1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/PointerIntPair.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31
32 using namespace clang;
33
34 //===----------------------------------------------------------------------===//
35 // Sema Initialization Checking
36 //===----------------------------------------------------------------------===//
37
38 /// Check whether T is compatible with a wide character type (wchar_t,
39 /// char16_t or char32_t).
IsWideCharCompatible(QualType T,ASTContext & Context)40 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
41 if (Context.typesAreCompatible(Context.getWideCharType(), T))
42 return true;
43 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
44 return Context.typesAreCompatible(Context.Char16Ty, T) ||
45 Context.typesAreCompatible(Context.Char32Ty, T);
46 }
47 return false;
48 }
49
50 enum StringInitFailureKind {
51 SIF_None,
52 SIF_NarrowStringIntoWideChar,
53 SIF_WideStringIntoChar,
54 SIF_IncompatWideStringIntoWideChar,
55 SIF_UTF8StringIntoPlainChar,
56 SIF_PlainStringIntoUTF8Char,
57 SIF_Other
58 };
59
60 /// Check whether the array of type AT can be initialized by the Init
61 /// expression by means of string initialization. Returns SIF_None if so,
62 /// otherwise returns a StringInitFailureKind that describes why the
63 /// initialization would not work.
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)64 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
65 ASTContext &Context) {
66 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
67 return SIF_Other;
68
69 // See if this is a string literal or @encode.
70 Init = Init->IgnoreParens();
71
72 // Handle @encode, which is a narrow string.
73 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
74 return SIF_None;
75
76 // Otherwise we can only handle string literals.
77 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
78 if (!SL)
79 return SIF_Other;
80
81 const QualType ElemTy =
82 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
83
84 auto IsCharOrUnsignedChar = [](const QualType &T) {
85 const BuiltinType *BT = dyn_cast<BuiltinType>(T.getTypePtr());
86 return BT && BT->isCharType() && BT->getKind() != BuiltinType::SChar;
87 };
88
89 switch (SL->getKind()) {
90 case StringLiteral::UTF8:
91 // char8_t array can be initialized with a UTF-8 string.
92 // - C++20 [dcl.init.string] (DR)
93 // Additionally, an array of char or unsigned char may be initialized
94 // by a UTF-8 string literal.
95 if (ElemTy->isChar8Type() ||
96 (Context.getLangOpts().Char8 &&
97 IsCharOrUnsignedChar(ElemTy.getCanonicalType())))
98 return SIF_None;
99 [[fallthrough]];
100 case StringLiteral::Ordinary:
101 // char array can be initialized with a narrow string.
102 // Only allow char x[] = "foo"; not char x[] = L"foo";
103 if (ElemTy->isCharType())
104 return (SL->getKind() == StringLiteral::UTF8 &&
105 Context.getLangOpts().Char8)
106 ? SIF_UTF8StringIntoPlainChar
107 : SIF_None;
108 if (ElemTy->isChar8Type())
109 return SIF_PlainStringIntoUTF8Char;
110 if (IsWideCharCompatible(ElemTy, Context))
111 return SIF_NarrowStringIntoWideChar;
112 return SIF_Other;
113 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
114 // "An array with element type compatible with a qualified or unqualified
115 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
116 // string literal with the corresponding encoding prefix (L, u, or U,
117 // respectively), optionally enclosed in braces.
118 case StringLiteral::UTF16:
119 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
120 return SIF_None;
121 if (ElemTy->isCharType() || ElemTy->isChar8Type())
122 return SIF_WideStringIntoChar;
123 if (IsWideCharCompatible(ElemTy, Context))
124 return SIF_IncompatWideStringIntoWideChar;
125 return SIF_Other;
126 case StringLiteral::UTF32:
127 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
128 return SIF_None;
129 if (ElemTy->isCharType() || ElemTy->isChar8Type())
130 return SIF_WideStringIntoChar;
131 if (IsWideCharCompatible(ElemTy, Context))
132 return SIF_IncompatWideStringIntoWideChar;
133 return SIF_Other;
134 case StringLiteral::Wide:
135 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
136 return SIF_None;
137 if (ElemTy->isCharType() || ElemTy->isChar8Type())
138 return SIF_WideStringIntoChar;
139 if (IsWideCharCompatible(ElemTy, Context))
140 return SIF_IncompatWideStringIntoWideChar;
141 return SIF_Other;
142 }
143
144 llvm_unreachable("missed a StringLiteral kind?");
145 }
146
IsStringInit(Expr * init,QualType declType,ASTContext & Context)147 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
148 ASTContext &Context) {
149 const ArrayType *arrayType = Context.getAsArrayType(declType);
150 if (!arrayType)
151 return SIF_Other;
152 return IsStringInit(init, arrayType, Context);
153 }
154
IsStringInit(Expr * Init,const ArrayType * AT)155 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
156 return ::IsStringInit(Init, AT, Context) == SIF_None;
157 }
158
159 /// Update the type of a string literal, including any surrounding parentheses,
160 /// to match the type of the object which it is initializing.
updateStringLiteralType(Expr * E,QualType Ty)161 static void updateStringLiteralType(Expr *E, QualType Ty) {
162 while (true) {
163 E->setType(Ty);
164 E->setValueKind(VK_PRValue);
165 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
166 break;
167 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
168 E = PE->getSubExpr();
169 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
170 assert(UO->getOpcode() == UO_Extension);
171 E = UO->getSubExpr();
172 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
173 E = GSE->getResultExpr();
174 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
175 E = CE->getChosenSubExpr();
176 } else {
177 llvm_unreachable("unexpected expr in string literal init");
178 }
179 }
180 }
181
182 /// Fix a compound literal initializing an array so it's correctly marked
183 /// as an rvalue.
updateGNUCompoundLiteralRValue(Expr * E)184 static void updateGNUCompoundLiteralRValue(Expr *E) {
185 while (true) {
186 E->setValueKind(VK_PRValue);
187 if (isa<CompoundLiteralExpr>(E)) {
188 break;
189 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
190 E = PE->getSubExpr();
191 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
192 assert(UO->getOpcode() == UO_Extension);
193 E = UO->getSubExpr();
194 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
195 E = GSE->getResultExpr();
196 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
197 E = CE->getChosenSubExpr();
198 } else {
199 llvm_unreachable("unexpected expr in array compound literal init");
200 }
201 }
202 }
203
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)204 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
205 Sema &S) {
206 // Get the length of the string as parsed.
207 auto *ConstantArrayTy =
208 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
209 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
210
211 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
212 // C99 6.7.8p14. We have an array of character type with unknown size
213 // being initialized to a string literal.
214 llvm::APInt ConstVal(32, StrLength);
215 // Return a new array type (C99 6.7.8p22).
216 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
217 ConstVal, nullptr,
218 ArrayType::Normal, 0);
219 updateStringLiteralType(Str, DeclT);
220 return;
221 }
222
223 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
224
225 // We have an array of character type with known size. However,
226 // the size may be smaller or larger than the string we are initializing.
227 // FIXME: Avoid truncation for 64-bit length strings.
228 if (S.getLangOpts().CPlusPlus) {
229 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
230 // For Pascal strings it's OK to strip off the terminating null character,
231 // so the example below is valid:
232 //
233 // unsigned char a[2] = "\pa";
234 if (SL->isPascal())
235 StrLength--;
236 }
237
238 // [dcl.init.string]p2
239 if (StrLength > CAT->getSize().getZExtValue())
240 S.Diag(Str->getBeginLoc(),
241 diag::err_initializer_string_for_char_array_too_long)
242 << CAT->getSize().getZExtValue() << StrLength
243 << Str->getSourceRange();
244 } else {
245 // C99 6.7.8p14.
246 if (StrLength-1 > CAT->getSize().getZExtValue())
247 S.Diag(Str->getBeginLoc(),
248 diag::ext_initializer_string_for_char_array_too_long)
249 << Str->getSourceRange();
250 }
251
252 // Set the type to the actual size that we are initializing. If we have
253 // something like:
254 // char x[1] = "foo";
255 // then this will set the string literal's type to char[1].
256 updateStringLiteralType(Str, DeclT);
257 }
258
259 //===----------------------------------------------------------------------===//
260 // Semantic checking for initializer lists.
261 //===----------------------------------------------------------------------===//
262
263 namespace {
264
265 /// Semantic checking for initializer lists.
266 ///
267 /// The InitListChecker class contains a set of routines that each
268 /// handle the initialization of a certain kind of entity, e.g.,
269 /// arrays, vectors, struct/union types, scalars, etc. The
270 /// InitListChecker itself performs a recursive walk of the subobject
271 /// structure of the type to be initialized, while stepping through
272 /// the initializer list one element at a time. The IList and Index
273 /// parameters to each of the Check* routines contain the active
274 /// (syntactic) initializer list and the index into that initializer
275 /// list that represents the current initializer. Each routine is
276 /// responsible for moving that Index forward as it consumes elements.
277 ///
278 /// Each Check* routine also has a StructuredList/StructuredIndex
279 /// arguments, which contains the current "structured" (semantic)
280 /// initializer list and the index into that initializer list where we
281 /// are copying initializers as we map them over to the semantic
282 /// list. Once we have completed our recursive walk of the subobject
283 /// structure, we will have constructed a full semantic initializer
284 /// list.
285 ///
286 /// C99 designators cause changes in the initializer list traversal,
287 /// because they make the initialization "jump" into a specific
288 /// subobject and then continue the initialization from that
289 /// point. CheckDesignatedInitializer() recursively steps into the
290 /// designated subobject and manages backing out the recursion to
291 /// initialize the subobjects after the one designated.
292 ///
293 /// If an initializer list contains any designators, we build a placeholder
294 /// structured list even in 'verify only' mode, so that we can track which
295 /// elements need 'empty' initializtion.
296 class InitListChecker {
297 Sema &SemaRef;
298 bool hadError = false;
299 bool VerifyOnly; // No diagnostics.
300 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
301 bool InOverloadResolution;
302 InitListExpr *FullyStructuredList = nullptr;
303 NoInitExpr *DummyExpr = nullptr;
304
getDummyInit()305 NoInitExpr *getDummyInit() {
306 if (!DummyExpr)
307 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
308 return DummyExpr;
309 }
310
311 void CheckImplicitInitList(const InitializedEntity &Entity,
312 InitListExpr *ParentIList, QualType T,
313 unsigned &Index, InitListExpr *StructuredList,
314 unsigned &StructuredIndex);
315 void CheckExplicitInitList(const InitializedEntity &Entity,
316 InitListExpr *IList, QualType &T,
317 InitListExpr *StructuredList,
318 bool TopLevelObject = false);
319 void CheckListElementTypes(const InitializedEntity &Entity,
320 InitListExpr *IList, QualType &DeclType,
321 bool SubobjectIsDesignatorContext,
322 unsigned &Index,
323 InitListExpr *StructuredList,
324 unsigned &StructuredIndex,
325 bool TopLevelObject = false);
326 void CheckSubElementType(const InitializedEntity &Entity,
327 InitListExpr *IList, QualType ElemType,
328 unsigned &Index,
329 InitListExpr *StructuredList,
330 unsigned &StructuredIndex,
331 bool DirectlyDesignated = false);
332 void CheckComplexType(const InitializedEntity &Entity,
333 InitListExpr *IList, QualType DeclType,
334 unsigned &Index,
335 InitListExpr *StructuredList,
336 unsigned &StructuredIndex);
337 void CheckScalarType(const InitializedEntity &Entity,
338 InitListExpr *IList, QualType DeclType,
339 unsigned &Index,
340 InitListExpr *StructuredList,
341 unsigned &StructuredIndex);
342 void CheckReferenceType(const InitializedEntity &Entity,
343 InitListExpr *IList, QualType DeclType,
344 unsigned &Index,
345 InitListExpr *StructuredList,
346 unsigned &StructuredIndex);
347 void CheckVectorType(const InitializedEntity &Entity,
348 InitListExpr *IList, QualType DeclType, unsigned &Index,
349 InitListExpr *StructuredList,
350 unsigned &StructuredIndex);
351 void CheckStructUnionTypes(const InitializedEntity &Entity,
352 InitListExpr *IList, QualType DeclType,
353 CXXRecordDecl::base_class_range Bases,
354 RecordDecl::field_iterator Field,
355 bool SubobjectIsDesignatorContext, unsigned &Index,
356 InitListExpr *StructuredList,
357 unsigned &StructuredIndex,
358 bool TopLevelObject = false);
359 void CheckArrayType(const InitializedEntity &Entity,
360 InitListExpr *IList, QualType &DeclType,
361 llvm::APSInt elementIndex,
362 bool SubobjectIsDesignatorContext, unsigned &Index,
363 InitListExpr *StructuredList,
364 unsigned &StructuredIndex);
365 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
366 InitListExpr *IList, DesignatedInitExpr *DIE,
367 unsigned DesigIdx,
368 QualType &CurrentObjectType,
369 RecordDecl::field_iterator *NextField,
370 llvm::APSInt *NextElementIndex,
371 unsigned &Index,
372 InitListExpr *StructuredList,
373 unsigned &StructuredIndex,
374 bool FinishSubobjectInit,
375 bool TopLevelObject);
376 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
377 QualType CurrentObjectType,
378 InitListExpr *StructuredList,
379 unsigned StructuredIndex,
380 SourceRange InitRange,
381 bool IsFullyOverwritten = false);
382 void UpdateStructuredListElement(InitListExpr *StructuredList,
383 unsigned &StructuredIndex,
384 Expr *expr);
385 InitListExpr *createInitListExpr(QualType CurrentObjectType,
386 SourceRange InitRange,
387 unsigned ExpectedNumInits);
388 int numArrayElements(QualType DeclType);
389 int numStructUnionElements(QualType DeclType);
390
391 ExprResult PerformEmptyInit(SourceLocation Loc,
392 const InitializedEntity &Entity);
393
394 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
diagnoseInitOverride(Expr * OldInit,SourceRange NewInitRange,bool FullyOverwritten=true)395 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
396 bool FullyOverwritten = true) {
397 // Overriding an initializer via a designator is valid with C99 designated
398 // initializers, but ill-formed with C++20 designated initializers.
399 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
400 ? diag::ext_initializer_overrides
401 : diag::warn_initializer_overrides;
402
403 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
404 // In overload resolution, we have to strictly enforce the rules, and so
405 // don't allow any overriding of prior initializers. This matters for a
406 // case such as:
407 //
408 // union U { int a, b; };
409 // struct S { int a, b; };
410 // void f(U), f(S);
411 //
412 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
413 // consistency, we disallow all overriding of prior initializers in
414 // overload resolution, not only overriding of union members.
415 hadError = true;
416 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
417 // If we'll be keeping around the old initializer but overwriting part of
418 // the object it initialized, and that object is not trivially
419 // destructible, this can leak. Don't allow that, not even as an
420 // extension.
421 //
422 // FIXME: It might be reasonable to allow this in cases where the part of
423 // the initializer that we're overriding has trivial destruction.
424 DiagID = diag::err_initializer_overrides_destructed;
425 } else if (!OldInit->getSourceRange().isValid()) {
426 // We need to check on source range validity because the previous
427 // initializer does not have to be an explicit initializer. e.g.,
428 //
429 // struct P { int a, b; };
430 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
431 //
432 // There is an overwrite taking place because the first braced initializer
433 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
434 //
435 // Such overwrites are harmless, so we don't diagnose them. (Note that in
436 // C++, this cannot be reached unless we've already seen and diagnosed a
437 // different conformance issue, such as a mixture of designated and
438 // non-designated initializers or a multi-level designator.)
439 return;
440 }
441
442 if (!VerifyOnly) {
443 SemaRef.Diag(NewInitRange.getBegin(), DiagID)
444 << NewInitRange << FullyOverwritten << OldInit->getType();
445 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
446 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
447 << OldInit->getSourceRange();
448 }
449 }
450
451 // Explanation on the "FillWithNoInit" mode:
452 //
453 // Assume we have the following definitions (Case#1):
454 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
455 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
456 //
457 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
458 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
459 //
460 // But if we have (Case#2):
461 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
462 //
463 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
464 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
465 //
466 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
467 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
468 // initializers but with special "NoInitExpr" place holders, which tells the
469 // CodeGen not to generate any initializers for these parts.
470 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
471 const InitializedEntity &ParentEntity,
472 InitListExpr *ILE, bool &RequiresSecondPass,
473 bool FillWithNoInit);
474 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
475 const InitializedEntity &ParentEntity,
476 InitListExpr *ILE, bool &RequiresSecondPass,
477 bool FillWithNoInit = false);
478 void FillInEmptyInitializations(const InitializedEntity &Entity,
479 InitListExpr *ILE, bool &RequiresSecondPass,
480 InitListExpr *OuterILE, unsigned OuterIndex,
481 bool FillWithNoInit = false);
482 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
483 Expr *InitExpr, FieldDecl *Field,
484 bool TopLevelObject);
485 void CheckEmptyInitializable(const InitializedEntity &Entity,
486 SourceLocation Loc);
487
488 public:
489 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
490 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
491 bool InOverloadResolution = false);
HadError()492 bool HadError() { return hadError; }
493
494 // Retrieves the fully-structured initializer list used for
495 // semantic analysis and code generation.
getFullyStructuredList() const496 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
497 };
498
499 } // end anonymous namespace
500
PerformEmptyInit(SourceLocation Loc,const InitializedEntity & Entity)501 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
502 const InitializedEntity &Entity) {
503 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
504 true);
505 MultiExprArg SubInit;
506 Expr *InitExpr;
507 InitListExpr DummyInitList(SemaRef.Context, Loc, std::nullopt, Loc);
508
509 // C++ [dcl.init.aggr]p7:
510 // If there are fewer initializer-clauses in the list than there are
511 // members in the aggregate, then each member not explicitly initialized
512 // ...
513 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
514 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
515 if (EmptyInitList) {
516 // C++1y / DR1070:
517 // shall be initialized [...] from an empty initializer list.
518 //
519 // We apply the resolution of this DR to C++11 but not C++98, since C++98
520 // does not have useful semantics for initialization from an init list.
521 // We treat this as copy-initialization, because aggregate initialization
522 // always performs copy-initialization on its elements.
523 //
524 // Only do this if we're initializing a class type, to avoid filling in
525 // the initializer list where possible.
526 InitExpr = VerifyOnly
527 ? &DummyInitList
528 : new (SemaRef.Context)
529 InitListExpr(SemaRef.Context, Loc, std::nullopt, Loc);
530 InitExpr->setType(SemaRef.Context.VoidTy);
531 SubInit = InitExpr;
532 Kind = InitializationKind::CreateCopy(Loc, Loc);
533 } else {
534 // C++03:
535 // shall be value-initialized.
536 }
537
538 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
539 // libstdc++4.6 marks the vector default constructor as explicit in
540 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
541 // stlport does so too. Look for std::__debug for libstdc++, and for
542 // std:: for stlport. This is effectively a compiler-side implementation of
543 // LWG2193.
544 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
545 InitializationSequence::FK_ExplicitConstructor) {
546 OverloadCandidateSet::iterator Best;
547 OverloadingResult O =
548 InitSeq.getFailedCandidateSet()
549 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
550 (void)O;
551 assert(O == OR_Success && "Inconsistent overload resolution");
552 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
553 CXXRecordDecl *R = CtorDecl->getParent();
554
555 if (CtorDecl->getMinRequiredArguments() == 0 &&
556 CtorDecl->isExplicit() && R->getDeclName() &&
557 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
558 bool IsInStd = false;
559 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
560 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
561 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
562 IsInStd = true;
563 }
564
565 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
566 .Cases("basic_string", "deque", "forward_list", true)
567 .Cases("list", "map", "multimap", "multiset", true)
568 .Cases("priority_queue", "queue", "set", "stack", true)
569 .Cases("unordered_map", "unordered_set", "vector", true)
570 .Default(false)) {
571 InitSeq.InitializeFrom(
572 SemaRef, Entity,
573 InitializationKind::CreateValue(Loc, Loc, Loc, true),
574 MultiExprArg(), /*TopLevelOfInitList=*/false,
575 TreatUnavailableAsInvalid);
576 // Emit a warning for this. System header warnings aren't shown
577 // by default, but people working on system headers should see it.
578 if (!VerifyOnly) {
579 SemaRef.Diag(CtorDecl->getLocation(),
580 diag::warn_invalid_initializer_from_system_header);
581 if (Entity.getKind() == InitializedEntity::EK_Member)
582 SemaRef.Diag(Entity.getDecl()->getLocation(),
583 diag::note_used_in_initialization_here);
584 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
585 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
586 }
587 }
588 }
589 }
590 if (!InitSeq) {
591 if (!VerifyOnly) {
592 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
593 if (Entity.getKind() == InitializedEntity::EK_Member)
594 SemaRef.Diag(Entity.getDecl()->getLocation(),
595 diag::note_in_omitted_aggregate_initializer)
596 << /*field*/1 << Entity.getDecl();
597 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
598 bool IsTrailingArrayNewMember =
599 Entity.getParent() &&
600 Entity.getParent()->isVariableLengthArrayNew();
601 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
602 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
603 << Entity.getElementIndex();
604 }
605 }
606 hadError = true;
607 return ExprError();
608 }
609
610 return VerifyOnly ? ExprResult()
611 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
612 }
613
CheckEmptyInitializable(const InitializedEntity & Entity,SourceLocation Loc)614 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
615 SourceLocation Loc) {
616 // If we're building a fully-structured list, we'll check this at the end
617 // once we know which elements are actually initialized. Otherwise, we know
618 // that there are no designators so we can just check now.
619 if (FullyStructuredList)
620 return;
621 PerformEmptyInit(Loc, Entity);
622 }
623
FillInEmptyInitForBase(unsigned Init,const CXXBaseSpecifier & Base,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass,bool FillWithNoInit)624 void InitListChecker::FillInEmptyInitForBase(
625 unsigned Init, const CXXBaseSpecifier &Base,
626 const InitializedEntity &ParentEntity, InitListExpr *ILE,
627 bool &RequiresSecondPass, bool FillWithNoInit) {
628 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
629 SemaRef.Context, &Base, false, &ParentEntity);
630
631 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
632 ExprResult BaseInit = FillWithNoInit
633 ? new (SemaRef.Context) NoInitExpr(Base.getType())
634 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
635 if (BaseInit.isInvalid()) {
636 hadError = true;
637 return;
638 }
639
640 if (!VerifyOnly) {
641 assert(Init < ILE->getNumInits() && "should have been expanded");
642 ILE->setInit(Init, BaseInit.getAs<Expr>());
643 }
644 } else if (InitListExpr *InnerILE =
645 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
646 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
647 ILE, Init, FillWithNoInit);
648 } else if (DesignatedInitUpdateExpr *InnerDIUE =
649 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
650 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
651 RequiresSecondPass, ILE, Init,
652 /*FillWithNoInit =*/true);
653 }
654 }
655
FillInEmptyInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass,bool FillWithNoInit)656 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
657 const InitializedEntity &ParentEntity,
658 InitListExpr *ILE,
659 bool &RequiresSecondPass,
660 bool FillWithNoInit) {
661 SourceLocation Loc = ILE->getEndLoc();
662 unsigned NumInits = ILE->getNumInits();
663 InitializedEntity MemberEntity
664 = InitializedEntity::InitializeMember(Field, &ParentEntity);
665
666 if (Init >= NumInits || !ILE->getInit(Init)) {
667 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
668 if (!RType->getDecl()->isUnion())
669 assert((Init < NumInits || VerifyOnly) &&
670 "This ILE should have been expanded");
671
672 if (FillWithNoInit) {
673 assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
674 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
675 if (Init < NumInits)
676 ILE->setInit(Init, Filler);
677 else
678 ILE->updateInit(SemaRef.Context, Init, Filler);
679 return;
680 }
681 // C++1y [dcl.init.aggr]p7:
682 // If there are fewer initializer-clauses in the list than there are
683 // members in the aggregate, then each member not explicitly initialized
684 // shall be initialized from its brace-or-equal-initializer [...]
685 if (Field->hasInClassInitializer()) {
686 if (VerifyOnly)
687 return;
688
689 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
690 if (DIE.isInvalid()) {
691 hadError = true;
692 return;
693 }
694 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
695 if (Init < NumInits)
696 ILE->setInit(Init, DIE.get());
697 else {
698 ILE->updateInit(SemaRef.Context, Init, DIE.get());
699 RequiresSecondPass = true;
700 }
701 return;
702 }
703
704 if (Field->getType()->isReferenceType()) {
705 if (!VerifyOnly) {
706 // C++ [dcl.init.aggr]p9:
707 // If an incomplete or empty initializer-list leaves a
708 // member of reference type uninitialized, the program is
709 // ill-formed.
710 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
711 << Field->getType()
712 << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm())
713 ->getSourceRange();
714 SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member);
715 }
716 hadError = true;
717 return;
718 }
719
720 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
721 if (MemberInit.isInvalid()) {
722 hadError = true;
723 return;
724 }
725
726 if (hadError || VerifyOnly) {
727 // Do nothing
728 } else if (Init < NumInits) {
729 ILE->setInit(Init, MemberInit.getAs<Expr>());
730 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
731 // Empty initialization requires a constructor call, so
732 // extend the initializer list to include the constructor
733 // call and make a note that we'll need to take another pass
734 // through the initializer list.
735 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
736 RequiresSecondPass = true;
737 }
738 } else if (InitListExpr *InnerILE
739 = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
740 FillInEmptyInitializations(MemberEntity, InnerILE,
741 RequiresSecondPass, ILE, Init, FillWithNoInit);
742 } else if (DesignatedInitUpdateExpr *InnerDIUE =
743 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
744 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
745 RequiresSecondPass, ILE, Init,
746 /*FillWithNoInit =*/true);
747 }
748 }
749
750 /// Recursively replaces NULL values within the given initializer list
751 /// with expressions that perform value-initialization of the
752 /// appropriate type, and finish off the InitListExpr formation.
753 void
FillInEmptyInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass,InitListExpr * OuterILE,unsigned OuterIndex,bool FillWithNoInit)754 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
755 InitListExpr *ILE,
756 bool &RequiresSecondPass,
757 InitListExpr *OuterILE,
758 unsigned OuterIndex,
759 bool FillWithNoInit) {
760 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
761 "Should not have void type");
762
763 // We don't need to do any checks when just filling NoInitExprs; that can't
764 // fail.
765 if (FillWithNoInit && VerifyOnly)
766 return;
767
768 // If this is a nested initializer list, we might have changed its contents
769 // (and therefore some of its properties, such as instantiation-dependence)
770 // while filling it in. Inform the outer initializer list so that its state
771 // can be updated to match.
772 // FIXME: We should fully build the inner initializers before constructing
773 // the outer InitListExpr instead of mutating AST nodes after they have
774 // been used as subexpressions of other nodes.
775 struct UpdateOuterILEWithUpdatedInit {
776 InitListExpr *Outer;
777 unsigned OuterIndex;
778 ~UpdateOuterILEWithUpdatedInit() {
779 if (Outer)
780 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
781 }
782 } UpdateOuterRAII = {OuterILE, OuterIndex};
783
784 // A transparent ILE is not performing aggregate initialization and should
785 // not be filled in.
786 if (ILE->isTransparent())
787 return;
788
789 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
790 const RecordDecl *RDecl = RType->getDecl();
791 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
792 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
793 Entity, ILE, RequiresSecondPass, FillWithNoInit);
794 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
795 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
796 for (auto *Field : RDecl->fields()) {
797 if (Field->hasInClassInitializer()) {
798 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
799 FillWithNoInit);
800 break;
801 }
802 }
803 } else {
804 // The fields beyond ILE->getNumInits() are default initialized, so in
805 // order to leave them uninitialized, the ILE is expanded and the extra
806 // fields are then filled with NoInitExpr.
807 unsigned NumElems = numStructUnionElements(ILE->getType());
808 if (RDecl->hasFlexibleArrayMember())
809 ++NumElems;
810 if (!VerifyOnly && ILE->getNumInits() < NumElems)
811 ILE->resizeInits(SemaRef.Context, NumElems);
812
813 unsigned Init = 0;
814
815 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
816 for (auto &Base : CXXRD->bases()) {
817 if (hadError)
818 return;
819
820 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
821 FillWithNoInit);
822 ++Init;
823 }
824 }
825
826 for (auto *Field : RDecl->fields()) {
827 if (Field->isUnnamedBitfield())
828 continue;
829
830 if (hadError)
831 return;
832
833 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
834 FillWithNoInit);
835 if (hadError)
836 return;
837
838 ++Init;
839
840 // Only look at the first initialization of a union.
841 if (RDecl->isUnion())
842 break;
843 }
844 }
845
846 return;
847 }
848
849 QualType ElementType;
850
851 InitializedEntity ElementEntity = Entity;
852 unsigned NumInits = ILE->getNumInits();
853 unsigned NumElements = NumInits;
854 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
855 ElementType = AType->getElementType();
856 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
857 NumElements = CAType->getSize().getZExtValue();
858 // For an array new with an unknown bound, ask for one additional element
859 // in order to populate the array filler.
860 if (Entity.isVariableLengthArrayNew())
861 ++NumElements;
862 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
863 0, Entity);
864 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
865 ElementType = VType->getElementType();
866 NumElements = VType->getNumElements();
867 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
868 0, Entity);
869 } else
870 ElementType = ILE->getType();
871
872 bool SkipEmptyInitChecks = false;
873 for (unsigned Init = 0; Init != NumElements; ++Init) {
874 if (hadError)
875 return;
876
877 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
878 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
879 ElementEntity.setElementIndex(Init);
880
881 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
882 return;
883
884 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
885 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
886 ILE->setInit(Init, ILE->getArrayFiller());
887 else if (!InitExpr && !ILE->hasArrayFiller()) {
888 // In VerifyOnly mode, there's no point performing empty initialization
889 // more than once.
890 if (SkipEmptyInitChecks)
891 continue;
892
893 Expr *Filler = nullptr;
894
895 if (FillWithNoInit)
896 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
897 else {
898 ExprResult ElementInit =
899 PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
900 if (ElementInit.isInvalid()) {
901 hadError = true;
902 return;
903 }
904
905 Filler = ElementInit.getAs<Expr>();
906 }
907
908 if (hadError) {
909 // Do nothing
910 } else if (VerifyOnly) {
911 SkipEmptyInitChecks = true;
912 } else if (Init < NumInits) {
913 // For arrays, just set the expression used for value-initialization
914 // of the "holes" in the array.
915 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
916 ILE->setArrayFiller(Filler);
917 else
918 ILE->setInit(Init, Filler);
919 } else {
920 // For arrays, just set the expression used for value-initialization
921 // of the rest of elements and exit.
922 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
923 ILE->setArrayFiller(Filler);
924 return;
925 }
926
927 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
928 // Empty initialization requires a constructor call, so
929 // extend the initializer list to include the constructor
930 // call and make a note that we'll need to take another pass
931 // through the initializer list.
932 ILE->updateInit(SemaRef.Context, Init, Filler);
933 RequiresSecondPass = true;
934 }
935 }
936 } else if (InitListExpr *InnerILE
937 = dyn_cast_or_null<InitListExpr>(InitExpr)) {
938 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
939 ILE, Init, FillWithNoInit);
940 } else if (DesignatedInitUpdateExpr *InnerDIUE =
941 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
942 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
943 RequiresSecondPass, ILE, Init,
944 /*FillWithNoInit =*/true);
945 }
946 }
947 }
948
hasAnyDesignatedInits(const InitListExpr * IL)949 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
950 for (const Stmt *Init : *IL)
951 if (Init && isa<DesignatedInitExpr>(Init))
952 return true;
953 return false;
954 }
955
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly,bool TreatUnavailableAsInvalid,bool InOverloadResolution)956 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
957 InitListExpr *IL, QualType &T, bool VerifyOnly,
958 bool TreatUnavailableAsInvalid,
959 bool InOverloadResolution)
960 : SemaRef(S), VerifyOnly(VerifyOnly),
961 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
962 InOverloadResolution(InOverloadResolution) {
963 if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
964 FullyStructuredList =
965 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
966
967 // FIXME: Check that IL isn't already the semantic form of some other
968 // InitListExpr. If it is, we'd create a broken AST.
969 if (!VerifyOnly)
970 FullyStructuredList->setSyntacticForm(IL);
971 }
972
973 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
974 /*TopLevelObject=*/true);
975
976 if (!hadError && FullyStructuredList) {
977 bool RequiresSecondPass = false;
978 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
979 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
980 if (RequiresSecondPass && !hadError)
981 FillInEmptyInitializations(Entity, FullyStructuredList,
982 RequiresSecondPass, nullptr, 0);
983 }
984 if (hadError && FullyStructuredList)
985 FullyStructuredList->markError();
986 }
987
numArrayElements(QualType DeclType)988 int InitListChecker::numArrayElements(QualType DeclType) {
989 // FIXME: use a proper constant
990 int maxElements = 0x7FFFFFFF;
991 if (const ConstantArrayType *CAT =
992 SemaRef.Context.getAsConstantArrayType(DeclType)) {
993 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
994 }
995 return maxElements;
996 }
997
numStructUnionElements(QualType DeclType)998 int InitListChecker::numStructUnionElements(QualType DeclType) {
999 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
1000 int InitializableMembers = 0;
1001 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
1002 InitializableMembers += CXXRD->getNumBases();
1003 for (const auto *Field : structDecl->fields())
1004 if (!Field->isUnnamedBitfield())
1005 ++InitializableMembers;
1006
1007 if (structDecl->isUnion())
1008 return std::min(InitializableMembers, 1);
1009 return InitializableMembers - structDecl->hasFlexibleArrayMember();
1010 }
1011
1012 /// Determine whether Entity is an entity for which it is idiomatic to elide
1013 /// the braces in aggregate initialization.
isIdiomaticBraceElisionEntity(const InitializedEntity & Entity)1014 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1015 // Recursive initialization of the one and only field within an aggregate
1016 // class is considered idiomatic. This case arises in particular for
1017 // initialization of std::array, where the C++ standard suggests the idiom of
1018 //
1019 // std::array<T, N> arr = {1, 2, 3};
1020 //
1021 // (where std::array is an aggregate struct containing a single array field.
1022
1023 if (!Entity.getParent())
1024 return false;
1025
1026 // Allows elide brace initialization for aggregates with empty base.
1027 if (Entity.getKind() == InitializedEntity::EK_Base) {
1028 auto *ParentRD =
1029 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1030 CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
1031 return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
1032 }
1033
1034 // Allow brace elision if the only subobject is a field.
1035 if (Entity.getKind() == InitializedEntity::EK_Member) {
1036 auto *ParentRD =
1037 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1038 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
1039 if (CXXRD->getNumBases()) {
1040 return false;
1041 }
1042 }
1043 auto FieldIt = ParentRD->field_begin();
1044 assert(FieldIt != ParentRD->field_end() &&
1045 "no fields but have initializer for member?");
1046 return ++FieldIt == ParentRD->field_end();
1047 }
1048
1049 return false;
1050 }
1051
1052 /// Check whether the range of the initializer \p ParentIList from element
1053 /// \p Index onwards can be used to initialize an object of type \p T. Update
1054 /// \p Index to indicate how many elements of the list were consumed.
1055 ///
1056 /// This also fills in \p StructuredList, from element \p StructuredIndex
1057 /// onwards, with the fully-braced, desugared form of the initialization.
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1058 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1059 InitListExpr *ParentIList,
1060 QualType T, unsigned &Index,
1061 InitListExpr *StructuredList,
1062 unsigned &StructuredIndex) {
1063 int maxElements = 0;
1064
1065 if (T->isArrayType())
1066 maxElements = numArrayElements(T);
1067 else if (T->isRecordType())
1068 maxElements = numStructUnionElements(T);
1069 else if (T->isVectorType())
1070 maxElements = T->castAs<VectorType>()->getNumElements();
1071 else
1072 llvm_unreachable("CheckImplicitInitList(): Illegal type");
1073
1074 if (maxElements == 0) {
1075 if (!VerifyOnly)
1076 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1077 diag::err_implicit_empty_initializer);
1078 ++Index;
1079 hadError = true;
1080 return;
1081 }
1082
1083 // Build a structured initializer list corresponding to this subobject.
1084 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1085 ParentIList, Index, T, StructuredList, StructuredIndex,
1086 SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1087 ParentIList->getSourceRange().getEnd()));
1088 unsigned StructuredSubobjectInitIndex = 0;
1089
1090 // Check the element types and build the structural subobject.
1091 unsigned StartIndex = Index;
1092 CheckListElementTypes(Entity, ParentIList, T,
1093 /*SubobjectIsDesignatorContext=*/false, Index,
1094 StructuredSubobjectInitList,
1095 StructuredSubobjectInitIndex);
1096
1097 if (StructuredSubobjectInitList) {
1098 StructuredSubobjectInitList->setType(T);
1099
1100 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1101 // Update the structured sub-object initializer so that it's ending
1102 // range corresponds with the end of the last initializer it used.
1103 if (EndIndex < ParentIList->getNumInits() &&
1104 ParentIList->getInit(EndIndex)) {
1105 SourceLocation EndLoc
1106 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1107 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1108 }
1109
1110 // Complain about missing braces.
1111 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1112 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1113 !isIdiomaticBraceElisionEntity(Entity)) {
1114 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1115 diag::warn_missing_braces)
1116 << StructuredSubobjectInitList->getSourceRange()
1117 << FixItHint::CreateInsertion(
1118 StructuredSubobjectInitList->getBeginLoc(), "{")
1119 << FixItHint::CreateInsertion(
1120 SemaRef.getLocForEndOfToken(
1121 StructuredSubobjectInitList->getEndLoc()),
1122 "}");
1123 }
1124
1125 // Warn if this type won't be an aggregate in future versions of C++.
1126 auto *CXXRD = T->getAsCXXRecordDecl();
1127 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1128 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1129 diag::warn_cxx20_compat_aggregate_init_with_ctors)
1130 << StructuredSubobjectInitList->getSourceRange() << T;
1131 }
1132 }
1133 }
1134
1135 /// Warn that \p Entity was of scalar type and was initialized by a
1136 /// single-element braced initializer list.
warnBracedScalarInit(Sema & S,const InitializedEntity & Entity,SourceRange Braces)1137 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1138 SourceRange Braces) {
1139 // Don't warn during template instantiation. If the initialization was
1140 // non-dependent, we warned during the initial parse; otherwise, the
1141 // type might not be scalar in some uses of the template.
1142 if (S.inTemplateInstantiation())
1143 return;
1144
1145 unsigned DiagID = 0;
1146
1147 switch (Entity.getKind()) {
1148 case InitializedEntity::EK_VectorElement:
1149 case InitializedEntity::EK_ComplexElement:
1150 case InitializedEntity::EK_ArrayElement:
1151 case InitializedEntity::EK_Parameter:
1152 case InitializedEntity::EK_Parameter_CF_Audited:
1153 case InitializedEntity::EK_TemplateParameter:
1154 case InitializedEntity::EK_Result:
1155 case InitializedEntity::EK_ParenAggInitMember:
1156 // Extra braces here are suspicious.
1157 DiagID = diag::warn_braces_around_init;
1158 break;
1159
1160 case InitializedEntity::EK_Member:
1161 // Warn on aggregate initialization but not on ctor init list or
1162 // default member initializer.
1163 if (Entity.getParent())
1164 DiagID = diag::warn_braces_around_init;
1165 break;
1166
1167 case InitializedEntity::EK_Variable:
1168 case InitializedEntity::EK_LambdaCapture:
1169 // No warning, might be direct-list-initialization.
1170 // FIXME: Should we warn for copy-list-initialization in these cases?
1171 break;
1172
1173 case InitializedEntity::EK_New:
1174 case InitializedEntity::EK_Temporary:
1175 case InitializedEntity::EK_CompoundLiteralInit:
1176 // No warning, braces are part of the syntax of the underlying construct.
1177 break;
1178
1179 case InitializedEntity::EK_RelatedResult:
1180 // No warning, we already warned when initializing the result.
1181 break;
1182
1183 case InitializedEntity::EK_Exception:
1184 case InitializedEntity::EK_Base:
1185 case InitializedEntity::EK_Delegating:
1186 case InitializedEntity::EK_BlockElement:
1187 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1188 case InitializedEntity::EK_Binding:
1189 case InitializedEntity::EK_StmtExprResult:
1190 llvm_unreachable("unexpected braced scalar init");
1191 }
1192
1193 if (DiagID) {
1194 S.Diag(Braces.getBegin(), DiagID)
1195 << Entity.getType()->isSizelessBuiltinType() << Braces
1196 << FixItHint::CreateRemoval(Braces.getBegin())
1197 << FixItHint::CreateRemoval(Braces.getEnd());
1198 }
1199 }
1200
1201 /// Check whether the initializer \p IList (that was written with explicit
1202 /// braces) can be used to initialize an object of type \p T.
1203 ///
1204 /// This also fills in \p StructuredList with the fully-braced, desugared
1205 /// form of the initialization.
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,InitListExpr * StructuredList,bool TopLevelObject)1206 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1207 InitListExpr *IList, QualType &T,
1208 InitListExpr *StructuredList,
1209 bool TopLevelObject) {
1210 unsigned Index = 0, StructuredIndex = 0;
1211 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1212 Index, StructuredList, StructuredIndex, TopLevelObject);
1213 if (StructuredList) {
1214 QualType ExprTy = T;
1215 if (!ExprTy->isArrayType())
1216 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1217 if (!VerifyOnly)
1218 IList->setType(ExprTy);
1219 StructuredList->setType(ExprTy);
1220 }
1221 if (hadError)
1222 return;
1223
1224 // Don't complain for incomplete types, since we'll get an error elsewhere.
1225 if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1226 // We have leftover initializers
1227 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1228 (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1229 hadError = ExtraInitsIsError;
1230 if (VerifyOnly) {
1231 return;
1232 } else if (StructuredIndex == 1 &&
1233 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1234 SIF_None) {
1235 unsigned DK =
1236 ExtraInitsIsError
1237 ? diag::err_excess_initializers_in_char_array_initializer
1238 : diag::ext_excess_initializers_in_char_array_initializer;
1239 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1240 << IList->getInit(Index)->getSourceRange();
1241 } else if (T->isSizelessBuiltinType()) {
1242 unsigned DK = ExtraInitsIsError
1243 ? diag::err_excess_initializers_for_sizeless_type
1244 : diag::ext_excess_initializers_for_sizeless_type;
1245 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1246 << T << IList->getInit(Index)->getSourceRange();
1247 } else {
1248 int initKind = T->isArrayType() ? 0 :
1249 T->isVectorType() ? 1 :
1250 T->isScalarType() ? 2 :
1251 T->isUnionType() ? 3 :
1252 4;
1253
1254 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1255 : diag::ext_excess_initializers;
1256 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1257 << initKind << IList->getInit(Index)->getSourceRange();
1258 }
1259 }
1260
1261 if (!VerifyOnly) {
1262 if (T->isScalarType() && IList->getNumInits() == 1 &&
1263 !isa<InitListExpr>(IList->getInit(0)))
1264 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1265
1266 // Warn if this is a class type that won't be an aggregate in future
1267 // versions of C++.
1268 auto *CXXRD = T->getAsCXXRecordDecl();
1269 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1270 // Don't warn if there's an equivalent default constructor that would be
1271 // used instead.
1272 bool HasEquivCtor = false;
1273 if (IList->getNumInits() == 0) {
1274 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1275 HasEquivCtor = CD && !CD->isDeleted();
1276 }
1277
1278 if (!HasEquivCtor) {
1279 SemaRef.Diag(IList->getBeginLoc(),
1280 diag::warn_cxx20_compat_aggregate_init_with_ctors)
1281 << IList->getSourceRange() << T;
1282 }
1283 }
1284 }
1285 }
1286
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1287 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1288 InitListExpr *IList,
1289 QualType &DeclType,
1290 bool SubobjectIsDesignatorContext,
1291 unsigned &Index,
1292 InitListExpr *StructuredList,
1293 unsigned &StructuredIndex,
1294 bool TopLevelObject) {
1295 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1296 // Explicitly braced initializer for complex type can be real+imaginary
1297 // parts.
1298 CheckComplexType(Entity, IList, DeclType, Index,
1299 StructuredList, StructuredIndex);
1300 } else if (DeclType->isScalarType()) {
1301 CheckScalarType(Entity, IList, DeclType, Index,
1302 StructuredList, StructuredIndex);
1303 } else if (DeclType->isVectorType()) {
1304 CheckVectorType(Entity, IList, DeclType, Index,
1305 StructuredList, StructuredIndex);
1306 } else if (DeclType->isRecordType()) {
1307 assert(DeclType->isAggregateType() &&
1308 "non-aggregate records should be handed in CheckSubElementType");
1309 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1310 auto Bases =
1311 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1312 CXXRecordDecl::base_class_iterator());
1313 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1314 Bases = CXXRD->bases();
1315 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1316 SubobjectIsDesignatorContext, Index, StructuredList,
1317 StructuredIndex, TopLevelObject);
1318 } else if (DeclType->isArrayType()) {
1319 llvm::APSInt Zero(
1320 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1321 false);
1322 CheckArrayType(Entity, IList, DeclType, Zero,
1323 SubobjectIsDesignatorContext, Index,
1324 StructuredList, StructuredIndex);
1325 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1326 // This type is invalid, issue a diagnostic.
1327 ++Index;
1328 if (!VerifyOnly)
1329 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1330 << DeclType;
1331 hadError = true;
1332 } else if (DeclType->isReferenceType()) {
1333 CheckReferenceType(Entity, IList, DeclType, Index,
1334 StructuredList, StructuredIndex);
1335 } else if (DeclType->isObjCObjectType()) {
1336 if (!VerifyOnly)
1337 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1338 hadError = true;
1339 } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1340 DeclType->isSizelessBuiltinType()) {
1341 // Checks for scalar type are sufficient for these types too.
