xref: /openbsd/sys/arch/i386/pci/glxsb.c (revision f4e70637)
1 /*	$OpenBSD: glxsb.c,v 1.42 2023/01/30 10:49:05 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
5  * Copyright (c) 2003, 2004 Theo de Raadt
6  * Copyright (c) 2003 Jason Wright
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for the security block on the AMD Geode LX processors
23  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
24  */
25 
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/device.h>
29 #include <sys/malloc.h>
30 #include <sys/mbuf.h>
31 #include <sys/timeout.h>
32 
33 #include <machine/bus.h>
34 #include <machine/cpufunc.h>
35 
36 #include <dev/pci/pcivar.h>
37 #include <dev/pci/pcidevs.h>
38 
39 #ifdef CRYPTO
40 #include <crypto/cryptodev.h>
41 #include <crypto/xform.h>
42 #include <crypto/cryptosoft.h>
43 #endif
44 
45 #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
46 #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
47 #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
48 #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
49 #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
50 #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
51 #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
52 
53 						/* For GLD_MSR_CTRL: */
54 #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
55 #define SB_GMC_DIV1		0x0001
56 #define SB_GMC_DIV2		0x0002
57 #define SB_GMC_DIV3		0x0003
58 #define SB_GMC_DIV_MASK		0x0003
59 #define SB_GMC_SBI		0x0004		/* AES swap bits */
60 #define SB_GMC_SBY		0x0008		/* AES swap bytes */
61 #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
62 #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
63 #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
64 #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
65 #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
66 #define SB_GMC_T_SEL_MASK	0x0300
67 #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
68 #define SB_GMC_T_TM		0x0800		/* RNG test mode */
69 						/*     (deterministic) */
70 
71 /* Security Block configuration/control registers (offsets from base) */
72 
73 #define SB_CTL_A		0x0000		/* RW - SB Control A */
74 #define SB_CTL_B		0x0004		/* RW - SB Control B */
75 #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
76 #define SB_SOURCE_A		0x0010		/* RW - Source A */
77 #define SB_DEST_A		0x0014		/* RW - Destination A */
78 #define SB_LENGTH_A		0x0018		/* RW - Length A */
79 #define SB_SOURCE_B		0x0020		/* RW - Source B */
80 #define SB_DEST_B		0x0024		/* RW - Destination B */
81 #define SB_LENGTH_B		0x0028		/* RW - Length B */
82 #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
83 #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
84 #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
85 #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
86 #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
87 #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
88 #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
89 #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
90 #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
91 #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
92 #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
93 #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
94 #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
95 #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
96 #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
97 #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
98 
99 						/* For SB_CTL_A and _B */
100 #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
101 #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
102 #define SB_CTL_DEC		0x0000		/* Decrypt */
103 #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
104 #define SB_CTL_DC		0x0008		/* Destination coherent */
105 #define SB_CTL_SC		0x0010		/* Source coherent */
106 #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
107 
108 						/* For SB_AES_INT */
109 #define SB_AI_DISABLE_AES_A	0x00001		/* Disable AES A compl int */
110 #define SB_AI_ENABLE_AES_A	0x00000		/* Enable AES A compl int */
111 #define SB_AI_DISABLE_AES_B	0x00002		/* Disable AES B compl int */
112 #define SB_AI_ENABLE_AES_B	0x00000		/* Enable AES B compl int */
113 #define SB_AI_DISABLE_EEPROM	0x00004		/* Disable EEPROM op comp int */
114 #define SB_AI_ENABLE_EEPROM	0x00000		/* Enable EEPROM op compl int */
115 #define SB_AI_AES_A_COMPLETE	0x10000		/* AES A operation complete */
116 #define SB_AI_AES_B_COMPLETE	0x20000		/* AES B operation complete */
117 #define SB_AI_EEPROM_COMPLETE	0x40000		/* EEPROM operation complete */
118 
119 #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
120 
121 #define SB_MEM_SIZE		0x0810		/* Size of memory block */
122 
123 #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
124 						/* must be 16-byte aligned */
125 #define SB_AES_BLOCK_SIZE	0x0010
126 
127 /*
128  * The Geode LX security block AES acceleration doesn't perform scatter-
129  * gather: it just takes source and destination addresses.  Therefore the
130  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
131  * a buffer for both, and accept the overhead of copying in and out.  If
132  * the number of bytes in one operation is bigger than allowed for by the
133  * buffer (buffer is twice the size of the max length, as it has both input
134  * and output) then we have to perform multiple encryptions/decryptions.
