_map->InstallASTContext(*m_ast_context);
1151 }
1152
1153 // Check that the ASTReader is properly attached to ASTContext and Sema.
1154 if (ast_context.getLangOpts().Modules) {
1155 assert(m_compiler->getASTContext().getExternalSource() &&
1156 "ASTContext doesn't know about the ASTReader?");
1157 assert(m_compiler->getSema().getExternalSource() &&
1158 "Sema doesn't know about the ASTReader?");
1159 }
1160
1161 {
1162 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
1163 &m_compiler->getSema());
1164 ParseAST(m_compiler->getSema(), false, false);
1165 }
1166
1167 // Make sure we have no pointer to the Sema we are about to destroy.
1168 if (ast_context.getLangOpts().Modules)
1169 m_ast_context->setSema(nullptr);
1170 // Destroy the Sema. This is necessary because we want to emulate the
1171 // original behavior of ParseAST (which also destroys the Sema after parsing).
1172 m_compiler->setSema(nullptr);
1173
1174 adapter->EndSourceFile();
1175
1176 unsigned num_errors = adapter->getNumErrors();
1177
1178 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
1179 num_errors++;
1180 diagnostic_manager.PutString(eDiagnosticSeverityError,
1181 "while importing modules:");
1182 diagnostic_manager.AppendMessageToDiagnostic(
1183 m_pp_callbacks->getErrorString());
1184 }
1185
1186 if (!num_errors) {
1187 type_system_helper->CommitPersistentDecls();
1188 }
1189
1190 adapter->ResetManager();
1191
1192 return num_errors;
1193 }
1194
1195 std::string
GetClangTargetABI(const ArchSpec & target_arch)1196 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
1197 std::string abi;
1198
1199 if (target_arch.IsMIPS()) {
1200 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
1201 case ArchSpec::eMIPSABI_N64:
1202 abi = "n64";
1203 break;
1204 case ArchSpec::eMIPSABI_N32:
1205 abi = "n32";
1206 break;
1207 case ArchSpec::eMIPSABI_O32:
1208 abi = "o32";
1209 break;
1210 default:
1211 break;
1212 }
1213 }
1214 return abi;
1215 }
1216
1217 /// Applies the given Fix-It hint to the given commit.
ApplyFixIt(const FixItHint & fixit,clang::edit::Commit & commit)1218 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) {
1219 // This is cobbed from clang::Rewrite::FixItRewriter.
1220 if (fixit.CodeToInsert.empty()) {
1221 if (fixit.InsertFromRange.isValid()) {
1222 commit.insertFromRange(fixit.RemoveRange.getBegin(),
1223 fixit.InsertFromRange, /*afterToken=*/false,
1224 fixit.BeforePreviousInsertions);
1225 return;
1226 }
1227 commit.remove(fixit.RemoveRange);
1228 return;
1229 }
1230 if (fixit.RemoveRange.isTokenRange() ||
1231 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) {
1232 commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1233 return;
1234 }
1235 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1236 /*afterToken=*/false, fixit.BeforePreviousInsertions);
1237 }
1238
RewriteExpression(DiagnosticManager & diagnostic_manager)1239 bool ClangExpressionParser::RewriteExpression(
1240 DiagnosticManager &diagnostic_manager) {
1241 clang::SourceManager &source_manager = m_compiler->getSourceManager();
1242 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
1243 nullptr);
1244 clang::edit::Commit commit(editor);
1245 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
1246
1247 class RewritesReceiver : public edit::EditsReceiver {
1248 Rewriter &rewrite;
1249
1250 public:
1251 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
1252
1253 void insert(SourceLocation loc, StringRef text) override {
1254 rewrite.InsertText(loc, text);
1255 }
1256 void replace(CharSourceRange range, StringRef text) override {
1257 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
1258 }
1259 };
1260
1261 RewritesReceiver rewrites_receiver(rewriter);
1262
1263 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
1264 size_t num_diags = diagnostics.size();
1265 if (num_diags == 0)
1266 return false;
1267
1268 for (const auto &diag : diagnostic_manager.Diagnostics()) {
1269 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get());
1270 if (!diagnostic)
1271 continue;
1272 if (!diagnostic->HasFixIts())
1273 continue;
1274 for (const FixItHint &fixit : diagnostic->FixIts())
1275 ApplyFixIt(fixit, commit);
1276 }
1277
1278 // FIXME - do we want to try to propagate specific errors here?