1342 CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1343 StructuredIndex);
1344 } else {
1345 if (!VerifyOnly)
1346 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1347 << DeclType;
1348 hadError = true;
1349 }
1350 }
1351
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool DirectlyDesignated)1352 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1353 InitListExpr *IList,
1354 QualType ElemType,
1355 unsigned &Index,
1356 InitListExpr *StructuredList,
1357 unsigned &StructuredIndex,
1358 bool DirectlyDesignated) {
1359 Expr *expr = IList->getInit(Index);
1360
1361 if (ElemType->isReferenceType())
1362 return CheckReferenceType(Entity, IList, ElemType, Index,
1363 StructuredList, StructuredIndex);
1364
1365 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1366 if (SubInitList->getNumInits() == 1 &&
1367 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1368 SIF_None) {
1369 // FIXME: It would be more faithful and no less correct to include an
1370 // InitListExpr in the semantic form of the initializer list in this case.
1371 expr = SubInitList->getInit(0);
1372 }
1373 // Nested aggregate initialization and C++ initialization are handled later.
1374 } else if (isa<ImplicitValueInitExpr>(expr)) {
1375 // This happens during template instantiation when we see an InitListExpr
1376 // that we've already checked once.
1377 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1378 "found implicit initialization for the wrong type");
1379 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1380 ++Index;
1381 return;
1382 }
1383
1384 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1385 // C++ [dcl.init.aggr]p2:
1386 // Each member is copy-initialized from the corresponding
1387 // initializer-clause.
1388
1389 // FIXME: Better EqualLoc?
1390 InitializationKind Kind =
1391 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1392
1393 // Vector elements can be initialized from other vectors in which case
1394 // we need initialization entity with a type of a vector (and not a vector
1395 // element!) initializing multiple vector elements.
1396 auto TmpEntity =
1397 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1398 ? InitializedEntity::InitializeTemporary(ElemType)
1399 : Entity;
1400
1401 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1402 /*TopLevelOfInitList*/ true);
1403
1404 // C++14 [dcl.init.aggr]p13:
1405 // If the assignment-expression can initialize a member, the member is
1406 // initialized. Otherwise [...] brace elision is assumed
1407 //
1408 // Brace elision is never performed if the element is not an
1409 // assignment-expression.
1410 if (Seq || isa<InitListExpr>(expr)) {
1411 if (!VerifyOnly) {
1412 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1413 if (Result.isInvalid())
1414 hadError = true;
1415
1416 UpdateStructuredListElement(StructuredList, StructuredIndex,
1417 Result.getAs<Expr>());
1418 } else if (!Seq) {
1419 hadError = true;
1420 } else if (StructuredList) {
1421 UpdateStructuredListElement(StructuredList, StructuredIndex,
1422 getDummyInit());
1423 }
1424 ++Index;
1425 return;
1426 }
1427
1428 // Fall through for subaggregate initialization
1429 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1430 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1431 return CheckScalarType(Entity, IList, ElemType, Index,
1432 StructuredList, StructuredIndex);
1433 } else if (const ArrayType *arrayType =
1434 SemaRef.Context.getAsArrayType(ElemType)) {
1435 // arrayType can be incomplete if we're initializing a flexible
1436 // array member. There's nothing we can do with the completed
1437 // type here, though.
1438
1439 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1440 // FIXME: Should we do this checking in verify-only mode?
1441 if (!VerifyOnly)
1442 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1443 if (StructuredList)
1444 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1445 ++Index;
1446 return;
1447 }
1448
1449 // Fall through for subaggregate initialization.
1450
1451 } else {
1452 assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1453 ElemType->isOpenCLSpecificType()) && "Unexpected type");
1454
1455 // C99 6.7.8p13:
1456 //
1457 // The initializer for a structure or union object that has
1458 // automatic storage duration shall be either an initializer
1459 // list as described below, or a single expression that has
1460 // compatible structure or union type. In the latter case, the
1461 // initial value of the object, including unnamed members, is
1462 // that of the expression.
1463 ExprResult ExprRes = expr;
1464 if (SemaRef.CheckSingleAssignmentConstraints(
1465 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1466 if (ExprRes.isInvalid())
1467 hadError = true;
1468 else {
1469 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1470 if (ExprRes.isInvalid())
1471 hadError = true;
1472 }
1473 UpdateStructuredListElement(StructuredList, StructuredIndex,
1474 ExprRes.getAs<Expr>());
1475 ++Index;
1476 return;
1477 }
1478 ExprRes.get();
1479 // Fall through for subaggregate initialization
1480 }
1481
1482 // C++ [dcl.init.aggr]p12:
1483 //
1484 // [...] Otherwise, if the member is itself a non-empty
1485 // subaggregate, brace elision is assumed and the initializer is
1486 // considered for the initialization of the first member of
1487 // the subaggregate.
1488 // OpenCL vector initializer is handled elsewhere.
1489 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1490 ElemType->isAggregateType()) {
1491 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1492 StructuredIndex);
1493 ++StructuredIndex;
1494
1495 // In C++20, brace elision is not permitted for a designated initializer.
1496 if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1497 if (InOverloadResolution)
1498 hadError = true;
1499 if (!VerifyOnly) {
1500 SemaRef.Diag(expr->getBeginLoc(),
1501 diag::ext_designated_init_brace_elision)
1502 << expr->getSourceRange()
1503 << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1504 << FixItHint::CreateInsertion(
1505 SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1506 }
1507 }
1508 } else {
1509 if (!VerifyOnly) {
1510 // We cannot initialize this element, so let PerformCopyInitialization
1511 // produce the appropriate diagnostic. We already checked that this
1512 // initialization will fail.
1513 ExprResult Copy =
1514 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1515 /*TopLevelOfInitList=*/true);
1516 (void)Copy;
1517 assert(Copy.isInvalid() &&
1518 "expected non-aggregate initialization to fail");
1519 }
1520 hadError = true;
1521 ++Index;
1522 ++StructuredIndex;
1523 }
1524 }
1525
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1526 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1527 InitListExpr *IList, QualType DeclType,
1528 unsigned &Index,
1529 InitListExpr *StructuredList,
1530 unsigned &StructuredIndex) {
1531 assert(Index == 0 && "Index in explicit init list must be zero");
1532
1533 // As an extension, clang supports complex initializers, which initialize
1534 // a complex number component-wise. When an explicit initializer list for
1535 // a complex number contains two initializers, this extension kicks in:
1536 // it expects the initializer list to contain two elements convertible to
1537 // the element type of the complex type. The first element initializes
1538 // the real part, and the second element intitializes the imaginary part.
1539
1540 if (IList->getNumInits() != 2)
1541 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1542 StructuredIndex);
1543
1544 // This is an extension in C. (The builtin _Complex type does not exist
1545 // in the C++ standard.)
1546 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1547 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1548 << IList->getSourceRange();
1549
1550 // Initialize the complex number.
1551 QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1552 InitializedEntity ElementEntity =
1553 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1554
1555 for (unsigned i = 0; i < 2; ++i) {
1556 ElementEntity.setElementIndex(Index);
1557 CheckSubElementType(ElementEntity, IList, elementType, Index,
1558 StructuredList, StructuredIndex);
1559 }
1560 }
1561
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1562 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1563 InitListExpr *IList, QualType DeclType,
1564 unsigned &Index,
1565 InitListExpr *StructuredList,
1566 unsigned &StructuredIndex) {
1567 if (Index >= IList->getNumInits()) {
1568 if (!VerifyOnly) {
1569 if (DeclType->isSizelessBuiltinType())
1570 SemaRef.Diag(IList->getBeginLoc(),
1571 SemaRef.getLangOpts().CPlusPlus11
1572 ? diag::warn_cxx98_compat_empty_sizeless_initializer
1573 : diag::err_empty_sizeless_initializer)
1574 << DeclType << IList->getSourceRange();
1575 else
1576 SemaRef.Diag(IList->getBeginLoc(),
1577 SemaRef.getLangOpts().CPlusPlus11
1578 ? diag::warn_cxx98_compat_empty_scalar_initializer
1579 : diag::err_empty_scalar_initializer)
1580 << IList->getSourceRange();
1581 }
1582 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1583 ++Index;
1584 ++StructuredIndex;
1585 return;
1586 }
1587
1588 Expr *expr = IList->getInit(Index);
1589 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1590 // FIXME: This is invalid, and accepting it causes overload resolution
1591 // to pick the wrong overload in some corner cases.
1592 if (!VerifyOnly)
1593 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1594 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1595
1596 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1597 StructuredIndex);
1598 return;
1599 } else if (isa<DesignatedInitExpr>(expr)) {
1600 if (!VerifyOnly)
1601 SemaRef.Diag(expr->getBeginLoc(),
1602 diag::err_designator_for_scalar_or_sizeless_init)
1603 << DeclType->isSizelessBuiltinType() << DeclType
1604 << expr->getSourceRange();
1605 hadError = true;
1606 ++Index;
1607 ++StructuredIndex;
1608 return;
1609 }
1610
1611 ExprResult Result;
1612 if (VerifyOnly) {
1613 if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1614 Result = getDummyInit();
1615 else
1616 Result = ExprError();
1617 } else {
1618 Result =
1619 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1620 /*TopLevelOfInitList=*/true);
1621 }
1622
1623 Expr *ResultExpr = nullptr;
1624
1625 if (Result.isInvalid())
1626 hadError = true; // types weren't compatible.
1627 else {
1628 ResultExpr = Result.getAs<Expr>();
1629
1630 if (ResultExpr != expr && !VerifyOnly) {
1631 // The type was promoted, update initializer list.
1632 // FIXME: Why are we updating the syntactic init list?
1633 IList->setInit(Index, ResultExpr);
1634 }
1635 }
1636 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1637 ++Index;
1638 }
1639
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1640 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1641 InitListExpr *IList, QualType DeclType,
1642 unsigned &Index,
1643 InitListExpr *StructuredList,
1644 unsigned &StructuredIndex) {
1645 if (Index >= IList->getNumInits()) {
1646 // FIXME: It would be wonderful if we could point at the actual member. In
1647 // general, it would be useful to pass location information down the stack,
1648 // so that we know the location (or decl) of the "current object" being
1649 // initialized.
1650 if (!VerifyOnly)
1651 SemaRef.Diag(IList->getBeginLoc(),
1652 diag::err_init_reference_member_uninitialized)
1653 << DeclType << IList->getSourceRange();
1654 hadError = true;
1655 ++Index;
1656 ++StructuredIndex;
1657 return;
1658 }
1659
1660 Expr *expr = IList->getInit(Index);
1661 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1662 if (!VerifyOnly)
1663 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1664 << DeclType << IList->getSourceRange();
1665 hadError = true;
1666 ++Index;
1667 ++StructuredIndex;
1668 return;
1669 }
1670
1671 ExprResult Result;
1672 if (VerifyOnly) {
1673 if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1674 Result = getDummyInit();
1675 else
1676 Result = ExprError();
1677 } else {
1678 Result =
1679 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1680 /*TopLevelOfInitList=*/true);
1681 }
1682
1683 if (Result.isInvalid())
1684 hadError = true;
1685
1686 expr = Result.getAs<Expr>();
1687 // FIXME: Why are we updating the syntactic init list?
1688 if (!VerifyOnly && expr)
1689 IList->setInit(Index, expr);
1690
1691 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1692 ++Index;
1693 }
1694
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1695 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1696 InitListExpr *IList, QualType DeclType,
1697 unsigned &Index,
1698 InitListExpr *StructuredList,
1699 unsigned &StructuredIndex) {
1700 const VectorType *VT = DeclType->castAs<VectorType>();
1701 unsigned maxElements = VT->getNumElements();
1702 unsigned numEltsInit = 0;
1703 QualType elementType = VT->getElementType();
1704
1705 if (Index >= IList->getNumInits()) {
1706 // Make sure the element type can be value-initialized.
1707 CheckEmptyInitializable(
1708 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1709 IList->getEndLoc());
1710 return;
1711 }
1712
1713 if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) {
1714 // If the initializing element is a vector, try to copy-initialize
1715 // instead of breaking it apart (which is doomed to failure anyway).
1716 Expr *Init = IList->getInit(Index);
1717 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1718 ExprResult Result;
1719 if (VerifyOnly) {
1720 if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1721 Result = getDummyInit();
1722 else
1723 Result = ExprError();
1724 } else {
1725 Result =
1726 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1727 /*TopLevelOfInitList=*/true);
1728 }
1729
1730 Expr *ResultExpr = nullptr;
1731 if (Result.isInvalid())
1732 hadError = true; // types weren't compatible.
1733 else {
1734 ResultExpr = Result.getAs<Expr>();
1735
1736 if (ResultExpr != Init && !VerifyOnly) {
1737 // The type was promoted, update initializer list.
1738 // FIXME: Why are we updating the syntactic init list?
1739 IList->setInit(Index, ResultExpr);
1740 }
1741 }
1742 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1743 ++Index;
1744 return;
1745 }
1746
1747 InitializedEntity ElementEntity =
1748 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1749
1750 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1751 // Don't attempt to go past the end of the init list
1752 if (Index >= IList->getNumInits()) {
1753 CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1754 break;
1755 }
1756
1757 ElementEntity.setElementIndex(Index);
1758 CheckSubElementType(ElementEntity, IList, elementType, Index,
1759 StructuredList, StructuredIndex);
1760 }
1761
1762 if (VerifyOnly)
1763 return;
1764
1765 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1766 const VectorType *T = Entity.getType()->castAs<VectorType>();
1767 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1768 T->getVectorKind() == VectorType::NeonPolyVector)) {
1769 // The ability to use vector initializer lists is a GNU vector extension
1770 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1771 // endian machines it works fine, however on big endian machines it
1772 // exhibits surprising behaviour:
1773 //
1774 // uint32x2_t x = {42, 64};
1775 // return vget_lane_u32(x, 0); // Will return 64.
1776 //
1777 // Because of this, explicitly call out that it is non-portable.
1778 //
1779 SemaRef.Diag(IList->getBeginLoc(),
1780 diag::warn_neon_vector_initializer_non_portable);
1781
1782 const char *typeCode;
1783 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1784
1785 if (elementType->isFloatingType())
1786 typeCode = "f";
1787 else if (elementType->isSignedIntegerType())
1788 typeCode = "s";
1789 else if (elementType->isUnsignedIntegerType())
1790 typeCode = "u";
1791 else
1792 llvm_unreachable("Invalid element type!");
1793
1794 SemaRef.Diag(IList->getBeginLoc(),
1795 SemaRef.Context.getTypeSize(VT) > 64
1796 ? diag::note_neon_vector_initializer_non_portable_q
1797 : diag::note_neon_vector_initializer_non_portable)
1798 << typeCode << typeSize;
1799 }
1800
1801 return;
1802 }
1803
1804 InitializedEntity ElementEntity =
1805 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1806
1807 // OpenCL and HLSL initializers allow vectors to be constructed from vectors.
1808 for (unsigned i = 0; i < maxElements; ++i) {
1809 // Don't attempt to go past the end of the init list
1810 if (Index >= IList->getNumInits())
1811 break;
1812
1813 ElementEntity.setElementIndex(Index);
1814
1815 QualType IType = IList->getInit(Index)->getType();
1816 if (!IType->isVectorType()) {
1817 CheckSubElementType(ElementEntity, IList, elementType, Index,
1818 StructuredList, StructuredIndex);
1819 ++numEltsInit;
1820 } else {
1821 QualType VecType;
1822 const VectorType *IVT = IType->castAs<VectorType>();
1823 unsigned numIElts = IVT->getNumElements();
1824
1825 if (IType->isExtVectorType())
1826 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1827 else
1828 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1829 IVT->getVectorKind());
1830 CheckSubElementType(ElementEntity, IList, VecType, Index,
1831 StructuredList, StructuredIndex);
1832 numEltsInit += numIElts;
1833 }
1834 }
1835
1836 // OpenCL and HLSL require all elements to be initialized.
1837 if (numEltsInit != maxElements) {
1838 if (!VerifyOnly)
1839 SemaRef.Diag(IList->getBeginLoc(),
1840 diag::err_vector_incorrect_num_initializers)
1841 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1842 hadError = true;
1843 }
1844 }
1845
1846 /// Check if the type of a class element has an accessible destructor, and marks
1847 /// it referenced. Returns true if we shouldn't form a reference to the
1848 /// destructor.
1849 ///
1850 /// Aggregate initialization requires a class element's destructor be
1851 /// accessible per 11.6.1 [dcl.init.aggr]:
1852 ///
1853 /// The destructor for each element of class type is potentially invoked
1854 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1855 /// occurs.
checkDestructorReference(QualType ElementType,SourceLocation Loc,Sema & SemaRef)1856 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1857 Sema &SemaRef) {
1858 auto *CXXRD = ElementType->getAsCXXRecordDecl();
1859 if (!CXXRD)
1860 return false;
1861
1862 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1863 SemaRef.CheckDestructorAccess(Loc, Destructor,
1864 SemaRef.PDiag(diag::err_access_dtor_temp)
1865 << ElementType);
1866 SemaRef.MarkFunctionReferenced(Loc, Destructor);
1867 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1868 }
1869
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1870 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1871 InitListExpr *IList, QualType &DeclType,
1872 llvm::APSInt elementIndex,
1873 bool SubobjectIsDesignatorContext,
1874 unsigned &Index,
1875 InitListExpr *StructuredList,
1876 unsigned &StructuredIndex) {
1877 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1878
1879 if (!VerifyOnly) {
1880 if (checkDestructorReference(arrayType->getElementType(),
1881 IList->getEndLoc(), SemaRef)) {
1882 hadError = true;
1883 return;
1884 }
1885 }
1886
1887 // Check for the special-case of initializing an array with a string.
1888 if (Index < IList->getNumInits()) {
1889 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1890 SIF_None) {
1891 // We place the string literal directly into the resulting
1892 // initializer list. This is the only place where the structure
1893 // of the structured initializer list doesn't match exactly,
1894 // because doing so would involve allocating one character
1895 // constant for each string.
1896 // FIXME: Should we do these checks in verify-only mode too?
1897 if (!VerifyOnly)
1898 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1899 if (StructuredList) {
1900 UpdateStructuredListElement(StructuredList, StructuredIndex,
1901 IList->getInit(Index));
1902 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1903 }
1904 ++Index;
1905 return;
1906 }
1907 }
1908 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1909 // Check for VLAs; in standard C it would be possible to check this
1910 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1911 // them in all sorts of strange places).
1912 if (!VerifyOnly)
1913 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1914 diag::err_variable_object_no_init)
1915 << VAT->getSizeExpr()->getSourceRange();
1916 hadError = true;
1917 ++Index;
1918 ++StructuredIndex;
1919 return;
1920 }
1921
1922 // We might know the maximum number of elements in advance.
1923 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1924 elementIndex.isUnsigned());
1925 bool maxElementsKnown = false;
1926 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1927 maxElements = CAT->getSize();
1928 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1929 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1930 maxElementsKnown = true;
1931 }
1932
1933 QualType elementType = arrayType->getElementType();
1934 while (Index < IList->getNumInits()) {
1935 Expr *Init = IList->getInit(Index);
1936 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1937 // If we're not the subobject that matches up with the '{' for
1938 // the designator, we shouldn't be handling the
1939 // designator. Return immediately.
1940 if (!SubobjectIsDesignatorContext)
1941 return;
1942
1943 // Handle this designated initializer. elementIndex will be
1944 // updated to be the next array element we'll initialize.
1945 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1946 DeclType, nullptr, &elementIndex, Index,
1947 StructuredList, StructuredIndex, true,
1948 false)) {
1949 hadError = true;
1950 continue;
1951 }
1952
1953 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1954 maxElements = maxElements.extend(elementIndex.getBitWidth());
1955 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1956 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1957 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1958
1959 // If the array is of incomplete type, keep track of the number of
1960 // elements in the initializer.
1961 if (!maxElementsKnown && elementIndex > maxElements)
1962 maxElements = elementIndex;
1963
1964 continue;
1965 }
1966
1967 // If we know the maximum number of elements, and we've already
1968 // hit it, stop consuming elements in the initializer list.
1969 if (maxElementsKnown && elementIndex == maxElements)
1970 break;
1971
1972 InitializedEntity ElementEntity =
1973 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1974 Entity);
1975 // Check this element.
1976 CheckSubElementType(ElementEntity, IList, elementType, Index,
1977 StructuredList, StructuredIndex);
1978 ++elementIndex;
1979
1980 // If the array is of incomplete type, keep track of the number of
1981 // elements in the initializer.
1982 if (!maxElementsKnown && elementIndex > maxElements)
1983 maxElements = elementIndex;
1984 }
1985 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1986 // If this is an incomplete array type, the actual type needs to
1987 // be calculated here.
1988 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1989 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1990 // Sizing an array implicitly to zero is not allowed by ISO C,
1991 // but is supported by GNU.
1992 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1993 }
1994
1995 DeclType = SemaRef.Context.getConstantArrayType(
1996 elementType, maxElements, nullptr, ArrayType::Normal, 0);
1997 }
1998 if (!hadError) {
1999 // If there are any members of the array that get value-initialized, check
2000 // that is possible. That happens if we know the bound and don't have
2001 // enough elements, or if we're performing an array new with an unknown
2002 // bound.
2003 if ((maxElementsKnown && elementIndex < maxElements) ||
2004 Entity.isVariableLengthArrayNew())
2005 CheckEmptyInitializable(
2006 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
2007 IList->getEndLoc());
2008 }
2009 }
2010
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)2011 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
2012 Expr *InitExpr,
2013 FieldDecl *Field,
2014 bool TopLevelObject) {
2015 // Handle GNU flexible array initializers.
2016 unsigned FlexArrayDiag;
2017 if (isa<InitListExpr>(InitExpr) &&
2018 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
2019 // Empty flexible array init always allowed as an extension
2020 FlexArrayDiag = diag::ext_flexible_array_init;
2021 } else if (!TopLevelObject) {
2022 // Disallow flexible array init on non-top-level object
2023 FlexArrayDiag = diag::err_flexible_array_init;
2024 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2025 // Disallow flexible array init on anything which is not a variable.
2026 FlexArrayDiag = diag::err_flexible_array_init;
2027 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2028 // Disallow flexible array init on local variables.
2029 FlexArrayDiag = diag::err_flexible_array_init;
2030 } else {
2031 // Allow other cases.
2032 FlexArrayDiag = diag::ext_flexible_array_init;
2033 }
2034
2035 if (!VerifyOnly) {
2036 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2037 << InitExpr->getBeginLoc();
2038 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2039 << Field;
2040 }
2041
2042 return FlexArrayDiag != diag::ext_flexible_array_init;
2043 }
2044
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,CXXRecordDecl::base_class_range Bases,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)2045 void InitListChecker::CheckStructUnionTypes(
2046 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2047 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2048 bool SubobjectIsDesignatorContext, unsigned &Index,
2049 InitListExpr *StructuredList, unsigned &StructuredIndex,
2050 bool TopLevelObject) {
2051 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2052
2053 // If the record is invalid, some of it's members are invalid. To avoid
2054 // confusion, we forgo checking the initializer for the entire record.
2055 if (structDecl->isInvalidDecl()) {
2056 // Assume it was supposed to consume a single initializer.
2057 ++Index;
2058 hadError = true;
2059 return;
2060 }
2061
2062 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2063 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2064
2065 if (!VerifyOnly)
2066 for (FieldDecl *FD : RD->fields()) {
2067 QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2068 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2069 hadError = true;
2070 return;
2071 }
2072 }
2073
2074 // If there's a default initializer, use it.
2075 if (isa<CXXRecordDecl>(RD) &&
2076 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2077 if (!StructuredList)
2078 return;
2079 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2080 Field != FieldEnd; ++Field) {
2081 if (Field->hasInClassInitializer()) {
2082 StructuredList->setInitializedFieldInUnion(*Field);
2083 // FIXME: Actually build a CXXDefaultInitExpr?
2084 return;
2085 }
2086 }
2087 }
2088
2089 // Value-initialize the first member of the union that isn't an unnamed
2090 // bitfield.
2091 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2092 Field != FieldEnd; ++Field) {
2093 if (!Field->isUnnamedBitfield()) {
2094 CheckEmptyInitializable(
2095 InitializedEntity::InitializeMember(*Field, &Entity),
2096 IList->getEndLoc());
2097 if (StructuredList)
2098 StructuredList->setInitializedFieldInUnion(*Field);
2099 break;
2100 }
2101 }
2102 return;
2103 }
2104
2105 bool InitializedSomething = false;
2106
2107 // If we have any base classes, they are initialized prior to the fields.
2108 for (auto &Base : Bases) {
2109 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2110
2111 // Designated inits always initialize fields, so if we see one, all
2112 // remaining base classes have no explicit initializer.
2113 if (Init && isa<DesignatedInitExpr>(Init))
2114 Init = nullptr;
2115
2116 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2117 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2118 SemaRef.Context, &Base, false, &Entity);
2119 if (Init) {
2120 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2121 StructuredList, StructuredIndex);
2122 InitializedSomething = true;
2123 } else {
2124 CheckEmptyInitializable(BaseEntity, InitLoc);
2125 }
2126
2127 if (!VerifyOnly)
2128 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2129 hadError = true;
2130 return;
2131 }
2132 }
2133
2134 // If structDecl is a forward declaration, this loop won't do
2135 // anything except look at designated initializers; That's okay,
2136 // because an error should get printed out elsewhere. It might be
2137 // worthwhile to skip over the rest of the initializer, though.
2138 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2139 RecordDecl::field_iterator FieldEnd = RD->field_end();
2140 size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) {
2141 return isa<FieldDecl>(D) || isa<RecordDecl>(D);
2142 });
2143 bool CheckForMissingFields =
2144 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2145 bool HasDesignatedInit = false;
2146
2147 while (Index < IList->getNumInits()) {
2148 Expr *Init = IList->getInit(Index);
2149 SourceLocation InitLoc = Init->getBeginLoc();
2150
2151 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2152 // If we're not the subobject that matches up with the '{' for
2153 // the designator, we shouldn't be handling the
2154 // designator. Return immediately.
2155 if (!SubobjectIsDesignatorContext)
2156 return;
2157
2158 HasDesignatedInit = true;
2159
2160 // Handle this designated initializer. Field will be updated to
2161 // the next field that we'll be initializing.
2162 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2163 DeclType, &Field, nullptr, Index,
2164 StructuredList, StructuredIndex,
2165 true, TopLevelObject))
2166 hadError = true;
2167 else if (!VerifyOnly) {
2168 // Find the field named by the designated initializer.
2169 RecordDecl::field_iterator F = RD->field_begin();
2170 while (std::next(F) != Field)
2171 ++F;
2172 QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2173 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2174 hadError = true;
2175 return;
2176 }
2177 }
2178
2179 InitializedSomething = true;
2180
2181 // Disable check for missing fields when designators are used.
2182 // This matches gcc behaviour.
2183 CheckForMissingFields = false;
2184 continue;
2185 }
2186
2187 // Check if this is an initializer of forms:
2188 //
2189 // struct foo f = {};
2190 // struct foo g = {0};
2191 //
2192 // These are okay for randomized structures. [C99 6.7.8p19]
2193 //
2194 // Also, if there is only one element in the structure, we allow something
2195 // like this, because it's really not randomized in the tranditional sense.
2196 //
2197 // struct foo h = {bar};
2198 auto IsZeroInitializer = [&](const Expr *I) {
2199 if (IList->getNumInits() == 1) {
2200 if (NumRecordDecls == 1)
2201 return true;
2202 if (const auto *IL = dyn_cast<IntegerLiteral>(I))
2203 return IL->getValue().isZero();
2204 }
2205 return false;
2206 };
2207
2208 // Don't allow non-designated initializers on randomized structures.
2209 if (RD->isRandomized() && !IsZeroInitializer(Init)) {
2210 if (!VerifyOnly)
2211 SemaRef.Diag(InitLoc, diag::err_non_designated_init_used);
2212 hadError = true;
2213 break;
2214 }
2215
2216 if (Field == FieldEnd) {
2217 // We've run out of fields. We're done.
2218 break;
2219 }
2220
2221 // We've already initialized a member of a union. We're done.
2222 if (InitializedSomething && DeclType->isUnionType())
2223 break;
2224
2225 // If we've hit the flexible array member at the end, we're done.
2226 if (Field->getType()->isIncompleteArrayType())
2227 break;
2228
2229 if (Field->isUnnamedBitfield()) {
2230 // Don't initialize unnamed bitfields, e.g. "int : 20;"
2231 ++Field;
2232 continue;
2233 }
2234
2235 // Make sure we can use this declaration.
2236 bool InvalidUse;
2237 if (VerifyOnly)
2238 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2239 else
2240 InvalidUse = SemaRef.DiagnoseUseOfDecl(
2241 *Field, IList->getInit(Index)->getBeginLoc());
2242 if (InvalidUse) {
2243 ++Index;
2244 ++Field;
2245 hadError = true;
2246 continue;
2247 }
2248
2249 if (!VerifyOnly) {
2250 QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2251 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2252 hadError = true;
2253 return;
2254 }
2255 }
2256
2257 InitializedEntity MemberEntity =
2258 InitializedEntity::InitializeMember(*Field, &Entity);
2259 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2260 StructuredList, StructuredIndex);
2261 InitializedSomething = true;
2262
2263 if (DeclType->isUnionType() && StructuredList) {
2264 // Initialize the first field within the union.
2265 StructuredList->setInitializedFieldInUnion(*Field);
2266 }
2267
2268 ++Field;
2269 }
2270
2271 // Emit warnings for missing struct field initializers.
2272 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2273 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2274 !DeclType->isUnionType()) {
2275 // It is possible we have one or more unnamed bitfields remaining.
2276 // Find first (if any) named field and emit warning.
2277 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2278 it != end; ++it) {
2279 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2280 SemaRef.Diag(IList->getSourceRange().getEnd(),
2281 diag::warn_missing_field_initializers) << *it;
2282 break;
2283 }
2284 }
2285 }
2286
2287 // Check that any remaining fields can be value-initialized if we're not
2288 // building a structured list. (If we are, we'll check this later.)
2289 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2290 !Field->getType()->isIncompleteArrayType()) {
2291 for (; Field != FieldEnd && !hadError; ++Field) {
2292 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2293 CheckEmptyInitializable(
2294 InitializedEntity::InitializeMember(*Field, &Entity),
2295 IList->getEndLoc());
2296 }
2297 }
2298
2299 // Check that the types of the remaining fields have accessible destructors.
2300 if (!VerifyOnly) {
2301 // If the initializer expression has a designated initializer, check the
2302 // elements for which a designated initializer is not provided too.
2303 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2304 : Field;
2305 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2306 QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2307 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2308 hadError = true;
2309 return;
2310 }
2311 }
2312 }
2313
2314 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2315 Index >= IList->getNumInits())
2316 return;
2317
2318 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2319 TopLevelObject)) {
2320 hadError = true;
2321 ++Index;
2322 return;
2323 }
2324
2325 InitializedEntity MemberEntity =
2326 InitializedEntity::InitializeMember(*Field, &Entity);
2327
2328 if (isa<InitListExpr>(IList->getInit(Index)))
2329 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2330 StructuredList, StructuredIndex);
2331 else
2332 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2333 StructuredList, StructuredIndex);
2334 }
2335
2336 /// Expand a field designator that refers to a member of an
2337 /// anonymous struct or union into a series of field designators that
2338 /// refers to the field within the appropriate subobject.
2339 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)2340 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2341 DesignatedInitExpr *DIE,
2342 unsigned DesigIdx,
2343 IndirectFieldDecl *IndirectField) {
2344 typedef DesignatedInitExpr::Designator Designator;
2345
2346 // Build the replacement designators.
2347 SmallVector<Designator, 4> Replacements;
2348 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2349 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2350 if (PI + 1 == PE)
2351 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2352 DIE->getDesignator(DesigIdx)->getDotLoc(),
2353 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2354 else
2355 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2356 SourceLocation(), SourceLocation()));
2357 assert(isa<FieldDecl>(*PI));
2358 Replacements.back().setField(cast<FieldDecl>(*PI));
2359 }
2360
2361 // Expand the current designator into the set of replacement
2362 // designators, so we have a full subobject path down to where the
2363 // member of the anonymous struct/union is actually stored.
2364 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2365 &Replacements[0] + Replacements.size());
2366 }
2367
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)2368 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2369 DesignatedInitExpr *DIE) {
2370 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2371 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2372 for (unsigned I = 0; I < NumIndexExprs; ++I)
2373 IndexExprs[I] = DIE->getSubExpr(I + 1);
2374 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2375 IndexExprs,
2376 DIE->getEqualOrColonLoc(),
2377 DIE->usesGNUSyntax(), DIE->getInit());
2378 }
2379
2380 namespace {
2381
2382 // Callback to only accept typo corrections that are for field members of
2383 // the given struct or union.
2384 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2385 public:
FieldInitializerValidatorCCC(RecordDecl * RD)2386 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2387 : Record(RD) {}
2388
ValidateCandidate(const TypoCorrection & candidate)2389 bool ValidateCandidate(const TypoCorrection &candidate) override {
2390 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2391 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2392 }
2393
clone()2394 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2395 return std::make_unique<FieldInitializerValidatorCCC>(*this);
2396 }
2397
2398 private:
2399 RecordDecl *Record;
2400 };
2401
2402 } // end anonymous namespace
2403
2404 /// Check the well-formedness of a C99 designated initializer.
2405 ///
2406 /// Determines whether the designated initializer @p DIE, which
2407 /// resides at the given @p Index within the initializer list @p
2408 /// IList, is well-formed for a current object of type @p DeclType
2409 /// (C99 6.7.8). The actual subobject that this designator refers to
2410 /// within the current subobject is returned in either
2411 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2412 ///
2413 /// @param IList The initializer list in which this designated
2414 /// initializer occurs.
2415 ///
2416 /// @param DIE The designated initializer expression.
2417 ///
2418 /// @param DesigIdx The index of the current designator.
2419 ///
2420 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2421 /// into which the designation in @p DIE should refer.
2422 ///
2423 /// @param NextField If non-NULL and the first designator in @p DIE is
2424 /// a field, this will be set to the field declaration corresponding
2425 /// to the field named by the designator. On input, this is expected to be
2426 /// the next field that would be initialized in the absence of designation,
2427 /// if the complete object being initialized is a struct.
2428 ///
2429 /// @param NextElementIndex If non-NULL and the first designator in @p
2430 /// DIE is an array designator or GNU array-range designator, this
2431 /// will be set to the last index initialized by this designator.
2432 ///
2433 /// @param Index Index into @p IList where the designated initializer
2434 /// @p DIE occurs.
2435 ///
2436 /// @param StructuredList The initializer list expression that
2437 /// describes all of the subobject initializers in the order they'll
2438 /// actually be initialized.
2439 ///
2440 /// @returns true if there was an error, false otherwise.
2441 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)2442 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2443 InitListExpr *IList,
2444 DesignatedInitExpr *DIE,
2445 unsigned DesigIdx,
2446 QualType &CurrentObjectType,
2447 RecordDecl::field_iterator *NextField,
2448 llvm::APSInt *NextElementIndex,
2449 unsigned &Index,
2450 InitListExpr *StructuredList,
2451 unsigned &StructuredIndex,
2452 bool FinishSubobjectInit,
2453 bool TopLevelObject) {
2454 if (DesigIdx == DIE->size()) {
2455 // C++20 designated initialization can result in direct-list-initialization
2456 // of the designated subobject. This is the only way that we can end up
2457 // performing direct initialization as part of aggregate initialization, so
2458 // it needs special handling.
2459 if (DIE->isDirectInit()) {
2460 Expr *Init = DIE->getInit();
2461 assert(isa<InitListExpr>(Init) &&
2462 "designator result in direct non-list initialization?");
2463 InitializationKind Kind = InitializationKind::CreateDirectList(
2464 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2465 InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2466 /*TopLevelOfInitList*/ true);
2467 if (StructuredList) {
2468 ExprResult Result = VerifyOnly
2469 ? getDummyInit()
2470 : Seq.Perform(SemaRef, Entity, Kind, Init);
2471 UpdateStructuredListElement(StructuredList, StructuredIndex,
2472 Result.get());
2473 }
2474 ++Index;
2475 return !Seq;
2476 }
2477
2478 // Check the actual initialization for the designated object type.
2479 bool prevHadError = hadError;
2480
2481 // Temporarily remove the designator expression from the
2482 // initializer list that the child calls see, so that we don't try
2483 // to re-process the designator.
2484 unsigned OldIndex = Index;
2485 IList->setInit(OldIndex, DIE->getInit());
2486
2487 CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2488 StructuredIndex, /*DirectlyDesignated=*/true);
2489
2490 // Restore the designated initializer expression in the syntactic
2491 // form of the initializer list.
2492 if (IList->getInit(OldIndex) != DIE->getInit())
2493 DIE->setInit(IList->getInit(OldIndex));
2494 IList->setInit(OldIndex, DIE);
2495
2496 return hadError && !prevHadError;
2497 }
2498
2499 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2500 bool IsFirstDesignator = (DesigIdx == 0);
2501 if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2502 // Determine the structural initializer list that corresponds to the
2503 // current subobject.
2504 if (IsFirstDesignator)
2505 StructuredList = FullyStructuredList;
2506 else {
2507 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2508 StructuredList->getInit(StructuredIndex) : nullptr;
2509 if (!ExistingInit && StructuredList->hasArrayFiller())
2510 ExistingInit = StructuredList->getArrayFiller();
2511
2512 if (!ExistingInit)
2513 StructuredList = getStructuredSubobjectInit(
2514 IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2515 SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2516 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2517 StructuredList = Result;
2518 else {
2519 // We are creating an initializer list that initializes the
2520 // subobjects of the current object, but there was already an
2521 // initialization that completely initialized the current
2522 // subobject, e.g., by a compound literal:
2523 //
2524 // struct X { int a, b; };
2525 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2526 //
2527 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2528 // designated initializer re-initializes only its current object
2529 // subobject [0].b.
2530 diagnoseInitOverride(ExistingInit,
2531 SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2532 /*FullyOverwritten=*/false);
2533
2534 if (!VerifyOnly) {
2535 if (DesignatedInitUpdateExpr *E =
2536 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2537 StructuredList = E->getUpdater();
2538 else {
2539 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2540 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2541 ExistingInit, DIE->getEndLoc());
2542 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2543 StructuredList = DIUE->getUpdater();
2544 }
2545 } else {
2546 // We don't need to track the structured representation of a
2547 // designated init update of an already-fully-initialized object in
2548 // verify-only mode. The only reason we would need the structure is
2549 // to determine where the uninitialized "holes" are, and in this
2550 // case, we know there aren't any and we can't introduce any.
2551 StructuredList = nullptr;
2552 }
2553 }
2554 }
2555 }
2556
2557 if (D->isFieldDesignator()) {
2558 // C99 6.7.8p7:
2559 //
2560 // If a designator has the form
2561 //
2562 // . identifier
2563 //
2564 // then the current object (defined below) shall have
2565 // structure or union type and the identifier shall be the
2566 // name of a member of that type.
2567 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2568 if (!RT) {
2569 SourceLocation Loc = D->getDotLoc();
2570 if (Loc.isInvalid())
2571 Loc = D->getFieldLoc();
2572 if (!VerifyOnly)
2573 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2574 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2575 ++Index;
2576 return true;
2577 }
2578
2579 FieldDecl *KnownField = D->getField();
2580 if (!KnownField) {
2581 IdentifierInfo *FieldName = D->getFieldName();
2582 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2583 for (NamedDecl *ND : Lookup) {
2584 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2585 KnownField = FD;
2586 break;
2587 }
2588 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2589 // In verify mode, don't modify the original.
2590 if (VerifyOnly)
2591 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2592 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2593 D = DIE->getDesignator(DesigIdx);
2594 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2595 break;
2596 }
2597 }
2598 if (!KnownField) {
2599 if (VerifyOnly) {
2600 ++Index;
2601 return true; // No typo correction when just trying this out.
2602 }
2603
2604 // Name lookup found something, but it wasn't a field.
2605 if (!Lookup.empty()) {
2606 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2607 << FieldName;
2608 SemaRef.Diag(Lookup.front()->getLocation(),
2609 diag::note_field_designator_found);
2610 ++Index;
2611 return true;
2612 }
2613
2614 // Name lookup didn't find anything.
2615 // Determine whether this was a typo for another field name.
2616 FieldInitializerValidatorCCC CCC(RT->getDecl());
2617 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2618 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2619 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2620 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2621 SemaRef.diagnoseTypo(
2622 Corrected,
2623 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2624 << FieldName << CurrentObjectType);
2625 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2626 hadError = true;
2627 } else {
2628 // Typo correction didn't find anything.
2629 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2630 << FieldName << CurrentObjectType;
2631 ++Index;
2632 return true;
2633 }
2634 }
2635 }
2636
2637 unsigned NumBases = 0;
2638 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2639 NumBases = CXXRD->getNumBases();
2640
2641 unsigned FieldIndex = NumBases;
2642
2643 for (auto *FI : RT->getDecl()->fields()) {
2644 if (FI->isUnnamedBitfield())
2645 continue;
2646 if (declaresSameEntity(KnownField, FI)) {
2647 KnownField = FI;
2648 break;
2649 }
2650 ++FieldIndex;
2651 }
2652
2653 RecordDecl::field_iterator Field =
2654 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2655
2656 // All of the fields of a union are located at the same place in
2657 // the initializer list.
2658 if (RT->getDecl()->isUnion()) {
2659 FieldIndex = 0;
2660 if (StructuredList) {
2661 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2662 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2663 assert(StructuredList->getNumInits() == 1
2664 && "A union should never have more than one initializer!");
2665
2666 Expr *ExistingInit = StructuredList->getInit(0);
2667 if (ExistingInit) {
2668 // We're about to throw away an initializer, emit warning.
2669 diagnoseInitOverride(
2670 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2671 }
2672
2673 // remove existing initializer
2674 StructuredList->resizeInits(SemaRef.Context, 0);
2675 StructuredList->setInitializedFieldInUnion(nullptr);
2676 }
2677
2678 StructuredList->setInitializedFieldInUnion(*Field);
2679 }
2680 }
2681
2682 // Make sure we can use this declaration.
2683 bool InvalidUse;
2684 if (VerifyOnly)
2685 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2686 else
2687 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2688 if (InvalidUse) {
2689 ++Index;
2690 return true;
2691 }
2692
2693 // C++20 [dcl.init.list]p3:
2694 // The ordered identifiers in the designators of the designated-
2695 // initializer-list shall form a subsequence of the ordered identifiers
2696 // in the direct non-static data members of T.
2697 //
2698 // Note that this is not a condition on forming the aggregate
2699 // initialization, only on actually performing initialization,
2700 // so it is not checked in VerifyOnly mode.
2701 //
2702 // FIXME: This is the only reordering diagnostic we produce, and it only
2703 // catches cases where we have a top-level field designator that jumps
2704 // backwards. This is the only such case that is reachable in an
2705 // otherwise-valid C++20 program, so is the only case that's required for
2706 // conformance, but for consistency, we should diagnose all the other
2707 // cases where a designator takes us backwards too.
2708 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2709 NextField &&
2710 (*NextField == RT->getDecl()->field_end() ||
2711 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2712 // Find the field that we just initialized.
2713 FieldDecl *PrevField = nullptr;
2714 for (auto FI = RT->getDecl()->field_begin();
2715 FI != RT->getDecl()->field_end(); ++FI) {
2716 if (FI->isUnnamedBitfield())
2717 continue;
2718 if (*NextField != RT->getDecl()->field_end() &&
2719 declaresSameEntity(*FI, **NextField))
2720 break;
2721 PrevField = *FI;
2722 }
2723
2724 if (PrevField &&
2725 PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2726 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2727 << KnownField << PrevField << DIE->getSourceRange();
2728
2729 unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2730 if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2731 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2732 SemaRef.Diag(PrevInit->getBeginLoc(),
2733 diag::note_previous_field_init)
2734 << PrevField << PrevInit->getSourceRange();
2735 }
2736 }
2737 }
2738 }
2739
2740
2741 // Update the designator with the field declaration.
2742 if (!VerifyOnly)
2743 D->setField(*Field);
2744
2745 // Make sure that our non-designated initializer list has space
2746 // for a subobject corresponding to this field.
2747 if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2748 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2749
2750 // This designator names a flexible array member.
2751 if (Field->getType()->isIncompleteArrayType()) {
2752 bool Invalid = false;
2753 if ((DesigIdx + 1) != DIE->size()) {
2754 // We can't designate an object within the flexible array
2755 // member (because GCC doesn't allow it).
2756 if (!VerifyOnly) {
2757 DesignatedInitExpr::Designator *NextD
2758 = DIE->getDesignator(DesigIdx + 1);
2759 SemaRef.Diag(NextD->getBeginLoc(),
2760 diag::err_designator_into_flexible_array_member)
2761 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2762 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2763 << *Field;
2764 }
2765 Invalid = true;
2766 }
2767
2768 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2769 !isa<StringLiteral>(DIE->getInit())) {
2770 // The initializer is not an initializer list.
2771 if (!VerifyOnly) {
2772 SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2773 diag::err_flexible_array_init_needs_braces)
2774 << DIE->getInit()->getSourceRange();
2775 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2776 << *Field;
2777 }
2778 Invalid = true;
2779 }
2780
2781 // Check GNU flexible array initializer.
2782 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2783 TopLevelObject))
2784 Invalid = true;
2785
2786 if (Invalid) {
2787 ++Index;
2788 return true;
2789 }
2790
2791 // Initialize the array.
2792 bool prevHadError = hadError;
2793 unsigned newStructuredIndex = FieldIndex;
2794 unsigned OldIndex = Index;
2795 IList->setInit(Index, DIE->getInit());
2796
2797 InitializedEntity MemberEntity =
2798 InitializedEntity::InitializeMember(*Field, &Entity);
2799 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2800 StructuredList, newStructuredIndex);
2801
2802 IList->setInit(OldIndex, DIE);
2803 if (hadError && !prevHadError) {
2804 ++Field;
2805 ++FieldIndex;
2806 if (NextField)
2807 *NextField = Field;
2808 StructuredIndex = FieldIndex;
2809 return true;
2810 }
2811 } else {
2812 // Recurse to check later designated subobjects.
