xref: /netbsd/sys/dev/pci/if_sip.c (revision 7d0e1a68)
1 /*	$NetBSD: if_sip.c,v 1.190 2023/06/02 08:51:47 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.190 2023/06/02 08:51:47 andvar Exp $");
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 #include <sys/ioctl.h>
85 #include <sys/errno.h>
86 #include <sys/device.h>
87 #include <sys/queue.h>
88 #include <sys/rndsource.h>
89 
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_ether.h>
94 #include <net/bpf.h>
95 
96 #include <sys/bus.h>
97 #include <sys/intr.h>
98 #include <machine/endian.h>
99 
100 #include <dev/mii/mii.h>
101 #include <dev/mii/miivar.h>
102 #include <dev/mii/mii_bitbang.h>
103 
104 #include <dev/pci/pcireg.h>
105 #include <dev/pci/pcivar.h>
106 #include <dev/pci/pcidevs.h>
107 
108 #include <dev/pci/if_sipreg.h>
109 
110 /*
111  * Transmit descriptor list size.  This is arbitrary, but allocate
112  * enough descriptors for 128 pending transmissions, and 8 segments
113  * per packet (64 for DP83820 for jumbo frames).
114  *
115  * This MUST work out to a power of 2.
116  */
117 #define	GSIP_NTXSEGS_ALLOC	16
118 #define	SIP_NTXSEGS_ALLOC	8
119 
120 #define	SIP_TXQUEUELEN		256
121 #define	MAX_SIP_NTXDESC	\
122     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
123 
124 /*
125  * Receive descriptor list size.  We have one Rx buffer per incoming
126  * packet, so this logic is a little simpler.
127  *
128  * Actually, on the DP83820, we allow the packet to consume more than
129  * one buffer, in order to support jumbo Ethernet frames.  In that
130  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
131  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
132  * so we'd better be quick about handling receive interrupts.
133  */
134 #define	GSIP_NRXDESC		256
135 #define	SIP_NRXDESC		128
136 
137 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
138 
139 /*
140  * Set this to 1 to force-disable using the 64-bit data path
141  * on DP83820.
142  */
143 static int gsip_disable_data64 = 0;
144 
145 /*
146  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
147  * a single clump that maps to a single DMA segment to make several things
148  * easier.
149  */
150 struct sip_control_data {
151 	/*
152 	 * The transmit descriptors.
153 	 */
154 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
155 
156 	/*
157 	 * The receive descriptors.
158 	 */
159 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
160 };
161 
162 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
163 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
164 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
165 
166 /*
167  * Software state for transmit jobs.
168  */
169 struct sip_txsoft {
170 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
171 	bus_dmamap_t txs_dmamap;	/* our DMA map */
172 	int txs_firstdesc;		/* first descriptor in packet */
173 	int txs_lastdesc;		/* last descriptor in packet */
174 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
175 };
176 
177 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
178 
179 /*
180  * Software state for receive jobs.
181  */
182 struct sip_rxsoft {
183 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
184 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
185 };
186 
187 enum sip_attach_stage {
188 	  SIP_ATTACH_FIN = 0
189 	, SIP_ATTACH_CREATE_RXMAP
190 	, SIP_ATTACH_CREATE_TXMAP
191 	, SIP_ATTACH_LOAD_MAP
192 	, SIP_ATTACH_CREATE_MAP
193 	, SIP_ATTACH_MAP_MEM
194 	, SIP_ATTACH_ALLOC_MEM
195 	, SIP_ATTACH_INTR
196 	, SIP_ATTACH_MAP
197 };
198 
199 /*
200  * Software state per device.
201  */
202 struct sip_softc {
203 	device_t sc_dev;		/* generic device information */
204 	device_suspensor_t		sc_suspensor;
205 	pmf_qual_t			sc_qual;
206 
207 	bus_space_tag_t sc_st;		/* bus space tag */
208 	bus_space_handle_t sc_sh;	/* bus space handle */
209 	bus_size_t sc_sz;		/* bus space size */
210 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
211 	pci_chipset_tag_t sc_pc;
212 	bus_dma_segment_t sc_seg;
213 	struct ethercom sc_ethercom;	/* ethernet common data */
214 
215 	const struct sip_product *sc_model; /* which model are we? */
216 	bool sc_gigabit;		/* 1: 83820, 0: other */
217 	bool sc_dma64;			/* using 64-bit DMA addresses */
218 	int sc_rev;			/* chip revision */
219 
220 	unsigned int sc_bufptr_idx;
221 	unsigned int sc_cmdsts_idx;
222 	unsigned int sc_extsts_idx;	/* DP83820 only */
223 
224 	void *sc_ih;			/* interrupt cookie */
225 
226 	struct mii_data sc_mii;		/* MII/media information */
227 
228 	callout_t sc_tick_ch;		/* tick callout */
229 
230 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
231 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
232 
233 	/*
234 	 * Software state for transmit and receive descriptors.
235 	 */
236 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
237 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
238 
239 	/*
240 	 * Control data structures.
241 	 */
242 	struct sip_control_data *sc_control_data;
243 #define	sc_txdescs	sc_control_data->scd_txdescs
244 #define	sc_rxdescs	sc_control_data->scd_rxdescs
245 
246 #ifdef SIP_EVENT_COUNTERS
247 	/*
248 	 * Event counters.