1279 if (!commit.isCommitable())
1280 return false;
1281 else if (!editor.commit(commit))
1282 return false;
1283
1284 // Now play all the edits, and stash the result in the diagnostic manager.
1285 editor.applyRewrites(rewrites_receiver);
1286 RewriteBuffer &main_file_buffer =
1287 rewriter.getEditBuffer(source_manager.getMainFileID());
1288
1289 std::string fixed_expression;
1290 llvm::raw_string_ostream out_stream(fixed_expression);
1291
1292 main_file_buffer.write(out_stream);
1293 out_stream.flush();
1294 diagnostic_manager.SetFixedExpression(fixed_expression);
1295
1296 return true;
1297 }
1298
FindFunctionInModule(ConstString & mangled_name,llvm::Module * module,const char * orig_name)1299 static bool FindFunctionInModule(ConstString &mangled_name,
1300 llvm::Module *module, const char *orig_name) {
1301 for (const auto &func : module->getFunctionList()) {
1302 const StringRef &name = func.getName();
1303 if (name.contains(orig_name)) {
1304 mangled_name.SetString(name);
1305 return true;
1306 }
1307 }
1308
1309 return false;
1310 }
1311
PrepareForExecution(lldb::addr_t & func_addr,lldb::addr_t & func_end,lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx,bool & can_interpret,ExecutionPolicy execution_policy)1312 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1313 lldb::addr_t &func_addr, lldb::addr_t &func_end,
1314 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1315 bool &can_interpret, ExecutionPolicy execution_policy) {
1316 func_addr = LLDB_INVALID_ADDRESS;
1317 func_end = LLDB_INVALID_ADDRESS;
1318 Log *log = GetLog(LLDBLog::Expressions);
1319
1320 lldb_private::Status err;
1321
1322 std::unique_ptr<llvm::Module> llvm_module_up(
1323 m_code_generator->ReleaseModule());
1324
1325 if (!llvm_module_up) {
1326 err.SetErrorToGenericError();
1327 err.SetErrorString("IR doesn't contain a module");
1328 return err;
1329 }
1330
1331 ConstString function_name;
1332
1333 if (execution_policy != eExecutionPolicyTopLevel) {
1334 // Find the actual name of the function (it's often mangled somehow)
1335
1336 if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1337 m_expr.FunctionName())) {
1338 err.SetErrorToGenericError();
1339 err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1340 m_expr.FunctionName());
1341 return err;
1342 } else {
1343 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
1344 m_expr.FunctionName());
1345 }
1346 }
1347
1348 SymbolContext sc;
1349
1350 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1351 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1352 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1353 sc.target_sp = target_sp;
1354 }
1355
1356 LLVMUserExpression::IRPasses custom_passes;
1357 {
1358 auto lang = m_expr.Language();
1359 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
1360 Language::GetNameForLanguageType(lang));
1361 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1362 if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1363 auto runtime = process_sp->GetLanguageRuntime(lang);
1364 if (runtime)
1365 runtime->GetIRPasses(custom_passes);
1366 }
1367 }
1368
1369 if (custom_passes.EarlyPasses) {
1370 LLDB_LOGF(log,
1371 "%s - Running Early IR Passes from LanguageRuntime on "
1372 "expression module '%s'",
1373 __FUNCTION__, m_expr.FunctionName());
1374
1375 custom_passes.EarlyPasses->run(*llvm_module_up);
1376 }
1377
1378 execution_unit_sp = std::make_shared<IRExecutionUnit>(
1379 m_llvm_context, // handed off here
1380 llvm_module_up, // handed off here
1381 function_name, exe_ctx.GetTargetSP(), sc,
1382 m_compiler->getTargetOpts().Features);
1383
1384 ClangExpressionHelper *type_system_helper =
1385 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1386 ClangExpressionDeclMap *decl_map =
1387 type_system_helper->DeclMap(); // result can be NULL
1388
1389 if (decl_map) {
1390 StreamString error_stream;
1391 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1392 *execution_unit_sp, error_stream,
1393 function_name.AsCString());
1394
1395 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) {
1396 err.SetErrorString(error_stream.GetString());
1397 return err;
1398 }
1399
1400 Process *process = exe_ctx.GetProcessPtr();
1401
1402 if (execution_policy != eExecutionPolicyAlways &&
1403 execution_policy != eExecutionPolicyTopLevel) {