2813 QualType FieldType = Field->getType();
2814 unsigned newStructuredIndex = FieldIndex;
2815
2816 InitializedEntity MemberEntity =
2817 InitializedEntity::InitializeMember(*Field, &Entity);
2818 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2819 FieldType, nullptr, nullptr, Index,
2820 StructuredList, newStructuredIndex,
2821 FinishSubobjectInit, false))
2822 return true;
2823 }
2824
2825 // Find the position of the next field to be initialized in this
2826 // subobject.
2827 ++Field;
2828 ++FieldIndex;
2829
2830 // If this the first designator, our caller will continue checking
2831 // the rest of this struct/class/union subobject.
2832 if (IsFirstDesignator) {
2833 if (NextField)
2834 *NextField = Field;
2835 StructuredIndex = FieldIndex;
2836 return false;
2837 }
2838
2839 if (!FinishSubobjectInit)
2840 return false;
2841
2842 // We've already initialized something in the union; we're done.
2843 if (RT->getDecl()->isUnion())
2844 return hadError;
2845
2846 // Check the remaining fields within this class/struct/union subobject.
2847 bool prevHadError = hadError;
2848
2849 auto NoBases =
2850 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2851 CXXRecordDecl::base_class_iterator());
2852 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2853 false, Index, StructuredList, FieldIndex);
2854 return hadError && !prevHadError;
2855 }
2856
2857 // C99 6.7.8p6:
2858 //
2859 // If a designator has the form
2860 //
2861 // [ constant-expression ]
2862 //
2863 // then the current object (defined below) shall have array
2864 // type and the expression shall be an integer constant
2865 // expression. If the array is of unknown size, any
2866 // nonnegative value is valid.
2867 //
2868 // Additionally, cope with the GNU extension that permits
2869 // designators of the form
2870 //
2871 // [ constant-expression ... constant-expression ]
2872 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2873 if (!AT) {
2874 if (!VerifyOnly)
2875 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2876 << CurrentObjectType;
2877 ++Index;
2878 return true;
2879 }
2880
2881 Expr *IndexExpr = nullptr;
2882 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2883 if (D->isArrayDesignator()) {
2884 IndexExpr = DIE->getArrayIndex(*D);
2885 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2886 DesignatedEndIndex = DesignatedStartIndex;
2887 } else {
2888 assert(D->isArrayRangeDesignator() && "Need array-range designator");
2889
2890 DesignatedStartIndex =
2891 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2892 DesignatedEndIndex =
2893 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2894 IndexExpr = DIE->getArrayRangeEnd(*D);
2895
2896 // Codegen can't handle evaluating array range designators that have side
2897 // effects, because we replicate the AST value for each initialized element.
2898 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2899 // elements with something that has a side effect, so codegen can emit an
2900 // "error unsupported" error instead of miscompiling the app.
2901 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2902 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2903 FullyStructuredList->sawArrayRangeDesignator();
2904 }
2905
2906 if (isa<ConstantArrayType>(AT)) {
2907 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2908 DesignatedStartIndex
2909 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2910 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2911 DesignatedEndIndex
2912 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2913 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2914 if (DesignatedEndIndex >= MaxElements) {
2915 if (!VerifyOnly)
2916 SemaRef.Diag(IndexExpr->getBeginLoc(),
2917 diag::err_array_designator_too_large)
2918 << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10)
2919 << IndexExpr->getSourceRange();
2920 ++Index;
2921 return true;
2922 }
2923 } else {
2924 unsigned DesignatedIndexBitWidth =
2925 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2926 DesignatedStartIndex =
2927 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2928 DesignatedEndIndex =
2929 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2930 DesignatedStartIndex.setIsUnsigned(true);
2931 DesignatedEndIndex.setIsUnsigned(true);
2932 }
2933
2934 bool IsStringLiteralInitUpdate =
2935 StructuredList && StructuredList->isStringLiteralInit();
2936 if (IsStringLiteralInitUpdate && VerifyOnly) {
2937 // We're just verifying an update to a string literal init. We don't need
2938 // to split the string up into individual characters to do that.
2939 StructuredList = nullptr;
2940 } else if (IsStringLiteralInitUpdate) {
2941 // We're modifying a string literal init; we have to decompose the string
2942 // so we can modify the individual characters.
2943 ASTContext &Context = SemaRef.Context;
2944 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts();
2945
2946 // Compute the character type
2947 QualType CharTy = AT->getElementType();
2948
2949 // Compute the type of the integer literals.
2950 QualType PromotedCharTy = CharTy;
2951 if (Context.isPromotableIntegerType(CharTy))
2952 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2953 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2954
2955 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2956 // Get the length of the string.
2957 uint64_t StrLen = SL->getLength();
2958 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2959 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2960 StructuredList->resizeInits(Context, StrLen);
2961
2962 // Build a literal for each character in the string, and put them into
2963 // the init list.
2964 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2965 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2966 Expr *Init = new (Context) IntegerLiteral(
2967 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2968 if (CharTy != PromotedCharTy)
2969 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2970 Init, nullptr, VK_PRValue,
2971 FPOptionsOverride());
2972 StructuredList->updateInit(Context, i, Init);
2973 }
2974 } else {
2975 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2976 std::string Str;
2977 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2978
2979 // Get the length of the string.
2980 uint64_t StrLen = Str.size();
2981 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2982 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2983 StructuredList->resizeInits(Context, StrLen);
2984
2985 // Build a literal for each character in the string, and put them into
2986 // the init list.
2987 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2988 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2989 Expr *Init = new (Context) IntegerLiteral(
2990 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2991 if (CharTy != PromotedCharTy)
2992 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2993 Init, nullptr, VK_PRValue,
2994 FPOptionsOverride());
2995 StructuredList->updateInit(Context, i, Init);
2996 }
2997 }
2998 }
2999
3000 // Make sure that our non-designated initializer list has space
3001 // for a subobject corresponding to this array element.
3002 if (StructuredList &&
3003 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
3004 StructuredList->resizeInits(SemaRef.Context,
3005 DesignatedEndIndex.getZExtValue() + 1);
3006
3007 // Repeatedly perform subobject initializations in the range
3008 // [DesignatedStartIndex, DesignatedEndIndex].
3009
3010 // Move to the next designator
3011 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
3012 unsigned OldIndex = Index;
3013
3014 InitializedEntity ElementEntity =
3015 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
3016
3017 while (DesignatedStartIndex <= DesignatedEndIndex) {
3018 // Recurse to check later designated subobjects.
3019 QualType ElementType = AT->getElementType();
3020 Index = OldIndex;
3021
3022 ElementEntity.setElementIndex(ElementIndex);
3023 if (CheckDesignatedInitializer(
3024 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
3025 nullptr, Index, StructuredList, ElementIndex,
3026 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
3027 false))
3028 return true;
3029
3030 // Move to the next index in the array that we'll be initializing.
3031 ++DesignatedStartIndex;
3032 ElementIndex = DesignatedStartIndex.getZExtValue();
3033 }
3034
3035 // If this the first designator, our caller will continue checking
3036 // the rest of this array subobject.
3037 if (IsFirstDesignator) {
3038 if (NextElementIndex)
3039 *NextElementIndex = DesignatedStartIndex;
3040 StructuredIndex = ElementIndex;
3041 return false;
3042 }
3043
3044 if (!FinishSubobjectInit)
3045 return false;
3046
3047 // Check the remaining elements within this array subobject.
3048 bool prevHadError = hadError;
3049 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
3050 /*SubobjectIsDesignatorContext=*/false, Index,
3051 StructuredList, ElementIndex);
3052 return hadError && !prevHadError;
3053 }
3054
3055 // Get the structured initializer list for a subobject of type
3056 // @p CurrentObjectType.
3057 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange,bool IsFullyOverwritten)3058 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3059 QualType CurrentObjectType,
3060 InitListExpr *StructuredList,
3061 unsigned StructuredIndex,
3062 SourceRange InitRange,
3063 bool IsFullyOverwritten) {
3064 if (!StructuredList)
3065 return nullptr;
3066
3067 Expr *ExistingInit = nullptr;
3068 if (StructuredIndex < StructuredList->getNumInits())
3069 ExistingInit = StructuredList->getInit(StructuredIndex);
3070
3071 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3072 // There might have already been initializers for subobjects of the current
3073 // object, but a subsequent initializer list will overwrite the entirety
3074 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3075 //
3076 // struct P { char x[6]; };
3077 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3078 //
3079 // The first designated initializer is ignored, and l.x is just "f".
3080 if (!IsFullyOverwritten)
3081 return Result;
3082
3083 if (ExistingInit) {
3084 // We are creating an initializer list that initializes the
3085 // subobjects of the current object, but there was already an
3086 // initialization that completely initialized the current
3087 // subobject:
3088 //
3089 // struct X { int a, b; };
3090 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3091 //
3092 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3093 // designated initializer overwrites the [0].b initializer
3094 // from the prior initialization.
3095 //
3096 // When the existing initializer is an expression rather than an
3097 // initializer list, we cannot decompose and update it in this way.
3098 // For example:
3099 //
3100 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3101 //
3102 // This case is handled by CheckDesignatedInitializer.
3103 diagnoseInitOverride(ExistingInit, InitRange);
3104 }
3105
3106 unsigned ExpectedNumInits = 0;
3107 if (Index < IList->getNumInits()) {
3108 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3109 ExpectedNumInits = Init->getNumInits();
3110 else
3111 ExpectedNumInits = IList->getNumInits() - Index;
3112 }
3113
3114 InitListExpr *Result =
3115 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3116
3117 // Link this new initializer list into the structured initializer
3118 // lists.
3119 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3120 return Result;
3121 }
3122
3123 InitListExpr *
createInitListExpr(QualType CurrentObjectType,SourceRange InitRange,unsigned ExpectedNumInits)3124 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3125 SourceRange InitRange,
3126 unsigned ExpectedNumInits) {
3127 InitListExpr *Result = new (SemaRef.Context) InitListExpr(
3128 SemaRef.Context, InitRange.getBegin(), std::nullopt, InitRange.getEnd());
3129
3130 QualType ResultType = CurrentObjectType;
3131 if (!ResultType->isArrayType())
3132 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3133 Result->setType(ResultType);
3134
3135 // Pre-allocate storage for the structured initializer list.
3136 unsigned NumElements = 0;
3137
3138 if (const ArrayType *AType
3139 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3140 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3141 NumElements = CAType->getSize().getZExtValue();
3142 // Simple heuristic so that we don't allocate a very large
3143 // initializer with many empty entries at the end.
3144 if (NumElements > ExpectedNumInits)
3145 NumElements = 0;
3146 }
3147 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3148 NumElements = VType->getNumElements();
3149 } else if (CurrentObjectType->isRecordType()) {
3150 NumElements = numStructUnionElements(CurrentObjectType);
3151 }
3152
3153 Result->reserveInits(SemaRef.Context, NumElements);
3154
3155 return Result;
3156 }
3157
3158 /// Update the initializer at index @p StructuredIndex within the
3159 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)3160 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3161 unsigned &StructuredIndex,
3162 Expr *expr) {
3163 // No structured initializer list to update
3164 if (!StructuredList)
3165 return;
3166
3167 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3168 StructuredIndex, expr)) {
3169 // This initializer overwrites a previous initializer.
3170 // No need to diagnose when `expr` is nullptr because a more relevant
3171 // diagnostic has already been issued and this diagnostic is potentially
3172 // noise.
3173 if (expr)
3174 diagnoseInitOverride(PrevInit, expr->getSourceRange());
3175 }
3176
3177 ++StructuredIndex;
3178 }
3179
3180 /// Determine whether we can perform aggregate initialization for the purposes
3181 /// of overload resolution.
CanPerformAggregateInitializationForOverloadResolution(const InitializedEntity & Entity,InitListExpr * From)3182 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3183 const InitializedEntity &Entity, InitListExpr *From) {
3184 QualType Type = Entity.getType();
3185 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3186 /*TreatUnavailableAsInvalid=*/false,
3187 /*InOverloadResolution=*/true);
3188 return !Check.HadError();
3189 }
3190
3191 /// Check that the given Index expression is a valid array designator
3192 /// value. This is essentially just a wrapper around
3193 /// VerifyIntegerConstantExpression that also checks for negative values
3194 /// and produces a reasonable diagnostic if there is a
3195 /// failure. Returns the index expression, possibly with an implicit cast
3196 /// added, on success. If everything went okay, Value will receive the
3197 /// value of the constant expression.
3198 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)3199 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3200 SourceLocation Loc = Index->getBeginLoc();
3201
3202 // Make sure this is an integer constant expression.
3203 ExprResult Result =
3204 S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3205 if (Result.isInvalid())
3206 return Result;
3207
3208 if (Value.isSigned() && Value.isNegative())
3209 return S.Diag(Loc, diag::err_array_designator_negative)
3210 << toString(Value, 10) << Index->getSourceRange();
3211
3212 Value.setIsUnsigned(true);
3213 return Result;
3214 }
3215
ActOnDesignatedInitializer(Designation & Desig,SourceLocation EqualOrColonLoc,bool GNUSyntax,ExprResult Init)3216 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3217 SourceLocation EqualOrColonLoc,
3218 bool GNUSyntax,
3219 ExprResult Init) {
3220 typedef DesignatedInitExpr::Designator ASTDesignator;
3221
3222 bool Invalid = false;
3223 SmallVector<ASTDesignator, 32> Designators;
3224 SmallVector<Expr *, 32> InitExpressions;
3225
3226 // Build designators and check array designator expressions.
3227 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3228 const Designator &D = Desig.getDesignator(Idx);
3229 switch (D.getKind()) {
3230 case Designator::FieldDesignator:
3231 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3232 D.getFieldLoc()));
3233 break;
3234
3235 case Designator::ArrayDesignator: {
3236 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3237 llvm::APSInt IndexValue;
3238 if (!Index->isTypeDependent() && !Index->isValueDependent())
3239 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3240 if (!Index)
3241 Invalid = true;
3242 else {
3243 Designators.push_back(ASTDesignator(InitExpressions.size(),
3244 D.getLBracketLoc(),
3245 D.getRBracketLoc()));
3246 InitExpressions.push_back(Index);
3247 }
3248 break;
3249 }
3250
3251 case Designator::ArrayRangeDesignator: {
3252 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3253 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3254 llvm::APSInt StartValue;
3255 llvm::APSInt EndValue;
3256 bool StartDependent = StartIndex->isTypeDependent() ||
3257 StartIndex->isValueDependent();
3258 bool EndDependent = EndIndex->isTypeDependent() ||
3259 EndIndex->isValueDependent();
3260 if (!StartDependent)
3261 StartIndex =
3262 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3263 if (!EndDependent)
3264 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3265
3266 if (!StartIndex || !EndIndex)
3267 Invalid = true;
3268 else {
3269 // Make sure we're comparing values with the same bit width.
3270 if (StartDependent || EndDependent) {
3271 // Nothing to compute.
3272 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3273 EndValue = EndValue.extend(StartValue.getBitWidth());
3274 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3275 StartValue = StartValue.extend(EndValue.getBitWidth());
3276
3277 if (!StartDependent && !EndDependent && EndValue < StartValue) {
3278 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3279 << toString(StartValue, 10) << toString(EndValue, 10)
3280 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3281 Invalid = true;
3282 } else {
3283 Designators.push_back(ASTDesignator(InitExpressions.size(),
3284 D.getLBracketLoc(),
3285 D.getEllipsisLoc(),
3286 D.getRBracketLoc()));
3287 InitExpressions.push_back(StartIndex);
3288 InitExpressions.push_back(EndIndex);
3289 }
3290 }
3291 break;
3292 }
3293 }
3294 }
3295
3296 if (Invalid || Init.isInvalid())
3297 return ExprError();
3298
3299 // Clear out the expressions within the designation.
3300 Desig.ClearExprs(*this);
3301
3302 return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3303 EqualOrColonLoc, GNUSyntax,
3304 Init.getAs<Expr>());
3305 }
3306
3307 //===----------------------------------------------------------------------===//
3308 // Initialization entity
3309 //===----------------------------------------------------------------------===//
3310
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)3311 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3312 const InitializedEntity &Parent)
3313 : Parent(&Parent), Index(Index)
3314 {
3315 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3316 Kind = EK_ArrayElement;
3317 Type = AT->getElementType();
3318 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3319 Kind = EK_VectorElement;
3320 Type = VT->getElementType();
3321 } else {
3322 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3323 assert(CT && "Unexpected type");
3324 Kind = EK_ComplexElement;
3325 Type = CT->getElementType();
3326 }
3327 }
3328
3329 InitializedEntity
InitializeBase(ASTContext & Context,const CXXBaseSpecifier * Base,bool IsInheritedVirtualBase,const InitializedEntity * Parent)3330 InitializedEntity::InitializeBase(ASTContext &Context,
3331 const CXXBaseSpecifier *Base,
3332 bool IsInheritedVirtualBase,
3333 const InitializedEntity *Parent) {
3334 InitializedEntity Result;
3335 Result.Kind = EK_Base;
3336 Result.Parent = Parent;
3337 Result.Base = {Base, IsInheritedVirtualBase};
3338 Result.Type = Base->getType();
3339 return Result;
3340 }
3341
getName() const3342 DeclarationName InitializedEntity::getName() const {
3343 switch (getKind()) {
3344 case EK_Parameter:
3345 case EK_Parameter_CF_Audited: {
3346 ParmVarDecl *D = Parameter.getPointer();
3347 return (D ? D->getDeclName() : DeclarationName());
3348 }
3349
3350 case EK_Variable:
3351 case EK_Member:
3352 case EK_ParenAggInitMember:
3353 case EK_Binding:
3354 case EK_TemplateParameter:
3355 return Variable.VariableOrMember->getDeclName();
3356
3357 case EK_LambdaCapture:
3358 return DeclarationName(Capture.VarID);
3359
3360 case EK_Result:
3361 case EK_StmtExprResult:
3362 case EK_Exception:
3363 case EK_New:
3364 case EK_Temporary:
3365 case EK_Base:
3366 case EK_Delegating:
3367 case EK_ArrayElement:
3368 case EK_VectorElement:
3369 case EK_ComplexElement:
3370 case EK_BlockElement:
3371 case EK_LambdaToBlockConversionBlockElement:
3372 case EK_CompoundLiteralInit:
3373 case EK_RelatedResult:
3374 return DeclarationName();
3375 }
3376
3377 llvm_unreachable("Invalid EntityKind!");
3378 }
3379
getDecl() const3380 ValueDecl *InitializedEntity::getDecl() const {
3381 switch (getKind()) {
3382 case EK_Variable:
3383 case EK_Member:
3384 case EK_ParenAggInitMember:
3385 case EK_Binding:
3386 case EK_TemplateParameter:
3387 return Variable.VariableOrMember;
3388
3389 case EK_Parameter:
3390 case EK_Parameter_CF_Audited:
3391 return Parameter.getPointer();
3392
3393 case EK_Result:
3394 case EK_StmtExprResult:
3395 case EK_Exception:
3396 case EK_New:
3397 case EK_Temporary:
3398 case EK_Base:
3399 case EK_Delegating:
3400 case EK_ArrayElement:
3401 case EK_VectorElement:
3402 case EK_ComplexElement:
3403 case EK_BlockElement:
3404 case EK_LambdaToBlockConversionBlockElement:
3405 case EK_LambdaCapture:
3406 case EK_CompoundLiteralInit:
3407 case EK_RelatedResult:
3408 return nullptr;
3409 }
3410
3411 llvm_unreachable("Invalid EntityKind!");
3412 }
3413
allowsNRVO() const3414 bool InitializedEntity::allowsNRVO() const {
3415 switch (getKind()) {
3416 case EK_Result:
3417 case EK_Exception:
3418 return LocAndNRVO.NRVO;
3419
3420 case EK_StmtExprResult:
3421 case EK_Variable:
3422 case EK_Parameter:
3423 case EK_Parameter_CF_Audited:
3424 case EK_TemplateParameter:
3425 case EK_Member:
3426 case EK_ParenAggInitMember:
3427 case EK_Binding:
3428 case EK_New:
3429 case EK_Temporary:
3430 case EK_CompoundLiteralInit:
3431 case EK_Base:
3432 case EK_Delegating:
3433 case EK_ArrayElement:
3434 case EK_VectorElement:
3435 case EK_ComplexElement:
3436 case EK_BlockElement:
3437 case EK_LambdaToBlockConversionBlockElement:
3438 case EK_LambdaCapture:
3439 case EK_RelatedResult:
3440 break;
3441 }
3442
3443 return false;
3444 }
3445
dumpImpl(raw_ostream & OS) const3446 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3447 assert(getParent() != this);
3448 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3449 for (unsigned I = 0; I != Depth; ++I)
3450 OS << "`-";
3451
3452 switch (getKind()) {
3453 case EK_Variable: OS << "Variable"; break;
3454 case EK_Parameter: OS << "Parameter"; break;
3455 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3456 break;
3457 case EK_TemplateParameter: OS << "TemplateParameter"; break;
3458 case EK_Result: OS << "Result"; break;
3459 case EK_StmtExprResult: OS << "StmtExprResult"; break;
3460 case EK_Exception: OS << "Exception"; break;
3461 case EK_Member:
3462 case EK_ParenAggInitMember:
3463 OS << "Member";
3464 break;
3465 case EK_Binding: OS << "Binding"; break;
3466 case EK_New: OS << "New"; break;
3467 case EK_Temporary: OS << "Temporary"; break;
3468 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3469 case EK_RelatedResult: OS << "RelatedResult"; break;
3470 case EK_Base: OS << "Base"; break;
3471 case EK_Delegating: OS << "Delegating"; break;
3472 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3473 case EK_VectorElement: OS << "VectorElement " << Index; break;
3474 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3475 case EK_BlockElement: OS << "Block"; break;
3476 case EK_LambdaToBlockConversionBlockElement:
3477 OS << "Block (lambda)";
3478 break;
3479 case EK_LambdaCapture:
3480 OS << "LambdaCapture ";
3481 OS << DeclarationName(Capture.VarID);
3482 break;
3483 }
3484
3485 if (auto *D = getDecl()) {
3486 OS << " ";
3487 D->printQualifiedName(OS);
3488 }
3489
3490 OS << " '" << getType() << "'\n";
3491
3492 return Depth + 1;
3493 }
3494
dump() const3495 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3496 dumpImpl(llvm::errs());
3497 }
3498
3499 //===----------------------------------------------------------------------===//
3500 // Initialization sequence
3501 //===----------------------------------------------------------------------===//
3502
Destroy()3503 void InitializationSequence::Step::Destroy() {
3504 switch (Kind) {
3505 case SK_ResolveAddressOfOverloadedFunction:
3506 case SK_CastDerivedToBasePRValue:
3507 case SK_CastDerivedToBaseXValue:
3508 case SK_CastDerivedToBaseLValue:
3509 case SK_BindReference:
3510 case SK_BindReferenceToTemporary:
3511 case SK_FinalCopy:
3512 case SK_ExtraneousCopyToTemporary:
3513 case SK_UserConversion:
3514 case SK_QualificationConversionPRValue:
3515 case SK_QualificationConversionXValue:
3516 case SK_QualificationConversionLValue:
3517 case SK_FunctionReferenceConversion:
3518 case SK_AtomicConversion:
3519 case SK_ListInitialization:
3520 case SK_UnwrapInitList:
3521 case SK_RewrapInitList:
3522 case SK_ConstructorInitialization:
3523 case SK_ConstructorInitializationFromList:
3524 case SK_ZeroInitialization:
3525 case SK_CAssignment:
3526 case SK_StringInit:
3527 case SK_ObjCObjectConversion:
3528 case SK_ArrayLoopIndex:
3529 case SK_ArrayLoopInit:
3530 case SK_ArrayInit:
3531 case SK_GNUArrayInit:
3532 case SK_ParenthesizedArrayInit:
3533 case SK_PassByIndirectCopyRestore:
3534 case SK_PassByIndirectRestore:
3535 case SK_ProduceObjCObject:
3536 case SK_StdInitializerList:
3537 case SK_StdInitializerListConstructorCall:
3538 case SK_OCLSamplerInit:
3539 case SK_OCLZeroOpaqueType:
3540 case SK_ParenthesizedListInit:
3541 break;
3542
3543 case SK_ConversionSequence:
3544 case SK_ConversionSequenceNoNarrowing:
3545 delete ICS;
3546 }
3547 }
3548
isDirectReferenceBinding() const3549 bool InitializationSequence::isDirectReferenceBinding() const {
3550 // There can be some lvalue adjustments after the SK_BindReference step.
3551 for (const Step &S : llvm::reverse(Steps)) {
3552 if (S.Kind == SK_BindReference)
3553 return true;
3554 if (S.Kind == SK_BindReferenceToTemporary)
3555 return false;
3556 }
3557 return false;
3558 }
3559
isAmbiguous() const3560 bool InitializationSequence::isAmbiguous() const {
3561 if (!Failed())
3562 return false;
3563
3564 switch (getFailureKind()) {
3565 case FK_TooManyInitsForReference:
3566 case FK_ParenthesizedListInitForReference:
3567 case FK_ArrayNeedsInitList:
3568 case FK_ArrayNeedsInitListOrStringLiteral:
3569 case FK_ArrayNeedsInitListOrWideStringLiteral:
3570 case FK_NarrowStringIntoWideCharArray:
3571 case FK_WideStringIntoCharArray:
3572 case FK_IncompatWideStringIntoWideChar:
3573 case FK_PlainStringIntoUTF8Char:
3574 case FK_UTF8StringIntoPlainChar:
3575 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3576 case FK_NonConstLValueReferenceBindingToTemporary:
3577 case FK_NonConstLValueReferenceBindingToBitfield:
3578 case FK_NonConstLValueReferenceBindingToVectorElement:
3579 case FK_NonConstLValueReferenceBindingToMatrixElement:
3580 case FK_NonConstLValueReferenceBindingToUnrelated:
3581 case FK_RValueReferenceBindingToLValue:
3582 case FK_ReferenceAddrspaceMismatchTemporary:
3583 case FK_ReferenceInitDropsQualifiers:
3584 case FK_ReferenceInitFailed:
3585 case FK_ConversionFailed:
3586 case FK_ConversionFromPropertyFailed:
3587 case FK_TooManyInitsForScalar:
3588 case FK_ParenthesizedListInitForScalar:
3589 case FK_ReferenceBindingToInitList:
3590 case FK_InitListBadDestinationType:
3591 case FK_DefaultInitOfConst:
3592 case FK_Incomplete:
3593 case FK_ArrayTypeMismatch:
3594 case FK_NonConstantArrayInit:
3595 case FK_ListInitializationFailed:
3596 case FK_VariableLengthArrayHasInitializer:
3597 case FK_PlaceholderType:
3598 case FK_ExplicitConstructor:
3599 case FK_AddressOfUnaddressableFunction:
3600 case FK_ParenthesizedListInitFailed:
3601 return false;
3602
3603 case FK_ReferenceInitOverloadFailed:
3604 case FK_UserConversionOverloadFailed:
3605 case FK_ConstructorOverloadFailed:
3606 case FK_ListConstructorOverloadFailed:
3607 return FailedOverloadResult == OR_Ambiguous;
3608 }
3609
3610 llvm_unreachable("Invalid EntityKind!");
3611 }
3612
isConstructorInitialization() const3613 bool InitializationSequence::isConstructorInitialization() const {
3614 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3615 }
3616
3617 void
3618 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)3619 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3620 DeclAccessPair Found,
3621 bool HadMultipleCandidates) {
3622 Step S;
3623 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3624 S.Type = Function->getType();
3625 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3626 S.Function.Function = Function;
3627 S.Function.FoundDecl = Found;
3628 Steps.push_back(S);
3629 }
3630
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)3631 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3632 ExprValueKind VK) {
3633 Step S;
3634 switch (VK) {
3635 case VK_PRValue:
3636 S.Kind = SK_CastDerivedToBasePRValue;
3637 break;
3638 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3639 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3640 }
3641 S.Type = BaseType;
3642 Steps.push_back(S);
3643 }
3644
AddReferenceBindingStep(QualType T,bool BindingTemporary)3645 void InitializationSequence::AddReferenceBindingStep(QualType T,
3646 bool BindingTemporary) {
3647 Step S;
3648 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3649 S.Type = T;
3650 Steps.push_back(S);
3651 }
3652
AddFinalCopy(QualType T)3653 void InitializationSequence::AddFinalCopy(QualType T) {
3654 Step S;
3655 S.Kind = SK_FinalCopy;
3656 S.Type = T;
3657 Steps.push_back(S);
3658 }
3659
AddExtraneousCopyToTemporary(QualType T)3660 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3661 Step S;
3662 S.Kind = SK_ExtraneousCopyToTemporary;
3663 S.Type = T;
3664 Steps.push_back(S);
3665 }
3666
3667 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)3668 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3669 DeclAccessPair FoundDecl,
3670 QualType T,
3671 bool HadMultipleCandidates) {
3672 Step S;
3673 S.Kind = SK_UserConversion;
3674 S.Type = T;
3675 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3676 S.Function.Function = Function;
3677 S.Function.FoundDecl = FoundDecl;
3678 Steps.push_back(S);
3679 }
3680
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)3681 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3682 ExprValueKind VK) {
3683 Step S;
3684 S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning
3685 switch (VK) {
3686 case VK_PRValue:
3687 S.Kind = SK_QualificationConversionPRValue;
3688 break;
3689 case VK_XValue:
3690 S.Kind = SK_QualificationConversionXValue;
3691 break;
3692 case VK_LValue:
3693 S.Kind = SK_QualificationConversionLValue;
3694 break;
3695 }
3696 S.Type = Ty;
3697 Steps.push_back(S);
3698 }
3699
AddFunctionReferenceConversionStep(QualType Ty)3700 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3701 Step S;
3702 S.Kind = SK_FunctionReferenceConversion;
3703 S.Type = Ty;
3704 Steps.push_back(S);
3705 }
3706
AddAtomicConversionStep(QualType Ty)3707 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3708 Step S;
3709 S.Kind = SK_AtomicConversion;
3710 S.Type = Ty;
3711 Steps.push_back(S);
3712 }
3713
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T,bool TopLevelOfInitList)3714 void InitializationSequence::AddConversionSequenceStep(
3715 const ImplicitConversionSequence &ICS, QualType T,
3716 bool TopLevelOfInitList) {
3717 Step S;
3718 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3719 : SK_ConversionSequence;
3720 S.Type = T;
3721 S.ICS = new ImplicitConversionSequence(ICS);
3722 Steps.push_back(S);
3723 }
3724
AddListInitializationStep(QualType T)3725 void InitializationSequence::AddListInitializationStep(QualType T) {
3726 Step S;
3727 S.Kind = SK_ListInitialization;
3728 S.Type = T;
3729 Steps.push_back(S);
3730 }
3731
AddConstructorInitializationStep(DeclAccessPair FoundDecl,CXXConstructorDecl * Constructor,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)3732 void InitializationSequence::AddConstructorInitializationStep(
3733 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3734 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3735 Step S;
3736 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3737 : SK_ConstructorInitializationFromList
3738 : SK_ConstructorInitialization;
3739 S.Type = T;
3740 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3741 S.Function.Function = Constructor;
3742 S.Function.FoundDecl = FoundDecl;
3743 Steps.push_back(S);
3744 }
3745
AddZeroInitializationStep(QualType T)3746 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3747 Step S;
3748 S.Kind = SK_ZeroInitialization;
3749 S.Type = T;
3750 Steps.push_back(S);
3751 }
3752
AddCAssignmentStep(QualType T)3753 void InitializationSequence::AddCAssignmentStep(QualType T) {
3754 Step S;
3755 S.Kind = SK_CAssignment;
3756 S.Type = T;
3757 Steps.push_back(S);
3758 }
3759
AddStringInitStep(QualType T)3760 void InitializationSequence::AddStringInitStep(QualType T) {
3761 Step S;
3762 S.Kind = SK_StringInit;
3763 S.Type = T;
3764 Steps.push_back(S);
3765 }
3766
AddObjCObjectConversionStep(QualType T)3767 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3768 Step S;
3769 S.Kind = SK_ObjCObjectConversion;
3770 S.Type = T;
3771 Steps.push_back(S);
3772 }
3773
AddArrayInitStep(QualType T,bool IsGNUExtension)3774 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3775 Step S;
3776 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3777 S.Type = T;
3778 Steps.push_back(S);
3779 }
3780
AddArrayInitLoopStep(QualType T,QualType EltT)3781 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3782 Step S;
3783 S.Kind = SK_ArrayLoopIndex;
3784 S.Type = EltT;
3785 Steps.insert(Steps.begin(), S);
3786
3787 S.Kind = SK_ArrayLoopInit;
3788 S.Type = T;
3789 Steps.push_back(S);
3790 }
3791
AddParenthesizedArrayInitStep(QualType T)3792 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3793 Step S;
3794 S.Kind = SK_ParenthesizedArrayInit;
3795 S.Type = T;
3796 Steps.push_back(S);
3797 }
3798
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)3799 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3800 bool shouldCopy) {
3801 Step s;
3802 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3803 : SK_PassByIndirectRestore);
3804 s.Type = type;
3805 Steps.push_back(s);
3806 }
3807
AddProduceObjCObjectStep(QualType T)3808 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3809 Step S;
3810 S.Kind = SK_ProduceObjCObject;
3811 S.Type = T;
3812 Steps.push_back(S);
3813 }
3814
AddStdInitializerListConstructionStep(QualType T)3815 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3816 Step S;
3817 S.Kind = SK_StdInitializerList;
3818 S.Type = T;
3819 Steps.push_back(S);
3820 }
3821
AddOCLSamplerInitStep(QualType T)3822 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3823 Step S;
3824 S.Kind = SK_OCLSamplerInit;
3825 S.Type = T;
3826 Steps.push_back(S);
3827 }
3828
AddOCLZeroOpaqueTypeStep(QualType T)3829 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3830 Step S;
3831 S.Kind = SK_OCLZeroOpaqueType;
3832 S.Type = T;
3833 Steps.push_back(S);
3834 }
3835
AddParenthesizedListInitStep(QualType T)3836 void InitializationSequence::AddParenthesizedListInitStep(QualType T) {
3837 Step S;
3838 S.Kind = SK_ParenthesizedListInit;
3839 S.Type = T;
3840 Steps.push_back(S);
3841 }
3842
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)3843 void InitializationSequence::RewrapReferenceInitList(QualType T,
3844 InitListExpr *Syntactic) {
3845 assert(Syntactic->getNumInits() == 1 &&
3846 "Can only rewrap trivial init lists.");
3847 Step S;
3848 S.Kind = SK_UnwrapInitList;
3849 S.Type = Syntactic->getInit(0)->getType();
3850 Steps.insert(Steps.begin(), S);
3851
3852 S.Kind = SK_RewrapInitList;
3853 S.Type = T;
3854 S.WrappingSyntacticList = Syntactic;
3855 Steps.push_back(S);
3856 }
3857
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)3858 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3859 OverloadingResult Result) {
3860 setSequenceKind(FailedSequence);
3861 this->Failure = Failure;
3862 this->FailedOverloadResult = Result;
3863 }
3864
3865 //===----------------------------------------------------------------------===//
3866 // Attempt initialization
3867 //===----------------------------------------------------------------------===//
3868
3869 /// Tries to add a zero initializer. Returns true if that worked.
3870 static bool
maybeRecoverWithZeroInitialization(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3871 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3872 const InitializedEntity &Entity) {
3873 if (Entity.getKind() != InitializedEntity::EK_Variable)
3874 return false;
3875
3876 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3877 if (VD->getInit() || VD->getEndLoc().isMacroID())
3878 return false;
3879
3880 QualType VariableTy = VD->getType().getCanonicalType();
3881 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3882 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3883 if (!Init.empty()) {
3884 Sequence.AddZeroInitializationStep(Entity.getType());
3885 Sequence.SetZeroInitializationFixit(Init, Loc);
3886 return true;
3887 }
3888 return false;
3889 }
3890
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3891 static void MaybeProduceObjCObject(Sema &S,
3892 InitializationSequence &Sequence,
3893 const InitializedEntity &Entity) {
3894 if (!S.getLangOpts().ObjCAutoRefCount) return;
3895
3896 /// When initializing a parameter, produce the value if it's marked
3897 /// __attribute__((ns_consumed)).
3898 if (Entity.isParameterKind()) {
3899 if (!Entity.isParameterConsumed())
3900 return;
3901
3902 assert(Entity.getType()->isObjCRetainableType() &&
3903 "consuming an object of unretainable type?");
3904 Sequence.AddProduceObjCObjectStep(Entity.getType());
3905
3906 /// When initializing a return value, if the return type is a
3907 /// retainable type, then returns need to immediately retain the
3908 /// object. If an autorelease is required, it will be done at the
3909 /// last instant.
3910 } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3911 Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3912 if (!Entity.getType()->isObjCRetainableType())
3913 return;
3914
3915 Sequence.AddProduceObjCObjectStep(Entity.getType());
3916 }
3917 }
3918
3919 static void TryListInitialization(Sema &S,
3920 const InitializedEntity &Entity,
3921 const InitializationKind &Kind,
3922 InitListExpr *InitList,
3923 InitializationSequence &Sequence,
3924 bool TreatUnavailableAsInvalid);
3925
3926 /// When initializing from init list via constructor, handle
3927 /// initialization of an object of type std::initializer_list<T>.
3928 ///
3929 /// \return true if we have handled initialization of an object of type
3930 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)3931 static bool TryInitializerListConstruction(Sema &S,
3932 InitListExpr *List,
3933 QualType DestType,
3934 InitializationSequence &Sequence,
3935 bool TreatUnavailableAsInvalid) {
3936 QualType E;
3937 if (!S.isStdInitializerList(DestType, &E))
3938 return false;
3939
3940 if (!S.isCompleteType(List->getExprLoc(), E)) {
3941 Sequence.setIncompleteTypeFailure(E);
3942 return true;
3943 }
3944
3945 // Try initializing a temporary array from the init list.
3946 QualType ArrayType = S.Context.getConstantArrayType(
3947 E.withConst(),
3948 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3949 List->getNumInits()),
3950 nullptr, clang::ArrayType::Normal, 0);
3951 InitializedEntity HiddenArray =
3952 InitializedEntity::InitializeTemporary(ArrayType);
3953 InitializationKind Kind = InitializationKind::CreateDirectList(
3954 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3955 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3956 TreatUnavailableAsInvalid);
3957 if (Sequence)
3958 Sequence.AddStdInitializerListConstructionStep(DestType);
3959 return true;
3960 }
3961
3962 /// Determine if the constructor has the signature of a copy or move
3963 /// constructor for the type T of the class in which it was found. That is,
3964 /// determine if its first parameter is of type T or reference to (possibly
3965 /// cv-qualified) T.
hasCopyOrMoveCtorParam(ASTContext & Ctx,const ConstructorInfo & Info)3966 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3967 const ConstructorInfo &Info) {
3968 if (Info.Constructor->getNumParams() == 0)
3969 return false;
3970
3971 QualType ParmT =
3972 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3973 QualType ClassT =
3974 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3975
3976 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3977 }
3978
3979 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,MultiExprArg Args,OverloadCandidateSet & CandidateSet,QualType DestType,DeclContext::lookup_result Ctors,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool IsListInit,bool SecondStepOfCopyInit=false)3980 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3981 MultiExprArg Args,
3982 OverloadCandidateSet &CandidateSet,
3983 QualType DestType,
3984 DeclContext::lookup_result Ctors,
3985 OverloadCandidateSet::iterator &Best,
3986 bool CopyInitializing, bool AllowExplicit,
3987 bool OnlyListConstructors, bool IsListInit,
3988 bool SecondStepOfCopyInit = false) {
3989 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3990 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3991
3992 for (NamedDecl *D : Ctors) {
3993 auto Info = getConstructorInfo(D);
3994 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3995 continue;
3996
3997 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3998 continue;
3999
4000 // C++11 [over.best.ics]p4:
4001 // ... and the constructor or user-defined conversion function is a
4002 // candidate by
4003 // - 13.3.1.3, when the argument is the temporary in the second step
4004 // of a class copy-initialization, or
4005 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
4006 // - the second phase of 13.3.1.7 when the initializer list has exactly
4007 // one element that is itself an initializer list, and the target is
4008 // the first parameter of a constructor of class X, and the conversion
4009 // is to X or reference to (possibly cv-qualified X),
4010 // user-defined conversion sequences are not considered.
4011 bool SuppressUserConversions =
4012 SecondStepOfCopyInit ||
4013 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
4014 hasCopyOrMoveCtorParam(S.Context, Info));
4015
4016 if (Info.ConstructorTmpl)
4017 S.AddTemplateOverloadCandidate(
4018 Info.ConstructorTmpl, Info.FoundDecl,
4019 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
4020 /*PartialOverloading=*/false, AllowExplicit);
4021 else {
4022 // C++ [over.match.copy]p1:
4023 // - When initializing a temporary to be bound to the first parameter
4024 // of a constructor [for type T] that takes a reference to possibly
4025 // cv-qualified T as its first argument, called with a single
4026 // argument in the context of direct-initialization, explicit
4027 // conversion functions are also considered.
4028 // FIXME: What if a constructor template instantiates to such a signature?
4029 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
4030 Args.size() == 1 &&
4031 hasCopyOrMoveCtorParam(S.Context, Info);
4032 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
4033 CandidateSet, SuppressUserConversions,
4034 /*PartialOverloading=*/false, AllowExplicit,
4035 AllowExplicitConv);
4036 }
4037 }
4038
4039 // FIXME: Work around a bug in C++17 guaranteed copy elision.
4040 //
4041 // When initializing an object of class type T by constructor
4042 // ([over.match.ctor]) or by list-initialization ([over.match.list])
4043 // from a single expression of class type U, conversion functions of
4044 // U that convert to the non-reference type cv T are candidates.
4045 // Explicit conversion functions are only candidates during
4046 // direct-initialization.
4047 //
4048 // Note: SecondStepOfCopyInit is only ever true in this case when
4049 // evaluating whether to produce a C++98 compatibility warning.
4050 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
4051 !SecondStepOfCopyInit) {
4052 Expr *Initializer = Args[0];
4053 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
4054 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
4055 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
4056 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4057 NamedDecl *D = *I;
4058 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4059 D = D->getUnderlyingDecl();
4060
4061 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4062 CXXConversionDecl *Conv;
4063 if (ConvTemplate)
4064 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4065 else
4066 Conv = cast<CXXConversionDecl>(D);
4067
4068 if (ConvTemplate)
4069 S.AddTemplateConversionCandidate(
4070 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4071 CandidateSet, AllowExplicit, AllowExplicit,
4072 /*AllowResultConversion*/ false);
4073 else
4074 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4075 DestType, CandidateSet, AllowExplicit,
4076 AllowExplicit,
4077 /*AllowResultConversion*/ false);
4078 }
4079 }
4080 }
4081
4082 // Perform overload resolution and return the result.
4083 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4084 }
4085
4086 /// Attempt initialization by constructor (C++ [dcl.init]), which
4087 /// enumerates the constructors of the initialized entity and performs overload
4088 /// resolution to select the best.
4089 /// \param DestType The destination class type.
4090 /// \param DestArrayType The destination type, which is either DestType or
4091 /// a (possibly multidimensional) array of DestType.
4092 /// \param IsListInit Is this list-initialization?
4093 /// \param IsInitListCopy Is this non-list-initialization resulting from a
4094 /// list-initialization from {x} where x is the same
4095 /// type as the entity?
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType DestType,QualType DestArrayType,InitializationSequence & Sequence,bool IsListInit=false,bool IsInitListCopy=false)4096 static void TryConstructorInitialization(Sema &S,
4097 const InitializedEntity &Entity,
4098 const InitializationKind &Kind,
4099 MultiExprArg Args, QualType DestType,
4100 QualType DestArrayType,
4101 InitializationSequence &Sequence,
4102 bool IsListInit = false,
4103 bool IsInitListCopy = false) {
4104 assert(((!IsListInit && !IsInitListCopy) ||
4105 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4106 "IsListInit/IsInitListCopy must come with a single initializer list "
4107 "argument.");
4108 InitListExpr *ILE =
4109 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4110 MultiExprArg UnwrappedArgs =
4111 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4112
4113 // The type we're constructing needs to be complete.
4114 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4115 Sequence.setIncompleteTypeFailure(DestType);
4116 return;
4117 }
4118
4119 // C++17 [dcl.init]p17:
4120 // - If the initializer expression is a prvalue and the cv-unqualified
4121 // version of the source type is the same class as the class of the
4122 // destination, the initializer expression is used to initialize the
4123 // destination object.
4124 // Per DR (no number yet), this does not apply when initializing a base
4125 // class or delegating to another constructor from a mem-initializer.
4126 // ObjC++: Lambda captured by the block in the lambda to block conversion
4127 // should avoid copy elision.
4128 if (S.getLangOpts().CPlusPlus17 &&
4129 Entity.getKind() != InitializedEntity::EK_Base &&
4130 Entity.getKind() != InitializedEntity::EK_Delegating &&
4131 Entity.getKind() !=
4132 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4133 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() &&
4134 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4135 // Convert qualifications if necessary.
4136 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4137 if (ILE)
4138 Sequence.RewrapReferenceInitList(DestType, ILE);
4139 return;
4140 }
4141
4142 const RecordType *DestRecordType = DestType->getAs<RecordType>();
4143 assert(DestRecordType && "Constructor initialization requires record type");
4144 CXXRecordDecl *DestRecordDecl
4145 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4146
4147 // Build the candidate set directly in the initialization sequence
4148 // structure, so that it will persist if we fail.
4149 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4150
4151 // Determine whether we are allowed to call explicit constructors or
4152 // explicit conversion operators.