249 	 */
250 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
251 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
252 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
253 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
254 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
255 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
256 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
257 	/* DP83820 only */
258 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
259 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
260 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
261 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
262 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
263 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
264 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
265 #endif /* SIP_EVENT_COUNTERS */
266 
267 	uint32_t sc_txcfg;		/* prototype TXCFG register */
268 	uint32_t sc_rxcfg;		/* prototype RXCFG register */
269 	uint32_t sc_imr;		/* prototype IMR register */
270 	uint32_t sc_rfcr;		/* prototype RFCR register */
271 
272 	uint32_t sc_cfg;		/* prototype CFG register */
273 
274 	uint32_t sc_gpior;		/* prototype GPIOR register */
275 
276 	uint32_t sc_tx_fill_thresh;	/* transmit fill threshold */
277 	uint32_t sc_tx_drain_thresh;	/* transmit drain threshold */
278 
279 	uint32_t sc_rx_drain_thresh;	/* receive drain threshold */
280 
281 	int	sc_flowflags;		/* 802.3x flow control flags */
282 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
283 	int	sc_paused;		/* paused indication */
284 
285 	int	sc_txfree;		/* number of free Tx descriptors */
286 	int	sc_txnext;		/* next ready Tx descriptor */
287 	int	sc_txwin;		/* Tx descriptors since last intr */
288 
289 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
290 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
291 
292 	/* values of interface state at last init */
293 	struct {
294 		/* if_capenable */
295 		uint64_t	if_capenable;
296 		/* ec_capenable */
297 		int		ec_capenable;
298 		/* VLAN_ATTACHED */
299 		int		is_vlan;
300 	}	sc_prev;
301 
302 	u_short	sc_if_flags;
303 
304 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
305 	int	sc_rxdiscard;
306 	int	sc_rxlen;
307 	struct mbuf *sc_rxhead;
308 	struct mbuf *sc_rxtail;
309 	struct mbuf **sc_rxtailp;
310 
311 	int sc_ntxdesc;
312 	int sc_ntxdesc_mask;
313 
314 	int sc_nrxdesc_mask;
315 
316 	const struct sip_parm {
317 		const struct sip_regs {
318 			int r_rxcfg;
319 			int r_txcfg;
320 		} p_regs;
321 
322 		const struct sip_bits {
323 			uint32_t b_txcfg_mxdma_8;
324 			uint32_t b_txcfg_mxdma_16;
325 			uint32_t b_txcfg_mxdma_32;
326 			uint32_t b_txcfg_mxdma_64;
327 			uint32_t b_txcfg_mxdma_128;
328 			uint32_t b_txcfg_mxdma_256;
329 			uint32_t b_txcfg_mxdma_512;
330 			uint32_t b_txcfg_flth_mask;
331 			uint32_t b_txcfg_drth_mask;
332 
333 			uint32_t b_rxcfg_mxdma_8;
334 			uint32_t b_rxcfg_mxdma_16;
335 			uint32_t b_rxcfg_mxdma_32;
336 			uint32_t b_rxcfg_mxdma_64;
337 			uint32_t b_rxcfg_mxdma_128;
338 			uint32_t b_rxcfg_mxdma_256;
339 			uint32_t b_rxcfg_mxdma_512;
340 
341 			uint32_t b_isr_txrcmp;
342 			uint32_t b_isr_rxrcmp;
343 			uint32_t b_isr_dperr;
344 			uint32_t b_isr_sserr;
345 			uint32_t b_isr_rmabt;
346 			uint32_t b_isr_rtabt;
347 
348 			uint32_t b_cmdsts_size_mask;
349 		} p_bits;
350 		int		p_filtmem;
351 		int		p_rxbuf_len;
352 		bus_size_t	p_tx_dmamap_size;
353 		int		p_ntxsegs;
354 		int		p_ntxsegs_alloc;
355 		int		p_nrxdesc;
356 	} *sc_parm;
357 
358 	void (*sc_rxintr)(struct sip_softc *);
359 
360 	krndsource_t rnd_source;	/* random source */
361 };
362 
363 #define	sc_bits	sc_parm->p_bits
364 #define	sc_regs	sc_parm->p_regs
365 
366 static const struct sip_parm sip_parm = {
367 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
368 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
369 	, .p_tx_dmamap_size = MCLBYTES
370 	, .p_ntxsegs = 16
371 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
372 	, .p_nrxdesc = SIP_NRXDESC
373 	, .p_bits = {
374 		  .b_txcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
375 		, .b_txcfg_mxdma_16	= 0x00300000	/*	16 bytes */
376 		, .b_txcfg_mxdma_32	= 0x00400000	/*	32 bytes */
377 		, .b_txcfg_mxdma_64	= 0x00500000	/*	64 bytes */
378 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
379 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
380 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
381 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
382 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
383 
384 		, .b_rxcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
385 		, .b_rxcfg_mxdma_16	= 0x00300000	/*	16 bytes */
386 		, .b_rxcfg_mxdma_32	= 0x00400000	/*	32 bytes */
387 		, .b_rxcfg_mxdma_64	= 0x00500000	/*	64 bytes */
388 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
389 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
390 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
391 
392 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
393 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
394 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
395 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
396 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
397 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
398 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
399 	}
400 	, .p_regs = {
401 		.r_rxcfg = OTHER_SIP_RXCFG,
402 		.r_txcfg = OTHER_SIP_TXCFG
403 	}
404 }, gsip_parm = {
405 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
406 	, .p_rxbuf_len = MCLBYTES - 8
407 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
408 	, .p_ntxsegs = 64
409 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
410 	, .p_nrxdesc = GSIP_NRXDESC
411 	, .p_bits = {
412 		  .b_txcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
413 		, .b_txcfg_mxdma_16	= 0x00200000	/*	16 bytes */
414 		, .b_txcfg_mxdma_32	= 0x00300000	/*	32 bytes */
415 		, .b_txcfg_mxdma_64	= 0x00400000	/*	64 bytes */
416 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
417 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
418 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
419 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
420 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
421 
422 		, .b_rxcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
423 		, .b_rxcfg_mxdma_16	= 0x00200000	/*	16 bytes */
424 		, .b_rxcfg_mxdma_32	= 0x00300000	/*	32 bytes */
425 		, .b_rxcfg_mxdma_64	= 0x00400000	/*	64 bytes */
426 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
427 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
428 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
429 
430 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
431 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
432 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
433 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
434 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
435 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
436 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
437 	}
438 	, .p_regs = {
439 		.r_rxcfg = DP83820_SIP_RXCFG,
440 		.r_txcfg = DP83820_SIP_TXCFG
441 	}
442 };
443 
444 static inline int
sip_nexttx(const struct sip_softc * sc,int x)445 sip_nexttx(const struct sip_softc *sc, int x)
446 {
447 	return (x + 1) & sc->sc_ntxdesc_mask;
448 }
449 
450 static inline int
sip_nextrx(const struct sip_softc * sc,int x)451 sip_nextrx(const struct sip_softc *sc, int x)
452 {
453 	return (x + 1) & sc->sc_nrxdesc_mask;
454 }
455 
456 /* 83820 only */
457 static inline void
sip_rxchain_reset(struct sip_softc * sc)458 sip_rxchain_reset(struct sip_softc *sc)
459 {
460 	sc->sc_rxtailp = &sc->sc_rxhead;
461 	*sc->sc_rxtailp = NULL;
462 	sc->sc_rxlen = 0;
463 }
464 
465 /* 83820 only */
466 static inline void
sip_rxchain_link(struct sip_softc * sc,struct mbuf * m)467 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
468 {
469 	*sc->sc_rxtailp = sc->sc_rxtail = m;
470 	sc->sc_rxtailp = &m->m_next;
471 }
472 