135  */
136 #define GLXSB_MAX_AES_LEN	16384
137 
138 #ifdef CRYPTO
139 struct glxsb_dma_map {
140 	bus_dmamap_t		dma_map;
141 	bus_dma_segment_t	dma_seg;
142 	int			dma_nsegs;
143 	int			dma_size;
144 	caddr_t			dma_vaddr;
145 	uint32_t		dma_paddr;
146 };
147 struct glxsb_session {
148 	uint32_t	ses_key[4];
149 	int		ses_klen;
150 	int		ses_used;
151 	struct swcr_data *ses_swd_auth;
152 	struct swcr_data *ses_swd_enc;
153 };
154 #endif /* CRYPTO */
155 
156 struct glxsb_softc {
157 	struct device		sc_dev;
158 	bus_space_tag_t		sc_iot;
159 	bus_space_handle_t	sc_ioh;
160 	struct timeout		sc_to;
161 
162 #ifdef CRYPTO
163 	bus_dma_tag_t		sc_dmat;
164 	struct glxsb_dma_map	sc_dma;
165 	int32_t			sc_cid;
166 	int			sc_nsessions;
167 	struct glxsb_session	*sc_sessions;
168 #endif /* CRYPTO */
169 
170 	uint64_t		save_gld_msr;
171 };
172 
173 int	glxsb_match(struct device *, void *, void *);
174 void	glxsb_attach(struct device *, struct device *, void *);
175 int	glxsb_activate(struct device *, int);
176 void	glxsb_rnd(void *);
177 
178 const struct cfattach glxsb_ca = {
179 	sizeof(struct glxsb_softc), glxsb_match, glxsb_attach, NULL,
180 	glxsb_activate
181 };
182 
183 struct cfdriver glxsb_cd = {
184 	NULL, "glxsb", DV_DULL
185 };
186 
187 
188 #ifdef CRYPTO
189 
190 #define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
191 #define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
192 
193 static struct glxsb_softc *glxsb_sc;
194 
195 int glxsb_crypto_setup(struct glxsb_softc *);
196 int glxsb_crypto_newsession(uint32_t *, struct cryptoini *);
197 int glxsb_crypto_process(struct cryptop *);
198 int glxsb_crypto_freesession(uint64_t);
199 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
200     uint32_t, void *, int, void *);
201 
202 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
203 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
204 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
205 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
206 
207 #endif /* CRYPTO */
208 
209 
210 int
glxsb_match(struct device * parent,void * match,void * aux)211 glxsb_match(struct device *parent, void *match, void *aux)
212 {
213 	struct pci_attach_args *pa = aux;
214 
215 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
216 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO)
217 		return (1);
218 
219 	return (0);
220 }
221 
222 void
glxsb_attach(struct device * parent,struct device * self,void * aux)223 glxsb_attach(struct device *parent, struct device *self, void *aux)
224 {
225 	struct glxsb_softc *sc = (void *) self;
226 	struct pci_attach_args *pa = aux;
227 	bus_addr_t membase;
228 	bus_size_t memsize;
229 	uint64_t msr;
230 #ifdef CRYPTO
231 	uint32_t intr;
232 #endif
233 
234 	msr = rdmsr(SB_GLD_MSR_CAP);
235 	if ((msr & 0xFFFF00) != 0x130400) {
236 		printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
237 		return;
238 	}
239 
240 	/* printf(": revision %d", (int) (msr & 0xFF)); */
241 
242 	/* Map in the security block configuration/control registers */
243 	if (pci_mapreg_map(pa, PCI_MAPREG_START,
244 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->sc_iot,
245 	    &sc->sc_ioh, &membase, &memsize, SB_MEM_SIZE)) {
246 		printf(": can't find mem space\n");
247 		return;
248 	}
249 
250 	/*
251 	 * Configure the Security Block.