4153 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4154 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4155
4156 // - Otherwise, if T is a class type, constructors are considered. The
4157 // applicable constructors are enumerated, and the best one is chosen
4158 // through overload resolution.
4159 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4160
4161 OverloadingResult Result = OR_No_Viable_Function;
4162 OverloadCandidateSet::iterator Best;
4163 bool AsInitializerList = false;
4164
4165 // C++11 [over.match.list]p1, per DR1467:
4166 // When objects of non-aggregate type T are list-initialized, such that
4167 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
4168 // according to the rules in this section, overload resolution selects
4169 // the constructor in two phases:
4170 //
4171 // - Initially, the candidate functions are the initializer-list
4172 // constructors of the class T and the argument list consists of the
4173 // initializer list as a single argument.
4174 if (IsListInit) {
4175 AsInitializerList = true;
4176
4177 // If the initializer list has no elements and T has a default constructor,
4178 // the first phase is omitted.
4179 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4180 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4181 CandidateSet, DestType, Ctors, Best,
4182 CopyInitialization, AllowExplicit,
4183 /*OnlyListConstructors=*/true,
4184 IsListInit);
4185 }
4186
4187 // C++11 [over.match.list]p1:
4188 // - If no viable initializer-list constructor is found, overload resolution
4189 // is performed again, where the candidate functions are all the
4190 // constructors of the class T and the argument list consists of the
4191 // elements of the initializer list.
4192 if (Result == OR_No_Viable_Function) {
4193 AsInitializerList = false;
4194 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4195 CandidateSet, DestType, Ctors, Best,
4196 CopyInitialization, AllowExplicit,
4197 /*OnlyListConstructors=*/false,
4198 IsListInit);
4199 }
4200 if (Result) {
4201 Sequence.SetOverloadFailure(
4202 IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4203 : InitializationSequence::FK_ConstructorOverloadFailed,
4204 Result);
4205
4206 if (Result != OR_Deleted)
4207 return;
4208 }
4209
4210 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4211
4212 // In C++17, ResolveConstructorOverload can select a conversion function
4213 // instead of a constructor.
4214 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4215 // Add the user-defined conversion step that calls the conversion function.
4216 QualType ConvType = CD->getConversionType();
4217 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4218 "should not have selected this conversion function");
4219 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4220 HadMultipleCandidates);
4221 if (!S.Context.hasSameType(ConvType, DestType))
4222 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4223 if (IsListInit)
4224 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4225 return;
4226 }
4227
4228 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4229 if (Result != OR_Deleted) {
4230 // C++11 [dcl.init]p6:
4231 // If a program calls for the default initialization of an object
4232 // of a const-qualified type T, T shall be a class type with a
4233 // user-provided default constructor.
4234 // C++ core issue 253 proposal:
4235 // If the implicit default constructor initializes all subobjects, no
4236 // initializer should be required.
4237 // The 253 proposal is for example needed to process libstdc++ headers
4238 // in 5.x.
4239 if (Kind.getKind() == InitializationKind::IK_Default &&
4240 Entity.getType().isConstQualified()) {
4241 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4242 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4243 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4244 return;
4245 }
4246 }
4247
4248 // C++11 [over.match.list]p1:
4249 // In copy-list-initialization, if an explicit constructor is chosen, the
4250 // initializer is ill-formed.
4251 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4252 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4253 return;
4254 }
4255 }
4256
4257 // [class.copy.elision]p3:
4258 // In some copy-initialization contexts, a two-stage overload resolution
4259 // is performed.
4260 // If the first overload resolution selects a deleted function, we also
4261 // need the initialization sequence to decide whether to perform the second
4262 // overload resolution.
4263 // For deleted functions in other contexts, there is no need to get the
4264 // initialization sequence.
4265 if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4266 return;
4267
4268 // Add the constructor initialization step. Any cv-qualification conversion is
4269 // subsumed by the initialization.
4270 Sequence.AddConstructorInitializationStep(
4271 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4272 IsListInit | IsInitListCopy, AsInitializerList);
4273 }
4274
4275 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)4276 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4277 Expr *Initializer,
4278 QualType &SourceType,
4279 QualType &UnqualifiedSourceType,
4280 QualType UnqualifiedTargetType,
4281 InitializationSequence &Sequence) {
4282 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4283 S.Context.OverloadTy) {
4284 DeclAccessPair Found;
4285 bool HadMultipleCandidates = false;
4286 if (FunctionDecl *Fn
4287 = S.ResolveAddressOfOverloadedFunction(Initializer,
4288 UnqualifiedTargetType,
4289 false, Found,
4290 &HadMultipleCandidates)) {
4291 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4292 HadMultipleCandidates);
4293 SourceType = Fn->getType();
4294 UnqualifiedSourceType = SourceType.getUnqualifiedType();
4295 } else if (!UnqualifiedTargetType->isRecordType()) {
4296 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4297 return true;
4298 }
4299 }
4300 return false;
4301 }
4302
4303 static void TryReferenceInitializationCore(Sema &S,
4304 const InitializedEntity &Entity,
4305 const InitializationKind &Kind,
4306 Expr *Initializer,
4307 QualType cv1T1, QualType T1,
4308 Qualifiers T1Quals,
4309 QualType cv2T2, QualType T2,
4310 Qualifiers T2Quals,
4311 InitializationSequence &Sequence);
4312
4313 static void TryValueInitialization(Sema &S,
4314 const InitializedEntity &Entity,
4315 const InitializationKind &Kind,
4316 InitializationSequence &Sequence,
4317 InitListExpr *InitList = nullptr);
4318
4319 /// Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)4320 static void TryReferenceListInitialization(Sema &S,
4321 const InitializedEntity &Entity,
4322 const InitializationKind &Kind,
4323 InitListExpr *InitList,
4324 InitializationSequence &Sequence,
4325 bool TreatUnavailableAsInvalid) {
4326 // First, catch C++03 where this isn't possible.
4327 if (!S.getLangOpts().CPlusPlus11) {
4328 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4329 return;
4330 }
4331 // Can't reference initialize a compound literal.
4332 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4333 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4334 return;
4335 }
4336
4337 QualType DestType = Entity.getType();
4338 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4339 Qualifiers T1Quals;
4340 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4341
4342 // Reference initialization via an initializer list works thus:
4343 // If the initializer list consists of a single element that is
4344 // reference-related to the referenced type, bind directly to that element
4345 // (possibly creating temporaries).
4346 // Otherwise, initialize a temporary with the initializer list and
4347 // bind to that.
4348 if (InitList->getNumInits() == 1) {
4349 Expr *Initializer = InitList->getInit(0);
4350 QualType cv2T2 = S.getCompletedType(Initializer);
4351 Qualifiers T2Quals;
4352 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4353
4354 // If this fails, creating a temporary wouldn't work either.
4355 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4356 T1, Sequence))
4357 return;
4358
4359 SourceLocation DeclLoc = Initializer->getBeginLoc();
4360 Sema::ReferenceCompareResult RefRelationship
4361 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4362 if (RefRelationship >= Sema::Ref_Related) {
4363 // Try to bind the reference here.
4364 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4365 T1Quals, cv2T2, T2, T2Quals, Sequence);
4366 if (Sequence)
4367 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4368 return;
4369 }
4370
4371 // Update the initializer if we've resolved an overloaded function.
4372 if (Sequence.step_begin() != Sequence.step_end())
4373 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4374 }
4375 // Perform address space compatibility check.
4376 QualType cv1T1IgnoreAS = cv1T1;
4377 if (T1Quals.hasAddressSpace()) {
4378 Qualifiers T2Quals;
4379 (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4380 if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4381 Sequence.SetFailed(
4382 InitializationSequence::FK_ReferenceInitDropsQualifiers);
4383 return;
4384 }
4385 // Ignore address space of reference type at this point and perform address
4386 // space conversion after the reference binding step.
4387 cv1T1IgnoreAS =
4388 S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4389 }
4390 // Not reference-related. Create a temporary and bind to that.
4391 InitializedEntity TempEntity =
4392 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4393
4394 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4395 TreatUnavailableAsInvalid);
4396 if (Sequence) {
4397 if (DestType->isRValueReferenceType() ||
4398 (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4399 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4400 /*BindingTemporary=*/true);
4401 if (T1Quals.hasAddressSpace())
4402 Sequence.AddQualificationConversionStep(
4403 cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4404 } else
4405 Sequence.SetFailed(
4406 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4407 }
4408 }
4409
4410 /// Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)4411 static void TryListInitialization(Sema &S,
4412 const InitializedEntity &Entity,
4413 const InitializationKind &Kind,
4414 InitListExpr *InitList,
4415 InitializationSequence &Sequence,
4416 bool TreatUnavailableAsInvalid) {
4417 QualType DestType = Entity.getType();
4418
4419 // C++ doesn't allow scalar initialization with more than one argument.
4420 // But C99 complex numbers are scalars and it makes sense there.
4421 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4422 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4423 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4424 return;
4425 }
4426 if (DestType->isReferenceType()) {
4427 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4428 TreatUnavailableAsInvalid);
4429 return;
4430 }
4431
4432 if (DestType->isRecordType() &&
4433 !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4434 Sequence.setIncompleteTypeFailure(DestType);
4435 return;
4436 }
4437
4438 // C++11 [dcl.init.list]p3, per DR1467:
4439 // - If T is a class type and the initializer list has a single element of
4440 // type cv U, where U is T or a class derived from T, the object is
4441 // initialized from that element (by copy-initialization for
4442 // copy-list-initialization, or by direct-initialization for
4443 // direct-list-initialization).
4444 // - Otherwise, if T is a character array and the initializer list has a
4445 // single element that is an appropriately-typed string literal
4446 // (8.5.2 [dcl.init.string]), initialization is performed as described
4447 // in that section.
4448 // - Otherwise, if T is an aggregate, [...] (continue below).
4449 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4450 if (DestType->isRecordType()) {
4451 QualType InitType = InitList->getInit(0)->getType();
4452 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4453 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4454 Expr *InitListAsExpr = InitList;
4455 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4456 DestType, Sequence,
4457 /*InitListSyntax*/false,
4458 /*IsInitListCopy*/true);
4459 return;
4460 }
4461 }
4462 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4463 Expr *SubInit[1] = {InitList->getInit(0)};
4464 if (!isa<VariableArrayType>(DestAT) &&
4465 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4466 InitializationKind SubKind =
4467 Kind.getKind() == InitializationKind::IK_DirectList
4468 ? InitializationKind::CreateDirect(Kind.getLocation(),
4469 InitList->getLBraceLoc(),
4470 InitList->getRBraceLoc())
4471 : Kind;
4472 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4473 /*TopLevelOfInitList*/ true,
4474 TreatUnavailableAsInvalid);
4475
4476 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4477 // the element is not an appropriately-typed string literal, in which
4478 // case we should proceed as in C++11 (below).
4479 if (Sequence) {
4480 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4481 return;
4482 }
4483 }
4484 }
4485 }
4486
4487 // C++11 [dcl.init.list]p3:
4488 // - If T is an aggregate, aggregate initialization is performed.
4489 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4490 (S.getLangOpts().CPlusPlus11 &&
4491 S.isStdInitializerList(DestType, nullptr))) {
4492 if (S.getLangOpts().CPlusPlus11) {
4493 // - Otherwise, if the initializer list has no elements and T is a
4494 // class type with a default constructor, the object is
4495 // value-initialized.
4496 if (InitList->getNumInits() == 0) {
4497 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4498 if (S.LookupDefaultConstructor(RD)) {
4499 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4500 return;
4501 }
4502 }
4503
4504 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4505 // an initializer_list object constructed [...]
4506 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4507 TreatUnavailableAsInvalid))
4508 return;
4509
4510 // - Otherwise, if T is a class type, constructors are considered.
4511 Expr *InitListAsExpr = InitList;
4512 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4513 DestType, Sequence, /*InitListSyntax*/true);
4514 } else
4515 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4516 return;
4517 }
4518
4519 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4520 InitList->getNumInits() == 1) {
4521 Expr *E = InitList->getInit(0);
4522
4523 // - Otherwise, if T is an enumeration with a fixed underlying type,
4524 // the initializer-list has a single element v, and the initialization
4525 // is direct-list-initialization, the object is initialized with the
4526 // value T(v); if a narrowing conversion is required to convert v to
4527 // the underlying type of T, the program is ill-formed.
4528 auto *ET = DestType->getAs<EnumType>();
4529 if (S.getLangOpts().CPlusPlus17 &&
4530 Kind.getKind() == InitializationKind::IK_DirectList &&
4531 ET && ET->getDecl()->isFixed() &&
4532 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4533 (E->getType()->isIntegralOrUnscopedEnumerationType() ||
4534 E->getType()->isFloatingType())) {
4535 // There are two ways that T(v) can work when T is an enumeration type.
4536 // If there is either an implicit conversion sequence from v to T or
4537 // a conversion function that can convert from v to T, then we use that.
4538 // Otherwise, if v is of integral, unscoped enumeration, or floating-point
4539 // type, it is converted to the enumeration type via its underlying type.
4540 // There is no overlap possible between these two cases (except when the
4541 // source value is already of the destination type), and the first
4542 // case is handled by the general case for single-element lists below.
4543 ImplicitConversionSequence ICS;
4544 ICS.setStandard();
4545 ICS.Standard.setAsIdentityConversion();
4546 if (!E->isPRValue())
4547 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4548 // If E is of a floating-point type, then the conversion is ill-formed
4549 // due to narrowing, but go through the motions in order to produce the
4550 // right diagnostic.
4551 ICS.Standard.Second = E->getType()->isFloatingType()
4552 ? ICK_Floating_Integral
4553 : ICK_Integral_Conversion;
4554 ICS.Standard.setFromType(E->getType());
4555 ICS.Standard.setToType(0, E->getType());
4556 ICS.Standard.setToType(1, DestType);
4557 ICS.Standard.setToType(2, DestType);
4558 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4559 /*TopLevelOfInitList*/true);
4560 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4561 return;
4562 }
4563
4564 // - Otherwise, if the initializer list has a single element of type E
4565 // [...references are handled above...], the object or reference is
4566 // initialized from that element (by copy-initialization for
4567 // copy-list-initialization, or by direct-initialization for
4568 // direct-list-initialization); if a narrowing conversion is required
4569 // to convert the element to T, the program is ill-formed.
4570 //
4571 // Per core-24034, this is direct-initialization if we were performing
4572 // direct-list-initialization and copy-initialization otherwise.
4573 // We can't use InitListChecker for this, because it always performs
4574 // copy-initialization. This only matters if we might use an 'explicit'
4575 // conversion operator, or for the special case conversion of nullptr_t to
4576 // bool, so we only need to handle those cases.
4577 //
4578 // FIXME: Why not do this in all cases?
4579 Expr *Init = InitList->getInit(0);
4580 if (Init->getType()->isRecordType() ||
4581 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4582 InitializationKind SubKind =
4583 Kind.getKind() == InitializationKind::IK_DirectList
4584 ? InitializationKind::CreateDirect(Kind.getLocation(),
4585 InitList->getLBraceLoc(),
4586 InitList->getRBraceLoc())
4587 : Kind;
4588 Expr *SubInit[1] = { Init };
4589 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4590 /*TopLevelOfInitList*/true,
4591 TreatUnavailableAsInvalid);
4592 if (Sequence)
4593 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4594 return;
4595 }
4596 }
4597
4598 InitListChecker CheckInitList(S, Entity, InitList,
4599 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4600 if (CheckInitList.HadError()) {
4601 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4602 return;
4603 }
4604
4605 // Add the list initialization step with the built init list.
4606 Sequence.AddListInitializationStep(DestType);
4607 }
4608
4609 /// Try a reference initialization that involves calling a conversion
4610 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,bool IsLValueRef,InitializationSequence & Sequence)4611 static OverloadingResult TryRefInitWithConversionFunction(
4612 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4613 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4614 InitializationSequence &Sequence) {
4615 QualType DestType = Entity.getType();
4616 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4617 QualType T1 = cv1T1.getUnqualifiedType();
4618 QualType cv2T2 = Initializer->getType();
4619 QualType T2 = cv2T2.getUnqualifiedType();
4620
4621 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4622 "Must have incompatible references when binding via conversion");
4623
4624 // Build the candidate set directly in the initialization sequence
4625 // structure, so that it will persist if we fail.
4626 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4627 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4628
4629 // Determine whether we are allowed to call explicit conversion operators.
4630 // Note that none of [over.match.copy], [over.match.conv], nor
4631 // [over.match.ref] permit an explicit constructor to be chosen when
4632 // initializing a reference, not even for direct-initialization.
4633 bool AllowExplicitCtors = false;
4634 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4635
4636 const RecordType *T1RecordType = nullptr;
4637 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4638 S.isCompleteType(Kind.getLocation(), T1)) {
4639 // The type we're converting to is a class type. Enumerate its constructors
4640 // to see if there is a suitable conversion.
4641 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4642
4643 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4644 auto Info = getConstructorInfo(D);
4645 if (!Info.Constructor)
4646 continue;
4647
4648 if (!Info.Constructor->isInvalidDecl() &&
4649 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4650 if (Info.ConstructorTmpl)
4651 S.AddTemplateOverloadCandidate(
4652 Info.ConstructorTmpl, Info.FoundDecl,
4653 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4654 /*SuppressUserConversions=*/true,
4655 /*PartialOverloading*/ false, AllowExplicitCtors);
4656 else
4657 S.AddOverloadCandidate(
4658 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4659 /*SuppressUserConversions=*/true,
4660 /*PartialOverloading*/ false, AllowExplicitCtors);
4661 }
4662 }
4663 }
4664 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4665 return OR_No_Viable_Function;
4666
4667 const RecordType *T2RecordType = nullptr;
4668 if ((T2RecordType = T2->getAs<RecordType>()) &&
4669 S.isCompleteType(Kind.getLocation(), T2)) {
4670 // The type we're converting from is a class type, enumerate its conversion
4671 // functions.
4672 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4673
4674 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4675 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4676 NamedDecl *D = *I;
4677 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4678 if (isa<UsingShadowDecl>(D))
4679 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4680
4681 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4682 CXXConversionDecl *Conv;
4683 if (ConvTemplate)
4684 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4685 else
4686 Conv = cast<CXXConversionDecl>(D);
4687
4688 // If the conversion function doesn't return a reference type,
4689 // it can't be considered for this conversion unless we're allowed to
4690 // consider rvalues.
4691 // FIXME: Do we need to make sure that we only consider conversion
4692 // candidates with reference-compatible results? That might be needed to
4693 // break recursion.
4694 if ((AllowRValues ||
4695 Conv->getConversionType()->isLValueReferenceType())) {
4696 if (ConvTemplate)
4697 S.AddTemplateConversionCandidate(
4698 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4699 CandidateSet,
4700 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4701 else
4702 S.AddConversionCandidate(
4703 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4704 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4705 }
4706 }
4707 }
4708 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4709 return OR_No_Viable_Function;
4710
4711 SourceLocation DeclLoc = Initializer->getBeginLoc();
4712
4713 // Perform overload resolution. If it fails, return the failed result.
4714 OverloadCandidateSet::iterator Best;
4715 if (OverloadingResult Result
4716 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4717 return Result;
4718
4719 FunctionDecl *Function = Best->Function;
4720 // This is the overload that will be used for this initialization step if we
4721 // use this initialization. Mark it as referenced.
4722 Function->setReferenced();
4723
4724 // Compute the returned type and value kind of the conversion.
4725 QualType cv3T3;
4726 if (isa<CXXConversionDecl>(Function))
4727 cv3T3 = Function->getReturnType();
4728 else
4729 cv3T3 = T1;
4730
4731 ExprValueKind VK = VK_PRValue;
4732 if (cv3T3->isLValueReferenceType())
4733 VK = VK_LValue;
4734 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4735 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4736 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4737
4738 // Add the user-defined conversion step.
4739 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4740 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4741 HadMultipleCandidates);
4742
4743 // Determine whether we'll need to perform derived-to-base adjustments or
4744 // other conversions.
4745 Sema::ReferenceConversions RefConv;
4746 Sema::ReferenceCompareResult NewRefRelationship =
4747 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4748
4749 // Add the final conversion sequence, if necessary.
4750 if (NewRefRelationship == Sema::Ref_Incompatible) {
4751 assert(!isa<CXXConstructorDecl>(Function) &&
4752 "should not have conversion after constructor");
4753
4754 ImplicitConversionSequence ICS;
4755 ICS.setStandard();
4756 ICS.Standard = Best->FinalConversion;
4757 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4758
4759 // Every implicit conversion results in a prvalue, except for a glvalue
4760 // derived-to-base conversion, which we handle below.
4761 cv3T3 = ICS.Standard.getToType(2);
4762 VK = VK_PRValue;
4763 }
4764
4765 // If the converted initializer is a prvalue, its type T4 is adjusted to
4766 // type "cv1 T4" and the temporary materialization conversion is applied.
4767 //
4768 // We adjust the cv-qualifications to match the reference regardless of
4769 // whether we have a prvalue so that the AST records the change. In this
4770 // case, T4 is "cv3 T3".
4771 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4772 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4773 Sequence.AddQualificationConversionStep(cv1T4, VK);
4774 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue);
4775 VK = IsLValueRef ? VK_LValue : VK_XValue;
4776
4777 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4778 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4779 else if (RefConv & Sema::ReferenceConversions::ObjC)
4780 Sequence.AddObjCObjectConversionStep(cv1T1);
4781 else if (RefConv & Sema::ReferenceConversions::Function)
4782 Sequence.AddFunctionReferenceConversionStep(cv1T1);
4783 else if (RefConv & Sema::ReferenceConversions::Qualification) {
4784 if (!S.Context.hasSameType(cv1T4, cv1T1))
4785 Sequence.AddQualificationConversionStep(cv1T1, VK);
4786 }
4787
4788 return OR_Success;
4789 }
4790
4791 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4792 const InitializedEntity &Entity,
4793 Expr *CurInitExpr);
4794
4795 /// Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)4796 static void TryReferenceInitialization(Sema &S,
4797 const InitializedEntity &Entity,
4798 const InitializationKind &Kind,
4799 Expr *Initializer,
4800 InitializationSequence &Sequence) {
4801 QualType DestType = Entity.getType();
4802 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4803 Qualifiers T1Quals;
4804 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4805 QualType cv2T2 = S.getCompletedType(Initializer);
4806 Qualifiers T2Quals;
4807 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4808
4809 // If the initializer is the address of an overloaded function, try
4810 // to resolve the overloaded function. If all goes well, T2 is the
4811 // type of the resulting function.
4812 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4813 T1, Sequence))
4814 return;
4815
4816 // Delegate everything else to a subfunction.
4817 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4818 T1Quals, cv2T2, T2, T2Quals, Sequence);
4819 }
4820
4821 /// Determine whether an expression is a non-referenceable glvalue (one to
4822 /// which a reference can never bind). Attempting to bind a reference to
4823 /// such a glvalue will always create a temporary.
isNonReferenceableGLValue(Expr * E)4824 static bool isNonReferenceableGLValue(Expr *E) {
4825 return E->refersToBitField() || E->refersToVectorElement() ||
4826 E->refersToMatrixElement();
4827 }
4828
4829 /// Reference initialization without resolving overloaded functions.
4830 ///
4831 /// We also can get here in C if we call a builtin which is declared as
4832 /// a function with a parameter of reference type (such as __builtin_va_end()).
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)4833 static void TryReferenceInitializationCore(Sema &S,
4834 const InitializedEntity &Entity,
4835 const InitializationKind &Kind,
4836 Expr *Initializer,
4837 QualType cv1T1, QualType T1,
4838 Qualifiers T1Quals,
4839 QualType cv2T2, QualType T2,
4840 Qualifiers T2Quals,
4841 InitializationSequence &Sequence) {
4842 QualType DestType = Entity.getType();
4843 SourceLocation DeclLoc = Initializer->getBeginLoc();
4844
4845 // Compute some basic properties of the types and the initializer.
4846 bool isLValueRef = DestType->isLValueReferenceType();
4847 bool isRValueRef = !isLValueRef;
4848 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4849
4850 Sema::ReferenceConversions RefConv;
4851 Sema::ReferenceCompareResult RefRelationship =
4852 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4853
4854 // C++0x [dcl.init.ref]p5:
4855 // A reference to type "cv1 T1" is initialized by an expression of type
4856 // "cv2 T2" as follows:
4857 //
4858 // - If the reference is an lvalue reference and the initializer
4859 // expression
4860 // Note the analogous bullet points for rvalue refs to functions. Because
4861 // there are no function rvalues in C++, rvalue refs to functions are treated
4862 // like lvalue refs.
4863 OverloadingResult ConvOvlResult = OR_Success;
4864 bool T1Function = T1->isFunctionType();
4865 if (isLValueRef || T1Function) {
4866 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4867 (RefRelationship == Sema::Ref_Compatible ||
4868 (Kind.isCStyleOrFunctionalCast() &&
4869 RefRelationship == Sema::Ref_Related))) {
4870 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4871 // reference-compatible with "cv2 T2," or
4872 if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4873 Sema::ReferenceConversions::ObjC)) {
4874 // If we're converting the pointee, add any qualifiers first;
4875 // these qualifiers must all be top-level, so just convert to "cv1 T2".
4876 if (RefConv & (Sema::ReferenceConversions::Qualification))
4877 Sequence.AddQualificationConversionStep(
4878 S.Context.getQualifiedType(T2, T1Quals),
4879 Initializer->getValueKind());
4880 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4881 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4882 else
4883 Sequence.AddObjCObjectConversionStep(cv1T1);
4884 } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4885 // Perform a (possibly multi-level) qualification conversion.
4886 Sequence.AddQualificationConversionStep(cv1T1,
4887 Initializer->getValueKind());
4888 } else if (RefConv & Sema::ReferenceConversions::Function) {
4889 Sequence.AddFunctionReferenceConversionStep(cv1T1);
4890 }
4891
4892 // We only create a temporary here when binding a reference to a
4893 // bit-field or vector element. Those cases are't supposed to be
4894 // handled by this bullet, but the outcome is the same either way.
4895 Sequence.AddReferenceBindingStep(cv1T1, false);
4896 return;
4897 }
4898
4899 // - has a class type (i.e., T2 is a class type), where T1 is not
4900 // reference-related to T2, and can be implicitly converted to an
4901 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4902 // with "cv3 T3" (this conversion is selected by enumerating the
4903 // applicable conversion functions (13.3.1.6) and choosing the best
4904 // one through overload resolution (13.3)),
4905 // If we have an rvalue ref to function type here, the rhs must be
4906 // an rvalue. DR1287 removed the "implicitly" here.
4907 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4908 (isLValueRef || InitCategory.isRValue())) {
4909 if (S.getLangOpts().CPlusPlus) {
4910 // Try conversion functions only for C++.
4911 ConvOvlResult = TryRefInitWithConversionFunction(
4912 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4913 /*IsLValueRef*/ isLValueRef, Sequence);
4914 if (ConvOvlResult == OR_Success)
4915 return;
4916 if (ConvOvlResult != OR_No_Viable_Function)
4917 Sequence.SetOverloadFailure(
4918 InitializationSequence::FK_ReferenceInitOverloadFailed,
4919 ConvOvlResult);
4920 } else {
4921 ConvOvlResult = OR_No_Viable_Function;
4922 }
4923 }
4924 }
4925
4926 // - Otherwise, the reference shall be an lvalue reference to a
4927 // non-volatile const type (i.e., cv1 shall be const), or the reference
4928 // shall be an rvalue reference.
4929 // For address spaces, we interpret this to mean that an addr space
4930 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4931 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4932 T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4933 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4934 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4935 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4936 Sequence.SetOverloadFailure(
4937 InitializationSequence::FK_ReferenceInitOverloadFailed,
4938 ConvOvlResult);
4939 else if (!InitCategory.isLValue())
4940 Sequence.SetFailed(
4941 T1Quals.isAddressSpaceSupersetOf(T2Quals)
4942 ? InitializationSequence::
4943 FK_NonConstLValueReferenceBindingToTemporary
4944 : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4945 else {
4946 InitializationSequence::FailureKind FK;
4947 switch (RefRelationship) {
4948 case Sema::Ref_Compatible:
4949 if (Initializer->refersToBitField())
4950 FK = InitializationSequence::
4951 FK_NonConstLValueReferenceBindingToBitfield;
4952 else if (Initializer->refersToVectorElement())
4953 FK = InitializationSequence::
4954 FK_NonConstLValueReferenceBindingToVectorElement;
4955 else if (Initializer->refersToMatrixElement())
4956 FK = InitializationSequence::
4957 FK_NonConstLValueReferenceBindingToMatrixElement;
4958 else
4959 llvm_unreachable("unexpected kind of compatible initializer");
4960 break;
4961 case Sema::Ref_Related:
4962 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4963 break;
4964 case Sema::Ref_Incompatible:
4965 FK = InitializationSequence::
4966 FK_NonConstLValueReferenceBindingToUnrelated;
4967 break;
4968 }
4969 Sequence.SetFailed(FK);
4970 }
4971 return;
4972 }
4973
4974 // - If the initializer expression
4975 // - is an
4976 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4977 // [1z] rvalue (but not a bit-field) or
4978 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4979 //
4980 // Note: functions are handled above and below rather than here...
4981 if (!T1Function &&
4982 (RefRelationship == Sema::Ref_Compatible ||
4983 (Kind.isCStyleOrFunctionalCast() &&
4984 RefRelationship == Sema::Ref_Related)) &&
4985 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4986 (InitCategory.isPRValue() &&
4987 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4988 T2->isArrayType())))) {
4989 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue;
4990 if (InitCategory.isPRValue() && T2->isRecordType()) {
4991 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4992 // compiler the freedom to perform a copy here or bind to the
4993 // object, while C++0x requires that we bind directly to the
4994 // object. Hence, we always bind to the object without making an
4995 // extra copy. However, in C++03 requires that we check for the
4996 // presence of a suitable copy constructor:
4997 //
4998 // The constructor that would be used to make the copy shall
4999 // be callable whether or not the copy is actually done.
5000 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
5001 Sequence.AddExtraneousCopyToTemporary(cv2T2);
5002 else if (S.getLangOpts().CPlusPlus11)
5003 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
5004 }
5005
5006 // C++1z [dcl.init.ref]/5.2.1.2:
5007 // If the converted initializer is a prvalue, its type T4 is adjusted
5008 // to type "cv1 T4" and the temporary materialization conversion is
5009 // applied.
5010 // Postpone address space conversions to after the temporary materialization
5011 // conversion to allow creating temporaries in the alloca address space.
5012 auto T1QualsIgnoreAS = T1Quals;
5013 auto T2QualsIgnoreAS = T2Quals;
5014 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
5015 T1QualsIgnoreAS.removeAddressSpace();
5016 T2QualsIgnoreAS.removeAddressSpace();
5017 }
5018 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
5019 if (T1QualsIgnoreAS != T2QualsIgnoreAS)
5020 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
5021 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue);
5022 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
5023 // Add addr space conversion if required.
5024 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
5025 auto T4Quals = cv1T4.getQualifiers();
5026 T4Quals.addAddressSpace(T1Quals.getAddressSpace());
5027 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
5028 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
5029 cv1T4 = cv1T4WithAS;
5030 }
5031
5032 // In any case, the reference is bound to the resulting glvalue (or to
5033 // an appropriate base class subobject).
5034 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
5035 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
5036 else if (RefConv & Sema::ReferenceConversions::ObjC)
5037 Sequence.AddObjCObjectConversionStep(cv1T1);
5038 else if (RefConv & Sema::ReferenceConversions::Qualification) {
5039 if (!S.Context.hasSameType(cv1T4, cv1T1))
5040 Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
5041 }
5042 return;
5043 }
5044
5045 // - has a class type (i.e., T2 is a class type), where T1 is not
5046 // reference-related to T2, and can be implicitly converted to an
5047 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
5048 // where "cv1 T1" is reference-compatible with "cv3 T3",
5049 //
5050 // DR1287 removes the "implicitly" here.
5051 if (T2->isRecordType()) {
5052 if (RefRelationship == Sema::Ref_Incompatible) {
5053 ConvOvlResult = TryRefInitWithConversionFunction(
5054 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
5055 /*IsLValueRef*/ isLValueRef, Sequence);
5056 if (ConvOvlResult)
5057 Sequence.SetOverloadFailure(
5058 InitializationSequence::FK_ReferenceInitOverloadFailed,
5059 ConvOvlResult);
5060
5061 return;
5062 }
5063
5064 if (RefRelationship == Sema::Ref_Compatible &&
5065 isRValueRef && InitCategory.isLValue()) {
5066 Sequence.SetFailed(
5067 InitializationSequence::FK_RValueReferenceBindingToLValue);
5068 return;
5069 }
5070
5071 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5072 return;
5073 }
5074
5075 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
5076 // from the initializer expression using the rules for a non-reference
5077 // copy-initialization (8.5). The reference is then bound to the
5078 // temporary. [...]
5079
5080 // Ignore address space of reference type at this point and perform address
5081 // space conversion after the reference binding step.
5082 QualType cv1T1IgnoreAS =
5083 T1Quals.hasAddressSpace()
5084 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5085 : cv1T1;
5086
5087 InitializedEntity TempEntity =
5088 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5089
5090 // FIXME: Why do we use an implicit conversion here rather than trying
5091 // copy-initialization?
5092 ImplicitConversionSequence ICS
5093 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5094 /*SuppressUserConversions=*/false,
5095 Sema::AllowedExplicit::None,
5096 /*FIXME:InOverloadResolution=*/false,
5097 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5098 /*AllowObjCWritebackConversion=*/false);
5099
5100 if (ICS.isBad()) {
5101 // FIXME: Use the conversion function set stored in ICS to turn
5102 // this into an overloading ambiguity diagnostic. However, we need
5103 // to keep that set as an OverloadCandidateSet rather than as some
5104 // other kind of set.
5105 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5106 Sequence.SetOverloadFailure(
5107 InitializationSequence::FK_ReferenceInitOverloadFailed,
5108 ConvOvlResult);
5109 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5110 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5111 else
5112 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5113 return;
5114 } else {
5115 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5116 }
5117
5118 // [...] If T1 is reference-related to T2, cv1 must be the
5119 // same cv-qualification as, or greater cv-qualification
5120 // than, cv2; otherwise, the program is ill-formed.
5121 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5122 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5123 if (RefRelationship == Sema::Ref_Related &&
5124 ((T1CVRQuals | T2CVRQuals) != T1CVRQuals ||
5125 !T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
5126 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5127 return;
5128 }
5129
5130 // [...] If T1 is reference-related to T2 and the reference is an rvalue
5131 // reference, the initializer expression shall not be an lvalue.
5132 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5133 InitCategory.isLValue()) {
5134 Sequence.SetFailed(
5135 InitializationSequence::FK_RValueReferenceBindingToLValue);
5136 return;
5137 }
5138
5139 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5140
5141 if (T1Quals.hasAddressSpace()) {
5142 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5143 LangAS::Default)) {
5144 Sequence.SetFailed(
5145 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5146 return;
5147 }
5148 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5149 : VK_XValue);
5150 }
5151 }
5152
5153 /// Attempt character array initialization from a string literal
5154 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)5155 static void TryStringLiteralInitialization(Sema &S,
5156 const InitializedEntity &Entity,
5157 const InitializationKind &Kind,
5158 Expr *Initializer,
5159 InitializationSequence &Sequence) {
5160 Sequence.AddStringInitStep(Entity.getType());
5161 }
5162
5163 /// Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)5164 static void TryValueInitialization(Sema &S,
5165 const InitializedEntity &Entity,
5166 const InitializationKind &Kind,
5167 InitializationSequence &Sequence,
5168 InitListExpr *InitList) {
5169 assert((!InitList || InitList->getNumInits() == 0) &&
5170 "Shouldn't use value-init for non-empty init lists");
5171
5172 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5173 //
5174 // To value-initialize an object of type T means:
5175 QualType T = Entity.getType();
5176
5177 // -- if T is an array type, then each element is value-initialized;
5178 T = S.Context.getBaseElementType(T);
5179
5180 if (const RecordType *RT = T->getAs<RecordType>()) {
5181 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5182 bool NeedZeroInitialization = true;
5183 // C++98:
5184 // -- if T is a class type (clause 9) with a user-declared constructor
5185 // (12.1), then the default constructor for T is called (and the
5186 // initialization is ill-formed if T has no accessible default
5187 // constructor);
5188 // C++11:
5189 // -- if T is a class type (clause 9) with either no default constructor
5190 // (12.1 [class.ctor]) or a default constructor that is user-provided
5191 // or deleted, then the object is default-initialized;
5192 //
5193 // Note that the C++11 rule is the same as the C++98 rule if there are no
5194 // defaulted or deleted constructors, so we just use it unconditionally.
5195 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5196 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5197 NeedZeroInitialization = false;
5198
5199 // -- if T is a (possibly cv-qualified) non-union class type without a
5200 // user-provided or deleted default constructor, then the object is
5201 // zero-initialized and, if T has a non-trivial default constructor,
5202 // default-initialized;
5203 // The 'non-union' here was removed by DR1502. The 'non-trivial default
5204 // constructor' part was removed by DR1507.
5205 if (NeedZeroInitialization)
5206 Sequence.AddZeroInitializationStep(Entity.getType());
5207
5208 // C++03:
5209 // -- if T is a non-union class type without a user-declared constructor,
5210 // then every non-static data member and base class component of T is
5211 // value-initialized;
5212 // [...] A program that calls for [...] value-initialization of an
5213 // entity of reference type is ill-formed.
5214 //
5215 // C++11 doesn't need this handling, because value-initialization does not
5216 // occur recursively there, and the implicit default constructor is
5217 // defined as deleted in the problematic cases.
5218 if (!S.getLangOpts().CPlusPlus11 &&
5219 ClassDecl->hasUninitializedReferenceMember()) {
5220 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5221 return;
5222 }
5223
5224 // If this is list-value-initialization, pass the empty init list on when
5225 // building the constructor call. This affects the semantics of a few
5226 // things (such as whether an explicit default constructor can be called).
5227 Expr *InitListAsExpr = InitList;
5228 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5229 bool InitListSyntax = InitList;
5230
5231 // FIXME: Instead of creating a CXXConstructExpr of array type here,
5232 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5233 return TryConstructorInitialization(
5234 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5235 }
5236 }
5237
5238 Sequence.AddZeroInitializationStep(Entity.getType());
5239 }
5240
5241 /// Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)5242 static void TryDefaultInitialization(Sema &S,
5243 const InitializedEntity &Entity,
5244 const InitializationKind &Kind,
5245 InitializationSequence &Sequence) {
5246 assert(Kind.getKind() == InitializationKind::IK_Default);
5247
5248 // C++ [dcl.init]p6:
5249 // To default-initialize an object of type T means:
5250 // - if T is an array type, each element is default-initialized;
5251 QualType DestType = S.Context.getBaseElementType(Entity.getType());
5252
5253 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
5254 // constructor for T is called (and the initialization is ill-formed if
5255 // T has no accessible default constructor);
5256 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5257 TryConstructorInitialization(S, Entity, Kind, std::nullopt, DestType,
5258 Entity.getType(), Sequence);
5259 return;
5260 }
5261
5262 // - otherwise, no initialization is performed.
5263
5264 // If a program calls for the default initialization of an object of
5265 // a const-qualified type T, T shall be a class type with a user-provided
5266 // default constructor.
5267 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5268 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5269 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5270 return;
5271 }
5272
5273 // If the destination type has a lifetime property, zero-initialize it.
5274 if (DestType.getQualifiers().hasObjCLifetime()) {
5275 Sequence.AddZeroInitializationStep(Entity.getType());
5276 return;
5277 }
5278 }
5279
TryOrBuildParenListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,ArrayRef<Expr * > Args,InitializationSequence & Sequence,bool VerifyOnly,ExprResult * Result=nullptr)5280 static void TryOrBuildParenListInitialization(
5281 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5282 ArrayRef<Expr *> Args, InitializationSequence &Sequence, bool VerifyOnly,
5283 ExprResult *Result = nullptr) {
5284 unsigned EntityIndexToProcess = 0;
5285 SmallVector<Expr *, 4> InitExprs;
5286 QualType ResultType;
5287 Expr *ArrayFiller = nullptr;
5288 FieldDecl *InitializedFieldInUnion = nullptr;
5289
5290 auto HandleInitializedEntity = [&](const InitializedEntity &SubEntity,
5291 const InitializationKind &SubKind,
5292 Expr *Arg, Expr **InitExpr = nullptr) {
5293 InitializationSequence IS = [&]() {
5294 if (Arg)
5295 return InitializationSequence(S, SubEntity, SubKind, Arg);
5296 return InitializationSequence(S, SubEntity, SubKind, std::nullopt);
5297 }();
5298
5299 if (IS.Failed()) {
5300 if (!VerifyOnly) {
5301 if (Arg)
5302 IS.Diagnose(S, SubEntity, SubKind, Arg);
5303 else
5304 IS.Diagnose(S, SubEntity, SubKind, std::nullopt);
5305 } else {
5306 Sequence.SetFailed(
5307 InitializationSequence::FK_ParenthesizedListInitFailed);
5308 }
5309
5310 return false;
5311 }
5312 if (!VerifyOnly) {
5313 ExprResult ER;
5314 if (Arg)
5315 ER = IS.Perform(S, SubEntity, SubKind, Arg);
5316 else
5317 ER = IS.Perform(S, SubEntity, SubKind, std::nullopt);
5318 if (InitExpr)
5319 *InitExpr = ER.get();
5320 else
5321 InitExprs.push_back(ER.get());
5322 }
5323 return true;
5324 };
5325
5326 if (const ArrayType *AT =
5327 S.getASTContext().getAsArrayType(Entity.getType())) {
5328 SmallVector<InitializedEntity, 4> ElementEntities;
5329 uint64_t ArrayLength;
5330 // C++ [dcl.init]p16.5
5331 // if the destination type is an array, the object is initialized as
5332 // follows. Let x1, . . . , xk be the elements of the expression-list. If
5333 // the destination type is an array of unknown bound, it is defined as
5334 // having k elements.
5335 if (const ConstantArrayType *CAT =
5336 S.getASTContext().getAsConstantArrayType(Entity.getType())) {
5337 ArrayLength = CAT->getSize().getZExtValue();
5338 ResultType = Entity.getType();
5339 } else if (const VariableArrayType *VAT =
5340 S.getASTContext().getAsVariableArrayType(Entity.getType())) {
5341 // Braced-initialization of variable array types is not allowed, even if
5342 // the size is greater than or equal to the number of args, so we don't
5343 // allow them to be initialized via parenthesized aggregate initialization
5344 // either.
5345 const Expr *SE = VAT->getSizeExpr();
5346 S.Diag(SE->getBeginLoc(), diag::err_variable_object_no_init)
5347 << SE->getSourceRange();
5348 return;
5349 } else {
5350 assert(isa<IncompleteArrayType>(Entity.getType()));
5351 ArrayLength = Args.size();
5352 }
5353 EntityIndexToProcess = ArrayLength;
5354
5355 // ...the ith array element is copy-initialized with xi for each
5356 // 1 <= i <= k
5357 for (Expr *E : Args) {
5358 InitializedEntity SubEntity = InitializedEntity::InitializeElement(
5359 S.getASTContext(), EntityIndexToProcess, Entity);
5360 InitializationKind SubKind = InitializationKind::CreateForInit(
5361 E->getExprLoc(), /*isDirectInit=*/false, E);
5362 if (!HandleInitializedEntity(SubEntity, SubKind, E))
5363 return;
5364 }
5365 // ...and value-initialized for each k < i <= n;
5366 if (ArrayLength > Args.size()) {
5367 InitializedEntity SubEntity = InitializedEntity::InitializeElement(
5368 S.getASTContext(), Args.size(), Entity);
5369 InitializationKind SubKind = InitializationKind::CreateValue(
5370 Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true);
5371 if (!HandleInitializedEntity(SubEntity, SubKind, nullptr, &ArrayFiller))
5372 return;
5373 }
5374
5375 if (ResultType.isNull()) {
5376 ResultType = S.Context.getConstantArrayType(
5377 AT->getElementType(), llvm::APInt(/*numBits=*/32, ArrayLength),
5378 /*SizeExpr=*/nullptr, ArrayType::Normal, 0);
5379 }
5380 } else if (auto *RT = Entity.getType()->getAs<RecordType>()) {
5381 bool IsUnion = RT->isUnionType();
5382 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5383
5384 if (!IsUnion) {
5385 for (const CXXBaseSpecifier &Base : RD->bases()) {
5386 InitializedEntity SubEntity = InitializedEntity::InitializeBase(
5387 S.getASTContext(), &Base, false, &Entity);
5388 if (EntityIndexToProcess < Args.size()) {
5389 // C++ [dcl.init]p16.6.2.2.
5390 // ...the object is initialized is follows. Let e1, ..., en be the
5391 // elements of the aggregate([dcl.init.aggr]). Let x1, ..., xk be
5392 // the elements of the expression-list...The element ei is
5393 // copy-initialized with xi for 1 <= i <= k.
5394 Expr *E = Args[EntityIndexToProcess];
5395 InitializationKind SubKind = InitializationKind::CreateForInit(
5396 E->getExprLoc(), /*isDirectInit=*/false, E);
5397 if (!HandleInitializedEntity(SubEntity, SubKind, E))
5398 return;
5399 } else {
5400 // We've processed all of the args, but there are still base classes
5401 // that have to be initialized.
5402 // C++ [dcl.init]p17.6.2.2
5403 // The remaining elements...otherwise are value initialzed
5404 InitializationKind SubKind = InitializationKind::CreateValue(
5405 Kind.getLocation(), Kind.getLocation(), Kind.getLocation(),
5406 /*IsImplicit=*/true);
5407 if (!HandleInitializedEntity(SubEntity, SubKind, nullptr))
5408 return;
5409 }
5410 EntityIndexToProcess++;
5411 }
5412 }
5413
5414 for (FieldDecl *FD : RD->fields()) {
5415 // Unnamed bitfields should not be initialized at all, either with an arg
5416 // or by default.