473 #ifdef SIP_EVENT_COUNTERS
474 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
475 #else
476 #define	SIP_EVCNT_INCR(ev)	/* nothing */
477 #endif
478 
479 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
480 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
481 
482 static inline void
sip_set_rxdp(struct sip_softc * sc,bus_addr_t addr)483 sip_set_rxdp(struct sip_softc *sc, bus_addr_t addr)
484 {
485 	if (sc->sc_gigabit)
486 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP_HI,
487 		    BUS_ADDR_HI32(addr));
488 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP, BUS_ADDR_LO32(addr));
489 }
490 
491 static inline void
sip_set_txdp(struct sip_softc * sc,bus_addr_t addr)492 sip_set_txdp(struct sip_softc *sc, bus_addr_t addr)
493 {
494 	if (sc->sc_gigabit)
495 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP_HI,
496 		    BUS_ADDR_HI32(addr));
497 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, BUS_ADDR_LO32(addr));
498 }
499 
500 static inline void
sip_cdtxsync(struct sip_softc * sc,const int x0,const int n0,const int ops)501 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
502 {
503 	int x, n;
504 
505 	x = x0;
506 	n = n0;
507 
508 	/* If it will wrap around, sync to the end of the ring. */
509 	if (x + n > sc->sc_ntxdesc) {
510 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
511 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
512 		    (sc->sc_ntxdesc - x), ops);
513 		n -= (sc->sc_ntxdesc - x);
514 		x = 0;
515 	}
516 
517 	/* Now sync whatever is left. */
518 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
519 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
520 }
521 
522 static inline void
sip_cdrxsync(struct sip_softc * sc,int x,int ops)523 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
524 {
525 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
526 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
527 }
528 
529 static void
sip_init_txring(struct sip_softc * sc)530 sip_init_txring(struct sip_softc *sc)
531 {
532 	struct sip_desc *sipd;
533 	bus_addr_t next_desc;
534 	int i;
535 
536 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
537 	for (i = 0; i < sc->sc_ntxdesc; i++) {
538 		sipd = &sc->sc_txdescs[i];
539 		next_desc = SIP_CDTXADDR(sc, sip_nexttx(sc, i));
540 		if (sc->sc_dma64) {
541 			sipd->sipd_words[GSIP64_DESC_LINK_LO] =
542 			    htole32(BUS_ADDR_LO32(next_desc));
543 			sipd->sipd_words[GSIP64_DESC_LINK_HI] =
544 			    htole32(BUS_ADDR_HI32(next_desc));
545 		} else {
546 			/* SIP_DESC_LINK == GSIP_DESC_LINK */
547 			sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc);
548 		}
549 	}
550 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
551 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
552 	sc->sc_txfree = sc->sc_ntxdesc;
553 	sc->sc_txnext = 0;
554 	sc->sc_txwin = 0;
555 }
556 
557 static inline void
sip_init_txdesc(struct sip_softc * sc,int x,bus_addr_t bufptr,uint32_t cmdsts)558 sip_init_txdesc(struct sip_softc *sc, int x, bus_addr_t bufptr, uint32_t cmdsts)
559 {
560 	struct sip_desc *sipd = &sc->sc_txdescs[x];
561 
562 	if (sc->sc_dma64) {
563 		sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] =
564 		    htole32(BUS_ADDR_LO32(bufptr));
565 		sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] =
566 		    htole32(BUS_ADDR_HI32(bufptr));
567 	} else {
568 		sipd->sipd_words[sc->sc_bufptr_idx] = htole32(bufptr);
569 	}
570 	sipd->sipd_words[sc->sc_extsts_idx] = 0;
571 	sipd->sipd_words[sc->sc_cmdsts_idx] = htole32(cmdsts);
572 	/* sip_cdtxsync() will be done later. */
573 }
574 
575 static inline void
sip_init_rxdesc(struct sip_softc * sc,int x)576 sip_init_rxdesc(struct sip_softc *sc, int x)
577 {
578 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
579 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
580 	const bus_addr_t next_desc = SIP_CDRXADDR(sc, sip_nextrx(sc, x));
581 
582 	if (sc->sc_dma64) {
583 		sipd->sipd_words[GSIP64_DESC_LINK_LO] =
584 		    htole32(BUS_ADDR_LO32(next_desc));
585 		sipd->sipd_words[GSIP64_DESC_LINK_HI] =
586 		    htole32(BUS_ADDR_HI32(next_desc));
587 		sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] =
588 		    htole32(BUS_ADDR_LO32(rxs->rxs_dmamap->dm_segs[0].ds_addr));
589 		sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] =
590 		    htole32(BUS_ADDR_HI32(rxs->rxs_dmamap->dm_segs[0].ds_addr));
591 	} else {
592 		sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc);
593 		sipd->sipd_words[sc->sc_bufptr_idx] =
594 		    htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
595 	}
596 	sipd->sipd_words[sc->sc_extsts_idx] = 0;
597 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREWRITE);
598 	sipd->sipd_words[sc->sc_cmdsts_idx] =
599 	    htole32(CMDSTS_INTR | (sc->sc_parm->p_rxbuf_len &
600 	    			   sc->sc_bits.b_cmdsts_size_mask));
601 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
602 }
603 
604 #define	SIP_CHIP_VERS(sc, v, p, r)					\
605 	((sc)->sc_model->sip_vendor == (v) &&				\
606 	 (sc)->sc_model->sip_product == (p) &&				\
607 	 (sc)->sc_rev == (r))
608 
609 #define	SIP_CHIP_MODEL(sc, v, p)					\
610 	((sc)->sc_model->sip_vendor == (v) &&				\
611 	 (sc)->sc_model->sip_product == (p))
612 
613 #define	SIP_SIS900_REV(sc, rev)						\
614 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
615 
616 #define SIP_TIMEOUT 1000
617 
618 static int	sip_ifflags_cb(struct ethercom *);
619 static void	sipcom_start(struct ifnet *);
620 static void	sipcom_watchdog(struct ifnet *);
621 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
622 static int	sipcom_init(struct ifnet *);
623 static void	sipcom_stop(struct ifnet *, int);
624 
625 static bool	sipcom_reset(struct sip_softc *);
626 static void	sipcom_rxdrain(struct sip_softc *);
627 static int	sipcom_add_rxbuf(struct sip_softc *, int);
628 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
629 				      uint16_t *);
630 static void	sipcom_tick(void *);
631 
632 static void	sipcom_sis900_set_filter(struct sip_softc *);
633 static void	sipcom_dp83815_set_filter(struct sip_softc *);
634 
635 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
636 		    const struct pci_attach_args *, uint8_t *);
637 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
638 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
639 		    const struct pci_attach_args *, uint8_t *);
640 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
641 		    const struct pci_attach_args *, uint8_t *);
642 
643 static int	sipcom_intr(void *);
644 static void	sipcom_txintr(struct sip_softc *);
645 static void	sip_rxintr(struct sip_softc *);
646 static void	gsip_rxintr(struct sip_softc *);
647 
648 static int	sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
649 static int	sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
650 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
651 
652 static int	sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
653 static int	sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
654 static void	sipcom_sis900_mii_statchg(struct ifnet *);
655 
656 static int	sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
657 static int	sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
658 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
659 
660 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
661 
662 static int	sipcom_match(device_t, cfdata_t, void *);
663 static void	sipcom_attach(device_t, device_t, void *);
664 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
665 static int	sipcom_detach(device_t, int);
666 static bool	sipcom_resume(device_t, const pmf_qual_t *);
667 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
668 
669 int	gsip_copy_small = 0;
670 int	sip_copy_small = 0;
671 
672 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
673     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
674     DVF_DETACH_SHUTDOWN);
675 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
676     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
677     DVF_DETACH_SHUTDOWN);
678 
679 /*
680  * Descriptions of the variants of the SiS900.
