1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the DAGTypeLegalizer class.  This is a private interface
10 // shared between the code that implements the SelectionDAG::LegalizeTypes
11 // method.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
16 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/Support/Compiler.h"
22 
23 namespace llvm {
24 
25 //===----------------------------------------------------------------------===//
26 /// This takes an arbitrary SelectionDAG as input and hacks on it until only
27 /// value types the target machine can handle are left. This involves promoting
28 /// small sizes to large sizes or splitting up large values into small values.
29 ///
30 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
31   const TargetLowering &TLI;
32   SelectionDAG &DAG;
33 public:
34   /// This pass uses the NodeId on the SDNodes to hold information about the
35   /// state of the node. The enum has all the values.
36   enum NodeIdFlags {
37     /// All operands have been processed, so this node is ready to be handled.
38     ReadyToProcess = 0,
39 
40     /// This is a new node, not before seen, that was created in the process of
41     /// legalizing some other node.
42     NewNode = -1,
43 
44     /// This node's ID needs to be set to the number of its unprocessed
45     /// operands.
46     Unanalyzed = -2,
47 
48     /// This is a node that has already been processed.
49     Processed = -3
50 
51     // 1+ - This is a node which has this many unprocessed operands.
52   };
53 private:
54 
55   /// This is a bitvector that contains two bits for each simple value type,
56   /// where the two bits correspond to the LegalizeAction enum from
57   /// TargetLowering. This can be queried with "getTypeAction(VT)".
58   TargetLowering::ValueTypeActionImpl ValueTypeActions;
59 
60   /// Return how we should legalize values of this type.
getTypeAction(EVT VT)61   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
62     return TLI.getTypeAction(*DAG.getContext(), VT);
63   }
64 
65   /// Return true if this type is legal on this target.
isTypeLegal(EVT VT)66   bool isTypeLegal(EVT VT) const {
67     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
68   }
69 
70   /// Return true if this is a simple legal type.
isSimpleLegalType(EVT VT)71   bool isSimpleLegalType(EVT VT) const {
72     return VT.isSimple() && TLI.isTypeLegal(VT);
73   }
74 
getSetCCResultType(EVT VT)75   EVT getSetCCResultType(EVT VT) const {
76     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
77   }
78 
79   /// Pretend all of this node's results are legal.
IgnoreNodeResults(SDNode * N)80   bool IgnoreNodeResults(SDNode *N) const {
81     return N->getOpcode() == ISD::TargetConstant ||
82            N->getOpcode() == ISD::Register;
83   }
84 
85   // Bijection from SDValue to unique id. As each created node gets a
86   // new id we do not need to worry about reuse expunging.  Should we
87   // run out of ids, we can do a one time expensive compactifcation.
88   typedef unsigned TableId;
89 
90   TableId NextValueId = 1;
91 
92   SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
93   SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
94 
95   /// For integer nodes that are below legal width, this map indicates what
96   /// promoted value to use.
97   SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
98 
99   /// For integer nodes that need to be expanded this map indicates which
100   /// operands are the expanded version of the input.
101   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
102 
103   /// For floating-point nodes converted to integers of the same size, this map
104   /// indicates the converted value to use.
105   SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
106 
107   /// For floating-point nodes that have a smaller precision than the smallest
108   /// supported precision, this map indicates what promoted value to use.
109   SmallDenseMap<TableId, TableId, 8> PromotedFloats;
110 
111   /// For floating-point nodes that have a smaller precision than the smallest
112   /// supported precision, this map indicates the converted value to use.
113   SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs;
114 
115   /// For float nodes that need to be expanded this map indicates which operands
116   /// are the expanded version of the input.
117   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
118 
119   /// For nodes that are <1 x ty>, this map indicates the scalar value of type
120   /// 'ty' to use.
121   SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
122 
123   /// For nodes that need to be split this map indicates which operands are the
124   /// expanded version of the input.
125   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
126 
127   /// For vector nodes that need to be widened, indicates the widened value to
128   /// use.
129   SmallDenseMap<TableId, TableId, 8> WidenedVectors;
130 
131   /// For values that have been replaced with another, indicates the replacement
132   /// value to use.
133   SmallDenseMap<TableId, TableId, 8> ReplacedValues;
134 
135   /// This defines a worklist of nodes to process. In order to be pushed onto
136   /// this worklist, all operands of a node must have already been processed.
137   SmallVector<SDNode*, 128> Worklist;
138 
getTableId(SDValue V)139   TableId getTableId(SDValue V) {
140     assert(V.getNode() && "Getting TableId on SDValue()");
141 
142     auto I = ValueToIdMap.find(V);
143     if (I != ValueToIdMap.end()) {
144       // replace if there's been a shift.
145       RemapId(I->second);
146       assert(I->second && "All Ids should be nonzero");
147       return I->second;
148     }
149     // Add if it's not there.