5417 if (FD->isUnnamedBitfield())
5418 continue;
5419
5420 InitializedEntity SubEntity =
5421 InitializedEntity::InitializeMemberFromParenAggInit(FD);
5422
5423 if (EntityIndexToProcess < Args.size()) {
5424 // ...The element ei is copy-initialized with xi for 1 <= i <= k.
5425 Expr *E = Args[EntityIndexToProcess];
5426
5427 // Incomplete array types indicate flexible array members. Do not allow
5428 // paren list initializations of structs with these members, as GCC
5429 // doesn't either.
5430 if (FD->getType()->isIncompleteArrayType()) {
5431 if (!VerifyOnly) {
5432 S.Diag(E->getBeginLoc(), diag::err_flexible_array_init)
5433 << SourceRange(E->getBeginLoc(), E->getEndLoc());
5434 S.Diag(FD->getLocation(), diag::note_flexible_array_member) << FD;
5435 }
5436 Sequence.SetFailed(
5437 InitializationSequence::FK_ParenthesizedListInitFailed);
5438 return;
5439 }
5440
5441 InitializationKind SubKind = InitializationKind::CreateForInit(
5442 E->getExprLoc(), /*isDirectInit=*/false, E);
5443 if (!HandleInitializedEntity(SubEntity, SubKind, E))
5444 return;
5445
5446 // Unions should have only one initializer expression, so we bail out
5447 // after processing the first field. If there are more initializers then
5448 // it will be caught when we later check whether EntityIndexToProcess is
5449 // less than Args.size();
5450 if (IsUnion) {
5451 InitializedFieldInUnion = FD;
5452 EntityIndexToProcess = 1;
5453 break;
5454 }
5455 } else {
5456 // We've processed all of the args, but there are still members that
5457 // have to be initialized.
5458 if (FD->hasInClassInitializer()) {
5459 if (!VerifyOnly) {
5460 // C++ [dcl.init]p16.6.2.2
5461 // The remaining elements are initialized with their default
5462 // member initializers, if any
5463 ExprResult DIE = S.BuildCXXDefaultInitExpr(FD->getLocation(), FD);
5464 if (DIE.isInvalid())
5465 return;
5466 S.checkInitializerLifetime(SubEntity, DIE.get());
5467 InitExprs.push_back(DIE.get());
5468 }
5469 } else {
5470 // C++ [dcl.init]p17.6.2.2
5471 // The remaining elements...otherwise are value initialzed
5472 if (FD->getType()->isReferenceType()) {
5473 Sequence.SetFailed(
5474 InitializationSequence::FK_ParenthesizedListInitFailed);
5475 if (!VerifyOnly) {
5476 SourceRange SR = Kind.getParenOrBraceRange();
5477 S.Diag(SR.getEnd(), diag::err_init_reference_member_uninitialized)
5478 << FD->getType() << SR;
5479 S.Diag(FD->getLocation(), diag::note_uninit_reference_member);
5480 }
5481 return;
5482 }
5483 InitializationKind SubKind = InitializationKind::CreateValue(
5484 Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true);
5485 if (!HandleInitializedEntity(SubEntity, SubKind, nullptr))
5486 return;
5487 }
5488 }
5489 EntityIndexToProcess++;
5490 }
5491 ResultType = Entity.getType();
5492 }
5493
5494 // Not all of the args have been processed, so there must've been more args
5495 // than were required to initialize the element.
5496 if (EntityIndexToProcess < Args.size()) {
5497 Sequence.SetFailed(InitializationSequence::FK_ParenthesizedListInitFailed);
5498 if (!VerifyOnly) {
5499 QualType T = Entity.getType();
5500 int InitKind = T->isArrayType() ? 0 : T->isUnionType() ? 3 : 4;
5501 SourceRange ExcessInitSR(Args[EntityIndexToProcess]->getBeginLoc(),
5502 Args.back()->getEndLoc());
5503 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5504 << InitKind << ExcessInitSR;
5505 }
5506 return;
5507 }
5508
5509 if (VerifyOnly) {
5510 Sequence.setSequenceKind(InitializationSequence::NormalSequence);
5511 Sequence.AddParenthesizedListInitStep(Entity.getType());
5512 } else if (Result) {
5513 SourceRange SR = Kind.getParenOrBraceRange();
5514 auto *CPLIE = CXXParenListInitExpr::Create(
5515 S.getASTContext(), InitExprs, ResultType, Args.size(),
5516 Kind.getLocation(), SR.getBegin(), SR.getEnd());
5517 if (ArrayFiller)
5518 CPLIE->setArrayFiller(ArrayFiller);
5519 if (InitializedFieldInUnion)
5520 CPLIE->setInitializedFieldInUnion(InitializedFieldInUnion);
5521 *Result = CPLIE;
5522 S.Diag(Kind.getLocation(),
5523 diag::warn_cxx17_compat_aggregate_init_paren_list)
5524 << Kind.getLocation() << SR << ResultType;
5525 }
5526
5527 return;
5528 }
5529
5530 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5531 /// which enumerates all conversion functions and performs overload resolution
5532 /// to select the best.
TryUserDefinedConversion(Sema & S,QualType DestType,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence,bool TopLevelOfInitList)5533 static void TryUserDefinedConversion(Sema &S,
5534 QualType DestType,
5535 const InitializationKind &Kind,
5536 Expr *Initializer,
5537 InitializationSequence &Sequence,
5538 bool TopLevelOfInitList) {
5539 assert(!DestType->isReferenceType() && "References are handled elsewhere");
5540 QualType SourceType = Initializer->getType();
5541 assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5542 "Must have a class type to perform a user-defined conversion");
5543
5544 // Build the candidate set directly in the initialization sequence
5545 // structure, so that it will persist if we fail.
5546 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5547 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5548 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5549
5550 // Determine whether we are allowed to call explicit constructors or
5551 // explicit conversion operators.
5552 bool AllowExplicit = Kind.AllowExplicit();
5553
5554 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5555 // The type we're converting to is a class type. Enumerate its constructors
5556 // to see if there is a suitable conversion.
5557 CXXRecordDecl *DestRecordDecl
5558 = cast<CXXRecordDecl>(DestRecordType->getDecl());
5559
5560 // Try to complete the type we're converting to.
5561 if (S.isCompleteType(Kind.getLocation(), DestType)) {
5562 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5563 auto Info = getConstructorInfo(D);
5564 if (!Info.Constructor)
5565 continue;
5566
5567 if (!Info.Constructor->isInvalidDecl() &&
5568 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5569 if (Info.ConstructorTmpl)
5570 S.AddTemplateOverloadCandidate(
5571 Info.ConstructorTmpl, Info.FoundDecl,
5572 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5573 /*SuppressUserConversions=*/true,
5574 /*PartialOverloading*/ false, AllowExplicit);
5575 else
5576 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5577 Initializer, CandidateSet,
5578 /*SuppressUserConversions=*/true,
5579 /*PartialOverloading*/ false, AllowExplicit);
5580 }
5581 }
5582 }
5583 }
5584
5585 SourceLocation DeclLoc = Initializer->getBeginLoc();
5586
5587 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5588 // The type we're converting from is a class type, enumerate its conversion
5589 // functions.
5590
5591 // We can only enumerate the conversion functions for a complete type; if
5592 // the type isn't complete, simply skip this step.
5593 if (S.isCompleteType(DeclLoc, SourceType)) {
5594 CXXRecordDecl *SourceRecordDecl
5595 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5596
5597 const auto &Conversions =
5598 SourceRecordDecl->getVisibleConversionFunctions();
5599 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5600 NamedDecl *D = *I;
5601 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5602 if (isa<UsingShadowDecl>(D))
5603 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5604
5605 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5606 CXXConversionDecl *Conv;
5607 if (ConvTemplate)
5608 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5609 else
5610 Conv = cast<CXXConversionDecl>(D);
5611
5612 if (ConvTemplate)
5613 S.AddTemplateConversionCandidate(
5614 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5615 CandidateSet, AllowExplicit, AllowExplicit);
5616 else
5617 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5618 DestType, CandidateSet, AllowExplicit,
5619 AllowExplicit);
5620 }
5621 }
5622 }
5623
5624 // Perform overload resolution. If it fails, return the failed result.
5625 OverloadCandidateSet::iterator Best;
5626 if (OverloadingResult Result
5627 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5628 Sequence.SetOverloadFailure(
5629 InitializationSequence::FK_UserConversionOverloadFailed, Result);
5630
5631 // [class.copy.elision]p3:
5632 // In some copy-initialization contexts, a two-stage overload resolution
5633 // is performed.
5634 // If the first overload resolution selects a deleted function, we also
5635 // need the initialization sequence to decide whether to perform the second
5636 // overload resolution.
5637 if (!(Result == OR_Deleted &&
5638 Kind.getKind() == InitializationKind::IK_Copy))
5639 return;
5640 }
5641
5642 FunctionDecl *Function = Best->Function;
5643 Function->setReferenced();
5644 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5645
5646 if (isa<CXXConstructorDecl>(Function)) {
5647 // Add the user-defined conversion step. Any cv-qualification conversion is
5648 // subsumed by the initialization. Per DR5, the created temporary is of the
5649 // cv-unqualified type of the destination.
5650 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5651 DestType.getUnqualifiedType(),
5652 HadMultipleCandidates);
5653
5654 // C++14 and before:
5655 // - if the function is a constructor, the call initializes a temporary
5656 // of the cv-unqualified version of the destination type. The [...]
5657 // temporary [...] is then used to direct-initialize, according to the
5658 // rules above, the object that is the destination of the
5659 // copy-initialization.
5660 // Note that this just performs a simple object copy from the temporary.
5661 //
5662 // C++17:
5663 // - if the function is a constructor, the call is a prvalue of the
5664 // cv-unqualified version of the destination type whose return object
5665 // is initialized by the constructor. The call is used to
5666 // direct-initialize, according to the rules above, the object that
5667 // is the destination of the copy-initialization.
5668 // Therefore we need to do nothing further.
5669 //
5670 // FIXME: Mark this copy as extraneous.
5671 if (!S.getLangOpts().CPlusPlus17)
5672 Sequence.AddFinalCopy(DestType);
5673 else if (DestType.hasQualifiers())
5674 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5675 return;
5676 }
5677
5678 // Add the user-defined conversion step that calls the conversion function.
5679 QualType ConvType = Function->getCallResultType();
5680 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5681 HadMultipleCandidates);
5682
5683 if (ConvType->getAs<RecordType>()) {
5684 // The call is used to direct-initialize [...] the object that is the
5685 // destination of the copy-initialization.
5686 //
5687 // In C++17, this does not call a constructor if we enter /17.6.1:
5688 // - If the initializer expression is a prvalue and the cv-unqualified
5689 // version of the source type is the same as the class of the
5690 // destination [... do not make an extra copy]
5691 //
5692 // FIXME: Mark this copy as extraneous.
5693 if (!S.getLangOpts().CPlusPlus17 ||
5694 Function->getReturnType()->isReferenceType() ||
5695 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5696 Sequence.AddFinalCopy(DestType);
5697 else if (!S.Context.hasSameType(ConvType, DestType))
5698 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5699 return;
5700 }
5701
5702 // If the conversion following the call to the conversion function
5703 // is interesting, add it as a separate step.
5704 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5705 Best->FinalConversion.Third) {
5706 ImplicitConversionSequence ICS;
5707 ICS.setStandard();
5708 ICS.Standard = Best->FinalConversion;
5709 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5710 }
5711 }
5712
5713 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5714 /// a function with a pointer return type contains a 'return false;' statement.
5715 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5716 /// code using that header.
5717 ///
5718 /// Work around this by treating 'return false;' as zero-initializing the result
5719 /// if it's used in a pointer-returning function in a system header.
isLibstdcxxPointerReturnFalseHack(Sema & S,const InitializedEntity & Entity,const Expr * Init)5720 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5721 const InitializedEntity &Entity,
5722 const Expr *Init) {
5723 return S.getLangOpts().CPlusPlus11 &&
5724 Entity.getKind() == InitializedEntity::EK_Result &&
5725 Entity.getType()->isPointerType() &&
5726 isa<CXXBoolLiteralExpr>(Init) &&
5727 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5728 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5729 }
5730
5731 /// The non-zero enum values here are indexes into diagnostic alternatives.
5732 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5733
5734 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf,bool & isWeakAccess)5735 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5736 bool isAddressOf, bool &isWeakAccess) {
5737 // Skip parens.
5738 e = e->IgnoreParens();
5739
5740 // Skip address-of nodes.
5741 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5742 if (op->getOpcode() == UO_AddrOf)
5743 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5744 isWeakAccess);
5745
5746 // Skip certain casts.
5747 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5748 switch (ce->getCastKind()) {
5749 case CK_Dependent:
5750 case CK_BitCast:
5751 case CK_LValueBitCast:
5752 case CK_NoOp:
5753 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5754
5755 case CK_ArrayToPointerDecay:
5756 return IIK_nonscalar;
5757
5758 case CK_NullToPointer:
5759 return IIK_okay;
5760
5761 default:
5762 break;
5763 }
5764
5765 // If we have a declaration reference, it had better be a local variable.
5766 } else if (isa<DeclRefExpr>(e)) {
5767 // set isWeakAccess to true, to mean that there will be an implicit
5768 // load which requires a cleanup.
5769 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5770 isWeakAccess = true;
5771
5772 if (!isAddressOf) return IIK_nonlocal;
5773
5774 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5775 if (!var) return IIK_nonlocal;
5776
5777 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5778
5779 // If we have a conditional operator, check both sides.
5780 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5781 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5782 isWeakAccess))
5783 return iik;
5784
5785 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5786
5787 // These are never scalar.
5788 } else if (isa<ArraySubscriptExpr>(e)) {
5789 return IIK_nonscalar;
5790
5791 // Otherwise, it needs to be a null pointer constant.
5792 } else {
5793 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5794 ? IIK_okay : IIK_nonlocal);
5795 }
5796
5797 return IIK_nonlocal;
5798 }
5799
5800 /// Check whether the given expression is a valid operand for an
5801 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)5802 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5803 assert(src->isPRValue());
5804 bool isWeakAccess = false;
5805 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5806 // If isWeakAccess to true, there will be an implicit
5807 // load which requires a cleanup.
5808 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5809 S.Cleanup.setExprNeedsCleanups(true);
5810
5811 if (iik == IIK_okay) return;
5812
5813 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5814 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5815 << src->getSourceRange();
5816 }
5817
5818 /// Determine whether we have compatible array types for the
5819 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)5820 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5821 const ArrayType *Source) {
5822 // If the source and destination array types are equivalent, we're
5823 // done.
5824 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5825 return true;
5826
5827 // Make sure that the element types are the same.
5828 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5829 return false;
5830
5831 // The only mismatch we allow is when the destination is an
5832 // incomplete array type and the source is a constant array type.
5833 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5834 }
5835
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)5836 static bool tryObjCWritebackConversion(Sema &S,
5837 InitializationSequence &Sequence,
5838 const InitializedEntity &Entity,
5839 Expr *Initializer) {
5840 bool ArrayDecay = false;
5841 QualType ArgType = Initializer->getType();
5842 QualType ArgPointee;
5843 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5844 ArrayDecay = true;
5845 ArgPointee = ArgArrayType->getElementType();
5846 ArgType = S.Context.getPointerType(ArgPointee);
5847 }
5848
5849 // Handle write-back conversion.
5850 QualType ConvertedArgType;
5851 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5852 ConvertedArgType))
5853 return false;
5854
5855 // We should copy unless we're passing to an argument explicitly
5856 // marked 'out'.
5857 bool ShouldCopy = true;
5858 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5859 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5860
5861 // Do we need an lvalue conversion?
5862 if (ArrayDecay || Initializer->isGLValue()) {
5863 ImplicitConversionSequence ICS;
5864 ICS.setStandard();
5865 ICS.Standard.setAsIdentityConversion();
5866
5867 QualType ResultType;
5868 if (ArrayDecay) {
5869 ICS.Standard.First = ICK_Array_To_Pointer;
5870 ResultType = S.Context.getPointerType(ArgPointee);
5871 } else {
5872 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5873 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5874 }
5875
5876 Sequence.AddConversionSequenceStep(ICS, ResultType);
5877 }
5878
5879 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5880 return true;
5881 }
5882
TryOCLSamplerInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)5883 static bool TryOCLSamplerInitialization(Sema &S,
5884 InitializationSequence &Sequence,
5885 QualType DestType,
5886 Expr *Initializer) {
5887 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5888 (!Initializer->isIntegerConstantExpr(S.Context) &&
5889 !Initializer->getType()->isSamplerT()))
5890 return false;
5891
5892 Sequence.AddOCLSamplerInitStep(DestType);
5893 return true;
5894 }
5895
IsZeroInitializer(Expr * Initializer,Sema & S)5896 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5897 return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5898 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5899 }
5900
TryOCLZeroOpaqueTypeInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)5901 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5902 InitializationSequence &Sequence,
5903 QualType DestType,
5904 Expr *Initializer) {
5905 if (!S.getLangOpts().OpenCL)
5906 return false;
5907
5908 //
5909 // OpenCL 1.2 spec, s6.12.10
5910 //
5911 // The event argument can also be used to associate the
5912 // async_work_group_copy with a previous async copy allowing
5913 // an event to be shared by multiple async copies; otherwise
5914 // event should be zero.
5915 //
5916 if (DestType->isEventT() || DestType->isQueueT()) {
5917 if (!IsZeroInitializer(Initializer, S))
5918 return false;
5919
5920 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5921 return true;
5922 }
5923
5924 // We should allow zero initialization for all types defined in the
5925 // cl_intel_device_side_avc_motion_estimation extension, except
5926 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5927 if (S.getOpenCLOptions().isAvailableOption(
5928 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
5929 DestType->isOCLIntelSubgroupAVCType()) {
5930 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5931 DestType->isOCLIntelSubgroupAVCMceResultType())
5932 return false;
5933 if (!IsZeroInitializer(Initializer, S))
5934 return false;
5935
5936 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5937 return true;
5938 }
5939
5940 return false;
5941 }
5942
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList,bool TreatUnavailableAsInvalid)5943 InitializationSequence::InitializationSequence(
5944 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5945 MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
5946 : FailedOverloadResult(OR_Success),
5947 FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5948 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5949 TreatUnavailableAsInvalid);
5950 }
5951
5952 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5953 /// address of that function, this returns true. Otherwise, it returns false.
isExprAnUnaddressableFunction(Sema & S,const Expr * E)5954 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5955 auto *DRE = dyn_cast<DeclRefExpr>(E);
5956 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5957 return false;
5958
5959 return !S.checkAddressOfFunctionIsAvailable(
5960 cast<FunctionDecl>(DRE->getDecl()));
5961 }
5962
5963 /// Determine whether we can perform an elementwise array copy for this kind
5964 /// of entity.
canPerformArrayCopy(const InitializedEntity & Entity)5965 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5966 switch (Entity.getKind()) {
5967 case InitializedEntity::EK_LambdaCapture:
5968 // C++ [expr.prim.lambda]p24:
5969 // For array members, the array elements are direct-initialized in
5970 // increasing subscript order.
5971 return true;
5972
5973 case InitializedEntity::EK_Variable:
5974 // C++ [dcl.decomp]p1:
5975 // [...] each element is copy-initialized or direct-initialized from the
5976 // corresponding element of the assignment-expression [...]
5977 return isa<DecompositionDecl>(Entity.getDecl());
5978
5979 case InitializedEntity::EK_Member:
5980 // C++ [class.copy.ctor]p14:
5981 // - if the member is an array, each element is direct-initialized with
5982 // the corresponding subobject of x
5983 return Entity.isImplicitMemberInitializer();
5984
5985 case InitializedEntity::EK_ArrayElement:
5986 // All the above cases are intended to apply recursively, even though none
5987 // of them actually say that.
5988 if (auto *E = Entity.getParent())
5989 return canPerformArrayCopy(*E);
5990 break;
5991
5992 default:
5993 break;
5994 }
5995
5996 return false;
5997 }
5998
InitializeFrom(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList,bool TreatUnavailableAsInvalid)5999 void InitializationSequence::InitializeFrom(Sema &S,
6000 const InitializedEntity &Entity,
6001 const InitializationKind &Kind,
6002 MultiExprArg Args,
6003 bool TopLevelOfInitList,
6004 bool TreatUnavailableAsInvalid) {
6005 ASTContext &Context = S.Context;
6006
6007 // Eliminate non-overload placeholder types in the arguments. We
6008 // need to do this before checking whether types are dependent
6009 // because lowering a pseudo-object expression might well give us
6010 // something of dependent type.
6011 for (unsigned I = 0, E = Args.size(); I != E; ++I)
6012 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
6013 // FIXME: should we be doing this here?
6014 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
6015 if (result.isInvalid()) {
6016 SetFailed(FK_PlaceholderType);
6017 return;
6018 }
6019 Args[I] = result.get();
6020 }
6021
6022 // C++0x [dcl.init]p16:
6023 // The semantics of initializers are as follows. The destination type is
6024 // the type of the object or reference being initialized and the source
6025 // type is the type of the initializer expression. The source type is not
6026 // defined when the initializer is a braced-init-list or when it is a
6027 // parenthesized list of expressions.
6028 QualType DestType = Entity.getType();
6029
6030 if (DestType->isDependentType() ||
6031 Expr::hasAnyTypeDependentArguments(Args)) {
6032 SequenceKind = DependentSequence;
6033 return;
6034 }
6035
6036 // Almost everything is a normal sequence.
6037 setSequenceKind(NormalSequence);
6038
6039 QualType SourceType;
6040 Expr *Initializer = nullptr;
6041 if (Args.size() == 1) {
6042 Initializer = Args[0];
6043 if (S.getLangOpts().ObjC) {
6044 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
6045 DestType, Initializer->getType(),
6046 Initializer) ||
6047 S.CheckConversionToObjCLiteral(DestType, Initializer))
6048 Args[0] = Initializer;
6049 }
6050 if (!isa<InitListExpr>(Initializer))
6051 SourceType = Initializer->getType();
6052 }
6053
6054 // - If the initializer is a (non-parenthesized) braced-init-list, the
6055 // object is list-initialized (8.5.4).
6056 if (Kind.getKind() != InitializationKind::IK_Direct) {
6057 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
6058 TryListInitialization(S, Entity, Kind, InitList, *this,
6059 TreatUnavailableAsInvalid);
6060 return;
6061 }
6062 }
6063
6064 // - If the destination type is a reference type, see 8.5.3.
6065 if (DestType->isReferenceType()) {
6066 // C++0x [dcl.init.ref]p1:
6067 // A variable declared to be a T& or T&&, that is, "reference to type T"
6068 // (8.3.2), shall be initialized by an object, or function, of type T or
6069 // by an object that can be converted into a T.
6070 // (Therefore, multiple arguments are not permitted.)
6071 if (Args.size() != 1)
6072 SetFailed(FK_TooManyInitsForReference);
6073 // C++17 [dcl.init.ref]p5:
6074 // A reference [...] is initialized by an expression [...] as follows:
6075 // If the initializer is not an expression, presumably we should reject,
6076 // but the standard fails to actually say so.
6077 else if (isa<InitListExpr>(Args[0]))
6078 SetFailed(FK_ParenthesizedListInitForReference);
6079 else
6080 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
6081 return;
6082 }
6083
6084 // - If the initializer is (), the object is value-initialized.
6085 if (Kind.getKind() == InitializationKind::IK_Value ||
6086 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
6087 TryValueInitialization(S, Entity, Kind, *this);
6088 return;
6089 }
6090
6091 // Handle default initialization.
6092 if (Kind.getKind() == InitializationKind::IK_Default) {
6093 TryDefaultInitialization(S, Entity, Kind, *this);
6094 return;
6095 }
6096
6097 // - If the destination type is an array of characters, an array of
6098 // char16_t, an array of char32_t, or an array of wchar_t, and the
6099 // initializer is a string literal, see 8.5.2.
6100 // - Otherwise, if the destination type is an array, the program is
6101 // ill-formed.
6102 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
6103 if (Initializer && isa<VariableArrayType>(DestAT)) {
6104 SetFailed(FK_VariableLengthArrayHasInitializer);
6105 return;
6106 }
6107
6108 if (Initializer) {
6109 switch (IsStringInit(Initializer, DestAT, Context)) {
6110 case SIF_None:
6111 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
6112 return;
6113 case SIF_NarrowStringIntoWideChar:
6114 SetFailed(FK_NarrowStringIntoWideCharArray);
6115 return;
6116 case SIF_WideStringIntoChar:
6117 SetFailed(FK_WideStringIntoCharArray);
6118 return;
6119 case SIF_IncompatWideStringIntoWideChar:
6120 SetFailed(FK_IncompatWideStringIntoWideChar);
6121 return;
6122 case SIF_PlainStringIntoUTF8Char:
6123 SetFailed(FK_PlainStringIntoUTF8Char);
6124 return;
6125 case SIF_UTF8StringIntoPlainChar:
6126 SetFailed(FK_UTF8StringIntoPlainChar);
6127 return;
6128 case SIF_Other:
6129 break;
6130 }
6131 }
6132
6133 // Some kinds of initialization permit an array to be initialized from
6134 // another array of the same type, and perform elementwise initialization.
6135 if (Initializer && isa<ConstantArrayType>(DestAT) &&
6136 S.Context.hasSameUnqualifiedType(Initializer->getType(),
6137 Entity.getType()) &&
6138 canPerformArrayCopy(Entity)) {
6139 // If source is a prvalue, use it directly.
6140 if (Initializer->isPRValue()) {
6141 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
6142 return;
6143 }
6144
6145 // Emit element-at-a-time copy loop.
6146 InitializedEntity Element =
6147 InitializedEntity::InitializeElement(S.Context, 0, Entity);
6148 QualType InitEltT =
6149 Context.getAsArrayType(Initializer->getType())->getElementType();
6150 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
6151 Initializer->getValueKind(),
6152 Initializer->getObjectKind());
6153 Expr *OVEAsExpr = &OVE;
6154 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
6155 TreatUnavailableAsInvalid);
6156 if (!Failed())
6157 AddArrayInitLoopStep(Entity.getType(), InitEltT);
6158 return;
6159 }
6160
6161 // Note: as an GNU C extension, we allow initialization of an
6162 // array from a compound literal that creates an array of the same
6163 // type, so long as the initializer has no side effects.
6164 if (!S.getLangOpts().CPlusPlus && Initializer &&
6165 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
6166 Initializer->getType()->isArrayType()) {
6167 const ArrayType *SourceAT
6168 = Context.getAsArrayType(Initializer->getType());
6169 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
6170 SetFailed(FK_ArrayTypeMismatch);
6171 else if (Initializer->HasSideEffects(S.Context))
6172 SetFailed(FK_NonConstantArrayInit);
6173 else {
6174 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
6175 }
6176 }
6177 // Note: as a GNU C++ extension, we allow list-initialization of a
6178 // class member of array type from a parenthesized initializer list.
6179 else if (S.getLangOpts().CPlusPlus &&
6180 Entity.getKind() == InitializedEntity::EK_Member &&
6181 Initializer && isa<InitListExpr>(Initializer)) {
6182 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
6183 *this, TreatUnavailableAsInvalid);
6184 AddParenthesizedArrayInitStep(DestType);
6185 } else if (S.getLangOpts().CPlusPlus20 && !TopLevelOfInitList &&
6186 Kind.getKind() == InitializationKind::IK_Direct)
6187 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
6188 /*VerifyOnly=*/true);
6189 else if (DestAT->getElementType()->isCharType())
6190 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
6191 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
6192 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
6193 else
6194 SetFailed(FK_ArrayNeedsInitList);
6195
6196 return;
6197 }
6198
6199 // Determine whether we should consider writeback conversions for
6200 // Objective-C ARC.
6201 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
6202 Entity.isParameterKind();
6203
6204 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
6205 return;
6206
6207 // We're at the end of the line for C: it's either a write-back conversion
6208 // or it's a C assignment. There's no need to check anything else.
6209 if (!S.getLangOpts().CPlusPlus) {
6210 // If allowed, check whether this is an Objective-C writeback conversion.
6211 if (allowObjCWritebackConversion &&
6212 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
6213 return;
6214 }
6215
6216 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
6217 return;
6218
6219 // Handle initialization in C
6220 AddCAssignmentStep(DestType);
6221 MaybeProduceObjCObject(S, *this, Entity);
6222 return;
6223 }
6224
6225 assert(S.getLangOpts().CPlusPlus);
6226
6227 // - If the destination type is a (possibly cv-qualified) class type:
6228 if (DestType->isRecordType()) {
6229 // - If the initialization is direct-initialization, or if it is
6230 // copy-initialization where the cv-unqualified version of the
6231 // source type is the same class as, or a derived class of, the
6232 // class of the destination, constructors are considered. [...]
6233 if (Kind.getKind() == InitializationKind::IK_Direct ||
6234 (Kind.getKind() == InitializationKind::IK_Copy &&
6235 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
6236 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) {
6237 TryConstructorInitialization(S, Entity, Kind, Args, DestType, DestType,
6238 *this);
6239
6240 // We fall back to the "no matching constructor" path if the
6241 // failed candidate set has functions other than the three default
6242 // constructors. For example, conversion function.
6243 if (const auto *RD =
6244 dyn_cast<CXXRecordDecl>(DestType->getAs<RecordType>()->getDecl());
6245 // In general, we should call isCompleteType for RD to check its
6246 // completeness, we don't call it here as it was already called in the
6247 // above TryConstructorInitialization.
6248 S.getLangOpts().CPlusPlus20 && RD && RD->hasDefinition() &&
6249 RD->isAggregate() && Failed() &&
6250 getFailureKind() == FK_ConstructorOverloadFailed) {
6251 // Do not attempt paren list initialization if overload resolution
6252 // resolves to a deleted function .
6253 //
6254 // We may reach this condition if we have a union wrapping a class with
6255 // a non-trivial copy or move constructor and we call one of those two
6256 // constructors. The union is an aggregate, but the matched constructor
6257 // is implicitly deleted, so we need to prevent aggregate initialization
6258 // (otherwise, it'll attempt aggregate initialization by initializing
6259 // the first element with a reference to the union).
6260 OverloadCandidateSet::iterator Best;
6261 OverloadingResult OR = getFailedCandidateSet().BestViableFunction(
6262 S, Kind.getLocation(), Best);
6263 if (OR != OverloadingResult::OR_Deleted) {
6264 // C++20 [dcl.init] 17.6.2.2:
6265 // - Otherwise, if no constructor is viable, the destination type is
6266 // an
6267 // aggregate class, and the initializer is a parenthesized
6268 // expression-list.
6269 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
6270 /*VerifyOnly=*/true);
6271 }
6272 }
6273 } else {
6274 // - Otherwise (i.e., for the remaining copy-initialization cases),
6275 // user-defined conversion sequences that can convert from the
6276 // source type to the destination type or (when a conversion
6277 // function is used) to a derived class thereof are enumerated as
6278 // described in 13.3.1.4, and the best one is chosen through
6279 // overload resolution (13.3).
6280 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
6281 TopLevelOfInitList);
6282 }
6283 return;
6284 }
6285
6286 assert(Args.size() >= 1 && "Zero-argument case handled above");
6287
6288 // For HLSL ext vector types we allow list initialization behavior for C++
6289 // constructor syntax. This is accomplished by converting initialization
6290 // arguments an InitListExpr late.
6291 if (S.getLangOpts().HLSL && DestType->isExtVectorType() &&
6292 (SourceType.isNull() ||
6293 !Context.hasSameUnqualifiedType(SourceType, DestType))) {
6294
6295 llvm::SmallVector<Expr *> InitArgs;
6296 for (auto *Arg : Args) {
6297 if (Arg->getType()->isExtVectorType()) {
6298 const auto *VTy = Arg->getType()->castAs<ExtVectorType>();
6299 unsigned Elm = VTy->getNumElements();
6300 for (unsigned Idx = 0; Idx < Elm; ++Idx) {
6301 InitArgs.emplace_back(new (Context) ArraySubscriptExpr(
6302 Arg,
6303 IntegerLiteral::Create(
6304 Context, llvm::APInt(Context.getIntWidth(Context.IntTy), Idx),
6305 Context.IntTy, SourceLocation()),
6306 VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(),
6307 SourceLocation()));
6308 }
6309 } else
6310 InitArgs.emplace_back(Arg);
6311 }
6312 InitListExpr *ILE = new (Context) InitListExpr(
6313 S.getASTContext(), SourceLocation(), InitArgs, SourceLocation());
6314 Args[0] = ILE;
6315 AddListInitializationStep(DestType);
6316 return;
6317 }
6318
6319 // The remaining cases all need a source type.
6320 if (Args.size() > 1) {
6321 SetFailed(FK_TooManyInitsForScalar);
6322 return;
6323 } else if (isa<InitListExpr>(Args[0])) {
6324 SetFailed(FK_ParenthesizedListInitForScalar);
6325 return;
6326 }
6327
6328 // - Otherwise, if the source type is a (possibly cv-qualified) class
6329 // type, conversion functions are considered.
6330 if (!SourceType.isNull() && SourceType->isRecordType()) {
6331 // For a conversion to _Atomic(T) from either T or a class type derived
6332 // from T, initialize the T object then convert to _Atomic type.
6333 bool NeedAtomicConversion = false;
6334 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
6335 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
6336 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
6337 Atomic->getValueType())) {
6338 DestType = Atomic->getValueType();
6339 NeedAtomicConversion = true;
6340 }
6341 }
6342
6343 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
6344 TopLevelOfInitList);
6345 MaybeProduceObjCObject(S, *this, Entity);
6346 if (!Failed() && NeedAtomicConversion)
6347 AddAtomicConversionStep(Entity.getType());
6348 return;
6349 }
6350
6351 // - Otherwise, if the initialization is direct-initialization, the source
6352 // type is std::nullptr_t, and the destination type is bool, the initial
6353 // value of the object being initialized is false.
6354 if (!SourceType.isNull() && SourceType->isNullPtrType() &&
6355 DestType->isBooleanType() &&
6356 Kind.getKind() == InitializationKind::IK_Direct) {
6357 AddConversionSequenceStep(
6358 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
6359 Initializer->isGLValue()),
6360 DestType);
6361 return;
6362 }
6363
6364 // - Otherwise, the initial value of the object being initialized is the
6365 // (possibly converted) value of the initializer expression. Standard
6366 // conversions (Clause 4) will be used, if necessary, to convert the
6367 // initializer expression to the cv-unqualified version of the
6368 // destination type; no user-defined conversions are considered.
6369
6370 ImplicitConversionSequence ICS
6371 = S.TryImplicitConversion(Initializer, DestType,
6372 /*SuppressUserConversions*/true,
6373 Sema::AllowedExplicit::None,
6374 /*InOverloadResolution*/ false,
6375 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
6376 allowObjCWritebackConversion);
6377
6378 if (ICS.isStandard() &&
6379 ICS.Standard.Second == ICK_Writeback_Conversion) {
6380 // Objective-C ARC writeback conversion.
6381
6382 // We should copy unless we're passing to an argument explicitly
6383 // marked 'out'.
6384 bool ShouldCopy = true;
6385 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
6386 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
6387
6388 // If there was an lvalue adjustment, add it as a separate conversion.
6389 if (ICS.Standard.First == ICK_Array_To_Pointer ||
6390 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6391 ImplicitConversionSequence LvalueICS;
6392 LvalueICS.setStandard();
6393 LvalueICS.Standard.setAsIdentityConversion();
6394 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6395 LvalueICS.Standard.First = ICS.Standard.First;
6396 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6397 }
6398
6399 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6400 } else if (ICS.isBad()) {
6401 DeclAccessPair dap;
6402 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6403 AddZeroInitializationStep(Entity.getType());
6404 } else if (Initializer->getType() == Context.OverloadTy &&
6405 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6406 false, dap))
6407 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6408 else if (Initializer->getType()->isFunctionType() &&
6409 isExprAnUnaddressableFunction(S, Initializer))
6410 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6411 else
6412 SetFailed(InitializationSequence::FK_ConversionFailed);
6413 } else {
6414 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6415
6416 MaybeProduceObjCObject(S, *this, Entity);
6417 }
6418 }
6419
~InitializationSequence()6420 InitializationSequence::~InitializationSequence() {
6421 for (auto &S : Steps)
6422 S.Destroy();
6423 }
6424
6425 //===----------------------------------------------------------------------===//
6426 // Perform initialization
6427 //===----------------------------------------------------------------------===//
6428 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity,bool Diagnose=false)6429 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6430 switch(Entity.getKind()) {
6431 case InitializedEntity::EK_Variable:
6432 case InitializedEntity::EK_New:
6433 case InitializedEntity::EK_Exception:
6434 case InitializedEntity::EK_Base:
6435 case InitializedEntity::EK_Delegating:
6436 return Sema::AA_Initializing;
6437
6438 case InitializedEntity::EK_Parameter:
6439 if (Entity.getDecl() &&
6440 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6441 return Sema::AA_Sending;
6442
6443 return Sema::AA_Passing;
6444
6445 case InitializedEntity::EK_Parameter_CF_Audited:
6446 if (Entity.getDecl() &&
6447 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6448 return Sema::AA_Sending;
6449
6450 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6451
6452 case InitializedEntity::EK_Result:
6453 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6454 return Sema::AA_Returning;
6455
6456 case InitializedEntity::EK_Temporary:
6457 case InitializedEntity::EK_RelatedResult:
6458 // FIXME: Can we tell apart casting vs. converting?
6459 return Sema::AA_Casting;
6460
6461 case InitializedEntity::EK_TemplateParameter:
6462 // This is really initialization, but refer to it as conversion for
6463 // consistency with CheckConvertedConstantExpression.
6464 return Sema::AA_Converting;
6465
6466 case InitializedEntity::EK_Member:
6467 case InitializedEntity::EK_ParenAggInitMember:
6468 case InitializedEntity::EK_Binding:
6469 case InitializedEntity::EK_ArrayElement:
6470 case InitializedEntity::EK_VectorElement:
6471 case InitializedEntity::EK_ComplexElement:
6472 case InitializedEntity::EK_BlockElement:
6473 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6474 case InitializedEntity::EK_LambdaCapture:
6475 case InitializedEntity::EK_CompoundLiteralInit:
6476 return Sema::AA_Initializing;
6477 }
6478
6479 llvm_unreachable("Invalid EntityKind!");
6480 }
6481
6482 /// Whether we should bind a created object as a temporary when
6483 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)6484 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6485 switch (Entity.getKind()) {
6486 case InitializedEntity::EK_ArrayElement:
6487 case InitializedEntity::EK_Member:
6488 case InitializedEntity::EK_ParenAggInitMember:
6489 case InitializedEntity::EK_Result:
6490 case InitializedEntity::EK_StmtExprResult:
6491 case InitializedEntity::EK_New:
6492 case InitializedEntity::EK_Variable:
6493 case InitializedEntity::EK_Base:
6494 case InitializedEntity::EK_Delegating:
6495 case InitializedEntity::EK_VectorElement:
6496 case InitializedEntity::EK_ComplexElement:
6497 case InitializedEntity::EK_Exception:
6498 case InitializedEntity::EK_BlockElement:
6499 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6500 case InitializedEntity::EK_LambdaCapture:
6501 case InitializedEntity::EK_CompoundLiteralInit:
6502 case InitializedEntity::EK_TemplateParameter:
6503 return false;
6504
6505 case InitializedEntity::EK_Parameter:
6506 case InitializedEntity::EK_Parameter_CF_Audited:
6507 case InitializedEntity::EK_Temporary:
6508 case InitializedEntity::EK_RelatedResult:
6509 case InitializedEntity::EK_Binding:
6510 return true;
6511 }
6512
6513 llvm_unreachable("missed an InitializedEntity kind?");
6514 }
6515
6516 /// Whether the given entity, when initialized with an object
6517 /// created for that initialization, requires destruction.
shouldDestroyEntity(const InitializedEntity & Entity)6518 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6519 switch (Entity.getKind()) {
6520 case InitializedEntity::EK_Result:
6521 case InitializedEntity::EK_StmtExprResult:
6522 case InitializedEntity::EK_New:
6523 case InitializedEntity::EK_Base:
6524 case InitializedEntity::EK_Delegating:
6525 case InitializedEntity::EK_VectorElement:
6526 case InitializedEntity::EK_ComplexElement:
6527 case InitializedEntity::EK_BlockElement:
6528 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6529 case InitializedEntity::EK_LambdaCapture:
6530 return false;
6531
6532 case InitializedEntity::EK_Member:
6533 case InitializedEntity::EK_ParenAggInitMember:
6534 case InitializedEntity::EK_Binding:
6535 case InitializedEntity::EK_Variable:
6536 case InitializedEntity::EK_Parameter:
6537 case InitializedEntity::EK_Parameter_CF_Audited:
6538 case InitializedEntity::EK_TemplateParameter:
6539 case InitializedEntity::EK_Temporary:
6540 case InitializedEntity::EK_ArrayElement:
6541 case InitializedEntity::EK_Exception:
6542 case InitializedEntity::EK_CompoundLiteralInit:
6543 case InitializedEntity::EK_RelatedResult:
6544 return true;
6545 }
6546
6547 llvm_unreachable("missed an InitializedEntity kind?");
6548 }
6549
6550 /// Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)6551 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6552 Expr *Initializer) {
6553 switch (Entity.getKind()) {
6554 case InitializedEntity::EK_Result:
6555 case InitializedEntity::EK_StmtExprResult:
6556 return Entity.getReturnLoc();
6557
6558 case InitializedEntity::EK_Exception:
6559 return Entity.getThrowLoc();
6560
6561 case InitializedEntity::EK_Variable:
6562 case InitializedEntity::EK_Binding:
6563 return Entity.getDecl()->getLocation();
6564
6565 case InitializedEntity::EK_LambdaCapture:
6566 return Entity.getCaptureLoc();
6567
6568 case InitializedEntity::EK_ArrayElement:
6569 case InitializedEntity::EK_Member:
6570 case InitializedEntity::EK_ParenAggInitMember:
6571 case InitializedEntity::EK_Parameter:
6572 case InitializedEntity::EK_Parameter_CF_Audited:
6573 case InitializedEntity::EK_TemplateParameter:
6574 case InitializedEntity::EK_Temporary:
6575 case InitializedEntity::EK_New:
6576 case InitializedEntity::EK_Base:
6577 case InitializedEntity::EK_Delegating:
6578 case InitializedEntity::EK_VectorElement:
6579 case InitializedEntity::EK_ComplexElement:
6580 case InitializedEntity::EK_BlockElement:
6581 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6582 case InitializedEntity::EK_CompoundLiteralInit:
6583 case InitializedEntity::EK_RelatedResult:
6584 return Initializer->getBeginLoc();
6585 }
6586 llvm_unreachable("missed an InitializedEntity kind?");
6587 }
6588
6589 /// Make a (potentially elidable) temporary copy of the object
6590 /// provided by the given initializer by calling the appropriate copy
6591 /// constructor.
6592 ///
6593 /// \param S The Sema object used for type-checking.
6594 ///
6595 /// \param T The type of the temporary object, which must either be
6596 /// the type of the initializer expression or a superclass thereof.
6597 ///
6598 /// \param Entity The entity being initialized.
6599 ///
6600 /// \param CurInit The initializer expression.
6601 ///
6602 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6603 /// is permitted in C++03 (but not C++0x) when binding a reference to
6604 /// an rvalue.
6605 ///
6606 /// \returns An expression that copies the initializer expression into
6607 /// a temporary object, or an error expression if a copy could not be
6608 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)6609 static ExprResult CopyObject(Sema &S,
6610 QualType T,
6611 const InitializedEntity &Entity,
6612 ExprResult CurInit,
6613 bool IsExtraneousCopy) {
6614 if (CurInit.isInvalid())
6615 return CurInit;
6616 // Determine which class type we're copying to.
6617 Expr *CurInitExpr = (Expr *)CurInit.get();
6618 CXXRecordDecl *Class = nullptr;
6619 if (const RecordType *Record = T->getAs<RecordType>())
6620 Class = cast<CXXRecordDecl>(Record->getDecl());
6621 if (!Class)
6622 return CurInit;
6623
6624 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6625
6626 // Make sure that the type we are copying is complete.
6627 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6628 return CurInit;
6629
6630 // Perform overload resolution using the class's constructors. Per
6631 // C++11 [dcl.init]p16, second bullet for class types, this initialization
6632 // is direct-initialization.
6633 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6634 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6635
6636 OverloadCandidateSet::iterator Best;
6637 switch (ResolveConstructorOverload(
6638 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6639 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6640 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6641 /*SecondStepOfCopyInit=*/true)) {
6642 case OR_Success:
6643 break;
6644
6645 case OR_No_Viable_Function:
6646 CandidateSet.NoteCandidates(
6647 PartialDiagnosticAt(
6648 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6649 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6650 : diag::err_temp_copy_no_viable)
6651 << (int)Entity.getKind() << CurInitExpr->getType()
6652 << CurInitExpr->getSourceRange()),
6653 S, OCD_AllCandidates, CurInitExpr);
6654 if (!IsExtraneousCopy || S.isSFINAEContext())
6655 return ExprError();
6656 return CurInit;
6657
6658 case OR_Ambiguous:
6659 CandidateSet.NoteCandidates(
6660 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6661 << (int)Entity.getKind()
6662 << CurInitExpr->getType()
6663 << CurInitExpr->getSourceRange()),
6664 S, OCD_AmbiguousCandidates, CurInitExpr);
6665 return ExprError();
6666
6667 case OR_Deleted:
6668 S.Diag(Loc, diag::err_temp_copy_deleted)
6669 << (int)Entity.getKind() << CurInitExpr->getType()
6670 << CurInitExpr->getSourceRange();
6671 S.NoteDeletedFunction(Best->Function);
6672 return ExprError();
6673 }
6674
6675 bool HadMultipleCandidates = CandidateSet.size() > 1;
6676
6677 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6678 SmallVector<Expr*, 8> ConstructorArgs;
6679 CurInit.get(); // Ownership transferred into MultiExprArg, below.
6680
6681 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6682 IsExtraneousCopy);
6683
6684 if (IsExtraneousCopy) {
6685 // If this is a totally extraneous copy for C++03 reference
6686 // binding purposes, just return the original initialization
6687 // expression. We don't generate an (elided) copy operation here
6688 // because doing so would require us to pass down a flag to avoid
6689 // infinite recursion, where each step adds another extraneous,
6690 // elidable copy.