681  */
682 struct sip_variant {
683 	int	(*sipv_mii_readreg)(device_t, int, int, uint16_t *);
684 	int	(*sipv_mii_writereg)(device_t, int, int, uint16_t);
685 	void	(*sipv_mii_statchg)(struct ifnet *);
686 	void	(*sipv_set_filter)(struct sip_softc *);
687 	void	(*sipv_read_macaddr)(struct sip_softc *,
688 		    const struct pci_attach_args *, uint8_t *);
689 };
690 
691 static uint32_t sipcom_mii_bitbang_read(device_t);
692 static void	sipcom_mii_bitbang_write(device_t, uint32_t);
693 
694 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
695 	sipcom_mii_bitbang_read,
696 	sipcom_mii_bitbang_write,
697 	{
698 		EROMAR_MDIO,		/* MII_BIT_MDO */
699 		EROMAR_MDIO,		/* MII_BIT_MDI */
700 		EROMAR_MDC,		/* MII_BIT_MDC */
701 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
702 		0,			/* MII_BIT_DIR_PHY_HOST */
703 	}
704 };
705 
706 static const struct sip_variant sipcom_variant_dp83820 = {
707 	sipcom_dp83820_mii_readreg,
708 	sipcom_dp83820_mii_writereg,
709 	sipcom_dp83820_mii_statchg,
710 	sipcom_dp83815_set_filter,
711 	sipcom_dp83820_read_macaddr,
712 };
713 
714 static const struct sip_variant sipcom_variant_sis900 = {
715 	sipcom_sis900_mii_readreg,
716 	sipcom_sis900_mii_writereg,
717 	sipcom_sis900_mii_statchg,
718 	sipcom_sis900_set_filter,
719 	sipcom_sis900_read_macaddr,
720 };
721 
722 static const struct sip_variant sipcom_variant_dp83815 = {
723 	sipcom_dp83815_mii_readreg,
724 	sipcom_dp83815_mii_writereg,
725 	sipcom_dp83815_mii_statchg,
726 	sipcom_dp83815_set_filter,
727 	sipcom_dp83815_read_macaddr,
728 };
729 
730 
731 /*
732  * Devices supported by this driver.
733  */
734 static const struct sip_product {
735 	pci_vendor_id_t		sip_vendor;
736 	pci_product_id_t	sip_product;
737 	const char		*sip_name;
738 	const struct sip_variant *sip_variant;
739 	bool			sip_gigabit;
740 } sipcom_products[] = {
741 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
742 	  "NatSemi DP83820 Gigabit Ethernet",
743 	  &sipcom_variant_dp83820, true },
744 
745 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
746 	  "SiS 900 10/100 Ethernet",
747 	  &sipcom_variant_sis900, false },
748 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
749 	  "SiS 7016 10/100 Ethernet",
750 	  &sipcom_variant_sis900, false },
751 
752 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
753 	  "NatSemi DP83815 10/100 Ethernet",
754 	  &sipcom_variant_dp83815, false },
755 
756 	{ 0,			0,
757 	  NULL,
758 	  NULL, false },
759 };
760 
761 static const struct sip_product *
sipcom_lookup(const struct pci_attach_args * pa,bool gigabit)762 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
763 {
764 	const struct sip_product *sip;
765 
766 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
767 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
768 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
769 		    sip->sip_gigabit == gigabit)
770 			return sip;
771 	}
772 	return NULL;
773 }
774 
775 /*
776  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
777  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
778  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
779  * which means we try to use 64-bit data transfers on those cards if we
780  * happen to be plugged into a 32-bit slot.
781  *
782  * What we do is use this table of cards known to be 64-bit cards.  If
783  * you have a 64-bit card who's subsystem ID is not listed in this table,
784  * send the output of "pcictl dump ..." of the device to me so that your
785  * card will use the 64-bit data path when plugged into a 64-bit slot.
786  *
787  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
788  *	   June 30, 2002
789  */
790 static int
sipcom_check_64bit(const struct pci_attach_args * pa)791 sipcom_check_64bit(const struct pci_attach_args *pa)
792 {
793 	static const struct {
794 		pci_vendor_id_t c64_vendor;
795 		pci_product_id_t c64_product;
796 	} card64[] = {
797 		/* Asante GigaNIX */
798 		{ 0x128a,	0x0002 },
799 
800 		/* Accton EN1407-T, Planex GN-1000TE */
801 		{ 0x1113,	0x1407 },
802 
803 		/* Netgear GA621 */
804 		{ 0x1385,	0x621a },
805 
806 		/* Netgear GA622 */
807 		{ 0x1385,	0x622a },
808 
809 		/* SMC EZ Card 1000 (9462TX) */
810 		{ 0x10b8,	0x9462 },
811 
812 		{ 0, 0}
813 	};
814 	pcireg_t subsys;
815 	int i;
816 
817 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
818 
819 	for (i = 0; card64[i].c64_vendor != 0; i++) {
820 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
821 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
822 			return 1;
823 	}
824 
825 	return 0;
826 }
827 
828 static int
sipcom_match(device_t parent,cfdata_t cf,void * aux)829 sipcom_match(device_t parent, cfdata_t cf, void *aux)
830 {
831 	struct pci_attach_args *pa = aux;
832 
833 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
834 		return 1;
835 
836 	return 0;
837 }
838 
839 static void
sipcom_dp83820_attach(struct sip_softc * sc,struct pci_attach_args * pa)840 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
841 {
842 	uint32_t reg;
843 	int i;
844 
845 	/*
846 	 * Cause the chip to load configuration data from the EEPROM.
847 	 */
848 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
849 	for (i = 0; i < 10000; i++) {
850 		delay(10);
851 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
852 		    PTSCR_EELOAD_EN) == 0)
853 			break;
854 	}
855 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
856 	    PTSCR_EELOAD_EN) {
857 		printf("%s: timeout loading configuration from EEPROM\n",
858 		    device_xname(sc->sc_dev));
859 		return;
860 	}
861 
862 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
863 
864 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
865 	if (reg & CFG_PCI64_DET) {
866 		const char *using64 = NULL;
867 
868 		if (reg & CFG_DATA64_EN) {
869 			/*
870 			 * Check to see if this card is 64-bit.  If so,
871 			 * enable 64-bit data transfers.
872 			 *
873 			 * We can't trust the DATA64_EN bit in the EEPROM,
874 			 * because vendors of 32-bit cards fail to clear
875 			 * that bit in many cases (yet the card still detects
876 			 * that it's in a 64-bit slot because I guess they
877 			 * wired up ACK64# and REQ64#).