150     ValueToIdMap.insert(std::make_pair(V, NextValueId));
151     IdToValueMap.insert(std::make_pair(NextValueId, V));
152     ++NextValueId;
153     assert(NextValueId != 0 &&
154            "Ran out of Ids. Increase id type size or add compactification");
155     return NextValueId - 1;
156   }
157 
getSDValue(TableId & Id)158   const SDValue &getSDValue(TableId &Id) {
159     RemapId(Id);
160     assert(Id && "TableId should be non-zero");
161     auto I = IdToValueMap.find(Id);
162     assert(I != IdToValueMap.end() && "cannot find Id in map");
163     return I->second;
164   }
165 
166 public:
DAGTypeLegalizer(SelectionDAG & dag)167   explicit DAGTypeLegalizer(SelectionDAG &dag)
168     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
169     ValueTypeActions(TLI.getValueTypeActions()) {
170     static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
171                   "Too many value types for ValueTypeActions to hold!");
172   }
173 
174   /// This is the main entry point for the type legalizer.  This does a
175   /// top-down traversal of the dag, legalizing types as it goes.  Returns
176   /// "true" if it made any changes.
177   bool run();
178 
NoteDeletion(SDNode * Old,SDNode * New)179   void NoteDeletion(SDNode *Old, SDNode *New) {
180     assert(Old != New && "node replaced with self");
181     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
182       TableId NewId = getTableId(SDValue(New, i));
183       TableId OldId = getTableId(SDValue(Old, i));
184 
185       if (OldId != NewId) {
186         ReplacedValues[OldId] = NewId;
187 
188         // Delete Node from tables.  We cannot do this when OldId == NewId,
189         // because NewId can still have table references to it in
190         // ReplacedValues.
191         IdToValueMap.erase(OldId);
192         PromotedIntegers.erase(OldId);
193         ExpandedIntegers.erase(OldId);
194         SoftenedFloats.erase(OldId);
195         PromotedFloats.erase(OldId);
196         SoftPromotedHalfs.erase(OldId);
197         ExpandedFloats.erase(OldId);
198         ScalarizedVectors.erase(OldId);
199         SplitVectors.erase(OldId);
200         WidenedVectors.erase(OldId);
201       }
202 
203       ValueToIdMap.erase(SDValue(Old, i));
204     }
205   }
206 
getDAG()207   SelectionDAG &getDAG() const { return DAG; }
208 
209 private:
210   SDNode *AnalyzeNewNode(SDNode *N);
211   void AnalyzeNewValue(SDValue &Val);
212   void PerformExpensiveChecks();
213   void RemapId(TableId &Id);
214   void RemapValue(SDValue &V);
215 
216   // Common routines.
217   SDValue BitConvertToInteger(SDValue Op);
218   SDValue BitConvertVectorToIntegerVector(SDValue Op);
219   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
220   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
221   bool CustomWidenLowerNode(SDNode *N, EVT VT);
222 
223   /// Replace each result of the given MERGE_VALUES node with the corresponding
224   /// input operand, except for the result 'ResNo', for which the corresponding
225   /// input operand is returned.
226   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
227 
228   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
229 
230   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
231 
232   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
233 
234   void ReplaceValueWith(SDValue From, SDValue To);
235   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
236   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
237                     SDValue &Lo, SDValue &Hi);
238 
239   //===--------------------------------------------------------------------===//
240   // Integer Promotion Support: LegalizeIntegerTypes.cpp
241   //===--------------------------------------------------------------------===//
242 
243   /// Given a processed operand Op which was promoted to a larger integer type,
244   /// this returns the promoted value. The low bits of the promoted value
245   /// corresponding to the original type are exactly equal to Op.
246   /// The extra bits contain rubbish, so the promoted value may need to be zero-
247   /// or sign-extended from the original type before it is usable (the helpers
248   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
249   /// For example, if Op is an i16 and was promoted to an i32, then this method
250   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
251   /// 16 bits of which contain rubbish.
GetPromotedInteger(SDValue Op)252   SDValue GetPromotedInteger(SDValue Op) {
253     TableId &PromotedId = PromotedIntegers[getTableId(Op)];
254     SDValue PromotedOp = getSDValue(PromotedId);
255     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
256     return PromotedOp;
257   }
258   void SetPromotedInteger(SDValue Op, SDValue Result);
259 
260   /// Get a promoted operand and sign extend it to the final size.
SExtPromotedInteger(SDValue Op)261   SDValue SExtPromotedInteger(SDValue Op) {
262     EVT OldVT = Op.getValueType();
263     SDLoc dl(Op);
264     Op = GetPromotedInteger(Op);
265     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
266                        DAG.getValueType(OldVT));
267   }
268 
269   /// Get a promoted operand and zero extend it to the final size.
ZExtPromotedInteger(SDValue Op)270   SDValue ZExtPromotedInteger(SDValue Op) {
271     EVT OldVT = Op.getValueType();
272     SDLoc dl(Op);
273     Op = GetPromotedInteger(Op);
274     return DAG.getZeroExtendInReg(Op, dl, OldVT);
275   }
276 
277   // Get a promoted operand and sign or zero extend it to the final size
278   // (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given
279   // subtarget and type, the choice of sign or zero-extension will be
280   // consistent.
SExtOrZExtPromotedInteger(SDValue Op)281   SDValue SExtOrZExtPromotedInteger(SDValue Op) {
282     EVT OldVT = Op.getValueType();
283     SDLoc DL(Op);
284     Op = GetPromotedInteger(Op);
285     if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType()))
286       return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op,
287                          DAG.getValueType(OldVT));
288     return DAG.getZeroExtendInReg(Op, DL, OldVT);
289   }
290 
291   // Promote the given operand V (vector or scalar) according to N's specific
292   // reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns
293   // the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the
294   // promoted value.
295   SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V);
296 
297   // Integer Result Promotion.