1404 lldb_private::Status interpret_error;
1405
1406 bool interpret_function_calls =
1407 !process ? false : process->CanInterpretFunctionCalls();
1408 can_interpret = IRInterpreter::CanInterpret(
1409 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1410 interpret_error, interpret_function_calls);
1411
1412 if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1413 err.SetErrorStringWithFormat(
1414 "Can't evaluate the expression without a running target due to: %s",
1415 interpret_error.AsCString());
1416 return err;
1417 }
1418 }
1419
1420 if (!process && execution_policy == eExecutionPolicyAlways) {
1421 err.SetErrorString("Expression needed to run in the target, but the "
1422 "target can't be run");
1423 return err;
1424 }
1425
1426 if (!process && execution_policy == eExecutionPolicyTopLevel) {
1427 err.SetErrorString("Top-level code needs to be inserted into a runnable "
1428 "target, but the target can't be run");
1429 return err;
1430 }
1431
1432 if (execution_policy == eExecutionPolicyAlways ||
1433 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1434 if (m_expr.NeedsValidation() && process) {
1435 if (!process->GetDynamicCheckers()) {
1436 ClangDynamicCheckerFunctions *dynamic_checkers =
1437 new ClangDynamicCheckerFunctions();
1438
1439 DiagnosticManager install_diagnostics;
1440
1441 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1442 if (install_diagnostics.Diagnostics().size())
1443 err.SetErrorString(install_diagnostics.GetString().c_str());
1444 else
1445 err.SetErrorString("couldn't install checkers, unknown error");
1446
1447 return err;
1448 }
1449
1450 process->SetDynamicCheckers(dynamic_checkers);
1451
1452 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
1453 "Finished installing dynamic checkers ==");
1454 }
1455
1456 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
1457 process->GetDynamicCheckers())) {
1458 IRDynamicChecks ir_dynamic_checks(*checker_funcs,
1459 function_name.AsCString());
1460
1461 llvm::Module *module = execution_unit_sp->GetModule();
1462 if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1463 err.SetErrorToGenericError();
1464 err.SetErrorString("Couldn't add dynamic checks to the expression");
1465 return err;
1466 }
1467
1468 if (custom_passes.LatePasses) {
1469 LLDB_LOGF(log,
1470 "%s - Running Late IR Passes from LanguageRuntime on "
1471 "expression module '%s'",
1472 __FUNCTION__, m_expr.FunctionName());
1473
1474 custom_passes.LatePasses->run(*module);
1475 }
1476 }
1477 }
1478 }
1479
1480 if (execution_policy == eExecutionPolicyAlways ||
1481 execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1482 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1483 }
1484 } else {
1485 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1486 }
1487
1488 return err;
1489 }
1490
RunStaticInitializers(lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx)1491 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1492 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1493 lldb_private::Status err;
1494
1495 lldbassert(execution_unit_sp.get());
1496 lldbassert(exe_ctx.HasThreadScope());
1497
1498 if (!execution_unit_sp.get()) {
1499 err.SetErrorString(
1500 "can't run static initializers for a NULL execution unit");
1501 return err;
1502 }
1503
1504 if (!exe_ctx.HasThreadScope()) {
1505 err.SetErrorString("can't run static initializers without a thread");
1506 return err;
1507 }
1508
1509 std::vector<lldb::addr_t> static_initializers;
1510
1511 execution_unit_sp->GetStaticInitializers(static_initializers);
1512
1513 for (lldb::addr_t static_initializer : static_initializers) {
1514 EvaluateExpressionOptions options;
1515
1516 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1517 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1518 llvm::ArrayRef<lldb::addr_t>(), options));
1519
1520 DiagnosticManager execution_errors;
1521 lldb::ExpressionResults results =
1522 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1523 exe_ctx, call_static_initializer, options, execution_errors);
1524
1525 if (results != lldb::eExpressionCompleted) {
1526 err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1527 execution_errors.GetString().c_str());
1528 return err;
1529 }
1530 }
1531
1532 return err;
1533 }
1534