878 			 */
879 			if (gsip_disable_data64)
880 				using64 = "force-disabled";
881 			else if (sipcom_check_64bit(pa)) {
882 				sc->sc_cfg |= CFG_DATA64_EN;
883 				using64 = "enabled";
884 			} else
885 				using64 = "disabled (32-bit card)";
886 		} else {
887 			using64 = "disabled in EEPROM";
888 		}
889 		printf("%s: 64-bit slot detected, 64-bit transfers %s\n",
890 		    device_xname(sc->sc_dev), using64);
891 	}
892 
893 	/*
894 	 * The T64ADDR bit is loaded by the chip from the EEPROM and
895 	 * is read-only.
896 	 */
897 	if (reg & CFG_T64ADDR)
898 		sc->sc_cfg |= CFG_T64ADDR;
899 
900 	/*
901 	 * We can use 64-bit DMA addressing regardless of what
902 	 * sort of slot we're in.
903 	 */
904 	if (pci_dma64_available(pa)) {
905 		sc->sc_dmat = pa->pa_dmat64;
906 		sc->sc_cfg |= CFG_M64ADDR;
907 		sc->sc_dma64 = true;
908 	}
909 
910 	if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
911 		const char *sep = "";
912 		printf("%s: using ", device_xname(sc->sc_dev));
913 		if (reg & CFG_EXT_125) {
914 			sc->sc_cfg |= CFG_EXT_125;
915 			printf("%sexternal 125MHz clock", sep);
916 			sep = ", ";
917 		}
918 		if (reg & CFG_TBI_EN) {
919 			sc->sc_cfg |= CFG_TBI_EN;
920 			printf("%sten-bit interface", sep);
921 			sep = ", ";
922 		}
923 		printf("\n");
924 	}
925 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
926 	    (reg & CFG_MRM_DIS) != 0)
927 		sc->sc_cfg |= CFG_MRM_DIS;
928 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
929 	    (reg & CFG_MWI_DIS) != 0)
930 		sc->sc_cfg |= CFG_MWI_DIS;
931 
932 	/*
933 	 * Use the extended descriptor format on the DP83820.  This
934 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
935 	 * checksumming.
936 	 */
937 	sc->sc_cfg |= CFG_EXTSTS_EN;
938 }
939 
940 static int
sipcom_detach(device_t self,int flags)941 sipcom_detach(device_t self, int flags)
942 {
943 	int s;
944 
945 	s = splnet();
946 	sipcom_do_detach(self, SIP_ATTACH_FIN);
947 	splx(s);
948 
949 	return 0;
950 }
951 
952 static void
sipcom_do_detach(device_t self,enum sip_attach_stage stage)953 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
954 {
955 	int i;
956 	struct sip_softc *sc = device_private(self);
957 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
958 
959 	/*
960 	 * Free any resources we've allocated during attach.
961 	 * Do this in reverse order and fall through.
962 	 */
963 	switch (stage) {
964 	case SIP_ATTACH_FIN:
965 		sipcom_stop(ifp, 1);
966 		pmf_device_deregister(self);
967 #ifdef SIP_EVENT_COUNTERS
968 		/*
969 		 * Attach event counters.
970 		 */
971 		evcnt_detach(&sc->sc_ev_txforceintr);
972 		evcnt_detach(&sc->sc_ev_txdstall);
973 		evcnt_detach(&sc->sc_ev_hiberr);
974 		evcnt_detach(&sc->sc_ev_rxintr);
975 		evcnt_detach(&sc->sc_ev_txiintr);
976 		evcnt_detach(&sc->sc_ev_txdintr);
977 		if (!sc->sc_gigabit) {
978 			evcnt_detach(&sc->sc_ev_rxpause);
979 		} else {
980 			evcnt_detach(&sc->sc_ev_txudpsum);
981 			evcnt_detach(&sc->sc_ev_txtcpsum);
982 			evcnt_detach(&sc->sc_ev_txipsum);
983 			evcnt_detach(&sc->sc_ev_rxudpsum);
984 			evcnt_detach(&sc->sc_ev_rxtcpsum);
985 			evcnt_detach(&sc->sc_ev_rxipsum);
986 			evcnt_detach(&sc->sc_ev_txpause);
987 			evcnt_detach(&sc->sc_ev_rxpause);
988 		}
989 #endif /* SIP_EVENT_COUNTERS */
990 
991 		rnd_detach_source(&sc->rnd_source);
992 
993 		ether_ifdetach(ifp);
994 		if_detach(ifp);
995 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
996 		ifmedia_fini(&sc->sc_mii.mii_media);
997 
998 		/*FALLTHROUGH*/
999 	case SIP_ATTACH_CREATE_RXMAP:
1000 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1001 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1002 				bus_dmamap_destroy(sc->sc_dmat,
1003 				    sc->sc_rxsoft[i].rxs_dmamap);
1004 		}
1005 		/*FALLTHROUGH*/
1006 	case SIP_ATTACH_CREATE_TXMAP:
1007 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
1008 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
1009 				bus_dmamap_destroy(sc->sc_dmat,
1010 				    sc->sc_txsoft[i].txs_dmamap);
1011 		}
1012 		/*FALLTHROUGH*/
1013 	case SIP_ATTACH_LOAD_MAP:
1014 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1015 		/*FALLTHROUGH*/
1016 	case SIP_ATTACH_CREATE_MAP:
1017 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1018 		/*FALLTHROUGH*/
1019 	case SIP_ATTACH_MAP_MEM:
1020 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1021 		    sizeof(struct sip_control_data));
1022 		/*FALLTHROUGH*/
1023 	case SIP_ATTACH_ALLOC_MEM:
1024 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
1025 		/* FALLTHROUGH*/
1026 	case SIP_ATTACH_INTR:
1027 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1028 		/* FALLTHROUGH*/
1029 	case SIP_ATTACH_MAP:
1030 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1031 		break;
1032 	default:
1033 		break;
1034 	}
1035 	return;
1036 }
1037 
1038 static bool
sipcom_resume(device_t self,const pmf_qual_t * qual)1039 sipcom_resume(device_t self, const pmf_qual_t *qual)
1040 {
1041 	struct sip_softc *sc = device_private(self);
1042 
1043 	return sipcom_reset(sc);
1044 }
1045 
1046 static bool
sipcom_suspend(device_t self,const pmf_qual_t * qual)1047 sipcom_suspend(device_t self, const pmf_qual_t *qual)
1048 {
1049 	struct sip_softc *sc = device_private(self);
1050 
1051 	sipcom_rxdrain(sc);
1052 	return true;
1053 }
1054 
1055 static void
sipcom_attach(device_t parent,device_t self,void * aux)1056 sipcom_attach(device_t parent, device_t self, void *aux)
1057 {
1058 	struct sip_softc *sc = device_private(self);
1059 	struct pci_attach_args *pa = aux;
1060 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1061 	struct mii_data * const mii = &sc->sc_mii;
1062 	pci_chipset_tag_t pc = pa->pa_pc;
1063 	pci_intr_handle_t ih;
1064 	const char *intrstr = NULL;
1065 	bus_space_tag_t iot, memt;
1066 	bus_space_handle_t ioh, memh;
1067 	bus_size_t iosz, memsz;
1068 	int ioh_valid, memh_valid;
1069 	int i, rseg, error;
1070 	const struct sip_product *sip;
1071 	uint8_t enaddr[ETHER_ADDR_LEN];
1072 	pcireg_t csr;
1073 	pcireg_t memtype;
1074 	bus_size_t tx_dmamap_size;
1075 	int ntxsegs_alloc;
1076 	cfdata_t cf = device_cfdata(self);
1077 	char intrbuf[PCI_INTRSTR_LEN];
1078 
1079 	callout_init(&sc->sc_tick_ch, 0);
1080 	callout_setfunc(&sc->sc_tick_ch, sipcom_tick, sc);
1081 
1082 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1083 	if (sip == NULL) {
