1 /*
2  * Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT,
3  * Applied Mathematics, Norway.
4  *
5  * Contact information: E-mail: tor.dokken@sintef.no
6  * SINTEF ICT, Department of Applied Mathematics,
7  * P.O. Box 124 Blindern,
8  * 0314 Oslo, Norway.
9  *
10  * This file is part of SISL.
11  *
12  * SISL is free software: you can redistribute it and/or modify
13  * it under the terms of the GNU Affero General Public License as
14  * published by the Free Software Foundation, either version 3 of the
15  * License, or (at your option) any later version.
16  *
17  * SISL is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU Affero General Public License for more details.
21  *
22  * You should have received a copy of the GNU Affero General Public
23  * License along with SISL. If not, see
24  * <http://www.gnu.org/licenses/>.
25  *
26  * In accordance with Section 7(b) of the GNU Affero General Public
27  * License, a covered work must retain the producer line in every data
28  * file that is created or manipulated using SISL.
29  *
30  * Other Usage
31  * You can be released from the requirements of the license by purchasing
32  * a commercial license. Buying such a license is mandatory as soon as you
33  * develop commercial activities involving the SISL library without
34  * disclosing the source code of your own applications.
35  *
36  * This file may be used in accordance with the terms contained in a
37  * written agreement between you and SINTEF ICT.
38  */
39 
40 #include "sisl-copyright.h"
41 
42 /*
43  *
44  * $Id: s6knotmult.c,v 1.1 1994-04-21 12:10:42 boh Exp $
45  *
46  */
47 
48 
49 #define S6KNOTMULT
50 
51 #include "sislP.h"
52 
53 #if defined(SISLNEEDPROTOTYPES)
54 int
s6knotmult(double et[],int ik,int in,int * ileft,double ax,int * jstat)55 s6knotmult(double et[],int ik,int in,int *ileft,double ax,int *jstat)
56 #else
57 int s6knotmult(et,ik,in,ileft,ax,jstat)
58      double et[];
59      int    in;
60      int    ik;
61      int    *ileft;
62      double ax;
63      int    *jstat;
64 #endif
65 /*
66 *********************************************************************
67 *
68 *********************************************************************
69 *
70 * PURPOSE    : To determine the multiplicity of a knot at a specified
71 *              parameter value.
72 *
73 *
74 * INPUT      : et     - Double array of dimension [in+ik] containing
75 *                       the knot vector.
76 *              ik     - The polynomial order of the B-splines associated
77 *                       with et.
78 *              in     - The dimension of the spline space associated with
79 *                       the knot vector et.
80 *              ax     - The point at which the B-spline values and derivatives
81 *                       are to be computed.
82 *
83 *
84 *
85 * INPUT/OUTPUT :
86 *              ileft - Pointer to the interval in the knot vector
87 *                       where ax is located, check the relations above.
88 *              jstat  - Status messages
89 *                                         > 0      : Warning.
90 *                                         = 0      : Ok.
91 *                                         < 0      : Error.
92 *
93 *
94 * METHOD     : The aim is to do as little work as possible in the cases
95 *              where ileft has the right or almost the right value.
96 *              First of all we make sure that ileft has a legal value
97 *              (a value in the range ik-1 to in-1). Then we check
98 *              if the current value is OK.
99 *              If it is not we check that ax is in the interior of et
100 *              or if the right value is obtained by either increasing
101 *              or decreasing ileft by 1. If the right value still has
102 *              not been found we do a binary search.
103 *
104 *
105 * REFERENCES :
106 *
107 *-
108 * CALLS      : s1219
109 *
110 * WRITTEN BY : Knut Moerken, University of Oslo, August 1988.
111 *
112 *********************************************************************
113 */
114 {
115   int kpos=0;         /* The position of the error.                      */
116   int kstat;          /* Local status variable                           */
117   int kmult=0;        /* Multiplicity of knot                            */
118   int ki;             /* Loop variable                                   */
119 
120   /* Localize knot interval */
121 
122   s1219(et,ik,in,ileft,ax,&kstat);
123   if (kstat<0) goto error;
124 
125   if (et[*ileft] == ax)
126     {
127       kmult = 1;
128       ki    = *ileft-1;
129       for (ki=(*ileft)-1; 0 <= ki; ki--)
130         if (et[ki] == ax) kmult++;
131     }
132   if (et[in] == ax)
133     {
134       for (ki=in ; ki<in+ik;ki++)
135         if (et[ki] == ax) kmult++;
136     }
137 
138   *jstat = 0;
139   goto out;
140 
141 /* Error in lower level function */
142 
143 error:  *jstat = kstat;
144         s6err("s6knotmult",*jstat,kpos);
145         goto out;
146 
147 out:
148 return(kmult);
149 }
150