252 	 *
253 	 * We want to enable the noise generator (T_NE), and enable the
254 	 * linear feedback shift register and whitener post-processing
255 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
256 	 * is disabled.
257 	 */
258 	msr = rdmsr(SB_GLD_MSR_CTRL);
259 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
260 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
261 #if 0
262 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
263 #endif
264 	wrmsr(SB_GLD_MSR_CTRL, msr);
265 
266 	/* Install a periodic collector for the "true" (AMD's word) RNG */
267 	timeout_set(&sc->sc_to, glxsb_rnd, sc);
268 	glxsb_rnd(sc);
269 	printf(": RNG");
270 
271 #ifdef CRYPTO
272 	/* We don't have an interrupt handler, so disable completion INTs */
273 	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
274 	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
275 	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
276 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
277 
278 	sc->sc_dmat = pa->pa_dmat;
279 
280 	if (glxsb_crypto_setup(sc))
281 		printf(" AES");
282 #endif
283 
284 	printf("\n");
285 }
286 
287 int
glxsb_activate(struct device * self,int act)288 glxsb_activate(struct device *self, int act)
289 {
290 	struct glxsb_softc *sc = (struct glxsb_softc *)self;
291 
292 	switch (act) {
293 	case DVACT_QUIESCE:
294 		/* XXX should wait for current crypto op to finish */
295 		break;
296 	case DVACT_SUSPEND:
297 		sc->save_gld_msr = rdmsr(SB_GLD_MSR_CTRL);
298 		break;
299 	case DVACT_RESUME:
300 		wrmsr(SB_GLD_MSR_CTRL, sc->save_gld_msr);
301 		break;
302 	}
303 	return (0);
304 }
305 
306 void
glxsb_rnd(void * v)307 glxsb_rnd(void *v)
308 {
309 	struct glxsb_softc *sc = v;
310 	uint32_t status, value;
311 
312 	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
313 	if (status & SB_RNS_TRNG_VALID) {
314 		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
315 		enqueue_randomness(value);
316 	}
317 
318 	timeout_add_msec(&sc->sc_to, 10);
319 }
320 
321 #ifdef CRYPTO
322 int
glxsb_crypto_setup(struct glxsb_softc * sc)323 glxsb_crypto_setup(struct glxsb_softc *sc)
324 {
325 	int algs[CRYPTO_ALGORITHM_MAX + 1];
326 
327 	/* Allocate a contiguous DMA-able buffer to work in */
328 	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
329 		return 0;
330 
331 	bzero(algs, sizeof(algs));
332 	algs[CRYPTO_AES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
333 	algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
334 	algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
335 	algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
336 	algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
337 	algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
338 	algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
339 
340 	sc->sc_cid = crypto_get_driverid(0);
341 	if (sc->sc_cid < 0)
342 		return 0;
343 
344 	crypto_register(sc->sc_cid, algs, glxsb_crypto_newsession,
345 	    glxsb_crypto_freesession, glxsb_crypto_process);
346 
347 	sc->sc_nsessions = 0;
348 
349 	glxsb_sc = sc;
350 
351 	return 1;
352 }
353 
354 int
glxsb_crypto_newsession(uint32_t * sidp,struct cryptoini * cri)355 glxsb_crypto_newsession(uint32_t *sidp, struct cryptoini *cri)
356 {
357 	struct glxsb_softc *sc = glxsb_sc;
358 	struct glxsb_session *ses = NULL;
359 	const struct auth_hash	*axf;