1084 		aprint_error("\n");
1085 		panic("%s: impossible", __func__);
1086 	}
1087 	sc->sc_dev = self;
1088 	sc->sc_gigabit = sip->sip_gigabit;
1089 	sc->sc_dma64 = false;
1090 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1091 	sc->sc_pc = pc;
1092 
1093 	if (sc->sc_gigabit) {
1094 		if (sc->sc_dma64) {
1095 			sc->sc_bufptr_idx = GSIP64_DESC_BUFPTR_LO;
1096 			sc->sc_cmdsts_idx = GSIP64_DESC_CMDSTS;
1097 			sc->sc_extsts_idx = GSIP64_DESC_EXTSTS;
1098 		} else {
1099 			sc->sc_bufptr_idx = GSIP_DESC_BUFPTR;
1100 			sc->sc_cmdsts_idx = GSIP_DESC_CMDSTS;
1101 			sc->sc_extsts_idx = GSIP_DESC_EXTSTS;
1102 		}
1103 		sc->sc_rxintr = gsip_rxintr;
1104 		sc->sc_parm = &gsip_parm;
1105 	} else {
1106 		sc->sc_rxintr = sip_rxintr;
1107 		sc->sc_parm = &sip_parm;
1108 		sc->sc_bufptr_idx = SIP_DESC_BUFPTR;
1109 		sc->sc_cmdsts_idx = SIP_DESC_CMDSTS;
1110 		/*
1111 		 * EXTSTS doesn't really exist on non-GigE parts,
1112 		 * but we initialize the index for simplicity later.
1113 		 */
1114 		sc->sc_extsts_idx = GSIP_DESC_EXTSTS;
1115 	}
1116 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1117 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1118 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1119 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1120 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1121 
1122 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1123 
1124 	aprint_naive("\n");
1125 	aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1126 
1127 	sc->sc_model = sip;
1128 
1129 	/*
1130 	 * XXX Work-around broken PXE firmware on some boards.
1131 	 *
1132 	 * The DP83815 shares an address decoder with the MEM BAR
1133 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1134 	 * so that memory mapped access works.
1135 	 */
1136 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1137 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1138 	    ~PCI_MAPREG_ROM_ENABLE);
1139 
1140 	/*
1141 	 * Map the device.
1142 	 */
1143 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1144 	    PCI_MAPREG_TYPE_IO, 0,
1145 	    &iot, &ioh, NULL, &iosz) == 0);
1146 	if (sc->sc_gigabit) {
1147 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1148 		switch (memtype) {
1149 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1150 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1151 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1152 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1153 			break;
1154 		default:
1155 			memh_valid = 0;
1156 		}
1157 	} else {
1158 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1159 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
1160 		    &memt, &memh, NULL, &memsz) == 0);
1161 	}
1162 
1163 	if (memh_valid) {
1164 		sc->sc_st = memt;
1165 		sc->sc_sh = memh;
1166 		sc->sc_sz = memsz;
1167 	} else if (ioh_valid) {
1168 		sc->sc_st = iot;
1169 		sc->sc_sh = ioh;
1170 		sc->sc_sz = iosz;
1171 	} else {
1172 		aprint_error_dev(self, "unable to map device registers\n");
1173 		return;
1174 	}
1175 
1176 	sc->sc_dmat = pa->pa_dmat;
1177 
1178 	/*
1179 	 * Make sure bus mastering is enabled.  Also make sure
1180 	 * Write/Invalidate is enabled if we're allowed to use it.
1181 	 */
1182 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1183 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1184 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1185 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1186 	    csr | PCI_COMMAND_MASTER_ENABLE);
1187 
1188 	/* Power up chip */
1189 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1190 	if (error != 0 && error != EOPNOTSUPP) {
1191 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * Map and establish our interrupt.
1197 	 */
1198 	if (pci_intr_map(pa, &ih)) {
1199 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1200 		return;
1201 	}
1202 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1203 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1204 	    device_xname(self));
1205 	if (sc->sc_ih == NULL) {
1206 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1207 		if (intrstr != NULL)
1208 			aprint_error(" at %s", intrstr);
1209 		aprint_error("\n");
1210 		sipcom_do_detach(self, SIP_ATTACH_MAP);
1211 		return;
1212 	}
1213 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1214 
1215 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1216 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1217 
1218 	/*
1219 	 * Allocate the control data structures, and create and load the
1220 	 * DMA map for it.
1221 	 */
1222 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1223 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1224 	    &rseg, 0)) != 0) {
1225 		aprint_error_dev(sc->sc_dev,
1226 		    "unable to allocate control data, error = %d\n", error);
1227 		sipcom_do_detach(self, SIP_ATTACH_INTR);
1228 		return;
1229 	}
1230 
1231 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1232 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1233 	    BUS_DMA_COHERENT)) != 0) {
1234 		aprint_error_dev(sc->sc_dev,
1235 		    "unable to map control data, error = %d\n", error);
1236 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1237 	}
1238 
1239 	if ((error = bus_dmamap_create(sc->sc_dmat,
1240 	    sizeof(struct sip_control_data), 1,
1241 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1242 		aprint_error_dev(self, "unable to create control data DMA map"
1243 		    ", error = %d\n", error);
1244 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1245 	}
1246 
1247 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1248 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1249 	    0)) != 0) {
1250 		aprint_error_dev(self, "unable to load control data DMA map"
1251 		    ", error = %d\n", error);
1252 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1253 	}
1254 
1255 	/*
1256 	 * Create the transmit buffer DMA maps.
1257 	 */
1258 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1259 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1260 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1261 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1262 			aprint_error_dev(self, "unable to create tx DMA map %d"
1263 			    ", error = %d\n", i, error);
1264 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * Create the receive buffer DMA maps.