298   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
299   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
300   SDValue PromoteIntRes_AssertSext(SDNode *N);
301   SDValue PromoteIntRes_AssertZext(SDNode *N);
302   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
303   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
304   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
305   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
306   SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N);
307   SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N);
308   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
309   SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N);
310   SDValue PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(SDNode *N);
311   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
312   SDValue PromoteIntRes_ScalarOp(SDNode *N);
313   SDValue PromoteIntRes_STEP_VECTOR(SDNode *N);
314   SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
315   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
316   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
317   SDValue PromoteIntRes_BITCAST(SDNode *N);
318   SDValue PromoteIntRes_BSWAP(SDNode *N);
319   SDValue PromoteIntRes_BITREVERSE(SDNode *N);
320   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
321   SDValue PromoteIntRes_Constant(SDNode *N);
322   SDValue PromoteIntRes_CTLZ(SDNode *N);
323   SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N);
324   SDValue PromoteIntRes_CTTZ(SDNode *N);
325   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
326   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
327   SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N);
328   SDValue PromoteIntRes_FP_TO_FP16_BF16(SDNode *N);
329   SDValue PromoteIntRes_STRICT_FP_TO_FP16_BF16(SDNode *N);
330   SDValue PromoteIntRes_XRINT(SDNode *N);
331   SDValue PromoteIntRes_FREEZE(SDNode *N);
332   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
333   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
334   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
335   SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
336   SDValue PromoteIntRes_Overflow(SDNode *N);
337   SDValue PromoteIntRes_FFREXP(SDNode *N);
338   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
339   SDValue PromoteIntRes_Select(SDNode *N);
340   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
341   SDValue PromoteIntRes_SETCC(SDNode *N);
342   SDValue PromoteIntRes_SHL(SDNode *N);
343   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
344   SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
345   SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
346   SDValue PromoteIntRes_UMINUMAX(SDNode *N);
347   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
348   SDValue PromoteIntRes_SRA(SDNode *N);
349   SDValue PromoteIntRes_SRL(SDNode *N);
350   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
351   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
352   SDValue PromoteIntRes_UADDSUBO_CARRY(SDNode *N, unsigned ResNo);
353   SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo);
354   SDValue PromoteIntRes_UNDEF(SDNode *N);
355   SDValue PromoteIntRes_VAARG(SDNode *N);
356   SDValue PromoteIntRes_VSCALE(SDNode *N);
357   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
358   SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N);
359   SDValue PromoteIntRes_MULFIX(SDNode *N);
360   SDValue PromoteIntRes_DIVFIX(SDNode *N);
361   SDValue PromoteIntRes_GET_ROUNDING(SDNode *N);
362   SDValue PromoteIntRes_VECREDUCE(SDNode *N);
363   SDValue PromoteIntRes_VP_REDUCE(SDNode *N);
364   SDValue PromoteIntRes_ABS(SDNode *N);
365   SDValue PromoteIntRes_Rotate(SDNode *N);
366   SDValue PromoteIntRes_FunnelShift(SDNode *N);
367   SDValue PromoteIntRes_VPFunnelShift(SDNode *N);
368   SDValue PromoteIntRes_IS_FPCLASS(SDNode *N);
369 
370   // Integer Operand Promotion.
371   bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
372   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
373   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
374   SDValue PromoteIntOp_BITCAST(SDNode *N);
375   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
376   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
377   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
378   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
379   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
380   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
381   SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
382   SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N);
383   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
384   SDValue PromoteIntOp_ScalarOp(SDNode *N);
385   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
386   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
387   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
388   SDValue PromoteIntOp_Shift(SDNode *N);
389   SDValue PromoteIntOp_FunnelShift(SDNode *N);
390   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
391   SDValue PromoteIntOp_VP_SIGN_EXTEND(SDNode *N);
392   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
393   SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
394   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
395   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
396   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
397   SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
398   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
399   SDValue PromoteIntOp_VP_ZERO_EXTEND(SDNode *N);
400   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
401   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
402   SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
403   SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
404   SDValue PromoteIntOp_ADDSUBO_CARRY(SDNode *N, unsigned OpNo);
405   SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
406   SDValue PromoteIntOp_FIX(SDNode *N);
407   SDValue PromoteIntOp_ExpOp(SDNode *N);
408   SDValue PromoteIntOp_VECREDUCE(SDNode *N);
409   SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo);
410   SDValue PromoteIntOp_SET_ROUNDING(SDNode *N);
411   SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo);
412   SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
413   SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
414   SDValue PromoteIntOp_VP_SPLICE(SDNode *N, unsigned OpNo);
415 
416   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
417 
418   //===--------------------------------------------------------------------===//
419   // Integer Expansion Support: LegalizeIntegerTypes.cpp
420   //===--------------------------------------------------------------------===//
421 
422   /// Given a processed operand Op which was expanded into two integers of half
423   /// the size, this returns the two halves. The low bits of Op are exactly
424   /// equal to the bits of Lo; the high bits exactly equal Hi.
425   /// For example, if Op is an i64 which was expanded into two i32's, then this
426   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
427   /// Op, and Hi being equal to the upper 32 bits.
428   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
429   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
430 
431   // Integer Result Expansion.