360 	const struct enc_xform	*txf;
361 	struct cryptoini	*c;
362 	struct swcr_data	*swd;
363 	int sesn, i;
364 
365 	if (sc == NULL || sidp == NULL || cri == NULL)
366 		return (EINVAL);
367 
368 	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
369 		if (sc->sc_sessions[sesn].ses_used == 0) {
370 			ses = &sc->sc_sessions[sesn];
371 			break;
372 		}
373 	}
374 
375 	if (ses == NULL) {
376 		sesn = sc->sc_nsessions;
377 		ses = mallocarray(sesn + 1, sizeof(*ses), M_DEVBUF,
378 		    M_NOWAIT);
379 		if (ses == NULL)
380 			return (ENOMEM);
381 		if (sesn != 0) {
382 			bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
383 			explicit_bzero(sc->sc_sessions, sesn * sizeof(*ses));
384 			free(sc->sc_sessions, M_DEVBUF, sesn * sizeof(*ses));
385 		}
386 		sc->sc_sessions = ses;
387 		ses = &sc->sc_sessions[sesn];
388 		sc->sc_nsessions++;
389 	}
390 
391 	bzero(ses, sizeof(*ses));
392 	ses->ses_used = 1;
393 
394 	for (c = cri; c != NULL; c = c->cri_next) {
395 		switch (c->cri_alg) {
396 		case CRYPTO_AES_CBC:
397 
398 			if (c->cri_klen != 128) {
399 				swd = malloc(sizeof(struct swcr_data),
400 				    M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
401 				if (swd == NULL) {
402 					glxsb_crypto_freesession(sesn);
403 					return (ENOMEM);
404 				}
405 				ses->ses_swd_enc = swd;
406 				txf = &enc_xform_aes;
407 				if (txf->ctxsize > 0) {
408 					swd->sw_kschedule =
409 					    malloc(txf->ctxsize,
410 						M_CRYPTO_DATA,
411 						M_NOWAIT|M_ZERO);
412 					if (swd->sw_kschedule == NULL) {
413 						glxsb_crypto_freesession(sesn);
414 						return (EINVAL);
415 					}
416 				}
417 				if (txf->setkey(swd->sw_kschedule, c->cri_key,
418 				    c->cri_klen / 8) < 0) {
419 					glxsb_crypto_freesession(sesn);
420 					return (EINVAL);
421 				}
422 				swd->sw_exf = txf;
423 				break;
424 			}
425 
426 			ses->ses_klen = c->cri_klen;
427 
428 			/* Copy the key (Geode LX wants the primary key only) */
429 			bcopy(c->cri_key, ses->ses_key, sizeof(ses->ses_key));
430 			break;
431 
432 		case CRYPTO_MD5_HMAC:
433 			axf = &auth_hash_hmac_md5_96;
434 			goto authcommon;
435 		case CRYPTO_SHA1_HMAC:
436 			axf = &auth_hash_hmac_sha1_96;
437 			goto authcommon;
438 		case CRYPTO_RIPEMD160_HMAC:
439 			axf = &auth_hash_hmac_ripemd_160_96;
440 			goto authcommon;
441 		case CRYPTO_SHA2_256_HMAC:
442 			axf = &auth_hash_hmac_sha2_256_128;
443 			goto authcommon;
444 		case CRYPTO_SHA2_384_HMAC:
445 			axf = &auth_hash_hmac_sha2_384_192;
446 			goto authcommon;
447 		case CRYPTO_SHA2_512_HMAC:
448 			axf = &auth_hash_hmac_sha2_512_256;
449 		authcommon:
450 			swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA,
451 			    M_NOWAIT|M_ZERO);
452 			if (swd == NULL) {
453 				glxsb_crypto_freesession(sesn);
454 				return (ENOMEM);
455 			}
456 			ses->ses_swd_auth = swd;
457 
458 			swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
459 			    M_NOWAIT);
460 			if (swd->sw_ictx == NULL) {
461 				glxsb_crypto_freesession(sesn);
462 				return (ENOMEM);
463 			}
464 
465 			swd->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA,
466 			    M_NOWAIT);
467 			if (swd->sw_octx == NULL) {
468 				glxsb_crypto_freesession(sesn);
469 				return (ENOMEM);
470 			}
471 
472 			for (i = 0; i < c->cri_klen / 8; i++)
473 				c->cri_key[i] ^= HMAC_IPAD_VAL;
474 