1270 	 */
1271 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1272 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1273 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1274 			aprint_error_dev(self, "unable to create rx DMA map %d"
1275 			    ", error = %d\n", i, error);
1276 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1277 		}
1278 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1279 	}
1280 
1281 	/*
1282 	 * Reset the chip to a known state.
1283 	 */
1284 	sipcom_reset(sc);
1285 
1286 	/*
1287 	 * Read the Ethernet address from the EEPROM.  This might
1288 	 * also fetch other stuff from the EEPROM and stash it
1289 	 * in the softc.
1290 	 */
1291 	sc->sc_cfg = 0;
1292 	if (!sc->sc_gigabit) {
1293 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1294 		    SIP_SIS900_REV(sc, SIS_REV_900B))
1295 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1296 
1297 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1298 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
1299 		    SIP_SIS900_REV(sc, SIS_REV_900B))
1300 			sc->sc_cfg |=
1301 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1302 			     CFG_EDBMASTEN);
1303 	}
1304 
1305 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1306 
1307 	aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1308 
1309 	/*
1310 	 * Initialize the configuration register: aggressive PCI
1311 	 * bus request algorithm, default backoff, default OW timer,
1312 	 * default parity error detection.
1313 	 *
1314 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1315 	 * friends -- it affects packet data, not descriptors.
1316 	 */
1317 	if (sc->sc_gigabit)
1318 		sipcom_dp83820_attach(sc, pa);
1319 
1320 	/*
1321 	 * Initialize our media structures and probe the MII.
1322 	 */
1323 	mii->mii_ifp = ifp;
1324 	mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
1325 	mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
1326 	mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
1327 	sc->sc_ethercom.ec_mii = mii;
1328 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1329 	    sipcom_mediastatus);
1330 
1331 	/*
1332 	 * XXX We cannot handle flow control on the DP83815.
1333 	 */
1334 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1335 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1336 			   MII_OFFSET_ANY, 0);
1337 	else
1338 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1339 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1340 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1341 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1342 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1343 	} else
1344 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1345 
1346 	ifp = &sc->sc_ethercom.ec_if;
1347 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1348 	ifp->if_softc = sc;
1349 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1350 	sc->sc_if_flags = ifp->if_flags;
1351 	ifp->if_ioctl = sipcom_ioctl;
1352 	ifp->if_start = sipcom_start;
1353 	ifp->if_watchdog = sipcom_watchdog;
1354 	ifp->if_init = sipcom_init;
1355 	ifp->if_stop = sipcom_stop;
1356 	IFQ_SET_READY(&ifp->if_snd);
1357 
1358 	/*
1359 	 * We can support 802.1Q VLAN-sized frames.
1360 	 */
1361 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1362 
1363 	if (sc->sc_gigabit) {
1364 		/*
1365 		 * And the DP83820 can do VLAN tagging in hardware, and
1366 		 * support the jumbo Ethernet MTU.
1367 		 */
1368 		sc->sc_ethercom.ec_capabilities |=
1369 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1370 		sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1371 
1372 		/*
1373 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1374 		 * in hardware.
1375 		 */
1376 		ifp->if_capabilities |=
1377 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1378 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1379 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1380 	}
1381 
1382 	/*
1383 	 * Attach the interface.
1384 	 */
1385 	if_attach(ifp);
1386 	if_deferred_start_init(ifp, NULL);
1387 	ether_ifattach(ifp, enaddr);
1388 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1389 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1390 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1391 	sc->sc_prev.if_capenable = ifp->if_capenable;
1392 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1393 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1394 
1395 	/*
1396 	 * The number of bytes that must be available in
1397 	 * the Tx FIFO before the bus master can DMA more
1398 	 * data into the FIFO.
1399 	 */
1400 	sc->sc_tx_fill_thresh = 64 / 32;
1401 
1402 	/*
1403 	 * Start at a drain threshold of 512 bytes.  We will
1404 	 * increase it if a DMA underrun occurs.
1405 	 *
1406 	 * XXX The minimum value of this variable should be
1407 	 * tuned.  We may be able to improve performance
1408 	 * by starting with a lower value.  That, however,
1409 	 * may trash the first few outgoing packets if the
1410 	 * PCI bus is saturated.
1411 	 */
1412 	if (sc->sc_gigabit)
1413 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1414 	else
1415 		sc->sc_tx_drain_thresh = 1504 / 32;
1416 
1417 	/*
1418 	 * Initialize the Rx FIFO drain threshold.
1419 	 *
1420 	 * This is in units of 8 bytes.
1421 	 *
1422 	 * We should never set this value lower than 2; 14 bytes are
1423 	 * required to filter the packet.
1424 	 */
1425 	sc->sc_rx_drain_thresh = 128 / 8;
1426 
1427 #ifdef SIP_EVENT_COUNTERS
1428 	/*
1429 	 * Attach event counters.
1430 	 */
1431 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1432 	    NULL, device_xname(sc->sc_dev), "txdstall");
1433 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1434 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1435 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1436 	    NULL, device_xname(sc->sc_dev), "txdintr");
1437 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1438 	    NULL, device_xname(sc->sc_dev), "txiintr");
1439 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1440 	    NULL, device_xname(sc->sc_dev), "rxintr");
1441 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1442 	    NULL, device_xname(sc->sc_dev), "hiberr");
1443 	if (!sc->sc_gigabit) {
1444 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1445 		    NULL, device_xname(sc->sc_dev), "rxpause");
1446 	} else {
1447 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1448 		    NULL, device_xname(sc->sc_dev), "rxpause");
1449 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1450 		    NULL, device_xname(sc->sc_dev), "txpause");
1451 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1452 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1453 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1454 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1455 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1456 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1457 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1458 		    NULL, device_xname(sc->sc_dev), "txipsum");
1459 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1460 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1461 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1462 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1463 	}
1464 #endif /* SIP_EVENT_COUNTERS */
1465 
1466 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1467 		pmf_class_network_register(self, ifp);
1468 	else
1469 		aprint_error_dev(self, "couldn't establish power handler\n");
1470 }
1471 
1472 static inline void
sipcom_set_extsts(struct sip_softc * sc,int lasttx,struct mbuf * m0,uint64_t capenable)1473 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1474     uint64_t capenable)
1475 {
1476 	uint32_t extsts = 0;
1477 #ifdef DEBUG
1478 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1479 #endif
1480 	/*
1481 	 * If VLANs are enabled and the packet has a VLAN tag, set
1482 	 * up the descriptor to encapsulate the packet for us.
1483 	 *
1484 	 * This apparently has to be on the last descriptor of
1485 	 * the packet.
1486 	 */
1487 
1488 	/*
1489 	 * Byte swapping is tricky. We need to provide the tag
1490 	 * in a network byte order. On a big-endian machine,
1491 	 * the byteorder is correct, but we need to swap it
1492 	 * anyway, because this will be undone by the outside
1493 	 * htole32(). That's why there must be an
1494 	 * unconditional swap instead of htons() inside.