6691
6692 // Instantiate the default arguments of any extra parameters in
6693 // the selected copy constructor, as if we were going to create a
6694 // proper call to the copy constructor.
6695 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6696 ParmVarDecl *Parm = Constructor->getParamDecl(I);
6697 if (S.RequireCompleteType(Loc, Parm->getType(),
6698 diag::err_call_incomplete_argument))
6699 break;
6700
6701 // Build the default argument expression; we don't actually care
6702 // if this succeeds or not, because this routine will complain
6703 // if there was a problem.
6704 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6705 }
6706
6707 return CurInitExpr;
6708 }
6709
6710 // Determine the arguments required to actually perform the
6711 // constructor call (we might have derived-to-base conversions, or
6712 // the copy constructor may have default arguments).
6713 if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6714 ConstructorArgs))
6715 return ExprError();
6716
6717 // C++0x [class.copy]p32:
6718 // When certain criteria are met, an implementation is allowed to
6719 // omit the copy/move construction of a class object, even if the
6720 // copy/move constructor and/or destructor for the object have
6721 // side effects. [...]
6722 // - when a temporary class object that has not been bound to a
6723 // reference (12.2) would be copied/moved to a class object
6724 // with the same cv-unqualified type, the copy/move operation
6725 // can be omitted by constructing the temporary object
6726 // directly into the target of the omitted copy/move
6727 //
6728 // Note that the other three bullets are handled elsewhere. Copy
6729 // elision for return statements and throw expressions are handled as part
6730 // of constructor initialization, while copy elision for exception handlers
6731 // is handled by the run-time.
6732 //
6733 // FIXME: If the function parameter is not the same type as the temporary, we
6734 // should still be able to elide the copy, but we don't have a way to
6735 // represent in the AST how much should be elided in this case.
6736 bool Elidable =
6737 CurInitExpr->isTemporaryObject(S.Context, Class) &&
6738 S.Context.hasSameUnqualifiedType(
6739 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6740 CurInitExpr->getType());
6741
6742 // Actually perform the constructor call.
6743 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6744 Elidable,
6745 ConstructorArgs,
6746 HadMultipleCandidates,
6747 /*ListInit*/ false,
6748 /*StdInitListInit*/ false,
6749 /*ZeroInit*/ false,
6750 CXXConstructExpr::CK_Complete,
6751 SourceRange());
6752
6753 // If we're supposed to bind temporaries, do so.
6754 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6755 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6756 return CurInit;
6757 }
6758
6759 /// Check whether elidable copy construction for binding a reference to
6760 /// a temporary would have succeeded if we were building in C++98 mode, for
6761 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)6762 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6763 const InitializedEntity &Entity,
6764 Expr *CurInitExpr) {
6765 assert(S.getLangOpts().CPlusPlus11);
6766
6767 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6768 if (!Record)
6769 return;
6770
6771 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6772 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6773 return;
6774
6775 // Find constructors which would have been considered.
6776 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6777 DeclContext::lookup_result Ctors =
6778 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6779
6780 // Perform overload resolution.
6781 OverloadCandidateSet::iterator Best;
6782 OverloadingResult OR = ResolveConstructorOverload(
6783 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6784 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6785 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6786 /*SecondStepOfCopyInit=*/true);
6787
6788 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6789 << OR << (int)Entity.getKind() << CurInitExpr->getType()
6790 << CurInitExpr->getSourceRange();
6791
6792 switch (OR) {
6793 case OR_Success:
6794 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6795 Best->FoundDecl, Entity, Diag);
6796 // FIXME: Check default arguments as far as that's possible.
6797 break;
6798
6799 case OR_No_Viable_Function:
6800 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6801 OCD_AllCandidates, CurInitExpr);
6802 break;
6803
6804 case OR_Ambiguous:
6805 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6806 OCD_AmbiguousCandidates, CurInitExpr);
6807 break;
6808
6809 case OR_Deleted:
6810 S.Diag(Loc, Diag);
6811 S.NoteDeletedFunction(Best->Function);
6812 break;
6813 }
6814 }
6815
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)6816 void InitializationSequence::PrintInitLocationNote(Sema &S,
6817 const InitializedEntity &Entity) {
6818 if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6819 if (Entity.getDecl()->getLocation().isInvalid())
6820 return;
6821
6822 if (Entity.getDecl()->getDeclName())
6823 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6824 << Entity.getDecl()->getDeclName();
6825 else
6826 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6827 }
6828 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6829 Entity.getMethodDecl())
6830 S.Diag(Entity.getMethodDecl()->getLocation(),
6831 diag::note_method_return_type_change)
6832 << Entity.getMethodDecl()->getDeclName();
6833 }
6834
6835 /// Returns true if the parameters describe a constructor initialization of
6836 /// an explicit temporary object, e.g. "Point(x, y)".
isExplicitTemporary(const InitializedEntity & Entity,const InitializationKind & Kind,unsigned NumArgs)6837 static bool isExplicitTemporary(const InitializedEntity &Entity,
6838 const InitializationKind &Kind,
6839 unsigned NumArgs) {
6840 switch (Entity.getKind()) {
6841 case InitializedEntity::EK_Temporary:
6842 case InitializedEntity::EK_CompoundLiteralInit:
6843 case InitializedEntity::EK_RelatedResult:
6844 break;
6845 default:
6846 return false;
6847 }
6848
6849 switch (Kind.getKind()) {
6850 case InitializationKind::IK_DirectList:
6851 return true;
6852 // FIXME: Hack to work around cast weirdness.
6853 case InitializationKind::IK_Direct:
6854 case InitializationKind::IK_Value:
6855 return NumArgs != 1;
6856 default:
6857 return false;
6858 }
6859 }
6860
6861 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit,bool IsListInitialization,bool IsStdInitListInitialization,SourceLocation LBraceLoc,SourceLocation RBraceLoc)6862 PerformConstructorInitialization(Sema &S,
6863 const InitializedEntity &Entity,
6864 const InitializationKind &Kind,
6865 MultiExprArg Args,
6866 const InitializationSequence::Step& Step,
6867 bool &ConstructorInitRequiresZeroInit,
6868 bool IsListInitialization,
6869 bool IsStdInitListInitialization,
6870 SourceLocation LBraceLoc,
6871 SourceLocation RBraceLoc) {
6872 unsigned NumArgs = Args.size();
6873 CXXConstructorDecl *Constructor
6874 = cast<CXXConstructorDecl>(Step.Function.Function);
6875 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6876
6877 // Build a call to the selected constructor.
6878 SmallVector<Expr*, 8> ConstructorArgs;
6879 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6880 ? Kind.getEqualLoc()
6881 : Kind.getLocation();
6882
6883 if (Kind.getKind() == InitializationKind::IK_Default) {
6884 // Force even a trivial, implicit default constructor to be
6885 // semantically checked. We do this explicitly because we don't build
6886 // the definition for completely trivial constructors.
6887 assert(Constructor->getParent() && "No parent class for constructor.");
6888 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6889 Constructor->isTrivial() && !Constructor->isUsed(false)) {
6890 S.runWithSufficientStackSpace(Loc, [&] {
6891 S.DefineImplicitDefaultConstructor(Loc, Constructor);
6892 });
6893 }
6894 }
6895
6896 ExprResult CurInit((Expr *)nullptr);
6897
6898 // C++ [over.match.copy]p1:
6899 // - When initializing a temporary to be bound to the first parameter
6900 // of a constructor that takes a reference to possibly cv-qualified
6901 // T as its first argument, called with a single argument in the
6902 // context of direct-initialization, explicit conversion functions
6903 // are also considered.
6904 bool AllowExplicitConv =
6905 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6906 hasCopyOrMoveCtorParam(S.Context,
6907 getConstructorInfo(Step.Function.FoundDecl));
6908
6909 // Determine the arguments required to actually perform the constructor
6910 // call.
6911 if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
6912 ConstructorArgs, AllowExplicitConv,
6913 IsListInitialization))
6914 return ExprError();
6915
6916 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6917 // An explicitly-constructed temporary, e.g., X(1, 2).
6918 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6919 return ExprError();
6920
6921 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6922 if (!TSInfo)
6923 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6924 SourceRange ParenOrBraceRange =
6925 (Kind.getKind() == InitializationKind::IK_DirectList)
6926 ? SourceRange(LBraceLoc, RBraceLoc)
6927 : Kind.getParenOrBraceRange();
6928
6929 CXXConstructorDecl *CalleeDecl = Constructor;
6930 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6931 Step.Function.FoundDecl.getDecl())) {
6932 CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
6933 if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
6934 return ExprError();
6935 }
6936 S.MarkFunctionReferenced(Loc, CalleeDecl);
6937
6938 CurInit = S.CheckForImmediateInvocation(
6939 CXXTemporaryObjectExpr::Create(
6940 S.Context, CalleeDecl,
6941 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6942 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6943 IsListInitialization, IsStdInitListInitialization,
6944 ConstructorInitRequiresZeroInit),
6945 CalleeDecl);
6946 } else {
6947 CXXConstructExpr::ConstructionKind ConstructKind =
6948 CXXConstructExpr::CK_Complete;
6949
6950 if (Entity.getKind() == InitializedEntity::EK_Base) {
6951 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6952 CXXConstructExpr::CK_VirtualBase :
6953 CXXConstructExpr::CK_NonVirtualBase;
6954 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6955 ConstructKind = CXXConstructExpr::CK_Delegating;
6956 }
6957
6958 // Only get the parenthesis or brace range if it is a list initialization or
6959 // direct construction.
6960 SourceRange ParenOrBraceRange;
6961 if (IsListInitialization)
6962 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6963 else if (Kind.getKind() == InitializationKind::IK_Direct)
6964 ParenOrBraceRange = Kind.getParenOrBraceRange();
6965
6966 // If the entity allows NRVO, mark the construction as elidable
6967 // unconditionally.
6968 if (Entity.allowsNRVO())
6969 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6970 Step.Function.FoundDecl,
6971 Constructor, /*Elidable=*/true,
6972 ConstructorArgs,
6973 HadMultipleCandidates,
6974 IsListInitialization,
6975 IsStdInitListInitialization,
6976 ConstructorInitRequiresZeroInit,
6977 ConstructKind,
6978 ParenOrBraceRange);
6979 else
6980 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6981 Step.Function.FoundDecl,
6982 Constructor,
6983 ConstructorArgs,
6984 HadMultipleCandidates,
6985 IsListInitialization,
6986 IsStdInitListInitialization,
6987 ConstructorInitRequiresZeroInit,
6988 ConstructKind,
6989 ParenOrBraceRange);
6990 }
6991 if (CurInit.isInvalid())
6992 return ExprError();
6993
6994 // Only check access if all of that succeeded.
6995 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6996 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6997 return ExprError();
6998
6999 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
7000 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
7001 return ExprError();
7002
7003 if (shouldBindAsTemporary(Entity))
7004 CurInit = S.MaybeBindToTemporary(CurInit.get());
7005
7006 return CurInit;
7007 }
7008
7009 namespace {
7010 enum LifetimeKind {
7011 /// The lifetime of a temporary bound to this entity ends at the end of the
7012 /// full-expression, and that's (probably) fine.
7013 LK_FullExpression,
7014
7015 /// The lifetime of a temporary bound to this entity is extended to the
7016 /// lifeitme of the entity itself.
7017 LK_Extended,
7018
7019 /// The lifetime of a temporary bound to this entity probably ends too soon,
7020 /// because the entity is allocated in a new-expression.
7021 LK_New,
7022
7023 /// The lifetime of a temporary bound to this entity ends too soon, because
7024 /// the entity is a return object.
7025 LK_Return,
7026
7027 /// The lifetime of a temporary bound to this entity ends too soon, because
7028 /// the entity is the result of a statement expression.
7029 LK_StmtExprResult,
7030
7031 /// This is a mem-initializer: if it would extend a temporary (other than via
7032 /// a default member initializer), the program is ill-formed.
7033 LK_MemInitializer,
7034 };
7035 using LifetimeResult =
7036 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
7037 }
7038
7039 /// Determine the declaration which an initialized entity ultimately refers to,
7040 /// for the purpose of lifetime-extending a temporary bound to a reference in
7041 /// the initialization of \p Entity.
getEntityLifetime(const InitializedEntity * Entity,const InitializedEntity * InitField=nullptr)7042 static LifetimeResult getEntityLifetime(
7043 const InitializedEntity *Entity,
7044 const InitializedEntity *InitField = nullptr) {
7045 // C++11 [class.temporary]p5:
7046 switch (Entity->getKind()) {
7047 case InitializedEntity::EK_Variable:
7048 // The temporary [...] persists for the lifetime of the reference
7049 return {Entity, LK_Extended};
7050
7051 case InitializedEntity::EK_Member:
7052 // For subobjects, we look at the complete object.
7053 if (Entity->getParent())
7054 return getEntityLifetime(Entity->getParent(), Entity);
7055
7056 // except:
7057 // C++17 [class.base.init]p8:
7058 // A temporary expression bound to a reference member in a
7059 // mem-initializer is ill-formed.
7060 // C++17 [class.base.init]p11:
7061 // A temporary expression bound to a reference member from a
7062 // default member initializer is ill-formed.
7063 //
7064 // The context of p11 and its example suggest that it's only the use of a
7065 // default member initializer from a constructor that makes the program
7066 // ill-formed, not its mere existence, and that it can even be used by
7067 // aggregate initialization.
7068 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
7069 : LK_MemInitializer};
7070
7071 case InitializedEntity::EK_Binding:
7072 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
7073 // type.
7074 return {Entity, LK_Extended};
7075
7076 case InitializedEntity::EK_Parameter:
7077 case InitializedEntity::EK_Parameter_CF_Audited:
7078 // -- A temporary bound to a reference parameter in a function call
7079 // persists until the completion of the full-expression containing
7080 // the call.
7081 return {nullptr, LK_FullExpression};
7082
7083 case InitializedEntity::EK_TemplateParameter:
7084 // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
7085 return {nullptr, LK_FullExpression};
7086
7087 case InitializedEntity::EK_Result:
7088 // -- The lifetime of a temporary bound to the returned value in a
7089 // function return statement is not extended; the temporary is
7090 // destroyed at the end of the full-expression in the return statement.
7091 return {nullptr, LK_Return};
7092
7093 case InitializedEntity::EK_StmtExprResult:
7094 // FIXME: Should we lifetime-extend through the result of a statement
7095 // expression?
7096 return {nullptr, LK_StmtExprResult};
7097
7098 case InitializedEntity::EK_New:
7099 // -- A temporary bound to a reference in a new-initializer persists
7100 // until the completion of the full-expression containing the
7101 // new-initializer.
7102 return {nullptr, LK_New};
7103
7104 case InitializedEntity::EK_Temporary:
7105 case InitializedEntity::EK_CompoundLiteralInit:
7106 case InitializedEntity::EK_RelatedResult:
7107 // We don't yet know the storage duration of the surrounding temporary.
7108 // Assume it's got full-expression duration for now, it will patch up our
7109 // storage duration if that's not correct.
7110 return {nullptr, LK_FullExpression};
7111
7112 case InitializedEntity::EK_ArrayElement:
7113 // For subobjects, we look at the complete object.
7114 return getEntityLifetime(Entity->getParent(), InitField);
7115
7116 case InitializedEntity::EK_Base:
7117 // For subobjects, we look at the complete object.
7118 if (Entity->getParent())
7119 return getEntityLifetime(Entity->getParent(), InitField);
7120 return {InitField, LK_MemInitializer};
7121
7122 case InitializedEntity::EK_Delegating:
7123 // We can reach this case for aggregate initialization in a constructor:
7124 // struct A { int &&r; };
7125 // struct B : A { B() : A{0} {} };
7126 // In this case, use the outermost field decl as the context.
7127 return {InitField, LK_MemInitializer};
7128
7129 case InitializedEntity::EK_BlockElement:
7130 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
7131 case InitializedEntity::EK_LambdaCapture:
7132 case InitializedEntity::EK_VectorElement:
7133 case InitializedEntity::EK_ComplexElement:
7134 return {nullptr, LK_FullExpression};
7135
7136 case InitializedEntity::EK_Exception:
7137 // FIXME: Can we diagnose lifetime problems with exceptions?
7138 return {nullptr, LK_FullExpression};
7139
7140 case InitializedEntity::EK_ParenAggInitMember:
7141 // -- A temporary object bound to a reference element of an aggregate of
7142 // class type initialized from a parenthesized expression-list
7143 // [dcl.init, 9.3] persists until the completion of the full-expression
7144 // containing the expression-list.
7145 return {nullptr, LK_FullExpression};
7146 }
7147
7148 llvm_unreachable("unknown entity kind");
7149 }
7150
7151 namespace {
7152 enum ReferenceKind {
7153 /// Lifetime would be extended by a reference binding to a temporary.
7154 RK_ReferenceBinding,
7155 /// Lifetime would be extended by a std::initializer_list object binding to
7156 /// its backing array.
7157 RK_StdInitializerList,
7158 };
7159
7160 /// A temporary or local variable. This will be one of:
7161 /// * A MaterializeTemporaryExpr.
7162 /// * A DeclRefExpr whose declaration is a local.
7163 /// * An AddrLabelExpr.
7164 /// * A BlockExpr for a block with captures.
7165 using Local = Expr*;
7166
7167 /// Expressions we stepped over when looking for the local state. Any steps
7168 /// that would inhibit lifetime extension or take us out of subexpressions of
7169 /// the initializer are included.
7170 struct IndirectLocalPathEntry {
7171 enum EntryKind {
7172 DefaultInit,
7173 AddressOf,
7174 VarInit,
7175 LValToRVal,
7176 LifetimeBoundCall,
7177 TemporaryCopy,
7178 LambdaCaptureInit,
7179 GslReferenceInit,
7180 GslPointerInit
7181 } Kind;
7182 Expr *E;
7183 union {
7184 const Decl *D = nullptr;
7185 const LambdaCapture *Capture;
7186 };
IndirectLocalPathEntry__anone30c50960a11::IndirectLocalPathEntry7187 IndirectLocalPathEntry() {}
IndirectLocalPathEntry__anone30c50960a11::IndirectLocalPathEntry7188 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
IndirectLocalPathEntry__anone30c50960a11::IndirectLocalPathEntry7189 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
7190 : Kind(K), E(E), D(D) {}
IndirectLocalPathEntry__anone30c50960a11::IndirectLocalPathEntry7191 IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
7192 : Kind(K), E(E), Capture(Capture) {}
7193 };
7194
7195 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
7196
7197 struct RevertToOldSizeRAII {
7198 IndirectLocalPath &Path;
7199 unsigned OldSize = Path.size();
RevertToOldSizeRAII__anone30c50960a11::RevertToOldSizeRAII7200 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
~RevertToOldSizeRAII__anone30c50960a11::RevertToOldSizeRAII7201 ~RevertToOldSizeRAII() { Path.resize(OldSize); }
7202 };
7203
7204 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
7205 ReferenceKind RK)>;
7206 }
7207
isVarOnPath(IndirectLocalPath & Path,VarDecl * VD)7208 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
7209 for (auto E : Path)
7210 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
7211 return true;
7212 return false;
7213 }
7214
pathContainsInit(IndirectLocalPath & Path)7215 static bool pathContainsInit(IndirectLocalPath &Path) {
7216 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
7217 return E.Kind == IndirectLocalPathEntry::DefaultInit ||
7218 E.Kind == IndirectLocalPathEntry::VarInit;
7219 });
7220 }
7221
7222 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7223 Expr *Init, LocalVisitor Visit,
7224 bool RevisitSubinits,
7225 bool EnableLifetimeWarnings);
7226
7227 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7228 Expr *Init, ReferenceKind RK,
7229 LocalVisitor Visit,
7230 bool EnableLifetimeWarnings);
7231
isRecordWithAttr(QualType Type)7232 template <typename T> static bool isRecordWithAttr(QualType Type) {
7233 if (auto *RD = Type->getAsCXXRecordDecl())
7234 return RD->hasAttr<T>();
7235 return false;
7236 }
7237
7238 // Decl::isInStdNamespace will return false for iterators in some STL
7239 // implementations due to them being defined in a namespace outside of the std
7240 // namespace.
isInStlNamespace(const Decl * D)7241 static bool isInStlNamespace(const Decl *D) {
7242 const DeclContext *DC = D->getDeclContext();
7243 if (!DC)
7244 return false;
7245 if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
7246 if (const IdentifierInfo *II = ND->getIdentifier()) {
7247 StringRef Name = II->getName();
7248 if (Name.size() >= 2 && Name.front() == '_' &&
7249 (Name[1] == '_' || isUppercase(Name[1])))
7250 return true;
7251 }
7252
7253 return DC->isStdNamespace();
7254 }
7255
shouldTrackImplicitObjectArg(const CXXMethodDecl * Callee)7256 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
7257 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
7258 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
7259 return true;
7260 if (!isInStlNamespace(Callee->getParent()))
7261 return false;
7262 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
7263 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
7264 return false;
7265 if (Callee->getReturnType()->isPointerType() ||
7266 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
7267 if (!Callee->getIdentifier())
7268 return false;
7269 return llvm::StringSwitch<bool>(Callee->getName())
7270 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
7271 .Cases("end", "rend", "cend", "crend", true)
7272 .Cases("c_str", "data", "get", true)
7273 // Map and set types.
7274 .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
7275 .Default(false);
7276 } else if (Callee->getReturnType()->isReferenceType()) {
7277 if (!Callee->getIdentifier()) {
7278 auto OO = Callee->getOverloadedOperator();
7279 return OO == OverloadedOperatorKind::OO_Subscript ||
7280 OO == OverloadedOperatorKind::OO_Star;
7281 }
7282 return llvm::StringSwitch<bool>(Callee->getName())
7283 .Cases("front", "back", "at", "top", "value", true)
7284 .Default(false);
7285 }
7286 return false;
7287 }
7288
shouldTrackFirstArgument(const FunctionDecl * FD)7289 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
7290 if (!FD->getIdentifier() || FD->getNumParams() != 1)
7291 return false;
7292 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
7293 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
7294 return false;
7295 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
7296 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
7297 return false;
7298 if (FD->getReturnType()->isPointerType() ||
7299 isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
7300 return llvm::StringSwitch<bool>(FD->getName())
7301 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
7302 .Cases("end", "rend", "cend", "crend", true)
7303 .Case("data", true)
7304 .Default(false);
7305 } else if (FD->getReturnType()->isReferenceType()) {
7306 return llvm::StringSwitch<bool>(FD->getName())
7307 .Cases("get", "any_cast", true)
7308 .Default(false);
7309 }
7310 return false;
7311 }
7312
handleGslAnnotatedTypes(IndirectLocalPath & Path,Expr * Call,LocalVisitor Visit)7313 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
7314 LocalVisitor Visit) {
7315 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
7316 // We are not interested in the temporary base objects of gsl Pointers:
7317 // Temp().ptr; // Here ptr might not dangle.
7318 if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
7319 return;
7320 // Once we initialized a value with a reference, it can no longer dangle.
7321 if (!Value) {
7322 for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) {
7323 if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit)
7324 continue;
7325 if (PE.Kind == IndirectLocalPathEntry::GslPointerInit)
7326 return;
7327 break;
7328 }
7329 }
7330 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
7331 : IndirectLocalPathEntry::GslReferenceInit,
7332 Arg, D});
7333 if (Arg->isGLValue())
7334 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7335 Visit,
7336 /*EnableLifetimeWarnings=*/true);
7337 else
7338 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7339 /*EnableLifetimeWarnings=*/true);
7340 Path.pop_back();
7341 };
7342
7343 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7344 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
7345 if (MD && shouldTrackImplicitObjectArg(MD))
7346 VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
7347 !MD->getReturnType()->isReferenceType());
7348 return;
7349 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
7350 FunctionDecl *Callee = OCE->getDirectCallee();
7351 if (Callee && Callee->isCXXInstanceMember() &&
7352 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
7353 VisitPointerArg(Callee, OCE->getArg(0),
7354 !Callee->getReturnType()->isReferenceType());
7355 return;
7356 } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
7357 FunctionDecl *Callee = CE->getDirectCallee();
7358 if (Callee && shouldTrackFirstArgument(Callee))
7359 VisitPointerArg(Callee, CE->getArg(0),
7360 !Callee->getReturnType()->isReferenceType());
7361 return;
7362 }
7363
7364 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
7365 const auto *Ctor = CCE->getConstructor();
7366 const CXXRecordDecl *RD = Ctor->getParent();
7367 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
7368 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
7369 }
7370 }
7371
implicitObjectParamIsLifetimeBound(const FunctionDecl * FD)7372 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
7373 const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7374 if (!TSI)
7375 return false;
7376 // Don't declare this variable in the second operand of the for-statement;
7377 // GCC miscompiles that by ending its lifetime before evaluating the
7378 // third operand. See gcc.gnu.org/PR86769.
7379 AttributedTypeLoc ATL;
7380 for (TypeLoc TL = TSI->getTypeLoc();
7381 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
7382 TL = ATL.getModifiedLoc()) {
7383 if (ATL.getAttrAs<LifetimeBoundAttr>())
7384 return true;
7385 }
7386
7387 // Assume that all assignment operators with a "normal" return type return
7388 // *this, that is, an lvalue reference that is the same type as the implicit
7389 // object parameter (or the LHS for a non-member operator$=).
7390 OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
7391 if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
7392 QualType RetT = FD->getReturnType();
7393 if (RetT->isLValueReferenceType()) {
7394 ASTContext &Ctx = FD->getASTContext();
7395 QualType LHST;
7396 auto *MD = dyn_cast<CXXMethodDecl>(FD);
7397 if (MD && MD->isCXXInstanceMember())
7398 LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
7399 else
7400 LHST = MD->getParamDecl(0)->getType();
7401 if (Ctx.hasSameType(RetT, LHST))
7402 return true;
7403 }
7404 }
7405
7406 return false;
7407 }
7408
visitLifetimeBoundArguments(IndirectLocalPath & Path,Expr * Call,LocalVisitor Visit)7409 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7410 LocalVisitor Visit) {
7411 const FunctionDecl *Callee;
7412 ArrayRef<Expr*> Args;
7413
7414 if (auto *CE = dyn_cast<CallExpr>(Call)) {
7415 Callee = CE->getDirectCallee();
7416 Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs());
7417 } else {
7418 auto *CCE = cast<CXXConstructExpr>(Call);
7419 Callee = CCE->getConstructor();
7420 Args = llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs());
7421 }
7422 if (!Callee)
7423 return;
7424
7425 Expr *ObjectArg = nullptr;
7426 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7427 ObjectArg = Args[0];
7428 Args = Args.slice(1);
7429 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7430 ObjectArg = MCE->getImplicitObjectArgument();
7431 }
7432
7433 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7434 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7435 if (Arg->isGLValue())
7436 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7437 Visit,
7438 /*EnableLifetimeWarnings=*/false);
7439 else
7440 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7441 /*EnableLifetimeWarnings=*/false);
7442 Path.pop_back();
7443 };
7444
7445 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7446 VisitLifetimeBoundArg(Callee, ObjectArg);
7447
7448 for (unsigned I = 0,
7449 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7450 I != N; ++I) {
7451 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7452 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7453 }
7454 }
7455
7456 /// Visit the locals that would be reachable through a reference bound to the
7457 /// glvalue expression \c Init.
visitLocalsRetainedByReferenceBinding(IndirectLocalPath & Path,Expr * Init,ReferenceKind RK,LocalVisitor Visit,bool EnableLifetimeWarnings)7458 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7459 Expr *Init, ReferenceKind RK,
7460 LocalVisitor Visit,
7461 bool EnableLifetimeWarnings) {
7462 RevertToOldSizeRAII RAII(Path);
7463
7464 // Walk past any constructs which we can lifetime-extend across.
7465 Expr *Old;
7466 do {
7467 Old = Init;
7468
7469 if (auto *FE = dyn_cast<FullExpr>(Init))
7470 Init = FE->getSubExpr();
7471
7472 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7473 // If this is just redundant braces around an initializer, step over it.
7474 if (ILE->isTransparent())
7475 Init = ILE->getInit(0);
7476 }
7477
7478 // Step over any subobject adjustments; we may have a materialized
7479 // temporary inside them.
7480 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7481
7482 // Per current approach for DR1376, look through casts to reference type
7483 // when performing lifetime extension.
7484 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7485 if (CE->getSubExpr()->isGLValue())
7486 Init = CE->getSubExpr();
7487
7488 // Per the current approach for DR1299, look through array element access
7489 // on array glvalues when performing lifetime extension.
7490 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7491 Init = ASE->getBase();
7492 auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7493 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7494 Init = ICE->getSubExpr();
7495 else
7496 // We can't lifetime extend through this but we might still find some
7497 // retained temporaries.
7498 return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7499 EnableLifetimeWarnings);
7500 }
7501
7502 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7503 // constructor inherits one as an implicit mem-initializer.
7504 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7505 Path.push_back(
7506 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7507 Init = DIE->getExpr();
7508 }
7509 } while (Init != Old);
7510
7511 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7512 if (Visit(Path, Local(MTE), RK))
7513 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7514 EnableLifetimeWarnings);
7515 }
7516
7517 if (isa<CallExpr>(Init)) {
7518 if (EnableLifetimeWarnings)
7519 handleGslAnnotatedTypes(Path, Init, Visit);
7520 return visitLifetimeBoundArguments(Path, Init, Visit);
7521 }
7522
7523 switch (Init->getStmtClass()) {
7524 case Stmt::DeclRefExprClass: {
7525 // If we find the name of a local non-reference parameter, we could have a
7526 // lifetime problem.
7527 auto *DRE = cast<DeclRefExpr>(Init);
7528 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7529 if (VD && VD->hasLocalStorage() &&
7530 !DRE->refersToEnclosingVariableOrCapture()) {
7531 if (!VD->getType()->isReferenceType()) {
7532 Visit(Path, Local(DRE), RK);
7533 } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7534 // The lifetime of a reference parameter is unknown; assume it's OK
7535 // for now.
7536 break;
7537 } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7538 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7539 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7540 RK_ReferenceBinding, Visit,
7541 EnableLifetimeWarnings);
7542 }
7543 }
7544 break;
7545 }
7546
7547 case Stmt::UnaryOperatorClass: {
7548 // The only unary operator that make sense to handle here
7549 // is Deref. All others don't resolve to a "name." This includes
7550 // handling all sorts of rvalues passed to a unary operator.
7551 const UnaryOperator *U = cast<UnaryOperator>(Init);
7552 if (U->getOpcode() == UO_Deref)
7553 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7554 EnableLifetimeWarnings);
7555 break;
7556 }
7557
7558 case Stmt::OMPArraySectionExprClass: {
7559 visitLocalsRetainedByInitializer(Path,
7560 cast<OMPArraySectionExpr>(Init)->getBase(),
7561 Visit, true, EnableLifetimeWarnings);
7562 break;
7563 }
7564
7565 case Stmt::ConditionalOperatorClass:
7566 case Stmt::BinaryConditionalOperatorClass: {
7567 auto *C = cast<AbstractConditionalOperator>(Init);
7568 if (!C->getTrueExpr()->getType()->isVoidType())
7569 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7570 EnableLifetimeWarnings);
7571 if (!C->getFalseExpr()->getType()->isVoidType())
7572 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7573 EnableLifetimeWarnings);
7574 break;
7575 }
7576
7577 // FIXME: Visit the left-hand side of an -> or ->*.
7578
7579 default:
7580 break;
7581 }
7582 }
7583
7584 /// Visit the locals that would be reachable through an object initialized by
7585 /// the prvalue expression \c Init.
visitLocalsRetainedByInitializer(IndirectLocalPath & Path,Expr * Init,LocalVisitor Visit,bool RevisitSubinits,bool EnableLifetimeWarnings)7586 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7587 Expr *Init, LocalVisitor Visit,
7588 bool RevisitSubinits,
7589 bool EnableLifetimeWarnings) {
7590 RevertToOldSizeRAII RAII(Path);
7591
7592 Expr *Old;
7593 do {
7594 Old = Init;
7595
7596 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7597 // constructor inherits one as an implicit mem-initializer.
7598 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7599 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7600 Init = DIE->getExpr();
7601 }
7602
7603 if (auto *FE = dyn_cast<FullExpr>(Init))
7604 Init = FE->getSubExpr();
7605
7606 // Dig out the expression which constructs the extended temporary.
7607 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7608
7609 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7610 Init = BTE->getSubExpr();
7611
7612 Init = Init->IgnoreParens();
7613
7614 // Step over value-preserving rvalue casts.
7615 if (auto *CE = dyn_cast<CastExpr>(Init)) {
7616 switch (CE->getCastKind()) {
7617 case CK_LValueToRValue:
7618 // If we can match the lvalue to a const object, we can look at its
7619 // initializer.
7620 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7621 return visitLocalsRetainedByReferenceBinding(
7622 Path, Init, RK_ReferenceBinding,
7623 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7624 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7625 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7626 if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7627 !isVarOnPath(Path, VD)) {
7628 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7629 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7630 EnableLifetimeWarnings);
7631 }
7632 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7633 if (MTE->getType().isConstQualified())
7634 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7635 true, EnableLifetimeWarnings);
7636 }
7637 return false;
7638 }, EnableLifetimeWarnings);
7639
7640 // We assume that objects can be retained by pointers cast to integers,
7641 // but not if the integer is cast to floating-point type or to _Complex.
7642 // We assume that casts to 'bool' do not preserve enough information to
7643 // retain a local object.
7644 case CK_NoOp:
7645 case CK_BitCast:
7646 case CK_BaseToDerived:
7647 case CK_DerivedToBase:
7648 case CK_UncheckedDerivedToBase:
7649 case CK_Dynamic:
7650 case CK_ToUnion:
7651 case CK_UserDefinedConversion:
7652 case CK_ConstructorConversion:
7653 case CK_IntegralToPointer:
7654 case CK_PointerToIntegral:
7655 case CK_VectorSplat:
7656 case CK_IntegralCast:
7657 case CK_CPointerToObjCPointerCast:
7658 case CK_BlockPointerToObjCPointerCast:
7659 case CK_AnyPointerToBlockPointerCast:
7660 case CK_AddressSpaceConversion:
7661 break;
7662
7663 case CK_ArrayToPointerDecay:
7664 // Model array-to-pointer decay as taking the address of the array
7665 // lvalue.
7666 Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7667 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7668 RK_ReferenceBinding, Visit,
7669 EnableLifetimeWarnings);
7670
7671 default:
7672 return;
7673 }
7674
7675 Init = CE->getSubExpr();
7676 }
7677 } while (Old != Init);
7678
7679 // C++17 [dcl.init.list]p6:
7680 // initializing an initializer_list object from the array extends the
7681 // lifetime of the array exactly like binding a reference to a temporary.
7682 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7683 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7684 RK_StdInitializerList, Visit,
7685 EnableLifetimeWarnings);
7686
7687 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7688 // We already visited the elements of this initializer list while
7689 // performing the initialization. Don't visit them again unless we've
7690 // changed the lifetime of the initialized entity.
7691 if (!RevisitSubinits)
7692 return;
7693
7694 if (ILE->isTransparent())
7695 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7696 RevisitSubinits,
7697 EnableLifetimeWarnings);
7698
7699 if (ILE->getType()->isArrayType()) {
7700 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7701 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7702 RevisitSubinits,
7703 EnableLifetimeWarnings);
7704 return;
7705 }
7706
7707 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7708 assert(RD->isAggregate() && "aggregate init on non-aggregate");
7709
7710 // If we lifetime-extend a braced initializer which is initializing an
7711 // aggregate, and that aggregate contains reference members which are
7712 // bound to temporaries, those temporaries are also lifetime-extended.
7713 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7714 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7715 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7716 RK_ReferenceBinding, Visit,
7717 EnableLifetimeWarnings);
7718 else {
7719 unsigned Index = 0;
7720 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7721 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7722 RevisitSubinits,
7723 EnableLifetimeWarnings);
7724 for (const auto *I : RD->fields()) {
7725 if (Index >= ILE->getNumInits())
7726 break;
7727 if (I->isUnnamedBitfield())
7728 continue;
7729 Expr *SubInit = ILE->getInit(Index);
7730 if (I->getType()->isReferenceType())
7731 visitLocalsRetainedByReferenceBinding(Path, SubInit,
7732 RK_ReferenceBinding, Visit,
7733 EnableLifetimeWarnings);
7734 else
7735 // This might be either aggregate-initialization of a member or
7736 // initialization of a std::initializer_list object. Regardless,
7737 // we should recursively lifetime-extend that initializer.
7738 visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7739 RevisitSubinits,
7740 EnableLifetimeWarnings);
7741 ++Index;
7742 }
7743 }
7744 }
7745 return;
7746 }
7747
7748 // The lifetime of an init-capture is that of the closure object constructed
7749 // by a lambda-expression.
7750 if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7751 LambdaExpr::capture_iterator CapI = LE->capture_begin();
7752 for (Expr *E : LE->capture_inits()) {
7753 assert(CapI != LE->capture_end());
7754 const LambdaCapture &Cap = *CapI++;
7755 if (!E)
7756 continue;
7757 if (Cap.capturesVariable())
7758 Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7759 if (E->isGLValue())
7760 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7761 Visit, EnableLifetimeWarnings);
7762 else
7763 visitLocalsRetainedByInitializer(Path, E, Visit, true,
7764 EnableLifetimeWarnings);
7765 if (Cap.capturesVariable())
7766 Path.pop_back();
7767 }
7768 }
7769
7770 // Assume that a copy or move from a temporary references the same objects
7771 // that the temporary does.
7772 if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7773 if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7774 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7775 Expr *Arg = MTE->getSubExpr();
7776 Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7777 CCE->getConstructor()});
7778 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7779 /*EnableLifetimeWarnings*/false);
7780 Path.pop_back();
7781 }
7782 }
7783 }
7784
7785 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7786 if (EnableLifetimeWarnings)
7787 handleGslAnnotatedTypes(Path, Init, Visit);
7788 return visitLifetimeBoundArguments(Path, Init, Visit);
7789 }
7790
7791 switch (Init->getStmtClass()) {
7792 case Stmt::UnaryOperatorClass: {
7793 auto *UO = cast<UnaryOperator>(Init);
7794 // If the initializer is the address of a local, we could have a lifetime
7795 // problem.
7796 if (UO->getOpcode() == UO_AddrOf) {
7797 // If this is &rvalue, then it's ill-formed and we have already diagnosed
7798 // it. Don't produce a redundant warning about the lifetime of the
7799 // temporary.
7800 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7801 return;
7802
7803 Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7804 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7805 RK_ReferenceBinding, Visit,
7806 EnableLifetimeWarnings);
7807 }
7808 break;
7809 }
7810
7811 case Stmt::BinaryOperatorClass: {
7812 // Handle pointer arithmetic.
7813 auto *BO = cast<BinaryOperator>(Init);
7814 BinaryOperatorKind BOK = BO->getOpcode();
7815 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7816 break;
7817
7818 if (BO->getLHS()->getType()->isPointerType())
7819 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7820 EnableLifetimeWarnings);
7821 else if (BO->getRHS()->getType()->isPointerType())
7822 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7823 EnableLifetimeWarnings);
7824 break;
7825 }
7826
7827 case Stmt::ConditionalOperatorClass:
7828 case Stmt::BinaryConditionalOperatorClass: {
7829 auto *C = cast<AbstractConditionalOperator>(Init);
7830 // In C++, we can have a throw-expression operand, which has 'void' type
7831 // and isn't interesting from a lifetime perspective.
7832 if (!C->getTrueExpr()->getType()->isVoidType())
7833 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7834 EnableLifetimeWarnings);
7835 if (!C->getFalseExpr()->getType()->isVoidType())
7836 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7837 EnableLifetimeWarnings);
7838 break;
7839 }
7840
7841 case Stmt::BlockExprClass:
7842 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7843 // This is a local block, whose lifetime is that of the function.
7844 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7845 }
7846 break;
7847
7848 case Stmt::AddrLabelExprClass:
7849 // We want to warn if the address of a label would escape the function.
7850 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7851 break;
7852
7853 default:
7854 break;
7855 }
7856 }
7857
7858 /// Whether a path to an object supports lifetime extension.
7859 enum PathLifetimeKind {
7860 /// Lifetime-extend along this path.
7861 Extend,
7862 /// We should lifetime-extend, but we don't because (due to technical
7863 /// limitations) we can't. This happens for default member initializers,
7864 /// which we don't clone for every use, so we don't have a unique
7865 /// MaterializeTemporaryExpr to update.
7866 ShouldExtend,
7867 /// Do not lifetime extend along this path.
7868 NoExtend
7869 };
7870
7871 /// Determine whether this is an indirect path to a temporary that we are
7872 /// supposed to lifetime-extend along.
7873 static PathLifetimeKind
shouldLifetimeExtendThroughPath(const IndirectLocalPath & Path)7874 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7875 PathLifetimeKind Kind = PathLifetimeKind::Extend;
7876 for (auto Elem : Path) {
7877 if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7878 Kind = PathLifetimeKind::ShouldExtend;
7879 else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7880 return PathLifetimeKind::NoExtend;
7881 }
7882 return Kind;
7883 }
7884
7885 /// Find the range for the first interesting entry in the path at or after I.
nextPathEntryRange(const IndirectLocalPath & Path,unsigned I,Expr * E)7886 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7887 Expr *E) {
7888 for (unsigned N = Path.size(); I != N; ++I) {
7889 switch (Path[I].Kind) {
7890 case IndirectLocalPathEntry::AddressOf:
7891 case IndirectLocalPathEntry::LValToRVal:
7892 case IndirectLocalPathEntry::LifetimeBoundCall:
7893 case IndirectLocalPathEntry::TemporaryCopy:
7894 case IndirectLocalPathEntry::GslReferenceInit:
7895 case IndirectLocalPathEntry::GslPointerInit:
7896 // These exist primarily to mark the path as not permitting or
7897 // supporting lifetime extension.
7898 break;
7899
7900 case IndirectLocalPathEntry::VarInit:
7901 if (cast<VarDecl>(Path[I].D)->isImplicit())
7902 return SourceRange();
7903 [[fallthrough]];
7904 case IndirectLocalPathEntry::DefaultInit:
7905 return Path[I].E->getSourceRange();
7906
7907 case IndirectLocalPathEntry::LambdaCaptureInit:
7908 if (!Path[I].Capture->capturesVariable())
7909 continue;
7910 return Path[I].E->getSourceRange();
7911 }
7912 }
7913 return E->getSourceRange();
7914 }
7915
pathOnlyInitializesGslPointer(IndirectLocalPath & Path)7916 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7917 for (const auto &It : llvm::reverse(Path)) {
7918 if (It.Kind == IndirectLocalPathEntry::VarInit)
7919 continue;
7920 if (It.Kind == IndirectLocalPathEntry::AddressOf)
7921 continue;
7922 if (It.Kind == IndirectLocalPathEntry::LifetimeBoundCall)
7923 continue;
7924 return It.Kind == IndirectLocalPathEntry::GslPointerInit ||
7925 It.Kind == IndirectLocalPathEntry::GslReferenceInit;
7926 }
7927 return false;
7928 }
7929
checkInitializerLifetime(const InitializedEntity & Entity,Expr * Init)7930 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7931 Expr *Init) {
7932 LifetimeResult LR = getEntityLifetime(&Entity);
7933 LifetimeKind LK = LR.getInt();
7934 const InitializedEntity *ExtendingEntity = LR.getPointer();
7935
7936 // If this entity doesn't have an interesting lifetime, don't bother looking
7937 // for temporaries within its initializer.
7938 if (LK == LK_FullExpression)
7939 return;
7940
7941 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7942 ReferenceKind RK) -> bool {
7943 SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7944 SourceLocation DiagLoc = DiagRange.getBegin();
7945
7946 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7947
7948 bool IsGslPtrInitWithGslTempOwner = false;
7949 bool IsLocalGslOwner = false;
7950 if (pathOnlyInitializesGslPointer(Path)) {
7951 if (isa<DeclRefExpr>(L)) {
7952 // We do not want to follow the references when returning a pointer originating
7953 // from a local owner to avoid the following false positive:
7954 // int &p = *localUniquePtr;
7955 // someContainer.add(std::move(localUniquePtr));
7956 // return p;
7957 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7958 if (pathContainsInit(Path) || !IsLocalGslOwner)
7959 return false;
7960 } else {
7961 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7962 isRecordWithAttr<OwnerAttr>(MTE->getType());
7963 // Skipping a chain of initializing gsl::Pointer annotated objects.
7964 // We are looking only for the final source to find out if it was
7965 // a local or temporary owner or the address of a local variable/param.
7966 if (!IsGslPtrInitWithGslTempOwner)
7967 return true;
7968 }
7969 }
7970
7971 switch (LK) {
7972 case LK_FullExpression:
7973 llvm_unreachable("already handled this");
7974
7975 case LK_Extended: {
7976 if (!MTE) {
7977 // The initialized entity has lifetime beyond the full-expression,
7978 // and the local entity does too, so don't warn.
7979 //
7980 // FIXME: We should consider warning if a static / thread storage
7981 // duration variable retains an automatic storage duration local.
7982 return false;
7983 }
7984
7985 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7986 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7987 return false;
7988 }
7989
7990 switch (shouldLifetimeExtendThroughPath(Path)) {
7991 case PathLifetimeKind::Extend:
7992 // Update the storage duration of the materialized temporary.