475 			axf->Init(swd->sw_ictx);
476 			axf->Update(swd->sw_ictx, c->cri_key, c->cri_klen / 8);
477 			axf->Update(swd->sw_ictx, hmac_ipad_buffer,
478 			    axf->blocksize - (c->cri_klen / 8));
479 
480 			for (i = 0; i < c->cri_klen / 8; i++)
481 				c->cri_key[i] ^= (HMAC_IPAD_VAL ^
482 				    HMAC_OPAD_VAL);
483 
484 			axf->Init(swd->sw_octx);
485 			axf->Update(swd->sw_octx, c->cri_key, c->cri_klen / 8);
486 			axf->Update(swd->sw_octx, hmac_opad_buffer,
487 			    axf->blocksize - (c->cri_klen / 8));
488 
489 			for (i = 0; i < c->cri_klen / 8; i++)
490 				c->cri_key[i] ^= HMAC_OPAD_VAL;
491 
492 			swd->sw_axf = axf;
493 			swd->sw_alg = c->cri_alg;
494 
495 			break;
496 		default:
497 			glxsb_crypto_freesession(sesn);
498 			return (EINVAL);
499 		}
500 	}
501 
502 	*sidp = GLXSB_SID(0, sesn);
503 	return (0);
504 }
505 
506 int
glxsb_crypto_freesession(uint64_t tid)507 glxsb_crypto_freesession(uint64_t tid)
508 {
509 	struct glxsb_softc *sc = glxsb_sc;
510 	struct swcr_data *swd;
511 	const struct auth_hash *axf;
512 	const struct enc_xform *txf;
513 	int sesn;
514 	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
515 
516 	if (sc == NULL)
517 		return (EINVAL);
518 	sesn = GLXSB_SESSION(sid);
519 	if (sesn >= sc->sc_nsessions)
520 		return (EINVAL);
521 	if ((swd = sc->sc_sessions[sesn].ses_swd_enc)) {
522 		txf = swd->sw_exf;
523 
524 		if (swd->sw_kschedule) {
525 			explicit_bzero(swd->sw_kschedule, txf->ctxsize);
526 			free(swd->sw_kschedule, M_CRYPTO_DATA, txf->ctxsize);
527 		}
528 		free(swd, M_CRYPTO_DATA, sizeof(*swd));
529 	}
530 	if ((swd = sc->sc_sessions[sesn].ses_swd_auth)) {
531 		axf = swd->sw_axf;
532 
533 		if (swd->sw_ictx) {
534 			explicit_bzero(swd->sw_ictx, axf->ctxsize);
535 			free(swd->sw_ictx, M_CRYPTO_DATA, axf->ctxsize);
536 		}
537 		if (swd->sw_octx) {
538 			explicit_bzero(swd->sw_octx, axf->ctxsize);
539 			free(swd->sw_octx, M_CRYPTO_DATA, axf->ctxsize);
540 		}
541 		free(swd, M_CRYPTO_DATA, sizeof(*swd));
542 	}
543 	explicit_bzero(&sc->sc_sessions[sesn], sizeof(sc->sc_sessions[sesn]));
544 	return (0);
545 }
546 
547 /*
548  * Must be called at splnet() or higher
549  */
550 static __inline void
glxsb_aes(struct glxsb_softc * sc,uint32_t control,uint32_t psrc,uint32_t pdst,void * key,int len,void * iv)551 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
552     uint32_t pdst, void *key, int len, void *iv)
553 {
554 	uint32_t status;
555 	int i;
556 
557 	if (len & 0xF) {
558 		printf("%s: len must be a multiple of 16 (not %d)\n",
559 		    sc->sc_dev.dv_xname, len);
560 		return;
561 	}
562 
563 	/* Set the source */
564 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
565 
566 	/* Set the destination address */
567 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
568 
569 	/* Set the data length */
570 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
571 
572 	/* Set the IV */
573 	if (iv != NULL) {
574 		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
575 		    SB_CBC_IV, iv, 4);
576 		control |= SB_CTL_CBC;
577 	}
578 
579 	/* Set the key */
580 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
581 
582 	/* Ask the security block to do it */
583 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
584 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
585 
586 	/*
587 	 * Now wait until it is done.