432   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
433   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
434   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
435   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
436   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
437   void ExpandIntRes_ABS               (SDNode *N, SDValue &Lo, SDValue &Hi);
438   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
439   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
440   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
441   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
442   void ExpandIntRes_READCYCLECOUNTER  (SDNode *N, SDValue &Lo, SDValue &Hi);
443   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
444   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
445   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
446   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
447   void ExpandIntRes_GET_ROUNDING      (SDNode *N, SDValue &Lo, SDValue &Hi);
448   void ExpandIntRes_FP_TO_XINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
449   void ExpandIntRes_FP_TO_XINT_SAT    (SDNode *N, SDValue &Lo, SDValue &Hi);
450   void ExpandIntRes_XROUND_XRINT      (SDNode *N, SDValue &Lo, SDValue &Hi);
451 
452   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
453   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
454   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
455   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
456   void ExpandIntRes_UADDSUBO_CARRY    (SDNode *N, SDValue &Lo, SDValue &Hi);
457   void ExpandIntRes_SADDSUBO_CARRY    (SDNode *N, SDValue &Lo, SDValue &Hi);
458   void ExpandIntRes_BITREVERSE        (SDNode *N, SDValue &Lo, SDValue &Hi);
459   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
460   void ExpandIntRes_PARITY            (SDNode *N, SDValue &Lo, SDValue &Hi);
461   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
462   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
463   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
464   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
465   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
466   void ExpandIntRes_ShiftThroughStack (SDNode *N, SDValue &Lo, SDValue &Hi);
467   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
468 
469   void ExpandIntRes_MINMAX            (SDNode *N, SDValue &Lo, SDValue &Hi);
470 
471   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
472   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
473   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
474   void ExpandIntRes_ADDSUBSAT         (SDNode *N, SDValue &Lo, SDValue &Hi);
475   void ExpandIntRes_SHLSAT            (SDNode *N, SDValue &Lo, SDValue &Hi);
476   void ExpandIntRes_MULFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
477   void ExpandIntRes_DIVFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
478 
479   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
480   void ExpandIntRes_VECREDUCE         (SDNode *N, SDValue &Lo, SDValue &Hi);
481 
482   void ExpandIntRes_Rotate            (SDNode *N, SDValue &Lo, SDValue &Hi);
483   void ExpandIntRes_FunnelShift       (SDNode *N, SDValue &Lo, SDValue &Hi);
484 
485   void ExpandIntRes_VSCALE            (SDNode *N, SDValue &Lo, SDValue &Hi);
486 
487   void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
488                              SDValue &Lo, SDValue &Hi);
489   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
490   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
491 
492   // Integer Operand Expansion.
493   bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
494   SDValue ExpandIntOp_BR_CC(SDNode *N);
495   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
496   SDValue ExpandIntOp_SETCC(SDNode *N);
497   SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
498   SDValue ExpandIntOp_Shift(SDNode *N);
499   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
500   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
501   SDValue ExpandIntOp_XINT_TO_FP(SDNode *N);
502   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
503   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
504   SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N);
505   SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo);
506   SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
507   SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
508 
509   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
510                                   ISD::CondCode &CCCode, const SDLoc &dl);
511 
512   //===--------------------------------------------------------------------===//
513   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
514   //===--------------------------------------------------------------------===//
515 
516   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
517   /// integer of the same size, this returns the integer.  The integer contains
518   /// exactly the same bits as Op - only the type changed.  For example, if Op
519   /// is an f32 which was softened to an i32, then this method returns an i32,
520   /// the bits of which coincide with those of Op
GetSoftenedFloat(SDValue Op)521   SDValue GetSoftenedFloat(SDValue Op) {
522     TableId Id = getTableId(Op);
523     auto Iter = SoftenedFloats.find(Id);
524     if (Iter == SoftenedFloats.end()) {
525       assert(isSimpleLegalType(Op.getValueType()) &&
526              "Operand wasn't converted to integer?");
527       return Op;
528     }
529     SDValue SoftenedOp = getSDValue(Iter->second);
530     assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
531     return SoftenedOp;
532   }
533   void SetSoftenedFloat(SDValue Op, SDValue Result);
534 
535   // Convert Float Results to Integer.