7993 // FIXME: Rebuild the expression instead of mutating it.
7994 MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7995 ExtendingEntity->allocateManglingNumber());
7996 // Also visit the temporaries lifetime-extended by this initializer.
7997 return true;
7998
7999 case PathLifetimeKind::ShouldExtend:
8000 // We're supposed to lifetime-extend the temporary along this path (per
8001 // the resolution of DR1815), but we don't support that yet.
8002 //
8003 // FIXME: Properly handle this situation. Perhaps the easiest approach
8004 // would be to clone the initializer expression on each use that would
8005 // lifetime extend its temporaries.
8006 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
8007 << RK << DiagRange;
8008 break;
8009
8010 case PathLifetimeKind::NoExtend:
8011 // If the path goes through the initialization of a variable or field,
8012 // it can't possibly reach a temporary created in this full-expression.
8013 // We will have already diagnosed any problems with the initializer.
8014 if (pathContainsInit(Path))
8015 return false;
8016
8017 Diag(DiagLoc, diag::warn_dangling_variable)
8018 << RK << !Entity.getParent()
8019 << ExtendingEntity->getDecl()->isImplicit()
8020 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
8021 break;
8022 }
8023 break;
8024 }
8025
8026 case LK_MemInitializer: {
8027 if (isa<MaterializeTemporaryExpr>(L)) {
8028 // Under C++ DR1696, if a mem-initializer (or a default member
8029 // initializer used by the absence of one) would lifetime-extend a
8030 // temporary, the program is ill-formed.
8031 if (auto *ExtendingDecl =
8032 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
8033 if (IsGslPtrInitWithGslTempOwner) {
8034 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
8035 << ExtendingDecl << DiagRange;
8036 Diag(ExtendingDecl->getLocation(),
8037 diag::note_ref_or_ptr_member_declared_here)
8038 << true;
8039 return false;
8040 }
8041 bool IsSubobjectMember = ExtendingEntity != &Entity;
8042 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
8043 PathLifetimeKind::NoExtend
8044 ? diag::err_dangling_member
8045 : diag::warn_dangling_member)
8046 << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
8047 // Don't bother adding a note pointing to the field if we're inside
8048 // its default member initializer; our primary diagnostic points to
8049 // the same place in that case.
8050 if (Path.empty() ||
8051 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
8052 Diag(ExtendingDecl->getLocation(),
8053 diag::note_lifetime_extending_member_declared_here)
8054 << RK << IsSubobjectMember;
8055 }
8056 } else {
8057 // We have a mem-initializer but no particular field within it; this
8058 // is either a base class or a delegating initializer directly
8059 // initializing the base-class from something that doesn't live long
8060 // enough.
8061 //
8062 // FIXME: Warn on this.
8063 return false;
8064 }
8065 } else {
8066 // Paths via a default initializer can only occur during error recovery
8067 // (there's no other way that a default initializer can refer to a
8068 // local). Don't produce a bogus warning on those cases.
8069 if (pathContainsInit(Path))
8070 return false;
8071
8072 // Suppress false positives for code like the one below:
8073 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
8074 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
8075 return false;
8076
8077 auto *DRE = dyn_cast<DeclRefExpr>(L);
8078 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
8079 if (!VD) {
8080 // A member was initialized to a local block.
8081 // FIXME: Warn on this.
8082 return false;
8083 }
8084
8085 if (auto *Member =
8086 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
8087 bool IsPointer = !Member->getType()->isReferenceType();
8088 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
8089 : diag::warn_bind_ref_member_to_parameter)
8090 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
8091 Diag(Member->getLocation(),
8092 diag::note_ref_or_ptr_member_declared_here)
8093 << (unsigned)IsPointer;
8094 }
8095 }
8096 break;
8097 }
8098
8099 case LK_New:
8100 if (isa<MaterializeTemporaryExpr>(L)) {
8101 if (IsGslPtrInitWithGslTempOwner)
8102 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
8103 else
8104 Diag(DiagLoc, RK == RK_ReferenceBinding
8105 ? diag::warn_new_dangling_reference
8106 : diag::warn_new_dangling_initializer_list)
8107 << !Entity.getParent() << DiagRange;
8108 } else {
8109 // We can't determine if the allocation outlives the local declaration.
8110 return false;
8111 }
8112 break;
8113
8114 case LK_Return:
8115 case LK_StmtExprResult:
8116 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
8117 // We can't determine if the local variable outlives the statement
8118 // expression.
8119 if (LK == LK_StmtExprResult)
8120 return false;
8121 Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
8122 << Entity.getType()->isReferenceType() << DRE->getDecl()
8123 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
8124 } else if (isa<BlockExpr>(L)) {
8125 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
8126 } else if (isa<AddrLabelExpr>(L)) {
8127 // Don't warn when returning a label from a statement expression.
8128 // Leaving the scope doesn't end its lifetime.
8129 if (LK == LK_StmtExprResult)
8130 return false;
8131 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
8132 } else {
8133 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
8134 << Entity.getType()->isReferenceType() << DiagRange;
8135 }
8136 break;
8137 }
8138
8139 for (unsigned I = 0; I != Path.size(); ++I) {
8140 auto Elem = Path[I];
8141
8142 switch (Elem.Kind) {
8143 case IndirectLocalPathEntry::AddressOf:
8144 case IndirectLocalPathEntry::LValToRVal:
8145 // These exist primarily to mark the path as not permitting or
8146 // supporting lifetime extension.
8147 break;
8148
8149 case IndirectLocalPathEntry::LifetimeBoundCall:
8150 case IndirectLocalPathEntry::TemporaryCopy:
8151 case IndirectLocalPathEntry::GslPointerInit:
8152 case IndirectLocalPathEntry::GslReferenceInit:
8153 // FIXME: Consider adding a note for these.
8154 break;
8155
8156 case IndirectLocalPathEntry::DefaultInit: {
8157 auto *FD = cast<FieldDecl>(Elem.D);
8158 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
8159 << FD << nextPathEntryRange(Path, I + 1, L);
8160 break;
8161 }
8162
8163 case IndirectLocalPathEntry::VarInit: {
8164 const VarDecl *VD = cast<VarDecl>(Elem.D);
8165 Diag(VD->getLocation(), diag::note_local_var_initializer)
8166 << VD->getType()->isReferenceType()
8167 << VD->isImplicit() << VD->getDeclName()
8168 << nextPathEntryRange(Path, I + 1, L);
8169 break;
8170 }
8171
8172 case IndirectLocalPathEntry::LambdaCaptureInit:
8173 if (!Elem.Capture->capturesVariable())
8174 break;
8175 // FIXME: We can't easily tell apart an init-capture from a nested
8176 // capture of an init-capture.
8177 const ValueDecl *VD = Elem.Capture->getCapturedVar();
8178 Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
8179 << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
8180 << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
8181 << nextPathEntryRange(Path, I + 1, L);
8182 break;
8183 }
8184 }
8185
8186 // We didn't lifetime-extend, so don't go any further; we don't need more
8187 // warnings or errors on inner temporaries within this one's initializer.
8188 return false;
8189 };
8190
8191 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
8192 diag::warn_dangling_lifetime_pointer, SourceLocation());
8193 llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
8194 if (Init->isGLValue())
8195 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
8196 TemporaryVisitor,
8197 EnableLifetimeWarnings);
8198 else
8199 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
8200 EnableLifetimeWarnings);
8201 }
8202
8203 static void DiagnoseNarrowingInInitList(Sema &S,
8204 const ImplicitConversionSequence &ICS,
8205 QualType PreNarrowingType,
8206 QualType EntityType,
8207 const Expr *PostInit);
8208
8209 /// Provide warnings when std::move is used on construction.
CheckMoveOnConstruction(Sema & S,const Expr * InitExpr,bool IsReturnStmt)8210 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
8211 bool IsReturnStmt) {
8212 if (!InitExpr)
8213 return;
8214
8215 if (S.inTemplateInstantiation())
8216 return;
8217
8218 QualType DestType = InitExpr->getType();
8219 if (!DestType->isRecordType())
8220 return;
8221
8222 unsigned DiagID = 0;
8223 if (IsReturnStmt) {
8224 const CXXConstructExpr *CCE =
8225 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
8226 if (!CCE || CCE->getNumArgs() != 1)
8227 return;
8228
8229 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
8230 return;
8231
8232 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
8233 }
8234
8235 // Find the std::move call and get the argument.
8236 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
8237 if (!CE || !CE->isCallToStdMove())
8238 return;
8239
8240 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
8241
8242 if (IsReturnStmt) {
8243 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
8244 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
8245 return;
8246
8247 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
8248 if (!VD || !VD->hasLocalStorage())
8249 return;
8250
8251 // __block variables are not moved implicitly.
8252 if (VD->hasAttr<BlocksAttr>())
8253 return;
8254
8255 QualType SourceType = VD->getType();
8256 if (!SourceType->isRecordType())
8257 return;
8258
8259 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
8260 return;
8261 }
8262
8263 // If we're returning a function parameter, copy elision
8264 // is not possible.
8265 if (isa<ParmVarDecl>(VD))
8266 DiagID = diag::warn_redundant_move_on_return;
8267 else
8268 DiagID = diag::warn_pessimizing_move_on_return;
8269 } else {
8270 DiagID = diag::warn_pessimizing_move_on_initialization;
8271 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
8272 if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType())
8273 return;
8274 }
8275
8276 S.Diag(CE->getBeginLoc(), DiagID);
8277
8278 // Get all the locations for a fix-it. Don't emit the fix-it if any location
8279 // is within a macro.
8280 SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
8281 if (CallBegin.isMacroID())
8282 return;
8283 SourceLocation RParen = CE->getRParenLoc();
8284 if (RParen.isMacroID())
8285 return;
8286 SourceLocation LParen;
8287 SourceLocation ArgLoc = Arg->getBeginLoc();
8288
8289 // Special testing for the argument location. Since the fix-it needs the
8290 // location right before the argument, the argument location can be in a
8291 // macro only if it is at the beginning of the macro.
8292 while (ArgLoc.isMacroID() &&
8293 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
8294 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
8295 }
8296
8297 if (LParen.isMacroID())
8298 return;
8299
8300 LParen = ArgLoc.getLocWithOffset(-1);
8301
8302 S.Diag(CE->getBeginLoc(), diag::note_remove_move)
8303 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
8304 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
8305 }
8306
CheckForNullPointerDereference(Sema & S,const Expr * E)8307 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
8308 // Check to see if we are dereferencing a null pointer. If so, this is
8309 // undefined behavior, so warn about it. This only handles the pattern
8310 // "*null", which is a very syntactic check.
8311 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
8312 if (UO->getOpcode() == UO_Deref &&
8313 UO->getSubExpr()->IgnoreParenCasts()->
8314 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
8315 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
8316 S.PDiag(diag::warn_binding_null_to_reference)
8317 << UO->getSubExpr()->getSourceRange());
8318 }
8319 }
8320
8321 MaterializeTemporaryExpr *
CreateMaterializeTemporaryExpr(QualType T,Expr * Temporary,bool BoundToLvalueReference)8322 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
8323 bool BoundToLvalueReference) {
8324 auto MTE = new (Context)
8325 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
8326
8327 // Order an ExprWithCleanups for lifetime marks.
8328 //
8329 // TODO: It'll be good to have a single place to check the access of the
8330 // destructor and generate ExprWithCleanups for various uses. Currently these
8331 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
8332 // but there may be a chance to merge them.
8333 Cleanup.setExprNeedsCleanups(false);
8334 return MTE;
8335 }
8336
TemporaryMaterializationConversion(Expr * E)8337 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
8338 // In C++98, we don't want to implicitly create an xvalue.
8339 // FIXME: This means that AST consumers need to deal with "prvalues" that
8340 // denote materialized temporaries. Maybe we should add another ValueKind
8341 // for "xvalue pretending to be a prvalue" for C++98 support.
8342 if (!E->isPRValue() || !getLangOpts().CPlusPlus11)
8343 return E;
8344
8345 // C++1z [conv.rval]/1: T shall be a complete type.
8346 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
8347 // If so, we should check for a non-abstract class type here too.
8348 QualType T = E->getType();
8349 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
8350 return ExprError();
8351
8352 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
8353 }
8354
PerformQualificationConversion(Expr * E,QualType Ty,ExprValueKind VK,CheckedConversionKind CCK)8355 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
8356 ExprValueKind VK,
8357 CheckedConversionKind CCK) {
8358
8359 CastKind CK = CK_NoOp;
8360
8361 if (VK == VK_PRValue) {
8362 auto PointeeTy = Ty->getPointeeType();
8363 auto ExprPointeeTy = E->getType()->getPointeeType();
8364 if (!PointeeTy.isNull() &&
8365 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
8366 CK = CK_AddressSpaceConversion;
8367 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
8368 CK = CK_AddressSpaceConversion;
8369 }
8370
8371 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
8372 }
8373
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)8374 ExprResult InitializationSequence::Perform(Sema &S,
8375 const InitializedEntity &Entity,
8376 const InitializationKind &Kind,
8377 MultiExprArg Args,
8378 QualType *ResultType) {
8379 if (Failed()) {
8380 Diagnose(S, Entity, Kind, Args);
8381 return ExprError();
8382 }
8383 if (!ZeroInitializationFixit.empty()) {
8384 const Decl *D = Entity.getDecl();
8385 const auto *VD = dyn_cast_or_null<VarDecl>(D);
8386 QualType DestType = Entity.getType();
8387
8388 // The initialization would have succeeded with this fixit. Since the fixit
8389 // is on the error, we need to build a valid AST in this case, so this isn't
8390 // handled in the Failed() branch above.
8391 if (!DestType->isRecordType() && VD && VD->isConstexpr()) {
8392 // Use a more useful diagnostic for constexpr variables.
8393 S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init)
8394 << VD
8395 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8396 ZeroInitializationFixit);
8397 } else {
8398 unsigned DiagID = diag::err_default_init_const;
8399 if (S.getLangOpts().MSVCCompat && D && D->hasAttr<SelectAnyAttr>())
8400 DiagID = diag::ext_default_init_const;
8401
8402 S.Diag(Kind.getLocation(), DiagID)
8403 << DestType << (bool)DestType->getAs<RecordType>()
8404 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8405 ZeroInitializationFixit);
8406 }
8407 }
8408
8409 if (getKind() == DependentSequence) {
8410 // If the declaration is a non-dependent, incomplete array type
8411 // that has an initializer, then its type will be completed once
8412 // the initializer is instantiated.
8413 if (ResultType && !Entity.getType()->isDependentType() &&
8414 Args.size() == 1) {
8415 QualType DeclType = Entity.getType();
8416 if (const IncompleteArrayType *ArrayT
8417 = S.Context.getAsIncompleteArrayType(DeclType)) {
8418 // FIXME: We don't currently have the ability to accurately
8419 // compute the length of an initializer list without
8420 // performing full type-checking of the initializer list
8421 // (since we have to determine where braces are implicitly
8422 // introduced and such). So, we fall back to making the array
8423 // type a dependently-sized array type with no specified
8424 // bound.
8425 if (isa<InitListExpr>((Expr *)Args[0])) {
8426 SourceRange Brackets;
8427
8428 // Scavange the location of the brackets from the entity, if we can.
8429 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8430 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8431 TypeLoc TL = TInfo->getTypeLoc();
8432 if (IncompleteArrayTypeLoc ArrayLoc =
8433 TL.getAs<IncompleteArrayTypeLoc>())
8434 Brackets = ArrayLoc.getBracketsRange();
8435 }
8436 }
8437
8438 *ResultType
8439 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8440 /*NumElts=*/nullptr,
8441 ArrayT->getSizeModifier(),
8442 ArrayT->getIndexTypeCVRQualifiers(),
8443 Brackets);
8444 }
8445
8446 }
8447 }
8448 if (Kind.getKind() == InitializationKind::IK_Direct &&
8449 !Kind.isExplicitCast()) {
8450 // Rebuild the ParenListExpr.
8451 SourceRange ParenRange = Kind.getParenOrBraceRange();
8452 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8453 Args);
8454 }
8455 assert(Kind.getKind() == InitializationKind::IK_Copy ||
8456 Kind.isExplicitCast() ||
8457 Kind.getKind() == InitializationKind::IK_DirectList);
8458 return ExprResult(Args[0]);
8459 }
8460
8461 // No steps means no initialization.
8462 if (Steps.empty())
8463 return ExprResult((Expr *)nullptr);
8464
8465 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8466 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8467 !Entity.isParamOrTemplateParamKind()) {
8468 // Produce a C++98 compatibility warning if we are initializing a reference
8469 // from an initializer list. For parameters, we produce a better warning
8470 // elsewhere.
8471 Expr *Init = Args[0];
8472 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8473 << Init->getSourceRange();
8474 }
8475
8476 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8477 QualType ETy = Entity.getType();
8478 bool HasGlobalAS = ETy.hasAddressSpace() &&
8479 ETy.getAddressSpace() == LangAS::opencl_global;
8480
8481 if (S.getLangOpts().OpenCLVersion >= 200 &&
8482 ETy->isAtomicType() && !HasGlobalAS &&
8483 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8484 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8485 << 1
8486 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8487 return ExprError();
8488 }
8489
8490 QualType DestType = Entity.getType().getNonReferenceType();
8491 // FIXME: Ugly hack around the fact that Entity.getType() is not
8492 // the same as Entity.getDecl()->getType() in cases involving type merging,
8493 // and we want latter when it makes sense.
8494 if (ResultType)
8495 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8496 Entity.getType();
8497
8498 ExprResult CurInit((Expr *)nullptr);
8499 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8500
8501 // HLSL allows vector initialization to function like list initialization, but
8502 // use the syntax of a C++-like constructor.
8503 bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() &&
8504 isa<InitListExpr>(Args[0]);
8505 (void)IsHLSLVectorInit;
8506
8507 // For initialization steps that start with a single initializer,
8508 // grab the only argument out the Args and place it into the "current"
8509 // initializer.
8510 switch (Steps.front().Kind) {
8511 case SK_ResolveAddressOfOverloadedFunction:
8512 case SK_CastDerivedToBasePRValue:
8513 case SK_CastDerivedToBaseXValue:
8514 case SK_CastDerivedToBaseLValue:
8515 case SK_BindReference:
8516 case SK_BindReferenceToTemporary:
8517 case SK_FinalCopy:
8518 case SK_ExtraneousCopyToTemporary:
8519 case SK_UserConversion:
8520 case SK_QualificationConversionLValue:
8521 case SK_QualificationConversionXValue:
8522 case SK_QualificationConversionPRValue:
8523 case SK_FunctionReferenceConversion:
8524 case SK_AtomicConversion:
8525 case SK_ConversionSequence:
8526 case SK_ConversionSequenceNoNarrowing:
8527 case SK_ListInitialization:
8528 case SK_UnwrapInitList:
8529 case SK_RewrapInitList:
8530 case SK_CAssignment:
8531 case SK_StringInit:
8532 case SK_ObjCObjectConversion:
8533 case SK_ArrayLoopIndex:
8534 case SK_ArrayLoopInit:
8535 case SK_ArrayInit:
8536 case SK_GNUArrayInit:
8537 case SK_ParenthesizedArrayInit:
8538 case SK_PassByIndirectCopyRestore:
8539 case SK_PassByIndirectRestore:
8540 case SK_ProduceObjCObject:
8541 case SK_StdInitializerList:
8542 case SK_OCLSamplerInit:
8543 case SK_OCLZeroOpaqueType: {
8544 assert(Args.size() == 1 || IsHLSLVectorInit);
8545 CurInit = Args[0];
8546 if (!CurInit.get()) return ExprError();
8547 break;
8548 }
8549
8550 case SK_ConstructorInitialization:
8551 case SK_ConstructorInitializationFromList:
8552 case SK_StdInitializerListConstructorCall:
8553 case SK_ZeroInitialization:
8554 case SK_ParenthesizedListInit:
8555 break;
8556 }
8557
8558 // Promote from an unevaluated context to an unevaluated list context in
8559 // C++11 list-initialization; we need to instantiate entities usable in
8560 // constant expressions here in order to perform narrowing checks =(
8561 EnterExpressionEvaluationContext Evaluated(
8562 S, EnterExpressionEvaluationContext::InitList,
8563 CurInit.get() && isa<InitListExpr>(CurInit.get()));
8564
8565 // C++ [class.abstract]p2:
8566 // no objects of an abstract class can be created except as subobjects
8567 // of a class derived from it
8568 auto checkAbstractType = [&](QualType T) -> bool {
8569 if (Entity.getKind() == InitializedEntity::EK_Base ||
8570 Entity.getKind() == InitializedEntity::EK_Delegating)
8571 return false;
8572 return S.RequireNonAbstractType(Kind.getLocation(), T,
8573 diag::err_allocation_of_abstract_type);
8574 };
8575
8576 // Walk through the computed steps for the initialization sequence,
8577 // performing the specified conversions along the way.
8578 bool ConstructorInitRequiresZeroInit = false;
8579 for (step_iterator Step = step_begin(), StepEnd = step_end();
8580 Step != StepEnd; ++Step) {
8581 if (CurInit.isInvalid())
8582 return ExprError();
8583
8584 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8585
8586 switch (Step->Kind) {
8587 case SK_ResolveAddressOfOverloadedFunction:
8588 // Overload resolution determined which function invoke; update the
8589 // initializer to reflect that choice.
8590 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8591 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8592 return ExprError();
8593 CurInit = S.FixOverloadedFunctionReference(CurInit,
8594 Step->Function.FoundDecl,
8595 Step->Function.Function);
8596 // We might get back another placeholder expression if we resolved to a
8597 // builtin.
8598 if (!CurInit.isInvalid())
8599 CurInit = S.CheckPlaceholderExpr(CurInit.get());
8600 break;
8601
8602 case SK_CastDerivedToBasePRValue:
8603 case SK_CastDerivedToBaseXValue:
8604 case SK_CastDerivedToBaseLValue: {
8605 // We have a derived-to-base cast that produces either an rvalue or an
8606 // lvalue. Perform that cast.
8607
8608 CXXCastPath BasePath;
8609
8610 // Casts to inaccessible base classes are allowed with C-style casts.
8611 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8612 if (S.CheckDerivedToBaseConversion(
8613 SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8614 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8615 return ExprError();
8616
8617 ExprValueKind VK =
8618 Step->Kind == SK_CastDerivedToBaseLValue
8619 ? VK_LValue
8620 : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue
8621 : VK_PRValue);
8622 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8623 CK_DerivedToBase, CurInit.get(),
8624 &BasePath, VK, FPOptionsOverride());
8625 break;
8626 }
8627
8628 case SK_BindReference:
8629 // Reference binding does not have any corresponding ASTs.
8630
8631 // Check exception specifications
8632 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8633 return ExprError();
8634
8635 // We don't check for e.g. function pointers here, since address
8636 // availability checks should only occur when the function first decays
8637 // into a pointer or reference.
8638 if (CurInit.get()->getType()->isFunctionProtoType()) {
8639 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8640 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8641 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8642 DRE->getBeginLoc()))
8643 return ExprError();
8644 }
8645 }
8646 }
8647
8648 CheckForNullPointerDereference(S, CurInit.get());
8649 break;
8650
8651 case SK_BindReferenceToTemporary: {
8652 // Make sure the "temporary" is actually an rvalue.
8653 assert(CurInit.get()->isPRValue() && "not a temporary");
8654
8655 // Check exception specifications
8656 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8657 return ExprError();
8658
8659 QualType MTETy = Step->Type;
8660
8661 // When this is an incomplete array type (such as when this is
8662 // initializing an array of unknown bounds from an init list), use THAT
8663 // type instead so that we propagate the array bounds.
8664 if (MTETy->isIncompleteArrayType() &&
8665 !CurInit.get()->getType()->isIncompleteArrayType() &&
8666 S.Context.hasSameType(
8667 MTETy->getPointeeOrArrayElementType(),
8668 CurInit.get()->getType()->getPointeeOrArrayElementType()))
8669 MTETy = CurInit.get()->getType();
8670
8671 // Materialize the temporary into memory.
8672 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8673 MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8674 CurInit = MTE;
8675
8676 // If we're extending this temporary to automatic storage duration -- we
8677 // need to register its cleanup during the full-expression's cleanups.
8678 if (MTE->getStorageDuration() == SD_Automatic &&
8679 MTE->getType().isDestructedType())
8680 S.Cleanup.setExprNeedsCleanups(true);
8681 break;
8682 }
8683
8684 case SK_FinalCopy:
8685 if (checkAbstractType(Step->Type))
8686 return ExprError();
8687
8688 // If the overall initialization is initializing a temporary, we already
8689 // bound our argument if it was necessary to do so. If not (if we're
8690 // ultimately initializing a non-temporary), our argument needs to be
8691 // bound since it's initializing a function parameter.
8692 // FIXME: This is a mess. Rationalize temporary destruction.
8693 if (!shouldBindAsTemporary(Entity))
8694 CurInit = S.MaybeBindToTemporary(CurInit.get());
8695 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8696 /*IsExtraneousCopy=*/false);
8697 break;
8698
8699 case SK_ExtraneousCopyToTemporary:
8700 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8701 /*IsExtraneousCopy=*/true);
8702 break;
8703
8704 case SK_UserConversion: {
8705 // We have a user-defined conversion that invokes either a constructor
8706 // or a conversion function.
8707 CastKind CastKind;
8708 FunctionDecl *Fn = Step->Function.Function;
8709 DeclAccessPair FoundFn = Step->Function.FoundDecl;
8710 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8711 bool CreatedObject = false;
8712 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8713 // Build a call to the selected constructor.
8714 SmallVector<Expr*, 8> ConstructorArgs;
8715 SourceLocation Loc = CurInit.get()->getBeginLoc();
8716
8717 // Determine the arguments required to actually perform the constructor
8718 // call.
8719 Expr *Arg = CurInit.get();
8720 if (S.CompleteConstructorCall(Constructor, Step->Type,
8721 MultiExprArg(&Arg, 1), Loc,
8722 ConstructorArgs))
8723 return ExprError();
8724
8725 // Build an expression that constructs a temporary.
8726 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8727 FoundFn, Constructor,
8728 ConstructorArgs,
8729 HadMultipleCandidates,
8730 /*ListInit*/ false,
8731 /*StdInitListInit*/ false,
8732 /*ZeroInit*/ false,
8733 CXXConstructExpr::CK_Complete,
8734 SourceRange());
8735 if (CurInit.isInvalid())
8736 return ExprError();
8737
8738 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8739 Entity);
8740 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8741 return ExprError();
8742
8743 CastKind = CK_ConstructorConversion;
8744 CreatedObject = true;
8745 } else {
8746 // Build a call to the conversion function.
8747 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8748 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8749 FoundFn);
8750 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8751 return ExprError();
8752
8753 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8754 HadMultipleCandidates);
8755 if (CurInit.isInvalid())
8756 return ExprError();
8757
8758 CastKind = CK_UserDefinedConversion;
8759 CreatedObject = Conversion->getReturnType()->isRecordType();
8760 }
8761
8762 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8763 return ExprError();
8764
8765 CurInit = ImplicitCastExpr::Create(
8766 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8767 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8768
8769 if (shouldBindAsTemporary(Entity))
8770 // The overall entity is temporary, so this expression should be
8771 // destroyed at the end of its full-expression.
8772 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8773 else if (CreatedObject && shouldDestroyEntity(Entity)) {
8774 // The object outlasts the full-expression, but we need to prepare for
8775 // a destructor being run on it.
8776 // FIXME: It makes no sense to do this here. This should happen
8777 // regardless of how we initialized the entity.
8778 QualType T = CurInit.get()->getType();
8779 if (const RecordType *Record = T->getAs<RecordType>()) {
8780 CXXDestructorDecl *Destructor
8781 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8782 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8783 S.PDiag(diag::err_access_dtor_temp) << T);
8784 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8785 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8786 return ExprError();
8787 }
8788 }
8789 break;
8790 }
8791
8792 case SK_QualificationConversionLValue:
8793 case SK_QualificationConversionXValue:
8794 case SK_QualificationConversionPRValue: {
8795 // Perform a qualification conversion; these can never go wrong.
8796 ExprValueKind VK =
8797 Step->Kind == SK_QualificationConversionLValue
8798 ? VK_LValue
8799 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8800 : VK_PRValue);
8801 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8802 break;
8803 }
8804
8805 case SK_FunctionReferenceConversion:
8806 assert(CurInit.get()->isLValue() &&
8807 "function reference should be lvalue");
8808 CurInit =
8809 S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8810 break;
8811
8812 case SK_AtomicConversion: {
8813 assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic");
8814 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8815 CK_NonAtomicToAtomic, VK_PRValue);
8816 break;
8817 }
8818
8819 case SK_ConversionSequence:
8820 case SK_ConversionSequenceNoNarrowing: {
8821 if (const auto *FromPtrType =
8822 CurInit.get()->getType()->getAs<PointerType>()) {
8823 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8824 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8825 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8826 // Do not check static casts here because they are checked earlier
8827 // in Sema::ActOnCXXNamedCast()
8828 if (!Kind.isStaticCast()) {
8829 S.Diag(CurInit.get()->getExprLoc(),
8830 diag::warn_noderef_to_dereferenceable_pointer)
8831 << CurInit.get()->getSourceRange();
8832 }
8833 }
8834 }
8835 }
8836
8837 Sema::CheckedConversionKind CCK
8838 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8839 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8840 : Kind.isExplicitCast()? Sema::CCK_OtherCast
8841 : Sema::CCK_ImplicitConversion;
8842 ExprResult CurInitExprRes =
8843 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8844 getAssignmentAction(Entity), CCK);
8845 if (CurInitExprRes.isInvalid())
8846 return ExprError();
8847
8848 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8849
8850 CurInit = CurInitExprRes;
8851
8852 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8853 S.getLangOpts().CPlusPlus)
8854 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8855 CurInit.get());
8856
8857 break;
8858 }
8859
8860 case SK_ListInitialization: {
8861 if (checkAbstractType(Step->Type))
8862 return ExprError();
8863
8864 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8865 // If we're not initializing the top-level entity, we need to create an
8866 // InitializeTemporary entity for our target type.
8867 QualType Ty = Step->Type;
8868 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8869 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8870 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8871 InitListChecker PerformInitList(S, InitEntity,
8872 InitList, Ty, /*VerifyOnly=*/false,
8873 /*TreatUnavailableAsInvalid=*/false);
8874 if (PerformInitList.HadError())
8875 return ExprError();
8876
8877 // Hack: We must update *ResultType if available in order to set the
8878 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8879 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8880 if (ResultType &&
8881 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8882 if ((*ResultType)->isRValueReferenceType())
8883 Ty = S.Context.getRValueReferenceType(Ty);
8884 else if ((*ResultType)->isLValueReferenceType())
8885 Ty = S.Context.getLValueReferenceType(Ty,
8886 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8887 *ResultType = Ty;
8888 }
8889
8890 InitListExpr *StructuredInitList =
8891 PerformInitList.getFullyStructuredList();
8892 CurInit.get();
8893 CurInit = shouldBindAsTemporary(InitEntity)
8894 ? S.MaybeBindToTemporary(StructuredInitList)
8895 : StructuredInitList;
8896 break;
8897 }
8898
8899 case SK_ConstructorInitializationFromList: {
8900 if (checkAbstractType(Step->Type))
8901 return ExprError();
8902
8903 // When an initializer list is passed for a parameter of type "reference
8904 // to object", we don't get an EK_Temporary entity, but instead an
8905 // EK_Parameter entity with reference type.
8906 // FIXME: This is a hack. What we really should do is create a user
8907 // conversion step for this case, but this makes it considerably more
8908 // complicated. For now, this will do.
8909 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8910 Entity.getType().getNonReferenceType());
8911 bool UseTemporary = Entity.getType()->isReferenceType();
8912 assert(Args.size() == 1 && "expected a single argument for list init");
8913 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8914 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8915 << InitList->getSourceRange();
8916 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8917 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8918 Entity,
8919 Kind, Arg, *Step,
8920 ConstructorInitRequiresZeroInit,
8921 /*IsListInitialization*/true,
8922 /*IsStdInitListInit*/false,
8923 InitList->getLBraceLoc(),
8924 InitList->getRBraceLoc());
8925 break;
8926 }
8927
8928 case SK_UnwrapInitList:
8929 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8930 break;
8931
8932 case SK_RewrapInitList: {
8933 Expr *E = CurInit.get();
8934 InitListExpr *Syntactic = Step->WrappingSyntacticList;
8935 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8936 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8937 ILE->setSyntacticForm(Syntactic);
8938 ILE->setType(E->getType());
8939 ILE->setValueKind(E->getValueKind());
8940 CurInit = ILE;
8941 break;
8942 }
8943
8944 case SK_ConstructorInitialization:
8945 case SK_StdInitializerListConstructorCall: {
8946 if (checkAbstractType(Step->Type))
8947 return ExprError();
8948
8949 // When an initializer list is passed for a parameter of type "reference
8950 // to object", we don't get an EK_Temporary entity, but instead an
8951 // EK_Parameter entity with reference type.
8952 // FIXME: This is a hack. What we really should do is create a user
8953 // conversion step for this case, but this makes it considerably more
8954 // complicated. For now, this will do.
8955 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8956 Entity.getType().getNonReferenceType());
8957 bool UseTemporary = Entity.getType()->isReferenceType();
8958 bool IsStdInitListInit =
8959 Step->Kind == SK_StdInitializerListConstructorCall;
8960 Expr *Source = CurInit.get();
8961 SourceRange Range = Kind.hasParenOrBraceRange()
8962 ? Kind.getParenOrBraceRange()
8963 : SourceRange();
8964 CurInit = PerformConstructorInitialization(
8965 S, UseTemporary ? TempEntity : Entity, Kind,
8966 Source ? MultiExprArg(Source) : Args, *Step,
8967 ConstructorInitRequiresZeroInit,
8968 /*IsListInitialization*/ IsStdInitListInit,
8969 /*IsStdInitListInitialization*/ IsStdInitListInit,
8970 /*LBraceLoc*/ Range.getBegin(),
8971 /*RBraceLoc*/ Range.getEnd());
8972 break;
8973 }
8974
8975 case SK_ZeroInitialization: {
8976 step_iterator NextStep = Step;
8977 ++NextStep;
8978 if (NextStep != StepEnd &&
8979 (NextStep->Kind == SK_ConstructorInitialization ||
8980 NextStep->Kind == SK_ConstructorInitializationFromList)) {
8981 // The need for zero-initialization is recorded directly into
8982 // the call to the object's constructor within the next step.
8983 ConstructorInitRequiresZeroInit = true;
8984 } else if (Kind.getKind() == InitializationKind::IK_Value &&
8985 S.getLangOpts().CPlusPlus &&
8986 !Kind.isImplicitValueInit()) {
8987 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8988 if (!TSInfo)
8989 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8990 Kind.getRange().getBegin());
8991
8992 CurInit = new (S.Context) CXXScalarValueInitExpr(
8993 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8994 Kind.getRange().getEnd());
8995 } else {
8996 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8997 }
8998 break;
8999 }
9000
9001 case SK_CAssignment: {
9002 QualType SourceType = CurInit.get()->getType();
9003
9004 // Save off the initial CurInit in case we need to emit a diagnostic
9005 ExprResult InitialCurInit = CurInit;
9006 ExprResult Result = CurInit;
9007 Sema::AssignConvertType ConvTy =
9008 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
9009 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
9010 if (Result.isInvalid())
9011 return ExprError();
9012 CurInit = Result;
9013
9014 // If this is a call, allow conversion to a transparent union.
9015 ExprResult CurInitExprRes = CurInit;
9016 if (ConvTy != Sema::Compatible &&
9017 Entity.isParameterKind() &&
9018 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
9019 == Sema::Compatible)
9020 ConvTy = Sema::Compatible;
9021 if (CurInitExprRes.isInvalid())
9022 return ExprError();
9023 CurInit = CurInitExprRes;
9024
9025 bool Complained;
9026 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
9027 Step->Type, SourceType,
9028 InitialCurInit.get(),
9029 getAssignmentAction(Entity, true),
9030 &Complained)) {
9031 PrintInitLocationNote(S, Entity);
9032 return ExprError();
9033 } else if (Complained)
9034 PrintInitLocationNote(S, Entity);
9035 break;
9036 }
9037
9038 case SK_StringInit: {
9039 QualType Ty = Step->Type;
9040 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
9041 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
9042 S.Context.getAsArrayType(Ty), S);
9043 break;
9044 }
9045
9046 case SK_ObjCObjectConversion:
9047 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
9048 CK_ObjCObjectLValueCast,
9049 CurInit.get()->getValueKind());
9050 break;
9051
9052 case SK_ArrayLoopIndex: {
9053 Expr *Cur = CurInit.get();
9054 Expr *BaseExpr = new (S.Context)
9055 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
9056 Cur->getValueKind(), Cur->getObjectKind(), Cur);
9057 Expr *IndexExpr =
9058 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
9059 CurInit = S.CreateBuiltinArraySubscriptExpr(
9060 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
9061 ArrayLoopCommonExprs.push_back(BaseExpr);
9062 break;
9063 }
9064
9065 case SK_ArrayLoopInit: {
9066 assert(!ArrayLoopCommonExprs.empty() &&
9067 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
9068 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
9069 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
9070 CurInit.get());
9071 break;
9072 }
9073
9074 case SK_GNUArrayInit:
9075 // Okay: we checked everything before creating this step. Note that
9076 // this is a GNU extension.
9077 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
9078 << Step->Type << CurInit.get()->getType()
9079 << CurInit.get()->getSourceRange();
9080 updateGNUCompoundLiteralRValue(CurInit.get());
9081 [[fallthrough]];
9082 case SK_ArrayInit:
9083 // If the destination type is an incomplete array type, update the
9084 // type accordingly.
9085 if (ResultType) {
9086 if (const IncompleteArrayType *IncompleteDest
9087 = S.Context.getAsIncompleteArrayType(Step->Type)) {
9088 if (const ConstantArrayType *ConstantSource
9089 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
9090 *ResultType = S.Context.getConstantArrayType(
9091 IncompleteDest->getElementType(),
9092 ConstantSource->getSize(),
9093 ConstantSource->getSizeExpr(),
9094 ArrayType::Normal, 0);
9095 }
9096 }
9097 }
9098 break;
9099
9100 case SK_ParenthesizedArrayInit:
9101 // Okay: we checked everything before creating this step. Note that
9102 // this is a GNU extension.
9103 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
9104 << CurInit.get()->getSourceRange();
9105 break;
9106
9107 case SK_PassByIndirectCopyRestore:
9108 case SK_PassByIndirectRestore:
9109 checkIndirectCopyRestoreSource(S, CurInit.get());
9110 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
9111 CurInit.get(), Step->Type,
9112 Step->Kind == SK_PassByIndirectCopyRestore);
9113 break;
9114
9115 case SK_ProduceObjCObject:
9116 CurInit = ImplicitCastExpr::Create(
9117 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
9118 VK_PRValue, FPOptionsOverride());
9119 break;
9120
9121 case SK_StdInitializerList: {
9122 S.Diag(CurInit.get()->getExprLoc(),
9123 diag::warn_cxx98_compat_initializer_list_init)
9124 << CurInit.get()->getSourceRange();
9125
9126 // Materialize the temporary into memory.
9127 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
9128 CurInit.get()->getType(), CurInit.get(),
9129 /*BoundToLvalueReference=*/false);
9130
9131 // Wrap it in a construction of a std::initializer_list<T>.
9132 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
9133
9134 // Bind the result, in case the library has given initializer_list a
9135 // non-trivial destructor.
9136 if (shouldBindAsTemporary(Entity))
9137 CurInit = S.MaybeBindToTemporary(CurInit.get());
9138 break;
9139 }
9140
9141 case SK_OCLSamplerInit: {
9142 // Sampler initialization have 5 cases:
9143 // 1. function argument passing
9144 // 1a. argument is a file-scope variable
9145 // 1b. argument is a function-scope variable
9146 // 1c. argument is one of caller function's parameters
9147 // 2. variable initialization
9148 // 2a. initializing a file-scope variable
9149 // 2b. initializing a function-scope variable
9150 //
9151 // For file-scope variables, since they cannot be initialized by function
9152 // call of __translate_sampler_initializer in LLVM IR, their references
9153 // need to be replaced by a cast from their literal initializers to
9154 // sampler type. Since sampler variables can only be used in function
9155 // calls as arguments, we only need to replace them when handling the
9156 // argument passing.
9157 assert(Step->Type->isSamplerT() &&
9158 "Sampler initialization on non-sampler type.");
9159 Expr *Init = CurInit.get()->IgnoreParens();
9160 QualType SourceType = Init->getType();
9161 // Case 1
9162 if (Entity.isParameterKind()) {
9163 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
9164 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
9165 << SourceType;
9166 break;
9167 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
9168 auto Var = cast<VarDecl>(DRE->getDecl());
9169 // Case 1b and 1c
9170 // No cast from integer to sampler is needed.
9171 if (!Var->hasGlobalStorage()) {
9172 CurInit = ImplicitCastExpr::Create(
9173 S.Context, Step->Type, CK_LValueToRValue, Init,
9174 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
9175 break;
9176 }
9177 // Case 1a
9178 // For function call with a file-scope sampler variable as argument,
9179 // get the integer literal.
9180 // Do not diagnose if the file-scope variable does not have initializer
9181 // since this has already been diagnosed when parsing the variable
9182 // declaration.
9183 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
9184 break;
9185 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
9186 Var->getInit()))->getSubExpr();
9187 SourceType = Init->getType();
9188 }
9189 } else {
9190 // Case 2
9191 // Check initializer is 32 bit integer constant.
9192 // If the initializer is taken from global variable, do not diagnose since
9193 // this has already been done when parsing the variable declaration.
9194 if (!Init->isConstantInitializer(S.Context, false))
9195 break;
9196
9197 if (!SourceType->isIntegerType() ||
9198 32 != S.Context.getIntWidth(SourceType)) {
9199 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
9200 << SourceType;
9201 break;
9202 }
9203
9204 Expr::EvalResult EVResult;
9205 Init->EvaluateAsInt(EVResult, S.Context);
9206 llvm::APSInt Result = EVResult.Val.getInt();
9207 const uint64_t SamplerValue = Result.getLimitedValue();
9208 // 32-bit value of sampler's initializer is interpreted as
9209 // bit-field with the following structure:
9210 // |unspecified|Filter|Addressing Mode| Normalized Coords|
9211 // |31 6|5 4|3 1| 0|
9212 // This structure corresponds to enum values of sampler properties
9213 // defined in SPIR spec v1.2 and also opencl-c.h
9214 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
9215 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
9216 if (FilterMode != 1 && FilterMode != 2 &&
9217 !S.getOpenCLOptions().isAvailableOption(
9218 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
9219 S.Diag(Kind.getLocation(),
9220 diag::warn_sampler_initializer_invalid_bits)
9221 << "Filter Mode";
9222 if (AddressingMode > 4)
9223 S.Diag(Kind.getLocation(),
9224 diag::warn_sampler_initializer_invalid_bits)
9225 << "Addressing Mode";
9226 }
9227
9228 // Cases 1a, 2a and 2b
9229 // Insert cast from integer to sampler.
9230 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
9231 CK_IntToOCLSampler);
9232 break;
9233 }
9234 case SK_OCLZeroOpaqueType: {
9235 assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
9236 Step->Type->isOCLIntelSubgroupAVCType()) &&
9237 "Wrong type for initialization of OpenCL opaque type.");
9238
9239 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
9240 CK_ZeroToOCLOpaqueType,
9241 CurInit.get()->getValueKind());
9242 break;
9243 }
9244 case SK_ParenthesizedListInit: {
9245 CurInit = nullptr;
9246 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
9247 /*VerifyOnly=*/false, &CurInit);
9248 if (CurInit.get() && ResultType)
9249 *ResultType = CurInit.get()->getType();
9250 if (shouldBindAsTemporary(Entity))
9251 CurInit = S.MaybeBindToTemporary(CurInit.get());
9252 break;
9253 }
9254 }
9255 }
9256
9257 // Check whether the initializer has a shorter lifetime than the initialized
9258 // entity, and if not, either lifetime-extend or warn as appropriate.
9259 if (auto *Init = CurInit.get())
9260 S.checkInitializerLifetime(Entity, Init);
9261
9262 // Diagnose non-fatal problems with the completed initialization.
9263 if (InitializedEntity::EntityKind EK = Entity.getKind();
9264 (EK == InitializedEntity::EK_Member ||
9265 EK == InitializedEntity::EK_ParenAggInitMember) &&
9266 cast<FieldDecl>(Entity.getDecl())->isBitField())
9267 S.CheckBitFieldInitialization(Kind.getLocation(),
9268 cast<FieldDecl>(Entity.getDecl()),
9269 CurInit.get());
9270
9271 // Check for std::move on construction.
9272 if (const Expr *E = CurInit.get()) {
9273 CheckMoveOnConstruction(S, E,
9274 Entity.getKind() == InitializedEntity::EK_Result);
9275 }
9276
9277 return CurInit;
9278 }
9279
9280 /// Somewhere within T there is an uninitialized reference subobject.
9281 /// Dig it out and diagnose it.