588 	 *
589 	 * We do a busy wait.  Obviously the number of iterations of
590 	 * the loop required to perform the AES operation depends upon
591 	 * the number of bytes to process.
592 	 *
593 	 * On a 500 MHz Geode LX we see
594 	 *
595 	 *	length (bytes)	typical max iterations
596 	 *	    16		   12
597 	 *	    64		   22
598 	 *	   256		   59
599 	 *	  1024		  212
600 	 *	  8192		1,537
601 	 *
602 	 * Since we have a maximum size of operation defined in
603 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
604 	 * to wait.  Allow an order of magnitude longer than it should
605 	 * really take, just in case.
606 	 */
607 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
608 		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
609 
610 		if ((status & SB_CTL_ST) == 0)		/* Done */
611 			return;
612 	}
613 
614 	printf("%s: operation failed to complete\n", sc->sc_dev.dv_xname);
615 }
616 
617 static int
glxsb_crypto_swauth(struct cryptop * crp,struct cryptodesc * crd,struct swcr_data * sw,caddr_t buf)618 glxsb_crypto_swauth(struct cryptop *crp, struct cryptodesc *crd,
619     struct swcr_data *sw, caddr_t buf)
620 {
621 	int	type;
622 
623 	if (crp->crp_flags & CRYPTO_F_IMBUF)
624 		type = CRYPTO_BUF_MBUF;
625 	else
626 		type = CRYPTO_BUF_IOV;
627 
628 	return (swcr_authcompute(crp, crd, sw, buf, type));
629 }
630 
631 static int
glxsb_crypto_swenc(struct cryptop * crp,struct cryptodesc * crd,struct swcr_data * sw,caddr_t buf)632 glxsb_crypto_swenc(struct cryptop *crp, struct cryptodesc *crd,
633     struct swcr_data *sw, caddr_t buf)
634 {
635 	int	type;
636 
637 	if (crp->crp_flags & CRYPTO_F_IMBUF)
638 		type = CRYPTO_BUF_MBUF;
639 	else
640 		type = CRYPTO_BUF_IOV;
641 
642 	return (swcr_encdec(crd, sw, buf, type));
643 }
644 
645 static int
glxsb_crypto_encdec(struct cryptop * crp,struct cryptodesc * crd,struct glxsb_session * ses,struct glxsb_softc * sc,caddr_t buf)646 glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd,
647     struct glxsb_session *ses, struct glxsb_softc *sc, caddr_t buf)
648 {
649 	char *op_src, *op_dst;
650 	uint32_t op_psrc, op_pdst;
651 	uint8_t op_iv[SB_AES_BLOCK_SIZE];
652 	int err = 0;
653 	int len, tlen, xlen;
654 	int offset;
655 	uint32_t control;
656 
657 	if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
658 		err = EINVAL;
659 		goto out;
660 	}
661 
662 	/* How much of our buffer will we need to use? */
663 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
664 	    GLXSB_MAX_AES_LEN : crd->crd_len;
665 
666 	/*
667 	 * XXX Check if we can have input == output on Geode LX.
668 	 * XXX In the meantime, use two separate (adjacent) buffers.