536   void SoftenFloatResult(SDNode *N, unsigned ResNo);
537   SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
538   SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
539   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
540   SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N);
541   SDValue SoftenFloatRes_BITCAST(SDNode *N);
542   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
543   SDValue SoftenFloatRes_ConstantFP(SDNode *N);
544   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
545   SDValue SoftenFloatRes_FABS(SDNode *N);
546   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
547   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
548   SDValue SoftenFloatRes_FADD(SDNode *N);
549   SDValue SoftenFloatRes_FCBRT(SDNode *N);
550   SDValue SoftenFloatRes_FCEIL(SDNode *N);
551   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
552   SDValue SoftenFloatRes_FCOS(SDNode *N);
553   SDValue SoftenFloatRes_FDIV(SDNode *N);
554   SDValue SoftenFloatRes_FEXP(SDNode *N);
555   SDValue SoftenFloatRes_FEXP2(SDNode *N);
556   SDValue SoftenFloatRes_FEXP10(SDNode *N);
557   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
558   SDValue SoftenFloatRes_FLOG(SDNode *N);
559   SDValue SoftenFloatRes_FLOG2(SDNode *N);
560   SDValue SoftenFloatRes_FLOG10(SDNode *N);
561   SDValue SoftenFloatRes_FMA(SDNode *N);
562   SDValue SoftenFloatRes_FMUL(SDNode *N);
563   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
564   SDValue SoftenFloatRes_FNEG(SDNode *N);
565   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
566   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
567   SDValue SoftenFloatRes_BF16_TO_FP(SDNode *N);
568   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
569   SDValue SoftenFloatRes_FPOW(SDNode *N);
570   SDValue SoftenFloatRes_ExpOp(SDNode *N);
571   SDValue SoftenFloatRes_FFREXP(SDNode *N);
572   SDValue SoftenFloatRes_FREEZE(SDNode *N);
573   SDValue SoftenFloatRes_FREM(SDNode *N);
574   SDValue SoftenFloatRes_FRINT(SDNode *N);
575   SDValue SoftenFloatRes_FROUND(SDNode *N);
576   SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N);
577   SDValue SoftenFloatRes_FSIN(SDNode *N);
578   SDValue SoftenFloatRes_FSQRT(SDNode *N);
579   SDValue SoftenFloatRes_FSUB(SDNode *N);
580   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
581   SDValue SoftenFloatRes_LOAD(SDNode *N);
582   SDValue SoftenFloatRes_SELECT(SDNode *N);
583   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
584   SDValue SoftenFloatRes_UNDEF(SDNode *N);
585   SDValue SoftenFloatRes_VAARG(SDNode *N);
586   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
587   SDValue SoftenFloatRes_VECREDUCE(SDNode *N);
588   SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N);
589 
590   // Convert Float Operand to Integer.
591   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
592   SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
593   SDValue SoftenFloatOp_BITCAST(SDNode *N);
594   SDValue SoftenFloatOp_BR_CC(SDNode *N);
595   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
596   SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
597   SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N);
598   SDValue SoftenFloatOp_LROUND(SDNode *N);
599   SDValue SoftenFloatOp_LLROUND(SDNode *N);
600   SDValue SoftenFloatOp_LRINT(SDNode *N);
601   SDValue SoftenFloatOp_LLRINT(SDNode *N);
602   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
603   SDValue SoftenFloatOp_SETCC(SDNode *N);
604   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
605   SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
606 
607   //===--------------------------------------------------------------------===//
608   // Float Expansion Support: LegalizeFloatTypes.cpp
609   //===--------------------------------------------------------------------===//
610 
611   /// Given a processed operand Op which was expanded into two floating-point
612   /// values of half the size, this returns the two halves.
613   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
614   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
615   /// into two f64's, then this method returns the two f64's, with Lo being
616   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
617   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
618   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
619 
620   // Float Result Expansion.
621   void ExpandFloatResult(SDNode *N, unsigned ResNo);
622   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
623   void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
624                             SDValue &Lo, SDValue &Hi);
625   void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
626                              SDValue &Lo, SDValue &Hi);
627   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
628   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
629   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
630   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
631   void ExpandFloatRes_FCBRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
632   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
633   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
634   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
635   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
636   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
637   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
638   void ExpandFloatRes_FEXP10    (SDNode *N, SDValue &Lo, SDValue &Hi);
639   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
640   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
641   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
642   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
643   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
644   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
645   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
646   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
647   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
648   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
649   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
650   void ExpandFloatRes_FLDEXP    (SDNode *N, SDValue &Lo, SDValue &Hi);
651   void ExpandFloatRes_FREEZE    (SDNode *N, SDValue &Lo, SDValue &Hi);
652   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
653   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
654   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
655   void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi);
656   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
657   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
658   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
659   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
660   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
661   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
662 
663   // Float Operand Expansion.
664   bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
665   SDValue ExpandFloatOp_BR_CC(SDNode *N);
666   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
667   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
668   SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N);
669   SDValue ExpandFloatOp_LROUND(SDNode *N);
670   SDValue ExpandFloatOp_LLROUND(SDNode *N);
671   SDValue ExpandFloatOp_LRINT(SDNode *N);
672   SDValue ExpandFloatOp_LLRINT(SDNode *N);
673   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
674   SDValue ExpandFloatOp_SETCC(SDNode *N);
675   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
676 
677   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
678                                 ISD::CondCode &CCCode, const SDLoc &dl,
679                                 SDValue &Chain, bool IsSignaling = false);
680 
681   //===--------------------------------------------------------------------===//
682   // Float promotion support: LegalizeFloatTypes.cpp
683   //===--------------------------------------------------------------------===//
684 
GetPromotedFloat(SDValue Op)685   SDValue GetPromotedFloat(SDValue Op) {
686     TableId &PromotedId = PromotedFloats[getTableId(Op)];
687     SDValue PromotedOp = getSDValue(PromotedId);
688     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
689     return PromotedOp;
690   }
691   void SetPromotedFloat(SDValue Op, SDValue Result);
692 
693   void PromoteFloatResult(SDNode *N, unsigned ResNo);