DiagnoseUninitializedReference(Sema & S,SourceLocation Loc,QualType T)9282 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
9283 QualType T) {
9284 if (T->isReferenceType()) {
9285 S.Diag(Loc, diag::err_reference_without_init)
9286 << T.getNonReferenceType();
9287 return true;
9288 }
9289
9290 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
9291 if (!RD || !RD->hasUninitializedReferenceMember())
9292 return false;
9293
9294 for (const auto *FI : RD->fields()) {
9295 if (FI->isUnnamedBitfield())
9296 continue;
9297
9298 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
9299 S.Diag(Loc, diag::note_value_initialization_here) << RD;
9300 return true;
9301 }
9302 }
9303
9304 for (const auto &BI : RD->bases()) {
9305 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
9306 S.Diag(Loc, diag::note_value_initialization_here) << RD;
9307 return true;
9308 }
9309 }
9310
9311 return false;
9312 }
9313
9314
9315 //===----------------------------------------------------------------------===//
9316 // Diagnose initialization failures
9317 //===----------------------------------------------------------------------===//
9318
9319 /// Emit notes associated with an initialization that failed due to a
9320 /// "simple" conversion failure.
emitBadConversionNotes(Sema & S,const InitializedEntity & entity,Expr * op)9321 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
9322 Expr *op) {
9323 QualType destType = entity.getType();
9324 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
9325 op->getType()->isObjCObjectPointerType()) {
9326
9327 // Emit a possible note about the conversion failing because the
9328 // operand is a message send with a related result type.
9329 S.EmitRelatedResultTypeNote(op);
9330
9331 // Emit a possible note about a return failing because we're
9332 // expecting a related result type.
9333 if (entity.getKind() == InitializedEntity::EK_Result)
9334 S.EmitRelatedResultTypeNoteForReturn(destType);
9335 }
9336 QualType fromType = op->getType();
9337 QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType();
9338 QualType destPointeeType = destType.getCanonicalType()->getPointeeType();
9339 auto *fromDecl = fromType->getPointeeCXXRecordDecl();
9340 auto *destDecl = destType->getPointeeCXXRecordDecl();
9341 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
9342 destDecl->getDeclKind() == Decl::CXXRecord &&
9343 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
9344 !fromDecl->hasDefinition() &&
9345 destPointeeType.getQualifiers().compatiblyIncludes(
9346 fromPointeeType.getQualifiers()))
9347 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
9348 << S.getASTContext().getTagDeclType(fromDecl)
9349 << S.getASTContext().getTagDeclType(destDecl);
9350 }
9351
diagnoseListInit(Sema & S,const InitializedEntity & Entity,InitListExpr * InitList)9352 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
9353 InitListExpr *InitList) {
9354 QualType DestType = Entity.getType();
9355
9356 QualType E;
9357 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
9358 QualType ArrayType = S.Context.getConstantArrayType(
9359 E.withConst(),
9360 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
9361 InitList->getNumInits()),
9362 nullptr, clang::ArrayType::Normal, 0);
9363 InitializedEntity HiddenArray =
9364 InitializedEntity::InitializeTemporary(ArrayType);
9365 return diagnoseListInit(S, HiddenArray, InitList);
9366 }
9367
9368 if (DestType->isReferenceType()) {
9369 // A list-initialization failure for a reference means that we tried to
9370 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
9371 // inner initialization failed.
9372 QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
9373 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
9374 SourceLocation Loc = InitList->getBeginLoc();
9375 if (auto *D = Entity.getDecl())
9376 Loc = D->getLocation();
9377 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
9378 return;
9379 }
9380
9381 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
9382 /*VerifyOnly=*/false,
9383 /*TreatUnavailableAsInvalid=*/false);
9384 assert(DiagnoseInitList.HadError() &&
9385 "Inconsistent init list check result.");
9386 }
9387
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,ArrayRef<Expr * > Args)9388 bool InitializationSequence::Diagnose(Sema &S,
9389 const InitializedEntity &Entity,
9390 const InitializationKind &Kind,
9391 ArrayRef<Expr *> Args) {
9392 if (!Failed())
9393 return false;
9394
9395 // When we want to diagnose only one element of a braced-init-list,
9396 // we need to factor it out.
9397 Expr *OnlyArg;
9398 if (Args.size() == 1) {
9399 auto *List = dyn_cast<InitListExpr>(Args[0]);
9400 if (List && List->getNumInits() == 1)
9401 OnlyArg = List->getInit(0);
9402 else
9403 OnlyArg = Args[0];
9404 }
9405 else
9406 OnlyArg = nullptr;
9407
9408 QualType DestType = Entity.getType();
9409 switch (Failure) {
9410 case FK_TooManyInitsForReference:
9411 // FIXME: Customize for the initialized entity?
9412 if (Args.empty()) {
9413 // Dig out the reference subobject which is uninitialized and diagnose it.
9414 // If this is value-initialization, this could be nested some way within
9415 // the target type.
9416 assert(Kind.getKind() == InitializationKind::IK_Value ||
9417 DestType->isReferenceType());
9418 bool Diagnosed =
9419 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
9420 assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
9421 (void)Diagnosed;
9422 } else // FIXME: diagnostic below could be better!
9423 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
9424 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9425 break;
9426 case FK_ParenthesizedListInitForReference:
9427 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9428 << 1 << Entity.getType() << Args[0]->getSourceRange();
9429 break;
9430
9431 case FK_ArrayNeedsInitList:
9432 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
9433 break;
9434 case FK_ArrayNeedsInitListOrStringLiteral:
9435 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
9436 break;
9437 case FK_ArrayNeedsInitListOrWideStringLiteral:
9438 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9439 break;
9440 case FK_NarrowStringIntoWideCharArray:
9441 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9442 break;
9443 case FK_WideStringIntoCharArray:
9444 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9445 break;
9446 case FK_IncompatWideStringIntoWideChar:
9447 S.Diag(Kind.getLocation(),
9448 diag::err_array_init_incompat_wide_string_into_wchar);
9449 break;
9450 case FK_PlainStringIntoUTF8Char:
9451 S.Diag(Kind.getLocation(),
9452 diag::err_array_init_plain_string_into_char8_t);
9453 S.Diag(Args.front()->getBeginLoc(),
9454 diag::note_array_init_plain_string_into_char8_t)
9455 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9456 break;
9457 case FK_UTF8StringIntoPlainChar:
9458 S.Diag(Kind.getLocation(), diag::err_array_init_utf8_string_into_char)
9459 << DestType->isSignedIntegerType() << S.getLangOpts().CPlusPlus20;
9460 break;
9461 case FK_ArrayTypeMismatch:
9462 case FK_NonConstantArrayInit:
9463 S.Diag(Kind.getLocation(),
9464 (Failure == FK_ArrayTypeMismatch
9465 ? diag::err_array_init_different_type
9466 : diag::err_array_init_non_constant_array))
9467 << DestType.getNonReferenceType()
9468 << OnlyArg->getType()
9469 << Args[0]->getSourceRange();
9470 break;
9471
9472 case FK_VariableLengthArrayHasInitializer:
9473 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9474 << Args[0]->getSourceRange();
9475 break;
9476
9477 case FK_AddressOfOverloadFailed: {
9478 DeclAccessPair Found;
9479 S.ResolveAddressOfOverloadedFunction(OnlyArg,
9480 DestType.getNonReferenceType(),
9481 true,
9482 Found);
9483 break;
9484 }
9485
9486 case FK_AddressOfUnaddressableFunction: {
9487 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9488 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9489 OnlyArg->getBeginLoc());
9490 break;
9491 }
9492
9493 case FK_ReferenceInitOverloadFailed:
9494 case FK_UserConversionOverloadFailed:
9495 switch (FailedOverloadResult) {
9496 case OR_Ambiguous:
9497
9498 FailedCandidateSet.NoteCandidates(
9499 PartialDiagnosticAt(
9500 Kind.getLocation(),
9501 Failure == FK_UserConversionOverloadFailed
9502 ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9503 << OnlyArg->getType() << DestType
9504 << Args[0]->getSourceRange())
9505 : (S.PDiag(diag::err_ref_init_ambiguous)
9506 << DestType << OnlyArg->getType()
9507 << Args[0]->getSourceRange())),
9508 S, OCD_AmbiguousCandidates, Args);
9509 break;
9510
9511 case OR_No_Viable_Function: {
9512 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9513 if (!S.RequireCompleteType(Kind.getLocation(),
9514 DestType.getNonReferenceType(),
9515 diag::err_typecheck_nonviable_condition_incomplete,
9516 OnlyArg->getType(), Args[0]->getSourceRange()))
9517 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9518 << (Entity.getKind() == InitializedEntity::EK_Result)
9519 << OnlyArg->getType() << Args[0]->getSourceRange()
9520 << DestType.getNonReferenceType();
9521
9522 FailedCandidateSet.NoteCandidates(S, Args, Cands);
9523 break;
9524 }
9525 case OR_Deleted: {
9526 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9527 << OnlyArg->getType() << DestType.getNonReferenceType()
9528 << Args[0]->getSourceRange();
9529 OverloadCandidateSet::iterator Best;
9530 OverloadingResult Ovl
9531 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9532 if (Ovl == OR_Deleted) {
9533 S.NoteDeletedFunction(Best->Function);
9534 } else {
9535 llvm_unreachable("Inconsistent overload resolution?");
9536 }
9537 break;
9538 }
9539
9540 case OR_Success:
9541 llvm_unreachable("Conversion did not fail!");
9542 }
9543 break;
9544
9545 case FK_NonConstLValueReferenceBindingToTemporary:
9546 if (isa<InitListExpr>(Args[0])) {
9547 S.Diag(Kind.getLocation(),
9548 diag::err_lvalue_reference_bind_to_initlist)
9549 << DestType.getNonReferenceType().isVolatileQualified()
9550 << DestType.getNonReferenceType()
9551 << Args[0]->getSourceRange();
9552 break;
9553 }
9554 [[fallthrough]];
9555
9556 case FK_NonConstLValueReferenceBindingToUnrelated:
9557 S.Diag(Kind.getLocation(),
9558 Failure == FK_NonConstLValueReferenceBindingToTemporary
9559 ? diag::err_lvalue_reference_bind_to_temporary
9560 : diag::err_lvalue_reference_bind_to_unrelated)
9561 << DestType.getNonReferenceType().isVolatileQualified()
9562 << DestType.getNonReferenceType()
9563 << OnlyArg->getType()
9564 << Args[0]->getSourceRange();
9565 break;
9566
9567 case FK_NonConstLValueReferenceBindingToBitfield: {
9568 // We don't necessarily have an unambiguous source bit-field.
9569 FieldDecl *BitField = Args[0]->getSourceBitField();
9570 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9571 << DestType.isVolatileQualified()
9572 << (BitField ? BitField->getDeclName() : DeclarationName())
9573 << (BitField != nullptr)
9574 << Args[0]->getSourceRange();
9575 if (BitField)
9576 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9577 break;
9578 }
9579
9580 case FK_NonConstLValueReferenceBindingToVectorElement:
9581 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9582 << DestType.isVolatileQualified()
9583 << Args[0]->getSourceRange();
9584 break;
9585
9586 case FK_NonConstLValueReferenceBindingToMatrixElement:
9587 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9588 << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9589 break;
9590
9591 case FK_RValueReferenceBindingToLValue:
9592 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9593 << DestType.getNonReferenceType() << OnlyArg->getType()
9594 << Args[0]->getSourceRange();
9595 break;
9596
9597 case FK_ReferenceAddrspaceMismatchTemporary:
9598 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9599 << DestType << Args[0]->getSourceRange();
9600 break;
9601
9602 case FK_ReferenceInitDropsQualifiers: {
9603 QualType SourceType = OnlyArg->getType();
9604 QualType NonRefType = DestType.getNonReferenceType();
9605 Qualifiers DroppedQualifiers =
9606 SourceType.getQualifiers() - NonRefType.getQualifiers();
9607
9608 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9609 SourceType.getQualifiers()))
9610 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9611 << NonRefType << SourceType << 1 /*addr space*/
9612 << Args[0]->getSourceRange();
9613 else if (DroppedQualifiers.hasQualifiers())
9614 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9615 << NonRefType << SourceType << 0 /*cv quals*/
9616 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9617 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9618 else
9619 // FIXME: Consider decomposing the type and explaining which qualifiers
9620 // were dropped where, or on which level a 'const' is missing, etc.
9621 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9622 << NonRefType << SourceType << 2 /*incompatible quals*/
9623 << Args[0]->getSourceRange();
9624 break;
9625 }
9626
9627 case FK_ReferenceInitFailed:
9628 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9629 << DestType.getNonReferenceType()
9630 << DestType.getNonReferenceType()->isIncompleteType()
9631 << OnlyArg->isLValue()
9632 << OnlyArg->getType()
9633 << Args[0]->getSourceRange();
9634 emitBadConversionNotes(S, Entity, Args[0]);
9635 break;
9636
9637 case FK_ConversionFailed: {
9638 QualType FromType = OnlyArg->getType();
9639 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9640 << (int)Entity.getKind()
9641 << DestType
9642 << OnlyArg->isLValue()
9643 << FromType
9644 << Args[0]->getSourceRange();
9645 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9646 S.Diag(Kind.getLocation(), PDiag);
9647 emitBadConversionNotes(S, Entity, Args[0]);
9648 break;
9649 }
9650
9651 case FK_ConversionFromPropertyFailed:
9652 // No-op. This error has already been reported.
9653 break;
9654
9655 case FK_TooManyInitsForScalar: {
9656 SourceRange R;
9657
9658 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9659 if (InitList && InitList->getNumInits() >= 1) {
9660 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9661 } else {
9662 assert(Args.size() > 1 && "Expected multiple initializers!");
9663 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9664 }
9665
9666 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9667 if (Kind.isCStyleOrFunctionalCast())
9668 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9669 << R;
9670 else
9671 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9672 << /*scalar=*/2 << R;
9673 break;
9674 }
9675
9676 case FK_ParenthesizedListInitForScalar:
9677 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9678 << 0 << Entity.getType() << Args[0]->getSourceRange();
9679 break;
9680
9681 case FK_ReferenceBindingToInitList:
9682 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9683 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9684 break;
9685
9686 case FK_InitListBadDestinationType:
9687 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9688 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9689 break;
9690
9691 case FK_ListConstructorOverloadFailed:
9692 case FK_ConstructorOverloadFailed: {
9693 SourceRange ArgsRange;
9694 if (Args.size())
9695 ArgsRange =
9696 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9697
9698 if (Failure == FK_ListConstructorOverloadFailed) {
9699 assert(Args.size() == 1 &&
9700 "List construction from other than 1 argument.");
9701 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9702 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9703 }
9704
9705 // FIXME: Using "DestType" for the entity we're printing is probably
9706 // bad.
9707 switch (FailedOverloadResult) {
9708 case OR_Ambiguous:
9709 FailedCandidateSet.NoteCandidates(
9710 PartialDiagnosticAt(Kind.getLocation(),
9711 S.PDiag(diag::err_ovl_ambiguous_init)
9712 << DestType << ArgsRange),
9713 S, OCD_AmbiguousCandidates, Args);
9714 break;
9715
9716 case OR_No_Viable_Function:
9717 if (Kind.getKind() == InitializationKind::IK_Default &&
9718 (Entity.getKind() == InitializedEntity::EK_Base ||
9719 Entity.getKind() == InitializedEntity::EK_Member ||
9720 Entity.getKind() == InitializedEntity::EK_ParenAggInitMember) &&
9721 isa<CXXConstructorDecl>(S.CurContext)) {
9722 // This is implicit default initialization of a member or
9723 // base within a constructor. If no viable function was
9724 // found, notify the user that they need to explicitly
9725 // initialize this base/member.
9726 CXXConstructorDecl *Constructor
9727 = cast<CXXConstructorDecl>(S.CurContext);
9728 const CXXRecordDecl *InheritedFrom = nullptr;
9729 if (auto Inherited = Constructor->getInheritedConstructor())
9730 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9731 if (Entity.getKind() == InitializedEntity::EK_Base) {
9732 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9733 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9734 << S.Context.getTypeDeclType(Constructor->getParent())
9735 << /*base=*/0
9736 << Entity.getType()
9737 << InheritedFrom;
9738
9739 RecordDecl *BaseDecl
9740 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9741 ->getDecl();
9742 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9743 << S.Context.getTagDeclType(BaseDecl);
9744 } else {
9745 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9746 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9747 << S.Context.getTypeDeclType(Constructor->getParent())
9748 << /*member=*/1
9749 << Entity.getName()
9750 << InheritedFrom;
9751 S.Diag(Entity.getDecl()->getLocation(),
9752 diag::note_member_declared_at);
9753
9754 if (const RecordType *Record
9755 = Entity.getType()->getAs<RecordType>())
9756 S.Diag(Record->getDecl()->getLocation(),
9757 diag::note_previous_decl)
9758 << S.Context.getTagDeclType(Record->getDecl());
9759 }
9760 break;
9761 }
9762
9763 FailedCandidateSet.NoteCandidates(
9764 PartialDiagnosticAt(
9765 Kind.getLocation(),
9766 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9767 << DestType << ArgsRange),
9768 S, OCD_AllCandidates, Args);
9769 break;
9770
9771 case OR_Deleted: {
9772 OverloadCandidateSet::iterator Best;
9773 OverloadingResult Ovl
9774 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9775 if (Ovl != OR_Deleted) {
9776 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9777 << DestType << ArgsRange;
9778 llvm_unreachable("Inconsistent overload resolution?");
9779 break;
9780 }
9781
9782 // If this is a defaulted or implicitly-declared function, then
9783 // it was implicitly deleted. Make it clear that the deletion was
9784 // implicit.
9785 if (S.isImplicitlyDeleted(Best->Function))
9786 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9787 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9788 << DestType << ArgsRange;
9789 else
9790 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9791 << DestType << ArgsRange;
9792
9793 S.NoteDeletedFunction(Best->Function);
9794 break;
9795 }
9796
9797 case OR_Success:
9798 llvm_unreachable("Conversion did not fail!");
9799 }
9800 }
9801 break;
9802
9803 case FK_DefaultInitOfConst:
9804 if (Entity.getKind() == InitializedEntity::EK_Member &&
9805 isa<CXXConstructorDecl>(S.CurContext)) {
9806 // This is implicit default-initialization of a const member in
9807 // a constructor. Complain that it needs to be explicitly
9808 // initialized.
9809 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9810 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9811 << (Constructor->getInheritedConstructor() ? 2 :
9812 Constructor->isImplicit() ? 1 : 0)
9813 << S.Context.getTypeDeclType(Constructor->getParent())
9814 << /*const=*/1
9815 << Entity.getName();
9816 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9817 << Entity.getName();
9818 } else if (const auto *VD = dyn_cast_if_present<VarDecl>(Entity.getDecl());
9819 VD && VD->isConstexpr()) {
9820 S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init)
9821 << VD;
9822 } else {
9823 S.Diag(Kind.getLocation(), diag::err_default_init_const)
9824 << DestType << (bool)DestType->getAs<RecordType>();
9825 }
9826 break;
9827
9828 case FK_Incomplete:
9829 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9830 diag::err_init_incomplete_type);
9831 break;
9832
9833 case FK_ListInitializationFailed: {
9834 // Run the init list checker again to emit diagnostics.
9835 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9836 diagnoseListInit(S, Entity, InitList);
9837 break;
9838 }
9839
9840 case FK_PlaceholderType: {
9841 // FIXME: Already diagnosed!
9842 break;
9843 }
9844
9845 case FK_ExplicitConstructor: {
9846 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9847 << Args[0]->getSourceRange();
9848 OverloadCandidateSet::iterator Best;
9849 OverloadingResult Ovl
9850 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9851 (void)Ovl;
9852 assert(Ovl == OR_Success && "Inconsistent overload resolution");
9853 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9854 S.Diag(CtorDecl->getLocation(),
9855 diag::note_explicit_ctor_deduction_guide_here) << false;
9856 break;
9857 }
9858
9859 case FK_ParenthesizedListInitFailed:
9860 TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
9861 /*VerifyOnly=*/false);
9862 break;
9863 }
9864
9865 PrintInitLocationNote(S, Entity);
9866 return true;
9867 }
9868
dump(raw_ostream & OS) const9869 void InitializationSequence::dump(raw_ostream &OS) const {
9870 switch (SequenceKind) {
9871 case FailedSequence: {
9872 OS << "Failed sequence: ";
9873 switch (Failure) {
9874 case FK_TooManyInitsForReference:
9875 OS << "too many initializers for reference";
9876 break;
9877
9878 case FK_ParenthesizedListInitForReference:
9879 OS << "parenthesized list init for reference";
9880 break;
9881
9882 case FK_ArrayNeedsInitList:
9883 OS << "array requires initializer list";
9884 break;
9885
9886 case FK_AddressOfUnaddressableFunction:
9887 OS << "address of unaddressable function was taken";
9888 break;
9889
9890 case FK_ArrayNeedsInitListOrStringLiteral:
9891 OS << "array requires initializer list or string literal";
9892 break;
9893
9894 case FK_ArrayNeedsInitListOrWideStringLiteral:
9895 OS << "array requires initializer list or wide string literal";
9896 break;
9897
9898 case FK_NarrowStringIntoWideCharArray:
9899 OS << "narrow string into wide char array";
9900 break;
9901
9902 case FK_WideStringIntoCharArray:
9903 OS << "wide string into char array";
9904 break;
9905
9906 case FK_IncompatWideStringIntoWideChar:
9907 OS << "incompatible wide string into wide char array";
9908 break;
9909
9910 case FK_PlainStringIntoUTF8Char:
9911 OS << "plain string literal into char8_t array";
9912 break;
9913
9914 case FK_UTF8StringIntoPlainChar:
9915 OS << "u8 string literal into char array";
9916 break;
9917
9918 case FK_ArrayTypeMismatch:
9919 OS << "array type mismatch";
9920 break;
9921
9922 case FK_NonConstantArrayInit:
9923 OS << "non-constant array initializer";
9924 break;
9925
9926 case FK_AddressOfOverloadFailed:
9927 OS << "address of overloaded function failed";
9928 break;
9929
9930 case FK_ReferenceInitOverloadFailed:
9931 OS << "overload resolution for reference initialization failed";
9932 break;
9933
9934 case FK_NonConstLValueReferenceBindingToTemporary:
9935 OS << "non-const lvalue reference bound to temporary";
9936 break;
9937
9938 case FK_NonConstLValueReferenceBindingToBitfield:
9939 OS << "non-const lvalue reference bound to bit-field";
9940 break;
9941
9942 case FK_NonConstLValueReferenceBindingToVectorElement:
9943 OS << "non-const lvalue reference bound to vector element";
9944 break;
9945
9946 case FK_NonConstLValueReferenceBindingToMatrixElement:
9947 OS << "non-const lvalue reference bound to matrix element";
9948 break;
9949
9950 case FK_NonConstLValueReferenceBindingToUnrelated:
9951 OS << "non-const lvalue reference bound to unrelated type";
9952 break;
9953
9954 case FK_RValueReferenceBindingToLValue:
9955 OS << "rvalue reference bound to an lvalue";
9956 break;
9957
9958 case FK_ReferenceInitDropsQualifiers:
9959 OS << "reference initialization drops qualifiers";
9960 break;
9961
9962 case FK_ReferenceAddrspaceMismatchTemporary:
9963 OS << "reference with mismatching address space bound to temporary";
9964 break;
9965
9966 case FK_ReferenceInitFailed:
9967 OS << "reference initialization failed";
9968 break;
9969
9970 case FK_ConversionFailed:
9971 OS << "conversion failed";
9972 break;
9973
9974 case FK_ConversionFromPropertyFailed:
9975 OS << "conversion from property failed";
9976 break;
9977
9978 case FK_TooManyInitsForScalar:
9979 OS << "too many initializers for scalar";
9980 break;
9981
9982 case FK_ParenthesizedListInitForScalar:
9983 OS << "parenthesized list init for reference";
9984 break;
9985
9986 case FK_ReferenceBindingToInitList:
9987 OS << "referencing binding to initializer list";
9988 break;
9989
9990 case FK_InitListBadDestinationType:
9991 OS << "initializer list for non-aggregate, non-scalar type";
9992 break;
9993
9994 case FK_UserConversionOverloadFailed:
9995 OS << "overloading failed for user-defined conversion";
9996 break;
9997
9998 case FK_ConstructorOverloadFailed:
9999 OS << "constructor overloading failed";
10000 break;
10001
10002 case FK_DefaultInitOfConst:
10003 OS << "default initialization of a const variable";
10004 break;
10005
10006 case FK_Incomplete:
10007 OS << "initialization of incomplete type";
10008 break;
10009
10010 case FK_ListInitializationFailed:
10011 OS << "list initialization checker failure";
10012 break;
10013
10014 case FK_VariableLengthArrayHasInitializer:
10015 OS << "variable length array has an initializer";
10016 break;
10017
10018 case FK_PlaceholderType:
10019 OS << "initializer expression isn't contextually valid";
10020 break;
10021
10022 case FK_ListConstructorOverloadFailed:
10023 OS << "list constructor overloading failed";
10024 break;
10025
10026 case FK_ExplicitConstructor:
10027 OS << "list copy initialization chose explicit constructor";
10028 break;
10029
10030 case FK_ParenthesizedListInitFailed:
10031 OS << "parenthesized list initialization failed";
10032 break;
10033 }
10034 OS << '\n';
10035 return;
10036 }
10037
10038 case DependentSequence:
10039 OS << "Dependent sequence\n";
10040 return;
10041
10042 case NormalSequence:
10043 OS << "Normal sequence: ";
10044 break;
10045 }
10046
10047 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
10048 if (S != step_begin()) {
10049 OS << " -> ";
10050 }
10051
10052 switch (S->Kind) {
10053 case SK_ResolveAddressOfOverloadedFunction:
10054 OS << "resolve address of overloaded function";
10055 break;
10056
10057 case SK_CastDerivedToBasePRValue:
10058 OS << "derived-to-base (prvalue)";
10059 break;
10060
10061 case SK_CastDerivedToBaseXValue:
10062 OS << "derived-to-base (xvalue)";
10063 break;
10064
10065 case SK_CastDerivedToBaseLValue:
10066 OS << "derived-to-base (lvalue)";
10067 break;
10068
10069 case SK_BindReference:
10070 OS << "bind reference to lvalue";
10071 break;
10072
10073 case SK_BindReferenceToTemporary:
10074 OS << "bind reference to a temporary";
10075 break;
10076
10077 case SK_FinalCopy:
10078 OS << "final copy in class direct-initialization";
10079 break;
10080
10081 case SK_ExtraneousCopyToTemporary:
10082 OS << "extraneous C++03 copy to temporary";
10083 break;
10084
10085 case SK_UserConversion:
10086 OS << "user-defined conversion via " << *S->Function.Function;
10087 break;
10088
10089 case SK_QualificationConversionPRValue:
10090 OS << "qualification conversion (prvalue)";
10091 break;
10092
10093 case SK_QualificationConversionXValue:
10094 OS << "qualification conversion (xvalue)";
10095 break;
10096
10097 case SK_QualificationConversionLValue:
10098 OS << "qualification conversion (lvalue)";
10099 break;
10100
10101 case SK_FunctionReferenceConversion:
10102 OS << "function reference conversion";
10103 break;
10104
10105 case SK_AtomicConversion:
10106 OS << "non-atomic-to-atomic conversion";
10107 break;
10108
10109 case SK_ConversionSequence:
10110 OS << "implicit conversion sequence (";
10111 S->ICS->dump(); // FIXME: use OS
10112 OS << ")";
10113 break;
10114
10115 case SK_ConversionSequenceNoNarrowing:
10116 OS << "implicit conversion sequence with narrowing prohibited (";
10117 S->ICS->dump(); // FIXME: use OS
10118 OS << ")";
10119 break;
10120
10121 case SK_ListInitialization:
10122 OS << "list aggregate initialization";
10123 break;
10124
10125 case SK_UnwrapInitList:
10126 OS << "unwrap reference initializer list";
10127 break;
10128
10129 case SK_RewrapInitList:
10130 OS << "rewrap reference initializer list";
10131 break;
10132
10133 case SK_ConstructorInitialization:
10134 OS << "constructor initialization";
10135 break;
10136
10137 case SK_ConstructorInitializationFromList:
10138 OS << "list initialization via constructor";
10139 break;
10140
10141 case SK_ZeroInitialization:
10142 OS << "zero initialization";
10143 break;
10144
10145 case SK_CAssignment:
10146 OS << "C assignment";
10147 break;
10148
10149 case SK_StringInit:
10150 OS << "string initialization";
10151 break;
10152
10153 case SK_ObjCObjectConversion:
10154 OS << "Objective-C object conversion";
10155 break;
10156
10157 case SK_ArrayLoopIndex:
10158 OS << "indexing for array initialization loop";
10159 break;
10160
10161 case SK_ArrayLoopInit:
10162 OS << "array initialization loop";
10163 break;
10164
10165 case SK_ArrayInit:
10166 OS << "array initialization";
10167 break;
10168
10169 case SK_GNUArrayInit:
10170 OS << "array initialization (GNU extension)";
10171 break;
10172
10173 case SK_ParenthesizedArrayInit:
10174 OS << "parenthesized array initialization";
10175 break;
10176
10177 case SK_PassByIndirectCopyRestore:
10178 OS << "pass by indirect copy and restore";
10179 break;
10180
10181 case SK_PassByIndirectRestore:
10182 OS << "pass by indirect restore";
10183 break;
10184
10185 case SK_ProduceObjCObject:
10186 OS << "Objective-C object retension";
10187 break;
10188
10189 case SK_StdInitializerList:
10190 OS << "std::initializer_list from initializer list";
10191 break;
10192
10193 case SK_StdInitializerListConstructorCall:
10194 OS << "list initialization from std::initializer_list";
10195 break;
10196
10197 case SK_OCLSamplerInit:
10198 OS << "OpenCL sampler_t from integer constant";
10199 break;
10200
10201 case SK_OCLZeroOpaqueType:
10202 OS << "OpenCL opaque type from zero";
10203 break;
10204 case SK_ParenthesizedListInit:
10205 OS << "initialization from a parenthesized list of values";
10206 break;
10207 }
10208
10209 OS << " [" << S->Type << ']';
10210 }
10211
10212 OS << '\n';
10213 }
10214
dump() const10215 void InitializationSequence::dump() const {
10216 dump(llvm::errs());
10217 }
10218
NarrowingErrs(const LangOptions & L)10219 static bool NarrowingErrs(const LangOptions &L) {
10220 return L.CPlusPlus11 &&
10221 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
10222 }
10223
DiagnoseNarrowingInInitList(Sema & S,const ImplicitConversionSequence & ICS,QualType PreNarrowingType,QualType EntityType,const Expr * PostInit)10224 static void DiagnoseNarrowingInInitList(Sema &S,
10225 const ImplicitConversionSequence &ICS,
10226 QualType PreNarrowingType,
10227 QualType EntityType,
10228 const Expr *PostInit) {
10229 const StandardConversionSequence *SCS = nullptr;
10230 switch (ICS.getKind()) {
10231 case ImplicitConversionSequence::StandardConversion:
10232 SCS = &ICS.Standard;
10233 break;
10234 case ImplicitConversionSequence::UserDefinedConversion:
10235 SCS = &ICS.UserDefined.After;
10236 break;
10237 case ImplicitConversionSequence::AmbiguousConversion:
10238 case ImplicitConversionSequence::StaticObjectArgumentConversion:
10239 case ImplicitConversionSequence::EllipsisConversion:
10240 case ImplicitConversionSequence::BadConversion:
10241 return;
10242 }
10243
10244 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
10245 APValue ConstantValue;
10246 QualType ConstantType;
10247 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
10248 ConstantType)) {
10249 case NK_Not_Narrowing:
10250 case NK_Dependent_Narrowing:
10251 // No narrowing occurred.
10252 return;
10253
10254 case NK_Type_Narrowing:
10255 // This was a floating-to-integer conversion, which is always considered a
10256 // narrowing conversion even if the value is a constant and can be
10257 // represented exactly as an integer.
10258 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
10259 ? diag::ext_init_list_type_narrowing
10260 : diag::warn_init_list_type_narrowing)
10261 << PostInit->getSourceRange()
10262 << PreNarrowingType.getLocalUnqualifiedType()
10263 << EntityType.getLocalUnqualifiedType();
10264 break;
10265
10266 case NK_Constant_Narrowing:
10267 // A constant value was narrowed.
10268 S.Diag(PostInit->getBeginLoc(),
10269 NarrowingErrs(S.getLangOpts())
10270 ? diag::ext_init_list_constant_narrowing
10271 : diag::warn_init_list_constant_narrowing)
10272 << PostInit->getSourceRange()
10273 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
10274 << EntityType.getLocalUnqualifiedType();
10275 break;
10276
10277 case NK_Variable_Narrowing:
10278 // A variable's value may have been narrowed.
10279 S.Diag(PostInit->getBeginLoc(),
10280 NarrowingErrs(S.getLangOpts())
10281 ? diag::ext_init_list_variable_narrowing
10282 : diag::warn_init_list_variable_narrowing)
10283 << PostInit->getSourceRange()
10284 << PreNarrowingType.getLocalUnqualifiedType()
10285 << EntityType.getLocalUnqualifiedType();
10286 break;
10287 }
10288
10289 SmallString<128> StaticCast;
10290 llvm::raw_svector_ostream OS(StaticCast);
10291 OS << "static_cast<";
10292 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
10293 // It's important to use the typedef's name if there is one so that the
10294 // fixit doesn't break code using types like int64_t.
10295 //
10296 // FIXME: This will break if the typedef requires qualification. But
10297 // getQualifiedNameAsString() includes non-machine-parsable components.
10298 OS << *TT->getDecl();
10299 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
10300 OS << BT->getName(S.getLangOpts());
10301 else {
10302 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
10303 // with a broken cast.
10304 return;
10305 }
10306 OS << ">(";
10307 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
10308 << PostInit->getSourceRange()
10309 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
10310 << FixItHint::CreateInsertion(
10311 S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
10312 }
10313
10314 //===----------------------------------------------------------------------===//
10315 // Initialization helper functions
10316 //===----------------------------------------------------------------------===//
10317 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)10318 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
10319 ExprResult Init) {
10320 if (Init.isInvalid())
10321 return false;
10322
10323 Expr *InitE = Init.get();
10324 assert(InitE && "No initialization expression");
10325
10326 InitializationKind Kind =
10327 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
10328 InitializationSequence Seq(*this, Entity, Kind, InitE);
10329 return !Seq.Failed();
10330 }
10331
10332 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)10333 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
10334 SourceLocation EqualLoc,
10335 ExprResult Init,
10336 bool TopLevelOfInitList,
10337 bool AllowExplicit) {
10338 if (Init.isInvalid())
10339 return ExprError();
10340
10341 Expr *InitE = Init.get();
10342 assert(InitE && "No initialization expression?");
10343
10344 if (EqualLoc.isInvalid())
10345 EqualLoc = InitE->getBeginLoc();
10346
10347 InitializationKind Kind = InitializationKind::CreateCopy(
10348 InitE->getBeginLoc(), EqualLoc, AllowExplicit);
10349 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
10350
10351 // Prevent infinite recursion when performing parameter copy-initialization.
10352 const bool ShouldTrackCopy =
10353 Entity.isParameterKind() && Seq.isConstructorInitialization();
10354 if (ShouldTrackCopy) {
10355 if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) {
10356 Seq.SetOverloadFailure(
10357 InitializationSequence::FK_ConstructorOverloadFailed,
10358 OR_No_Viable_Function);
10359
10360 // Try to give a meaningful diagnostic note for the problematic
10361 // constructor.
10362 const auto LastStep = Seq.step_end() - 1;
10363 assert(LastStep->Kind ==
10364 InitializationSequence::SK_ConstructorInitialization);
10365 const FunctionDecl *Function = LastStep->Function.Function;
10366 auto Candidate =
10367 llvm::find_if(Seq.getFailedCandidateSet(),
10368 [Function](const OverloadCandidate &Candidate) -> bool {
10369 return Candidate.Viable &&
10370 Candidate.Function == Function &&
10371 Candidate.Conversions.size() > 0;
10372 });
10373 if (Candidate != Seq.getFailedCandidateSet().end() &&
10374 Function->getNumParams() > 0) {
10375 Candidate->Viable = false;
10376 Candidate->FailureKind = ovl_fail_bad_conversion;
10377 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
10378 InitE,
10379 Function->getParamDecl(0)->getType());
10380 }
10381 }
10382 CurrentParameterCopyTypes.push_back(Entity.getType());
10383 }
10384
10385 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
10386
10387 if (ShouldTrackCopy)
10388 CurrentParameterCopyTypes.pop_back();
10389
10390 return Result;
10391 }
10392
10393 /// Determine whether RD is, or is derived from, a specialization of CTD.
isOrIsDerivedFromSpecializationOf(CXXRecordDecl * RD,ClassTemplateDecl * CTD)10394 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
10395 ClassTemplateDecl *CTD) {
10396 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
10397 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
10398 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
10399 };
10400 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
10401 }
10402
DeduceTemplateSpecializationFromInitializer(TypeSourceInfo * TSInfo,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Inits)10403 QualType Sema::DeduceTemplateSpecializationFromInitializer(
10404 TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
10405 const InitializationKind &Kind, MultiExprArg Inits) {
10406 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
10407 TSInfo->getType()->getContainedDeducedType());
10408 assert(DeducedTST && "not a deduced template specialization type");
10409
10410 auto TemplateName = DeducedTST->getTemplateName();
10411 if (TemplateName.isDependent())
10412 return SubstAutoTypeDependent(TSInfo->getType());
10413
10414 // We can only perform deduction for class templates.
10415 auto *Template =
10416 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
10417 if (!Template) {
10418 Diag(Kind.getLocation(),
10419 diag::err_deduced_non_class_template_specialization_type)
10420 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
10421 if (auto *TD = TemplateName.getAsTemplateDecl())
10422 Diag(TD->getLocation(), diag::note_template_decl_here);
10423 return QualType();
10424 }
10425
10426 // Can't deduce from dependent arguments.
10427 if (Expr::hasAnyTypeDependentArguments(Inits)) {
10428 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10429 diag::warn_cxx14_compat_class_template_argument_deduction)
10430 << TSInfo->getTypeLoc().getSourceRange() << 0;
10431 return SubstAutoTypeDependent(TSInfo->getType());
10432 }
10433
10434 // FIXME: Perform "exact type" matching first, per CWG discussion?
10435 // Or implement this via an implied 'T(T) -> T' deduction guide?
10436
10437 // FIXME: Do we need/want a std::initializer_list<T> special case?
10438
10439 // Look up deduction guides, including those synthesized from constructors.
10440 //
10441 // C++1z [over.match.class.deduct]p1:
10442 // A set of functions and function templates is formed comprising:
10443 // - For each constructor of the class template designated by the
10444 // template-name, a function template [...]
10445 // - For each deduction-guide, a function or function template [...]
10446 DeclarationNameInfo NameInfo(
10447 Context.DeclarationNames.getCXXDeductionGuideName(Template),
10448 TSInfo->getTypeLoc().getEndLoc());
10449 LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
10450 LookupQualifiedName(Guides, Template->getDeclContext());
10451
10452 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10453 // clear on this, but they're not found by name so access does not apply.
10454 Guides.suppressDiagnostics();
10455
10456 // Figure out if this is list-initialization.
10457 InitListExpr *ListInit =
10458 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10459 ? dyn_cast<InitListExpr>(Inits[0])
10460 : nullptr;
10461
10462 // C++1z [over.match.class.deduct]p1:
10463 // Initialization and overload resolution are performed as described in
10464 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10465 // (as appropriate for the type of initialization performed) for an object
10466 // of a hypothetical class type, where the selected functions and function
10467 // templates are considered to be the constructors of that class type
10468 //
10469 // Since we know we're initializing a class type of a type unrelated to that
10470 // of the initializer, this reduces to something fairly reasonable.
10471 OverloadCandidateSet Candidates(Kind.getLocation(),
10472 OverloadCandidateSet::CSK_Normal);
10473 OverloadCandidateSet::iterator Best;
10474
10475 bool HasAnyDeductionGuide = false;
10476 bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10477
10478 auto tryToResolveOverload =
10479 [&](bool OnlyListConstructors) -> OverloadingResult {
10480 Candidates.clear(OverloadCandidateSet::CSK_Normal);
10481 HasAnyDeductionGuide = false;
10482
10483 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10484 NamedDecl *D = (*I)->getUnderlyingDecl();
10485 if (D->isInvalidDecl())
10486 continue;
10487
10488 auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10489 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
10490 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10491 if (!GD)
10492 continue;
10493
10494 if (!GD->isImplicit())
10495 HasAnyDeductionGuide = true;
10496
10497 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10498 // For copy-initialization, the candidate functions are all the
10499 // converting constructors (12.3.1) of that class.
10500 // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10501 // The converting constructors of T are candidate functions.
10502 if (!AllowExplicit) {
10503 // Overload resolution checks whether the deduction guide is declared
10504 // explicit for us.
10505
10506 // When looking for a converting constructor, deduction guides that
10507 // could never be called with one argument are not interesting to
10508 // check or note.
10509 if (GD->getMinRequiredArguments() > 1 ||
10510 (GD->getNumParams() == 0 && !GD->isVariadic()))
10511 continue;
10512 }
10513
10514 // C++ [over.match.list]p1.1: (first phase list initialization)
10515 // Initially, the candidate functions are the initializer-list
10516 // constructors of the class T
10517 if (OnlyListConstructors && !isInitListConstructor(GD))
10518 continue;
10519
10520 // C++ [over.match.list]p1.2: (second phase list initialization)
10521 // the candidate functions are all the constructors of the class T
10522 // C++ [over.match.ctor]p1: (all other cases)
10523 // the candidate functions are all the constructors of the class of
10524 // the object being initialized
10525
10526 // C++ [over.best.ics]p4:
10527 // When [...] the constructor [...] is a candidate by
10528 // - [over.match.copy] (in all cases)
10529 // FIXME: The "second phase of [over.match.list] case can also
10530 // theoretically happen here, but it's not clear whether we can
10531 // ever have a parameter of the right type.
10532 bool SuppressUserConversions = Kind.isCopyInit();
10533
10534 if (TD)
10535 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10536 Inits, Candidates, SuppressUserConversions,
10537 /*PartialOverloading*/ false,
10538 AllowExplicit);
10539 else
10540 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10541 SuppressUserConversions,
10542 /*PartialOverloading*/ false, AllowExplicit);
10543 }
10544 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10545 };
10546
10547 OverloadingResult Result = OR_No_Viable_Function;
10548
10549 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10550 // try initializer-list constructors.
10551 if (ListInit) {
10552 bool TryListConstructors = true;
10553
10554 // Try list constructors unless the list is empty and the class has one or
10555 // more default constructors, in which case those constructors win.
10556 if (!ListInit->getNumInits()) {
10557 for (NamedDecl *D : Guides) {
10558 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10559 if (FD && FD->getMinRequiredArguments() == 0) {
10560 TryListConstructors = false;
10561 break;
10562 }
10563 }
10564 } else if (ListInit->getNumInits() == 1) {
10565 // C++ [over.match.class.deduct]:
10566 // As an exception, the first phase in [over.match.list] (considering
10567 // initializer-list constructors) is omitted if the initializer list
10568 // consists of a single expression of type cv U, where U is a
10569 // specialization of C or a class derived from a specialization of C.
10570 Expr *E = ListInit->getInit(0);
10571 auto *RD = E->getType()->getAsCXXRecordDecl();
10572 if (!isa<InitListExpr>(E) && RD &&
10573 isCompleteType(Kind.getLocation(), E->getType()) &&
10574 isOrIsDerivedFromSpecializationOf(RD, Template))
10575 TryListConstructors = false;
10576 }
10577
10578 if (TryListConstructors)
10579 Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10580 // Then unwrap the initializer list and try again considering all
10581 // constructors.
10582 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10583 }
10584
10585 // If list-initialization fails, or if we're doing any other kind of
10586 // initialization, we (eventually) consider constructors.
10587 if (Result == OR_No_Viable_Function)
10588 Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10589
10590 switch (Result) {
10591 case OR_Ambiguous:
10592 // FIXME: For list-initialization candidates, it'd usually be better to
10593 // list why they were not viable when given the initializer list itself as
10594 // an argument.
10595 Candidates.NoteCandidates(
10596 PartialDiagnosticAt(
10597 Kind.getLocation(),
10598 PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10599 << TemplateName),
10600 *this, OCD_AmbiguousCandidates, Inits);
10601 return QualType();
10602
10603 case OR_No_Viable_Function: {
10604 CXXRecordDecl *Primary =
10605 cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10606 bool Complete =
10607 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10608 Candidates.NoteCandidates(
10609 PartialDiagnosticAt(
10610 Kind.getLocation(),
10611 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10612 : diag::err_deduced_class_template_incomplete)
10613 << TemplateName << !Guides.empty()),
10614 *this, OCD_AllCandidates, Inits);
10615 return QualType();
10616 }
10617
10618 case OR_Deleted: {
10619 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10620 << TemplateName;
10621 NoteDeletedFunction(Best->Function);
10622 return QualType();
10623 }
10624
10625 case OR_Success:
10626 // C++ [over.match.list]p1:
10627 // In copy-list-initialization, if an explicit constructor is chosen, the
10628 // initialization is ill-formed.
10629 if (Kind.isCopyInit() && ListInit &&
10630 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10631 bool IsDeductionGuide = !Best->Function->isImplicit();
10632 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10633 << TemplateName << IsDeductionGuide;
10634 Diag(Best->Function->getLocation(),
10635 diag::note_explicit_ctor_deduction_guide_here)
10636 << IsDeductionGuide;
10637 return QualType();
10638 }
10639
10640 // Make sure we didn't select an unusable deduction guide, and mark it
10641 // as referenced.
10642 DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10643 MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10644 break;
10645 }
10646
10647 // C++ [dcl.type.class.deduct]p1:
10648 // The placeholder is replaced by the return type of the function selected
10649 // by overload resolution for class template deduction.
10650 QualType DeducedType =
10651 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10652 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10653 diag::warn_cxx14_compat_class_template_argument_deduction)
10654 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10655
10656 // Warn if CTAD was used on a type that does not have any user-defined
10657 // deduction guides.
10658 if (!HasAnyDeductionGuide) {
10659 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10660 diag::warn_ctad_maybe_unsupported)
10661 << TemplateName;
10662 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10663 }
10664
10665 return DeducedType;
10666 }
10667