669 	 */
670 	op_src = sc->sc_dma.dma_vaddr;
671 	op_dst = sc->sc_dma.dma_vaddr + xlen;
672 
673 	op_psrc = sc->sc_dma.dma_paddr;
674 	op_pdst = sc->sc_dma.dma_paddr + xlen;
675 
676 	if (crd->crd_flags & CRD_F_ENCRYPT) {
677 		control = SB_CTL_ENC;
678 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
679 			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
680 		else
681 			arc4random_buf(op_iv, sizeof(op_iv));
682 
683 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
684 			if (crp->crp_flags & CRYPTO_F_IMBUF)
685 				err = m_copyback((struct mbuf *)crp->crp_buf,
686 				    crd->crd_inject, sizeof(op_iv), op_iv,
687 				    M_NOWAIT);
688 			else if (crp->crp_flags & CRYPTO_F_IOV)
689 				cuio_copyback((struct uio *)crp->crp_buf,
690 				    crd->crd_inject, sizeof(op_iv), op_iv);
691 			else
692 				bcopy(op_iv,
693 				    crp->crp_buf + crd->crd_inject, sizeof(op_iv));
694 			if (err)
695 				goto out;
696 		}
697 	} else {
698 		control = SB_CTL_DEC;
699 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
700 			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
701 		else {
702 			if (crp->crp_flags & CRYPTO_F_IMBUF)
703 				m_copydata((struct mbuf *)crp->crp_buf,
704 				    crd->crd_inject, sizeof(op_iv), op_iv);
705 			else if (crp->crp_flags & CRYPTO_F_IOV)
706 				cuio_copydata((struct uio *)crp->crp_buf,
707 				    crd->crd_inject, sizeof(op_iv), op_iv);
708 			else
709 				bcopy(crp->crp_buf + crd->crd_inject,
710 				    op_iv, sizeof(op_iv));
711 		}
712 	}
713 
714 	offset = 0;
715 	tlen = crd->crd_len;
716 
717 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
718 	while (tlen > 0) {
719 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
720 
721 		if (crp->crp_flags & CRYPTO_F_IMBUF)
722 			m_copydata((struct mbuf *)crp->crp_buf,
723 			    crd->crd_skip + offset, len, op_src);
724 		else if (crp->crp_flags & CRYPTO_F_IOV)
725 			cuio_copydata((struct uio *)crp->crp_buf,
726 			    crd->crd_skip + offset, len, op_src);
727 		else
728 			bcopy(crp->crp_buf + crd->crd_skip + offset, op_src,
729 			    len);
730 
731 		glxsb_dma_pre_op(sc, &sc->sc_dma);
732 
733 		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
734 		    len, op_iv);
735 
736 		glxsb_dma_post_op(sc, &sc->sc_dma);
737 
738 		if (crp->crp_flags & CRYPTO_F_IMBUF)
739 			err = m_copyback((struct mbuf *)crp->crp_buf,
740 			    crd->crd_skip + offset, len, op_dst, M_NOWAIT);
741 		else if (crp->crp_flags & CRYPTO_F_IOV)
742 			cuio_copyback((struct uio *)crp->crp_buf,
743 			    crd->crd_skip + offset, len, op_dst);
744 		else
745 			bcopy(op_dst, crp->crp_buf + crd->crd_skip + offset,
746 			    len);
747 		if (err)
748 			break;
749 
750 		offset += len;
751 		tlen -= len;
752 
753 		if (tlen > 0) {
754 			/* Copy out last block for use as next iteration */
755 			if (crd->crd_flags & CRD_F_ENCRYPT)
756 				bcopy(op_dst + len - sizeof(op_iv), op_iv,
757 				    sizeof(op_iv));
758 			else
759 				bcopy(op_src + len - sizeof(op_iv), op_iv,
760 				    sizeof(op_iv));
761 		}
762 	}
763 
764 	/* All AES processing has now been done. */
765 	explicit_bzero(sc->sc_dma.dma_vaddr, xlen * 2);
766 
767 out:
768 	return (err);
769 }
770 
771 int
glxsb_crypto_process(struct cryptop * crp)772 glxsb_crypto_process(struct cryptop *crp)
773 {
774 	struct glxsb_softc *sc = glxsb_sc;
775 	struct glxsb_session *ses;
776 	struct cryptodesc *crd;
777 	int sesn,err = 0;
778 	int s, i;
779 
780 	s = splnet();
781 
782 	KASSERT(crp->crp_ndesc >= 1);
783 
784 	sesn = GLXSB_SESSION(crp->crp_sid);
785 	if (sesn >= sc->sc_nsessions) {