694   SDValue PromoteFloatRes_BITCAST(SDNode *N);
695   SDValue PromoteFloatRes_BinOp(SDNode *N);
696   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
697   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
698   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
699   SDValue PromoteFloatRes_FMAD(SDNode *N);
700   SDValue PromoteFloatRes_ExpOp(SDNode *N);
701   SDValue PromoteFloatRes_FFREXP(SDNode *N);
702   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
703   SDValue PromoteFloatRes_STRICT_FP_ROUND(SDNode *N);
704   SDValue PromoteFloatRes_LOAD(SDNode *N);
705   SDValue PromoteFloatRes_SELECT(SDNode *N);
706   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
707   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
708   SDValue PromoteFloatRes_UNDEF(SDNode *N);
709   SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
710   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
711   SDValue PromoteFloatRes_VECREDUCE(SDNode *N);
712   SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N);
713 
714   bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
715   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
716   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
717   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
718   SDValue PromoteFloatOp_STRICT_FP_EXTEND(SDNode *N, unsigned OpNo);
719   SDValue PromoteFloatOp_UnaryOp(SDNode *N, unsigned OpNo);
720   SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo);
721   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
722   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
723   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
724 
725   //===--------------------------------------------------------------------===//
726   // Half soft promotion support: LegalizeFloatTypes.cpp
727   //===--------------------------------------------------------------------===//
728 
GetSoftPromotedHalf(SDValue Op)729   SDValue GetSoftPromotedHalf(SDValue Op) {
730     TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)];
731     SDValue PromotedOp = getSDValue(PromotedId);
732     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
733     return PromotedOp;
734   }
735   void SetSoftPromotedHalf(SDValue Op, SDValue Result);
736 
737   void SoftPromoteHalfResult(SDNode *N, unsigned ResNo);
738   SDValue SoftPromoteHalfRes_BinOp(SDNode *N);
739   SDValue SoftPromoteHalfRes_BITCAST(SDNode *N);
740   SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N);
741   SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N);
742   SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N);
743   SDValue SoftPromoteHalfRes_FMAD(SDNode *N);
744   SDValue SoftPromoteHalfRes_ExpOp(SDNode *N);
745   SDValue SoftPromoteHalfRes_FFREXP(SDNode *N);
746   SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N);
747   SDValue SoftPromoteHalfRes_LOAD(SDNode *N);
748   SDValue SoftPromoteHalfRes_SELECT(SDNode *N);
749   SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N);
750   SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N);
751   SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N);
752   SDValue SoftPromoteHalfRes_UNDEF(SDNode *N);
753   SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N);
754   SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N);
755 
756   bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo);
757   SDValue SoftPromoteHalfOp_BITCAST(SDNode *N);
758   SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
759   SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N);
760   SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N);
761   SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N);
762   SDValue SoftPromoteHalfOp_SETCC(SDNode *N);
763   SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo);
764   SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo);
765   SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo);
766   SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo);
767 
768   //===--------------------------------------------------------------------===//
769   // Scalarization Support: LegalizeVectorTypes.cpp
770   //===--------------------------------------------------------------------===//
771 
772   /// Given a processed one-element vector Op which was scalarized to its
773   /// element type, this returns the element. For example, if Op is a v1i32,
774   /// Op = < i32 val >, this method returns val, an i32.
GetScalarizedVector(SDValue Op)775   SDValue GetScalarizedVector(SDValue Op) {
776     TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
777     SDValue ScalarizedOp = getSDValue(ScalarizedId);
778     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
779     return ScalarizedOp;
780   }
781   void SetScalarizedVector(SDValue Op, SDValue Result);
782 
783   // Vector Result Scalarization: <1 x ty> -> ty.
784   void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
785   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
786   SDValue ScalarizeVecRes_BinOp(SDNode *N);
787   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
788   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
789   SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
790   SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
791   SDValue ScalarizeVecRes_InregOp(SDNode *N);
792   SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
793 
794   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
795   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
796   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
797   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
798   SDValue ScalarizeVecRes_ExpOp(SDNode *N);
799   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
800   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
801   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
802   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
803   SDValue ScalarizeVecRes_SELECT(SDNode *N);
804   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
805   SDValue ScalarizeVecRes_SETCC(SDNode *N);
806   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
807   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
808   SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N);
809   SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N);
810 
811   SDValue ScalarizeVecRes_FIX(SDNode *N);
812   SDValue ScalarizeVecRes_FFREXP(SDNode *N, unsigned ResNo);
813 
814   // Vector Operand Scalarization: <1 x ty> -> ty.
815   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
816   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
817   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
818   SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
819   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
820   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
821   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
822   SDValue ScalarizeVecOp_VSETCC(SDNode *N);
823   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
824   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
825   SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
826   SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N);
827   SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N);
828   SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
829   SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N);
830 
831   //===--------------------------------------------------------------------===//
832   // Vector Splitting Support: LegalizeVectorTypes.cpp
833   //===--------------------------------------------------------------------===//
834 
835   /// Given a processed vector Op which was split into vectors of half the size,
836   /// this method returns the halves. The first elements of Op coincide with the
837   /// elements of Lo; the remaining elements of Op coincide with the elements of
838   /// Hi: Op is what you would get by concatenating Lo and Hi.
839   /// For example, if Op is a v8i32 that was split into two v4i32's, then this
840   /// method returns the two v4i32's, with Lo corresponding to the first 4
841   /// elements of Op, and Hi to the last 4 elements.
842   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
843   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
844 
845   /// Split mask operator of a VP intrinsic.
846   std::pair<SDValue, SDValue> SplitMask(SDValue Mask);
847 
848   /// Split mask operator of a VP intrinsic in a given location.
849   std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL);
850 
851   // Helper function for incrementing the pointer when splitting
852   // memory operations
853   void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI,
854                         SDValue &Ptr, uint64_t *ScaledOffset = nullptr);
855 
856   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
857   void SplitVectorResult(SDNode *N, unsigned ResNo);
858   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
859   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
860   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
861   void SplitVecRes_FFREXP(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi);
862   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
863   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
864   void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
865   void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
866   void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
867                               SDValue &Lo, SDValue &Hi);
868 
869   void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
870 
871   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
872   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
873   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
874   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
875   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
876   void SplitVecRes_FPOp_MultiType(SDNode *N, SDValue &Lo, SDValue &Hi);
877   void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi);
878   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
879   void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
880   void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi);
881   void SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD, SDValue &Lo,
882                                    SDValue &Hi);
883   void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
884   void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi,
885                           bool SplitSETCC = false);
886   void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi);
887   void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
888   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
889   void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
890   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
891                                   SDValue &Hi);
892   void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi);
893   void SplitVecRes_VECTOR_DEINTERLEAVE(SDNode *N);
894   void SplitVecRes_VECTOR_INTERLEAVE(SDNode *N);
895   void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
896   void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi);
897   void SplitVecRes_VP_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
898 
899   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
900   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
901   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
902   SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
903   SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N);
904   SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo);
905   SDValue SplitVecOp_UnaryOp(SDNode *N);
906   SDValue SplitVecOp_TruncateHelper(SDNode *N);
907 
908   SDValue SplitVecOp_BITCAST(SDNode *N);
909   SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo);
910   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
911   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
912   SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
913   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
914   SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo);
915   SDValue SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N, unsigned OpNo);
916   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
917   SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo);
918   SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo);
919   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
920   SDValue SplitVecOp_VSETCC(SDNode *N);
921   SDValue SplitVecOp_FP_ROUND(SDNode *N);
922   SDValue SplitVecOp_FPOpDifferentTypes(SDNode *N);
923   SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N);
924 
925   //===--------------------------------------------------------------------===//
926   // Vector Widening Support: LegalizeVectorTypes.cpp
927   //===--------------------------------------------------------------------===//
928 
929   /// Given a processed vector Op which was widened into a larger vector, this
930   /// method returns the larger vector. The elements of the returned vector
931   /// consist of the elements of Op followed by elements containing rubbish.
932   /// For example, if Op is a v2i32 that was widened to a v4i32, then this
933   /// method returns a v4i32 for which the first two elements are the same as
934   /// those of Op, while the last two elements contain rubbish.
GetWidenedVector(SDValue Op)935   SDValue GetWidenedVector(SDValue Op) {
936     TableId &WidenedId = WidenedVectors[getTableId(Op)];
937     SDValue WidenedOp = getSDValue(WidenedId);
938     assert(WidenedOp.getNode() && "Operand wasn't widened?");
939     return WidenedOp;
940   }
941   void SetWidenedVector(SDValue Op, SDValue Result);
942 
943   /// Given a mask Mask, returns the larger vector into which Mask was widened.
GetWidenedMask(SDValue Mask,ElementCount EC)944   SDValue GetWidenedMask(SDValue Mask, ElementCount EC) {
945     // For VP operations, we must also widen the mask. Note that the mask type
946     // may not actually need widening, leading it be split along with the VP
947     // operation.
948     // FIXME: This could lead to an infinite split/widen loop. We only handle
949     // the case where the mask needs widening to an identically-sized type as
950     // the vector inputs.
951     assert(getTypeAction(Mask.getValueType()) ==
952                TargetLowering::TypeWidenVector &&
953            "Unable to widen binary VP op");
954     Mask = GetWidenedVector(Mask);
955     assert(Mask.getValueType().getVectorElementCount() == EC &&
956            "Unable to widen binary VP op");
957     return Mask;
958   }
959 
960   // Widen Vector Result Promotion.
961   void WidenVectorResult(SDNode *N, unsigned ResNo);
962   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
963   SDValue WidenVecRes_AssertZext(SDNode* N);
964   SDValue WidenVecRes_BITCAST(SDNode* N);
965   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
966   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
967   SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
968   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
969   SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N);
970   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
971   SDValue WidenVecRes_LOAD(SDNode* N);
972   SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N);
973   SDValue WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N);
974   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
975   SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
976   SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N);
977   SDValue WidenVecRes_ScalarOp(SDNode* N);
978   SDValue WidenVecRes_Select(SDNode *N);
979   SDValue WidenVSELECTMask(SDNode *N);
980   SDValue WidenVecRes_SELECT_CC(SDNode* N);
981   SDValue WidenVecRes_SETCC(SDNode* N);
982   SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
983   SDValue WidenVecRes_UNDEF(SDNode *N);
984   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
985   SDValue WidenVecRes_VECTOR_REVERSE(SDNode *N);
986 
987   SDValue WidenVecRes_Ternary(SDNode *N);
988   SDValue WidenVecRes_Binary(SDNode *N);
989   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
990   SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
991   SDValue WidenVecRes_StrictFP(SDNode *N);
992   SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
993   SDValue WidenVecRes_Convert(SDNode *N);
994   SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
995   SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N);
996   SDValue WidenVecRes_XRINT(SDNode *N);
997   SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
998   SDValue WidenVecRes_IS_FPCLASS(SDNode *N);
999   SDValue WidenVecRes_ExpOp(SDNode *N);
1000   SDValue WidenVecRes_Unary(SDNode *N);
1001   SDValue WidenVecRes_InregOp(SDNode *N);
1002 
1003   // Widen Vector Operand.