786 		err = EINVAL;
787 		goto out;
788 	}
789 	ses = &sc->sc_sessions[sesn];
790 	if (ses->ses_used == 0) {
791 		err = EINVAL;
792 		goto out;
793 	}
794 
795 	for (i = 0; i < crp->crp_ndesc; i++) {
796 		crd = &crp->crp_desc[i];
797 		switch (crd->crd_alg) {
798 		case CRYPTO_AES_CBC:
799 			if (ses->ses_swd_enc) {
800 				if ((err = glxsb_crypto_swenc(crp, crd, ses->ses_swd_enc,
801 				    crp->crp_buf)) != 0)
802 					goto out;
803 			} else if ((err = glxsb_crypto_encdec(crp, crd, ses, sc,
804 			    crp->crp_buf)) != 0)
805 				goto out;
806 			break;
807 
808 		case CRYPTO_MD5_HMAC:
809 		case CRYPTO_SHA1_HMAC:
810 		case CRYPTO_RIPEMD160_HMAC:
811 		case CRYPTO_SHA2_256_HMAC:
812 		case CRYPTO_SHA2_384_HMAC:
813 		case CRYPTO_SHA2_512_HMAC:
814 			if ((err = glxsb_crypto_swauth(crp, crd, ses->ses_swd_auth,
815 			    crp->crp_buf)) != 0)
816 				goto out;
817 			break;
818 
819 		default:
820 			err = EINVAL;
821 			goto out;
822 		}
823 	}
824 
825 out:
826 	splx(s);
827 	return (err);
828 }
829 
830 int
glxsb_dma_alloc(struct glxsb_softc * sc,int size,struct glxsb_dma_map * dma)831 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
832 {
833 	int rc;
834 
835 	dma->dma_nsegs = 1;
836 	dma->dma_size = size;
837 
838 	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
839 	    0, BUS_DMA_NOWAIT, &dma->dma_map);
840 	if (rc != 0) {
841 		printf("%s: couldn't create DMA map for %d bytes (%d)\n",
842 		    sc->sc_dev.dv_xname, size, rc);
843 
844 		goto fail0;
845 	}
846 
847 	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
848 	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
849 	if (rc != 0) {
850 		printf("%s: couldn't allocate DMA memory of %d bytes (%d)\n",
851 		    sc->sc_dev.dv_xname, size, rc);
852 
853 		goto fail1;
854 	}
855 
856 	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
857 	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
858 	if (rc != 0) {
859 		printf("%s: couldn't map DMA memory for %d bytes (%d)\n",
860 		    sc->sc_dev.dv_xname, size, rc);
861 
862 		goto fail2;
863 	}
864 
865 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
866 	    size, NULL, BUS_DMA_NOWAIT);
867 	if (rc != 0) {
868 		printf("%s: couldn't load DMA memory for %d bytes (%d)\n",
869 		    sc->sc_dev.dv_xname, size, rc);
870 
871 		goto fail3;
872 	}
873 
874 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
875 
876 	return 0;
877 
878 fail3:
879 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
880 fail2:
881 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
882 fail1:
883 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
884 fail0:
885 	return rc;
886 }
887 
888 void
glxsb_dma_pre_op(struct glxsb_softc * sc,struct glxsb_dma_map * dma)889 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
890 {
891 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
892 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
893 }
894 
895 void
glxsb_dma_post_op(struct glxsb_softc * sc,struct glxsb_dma_map * dma)896 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
897 {
898 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
899 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
900 }
901 
902 void
glxsb_dma_free(struct glxsb_softc * sc,struct glxsb_dma_map * dma)903 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
904 {
905 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
906 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
907 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
908 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
909 }
910 
911 #endif /* CRYPTO */
912