1004   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
1005   SDValue WidenVecOp_BITCAST(SDNode *N);
1006   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
1007   SDValue WidenVecOp_EXTEND(SDNode *N);
1008   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
1009   SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N);
1010   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
1011   SDValue WidenVecOp_EXTEND_VECTOR_INREG(SDNode *N);
1012   SDValue WidenVecOp_STORE(SDNode* N);
1013   SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo);
1014   SDValue WidenVecOp_VP_STRIDED_STORE(SDNode *N, unsigned OpNo);
1015   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
1016   SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
1017   SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
1018   SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo);
1019   SDValue WidenVecOp_SETCC(SDNode* N);
1020   SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
1021   SDValue WidenVecOp_VSELECT(SDNode *N);
1022 
1023   SDValue WidenVecOp_Convert(SDNode *N);
1024   SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N);
1025   SDValue WidenVecOp_UnrollVectorOp(SDNode *N);
1026   SDValue WidenVecOp_IS_FPCLASS(SDNode *N);
1027   SDValue WidenVecOp_VECREDUCE(SDNode *N);
1028   SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N);
1029   SDValue WidenVecOp_VP_REDUCE(SDNode *N);
1030   SDValue WidenVecOp_ExpOp(SDNode *N);
1031 
1032   /// Helper function to generate a set of operations to perform
1033   /// a vector operation for a wider type.
1034   ///
1035   SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
1036 
1037   //===--------------------------------------------------------------------===//
1038   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
1039   //===--------------------------------------------------------------------===//
1040 
1041   /// Helper function to generate a set of loads to load a vector with a
1042   /// resulting wider type. It takes:
1043   ///   LdChain: list of chains for the load to be generated.
1044   ///   Ld:      load to widen
1045   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
1046                               LoadSDNode *LD);
1047 
1048   /// Helper function to generate a set of extension loads to load a vector with
1049   /// a resulting wider type. It takes:
1050   ///   LdChain: list of chains for the load to be generated.
1051   ///   Ld:      load to widen
1052   ///   ExtType: extension element type
1053   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
1054                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
1055 
1056   /// Helper function to generate a set of stores to store a widen vector into
1057   /// non-widen memory. Returns true if successful, false otherwise.
1058   ///   StChain: list of chains for the stores we have generated
1059   ///   ST:      store of a widen value
1060   bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
1061 
1062   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
1063   /// input vector must have the same element type as NVT.
1064   /// When FillWithZeroes is "on" the vector will be widened with zeroes.
1065   /// By default, the vector will be widened with undefined values.
1066   SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
1067 
1068   /// Return a mask of vector type MaskVT to replace InMask. Also adjust
1069   /// MaskVT to ToMaskVT if needed with vector extension or truncation.
1070   SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
1071 
1072   //===--------------------------------------------------------------------===//
1073   // Generic Splitting: LegalizeTypesGeneric.cpp
1074   //===--------------------------------------------------------------------===//
1075 
1076   // Legalization methods which only use that the illegal type is split into two
1077   // not necessarily identical types.  As such they can be used for splitting
1078   // vectors and expanding integers and floats.
1079 
GetSplitOp(SDValue Op,SDValue & Lo,SDValue & Hi)1080   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1081     if (Op.getValueType().isVector())
1082       GetSplitVector(Op, Lo, Hi);
1083     else if (Op.getValueType().isInteger())
1084       GetExpandedInteger(Op, Lo, Hi);
1085     else
1086       GetExpandedFloat(Op, Lo, Hi);
1087   }
1088 
1089   /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
1090   /// given value.
1091   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
1092 
1093   // Generic Result Splitting.
1094   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1095                              SDValue &Lo, SDValue &Hi);
1096   void SplitVecRes_AssertZext  (SDNode *N, SDValue &Lo, SDValue &Hi);
1097   void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi);
1098   void SplitRes_Select      (SDNode *N, SDValue &Lo, SDValue &Hi);
1099   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
1100   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
1101   void SplitRes_FREEZE      (SDNode *N, SDValue &Lo, SDValue &Hi);
1102 
1103   //===--------------------------------------------------------------------===//
1104   // Generic Expansion: LegalizeTypesGeneric.cpp
1105   //===--------------------------------------------------------------------===//
1106 
1107   // Legalization methods which only use that the illegal type is split into two
1108   // identical types of half the size, and that the Lo/Hi part is stored first
1109   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
1110   // such they can be used for expanding integers and floats.
1111 
GetExpandedOp(SDValue Op,SDValue & Lo,SDValue & Hi)1112   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1113     if (Op.getValueType().isInteger())
1114       GetExpandedInteger(Op, Lo, Hi);
1115     else
1116       GetExpandedFloat(Op, Lo, Hi);
1117   }
1118 
1119 
1120   /// This function will split the integer \p Op into \p NumElements
1121   /// operations of type \p EltVT and store them in \p Ops.
1122   void IntegerToVector(SDValue Op, unsigned NumElements,
1123                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
1124 
1125   // Generic Result Expansion.
1126   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
1127                                     SDValue &Lo, SDValue &Hi);
1128   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
1129   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
1130   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
1131   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
1132   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
1133   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
1134 
1135   // Generic Operand Expansion.
1136   SDValue ExpandOp_BITCAST          (SDNode *N);
1137   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
1138   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
1139   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
1140   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
1141   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
1142 };
1143 
1144 } // end namespace llvm.
1145 
1146 #endif
1147