1495 	 */
1496 	if (vlan_has_tag(m0)) {
1497 		sc->sc_txdescs[lasttx].sipd_words[sc->sc_extsts_idx] |=
1498 		    htole32(EXTSTS_VPKT |
1499 				(bswap16(vlan_get_tag(m0)) &
1500 				 EXTSTS_VTCI));
1501 	}
1502 
1503 	/*
1504 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1505 	 * checksumming, set up the descriptor to do this work
1506 	 * for us.
1507 	 *
1508 	 * This apparently has to be on the first descriptor of
1509 	 * the packet.
1510 	 *
1511 	 * Byte-swap constants so the compiler can optimize.
1512 	 */
1513 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1514 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1515 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1516 		extsts |= htole32(EXTSTS_IPPKT);
1517 	}
1518 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1519 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1520 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1521 		extsts |= htole32(EXTSTS_TCPPKT);
1522 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1523 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1524 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1525 		extsts |= htole32(EXTSTS_UDPPKT);
1526 	}
1527 	sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_extsts_idx] |= extsts;
1528 }
1529 
1530 /*
1531  * sip_start:		[ifnet interface function]
1532  *
1533  *	Start packet transmission on the interface.
1534  */
1535 static void
sipcom_start(struct ifnet * ifp)1536 sipcom_start(struct ifnet *ifp)
1537 {
1538 	struct sip_softc *sc = ifp->if_softc;
1539 	struct mbuf *m0;
1540 	struct mbuf *m;
1541 	struct sip_txsoft *txs;
1542 	bus_dmamap_t dmamap;
1543 	int error, nexttx, lasttx, seg;
1544 	int ofree = sc->sc_txfree;
1545 	uint32_t cmdsts;
1546 #if 0
1547 	int firsttx = sc->sc_txnext;
1548 #endif
1549 
1550 	/*
1551 	 * If we've been told to pause, don't transmit any more packets.
1552 	 */
1553 	if (!sc->sc_gigabit && sc->sc_paused)
1554 		return;
1555 
1556 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1557 		return;
1558 
1559 	/*
1560 	 * Loop through the send queue, setting up transmit descriptors
1561 	 * until we drain the queue, or use up all available transmit
1562 	 * descriptors.
1563 	 */
1564 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL) {
1565 		/*
1566 		 * Grab a packet off the queue.
1567 		 */
1568 		IFQ_POLL(&ifp->if_snd, m0);
1569 		if (m0 == NULL)
1570 			break;
1571 		m = NULL;
1572 
1573 		dmamap = txs->txs_dmamap;
1574 
1575 		/*
1576 		 * Load the DMA map.  If this fails, the packet either
1577 		 * didn't fit in the alloted number of segments, or we
1578 		 * were short on resources.
1579 		 */
1580 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1581 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1582 		/* In the non-gigabit case, we'll copy and try again. */
1583 		if (error != 0 && !sc->sc_gigabit) {
1584 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1585 			if (m == NULL) {
1586 				printf("%s: unable to allocate Tx mbuf\n",
1587 				    device_xname(sc->sc_dev));
1588 				break;
1589 			}
1590 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1591 			if (m0->m_pkthdr.len > MHLEN) {
1592 				MCLGET(m, M_DONTWAIT);
1593 				if ((m->m_flags & M_EXT) == 0) {
1594 					printf("%s: unable to allocate Tx "
1595 					    "cluster\n",
1596 					    device_xname(sc->sc_dev));
1597 					m_freem(m);
1598 					break;
1599 				}
1600 			}
1601 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1602 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1603 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1604 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1605 			if (error) {
1606 				printf("%s: unable to load Tx buffer, error = "
1607 				    "%d\n", device_xname(sc->sc_dev), error);
1608 				break;
1609 			}
1610 		} else if (error == EFBIG) {
1611 			/*
1612 			 * For the too-many-segments case, we simply
1613 			 * report an error and drop the packet,
1614 			 * since we can't sanely copy a jumbo packet
1615 			 * to a single buffer.
1616 			 */
1617 			printf("%s: Tx packet consumes too many DMA segments, "
1618 			    "dropping...\n", device_xname(sc->sc_dev));
1619 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1620 			m_freem(m0);
1621 			continue;
1622 		} else if (error != 0) {
1623 			/*
1624 			 * Short on resources, just stop for now.
1625 			 */
1626 			break;
1627 		}
1628 
1629 		/*
1630 		 * Ensure we have enough descriptors free to describe
1631 		 * the packet.  Note, we always reserve one descriptor
1632 		 * at the end of the ring as a termination point, to
1633 		 * prevent wrap-around.
1634 		 */
1635 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1636 			/*
1637 			 * Not enough free descriptors to transmit this
1638 			 * packet.
1639 			 */
1640 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1641 			if (m != NULL)
1642 				m_freem(m);
1643 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1644 			break;
1645 		}
1646 
1647 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1648 		if (m != NULL) {
1649 			m_freem(m0);
1650 			m0 = m;
1651 		}
1652 
1653 		/*
1654 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1655 		 */
1656 
1657 		/* Sync the DMA map. */
1658 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1659 		    BUS_DMASYNC_PREWRITE);
1660 
1661 		/*
1662 		 * Initialize the transmit descriptors.
1663 		 */
1664 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1665 		     seg < dmamap->dm_nsegs;
1666 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1667 			/*
1668 			 * If this is the first descriptor we're
1669 			 * enqueueing, don't set the OWN bit just
1670 			 * yet.  That could cause a race condition.
1671 			 * We'll do it below.
1672 			 */
1673 
1674 			cmdsts = dmamap->dm_segs[seg].ds_len;
1675 			if (nexttx != sc->sc_txnext)
1676 				cmdsts |= CMDSTS_OWN;
1677 			if (seg < dmamap->dm_nsegs - 1)
1678 				cmdsts |= CMDSTS_MORE;
1679 			sip_init_txdesc(sc, nexttx,
1680 					dmamap->dm_segs[seg].ds_addr, cmdsts);
1681 			lasttx = nexttx;
1682 		}
1683 
1684 		/*
1685 		 * If we're in the interrupt delay window, delay the
1686 		 * interrupt.
1687 		 */
1688 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1689 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1690 			sc->sc_txdescs[lasttx].sipd_words[sc->sc_cmdsts_idx] |=
1691 			    htole32(CMDSTS_INTR);
1692 			sc->sc_txwin = 0;
1693 		}
1694 
1695 		if (sc->sc_gigabit)
1696 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1697 
1698 		/* Sync the descriptors we're using. */
1699 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1700 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1701 
1702 		/*
1703 		 * The entire packet is set up.  Give the first descriptor
1704 		 * to the chip now.
1705 		 */
1706 		sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_cmdsts_idx] |=
1707 		    htole32(CMDSTS_OWN);
1708 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1709 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1710 
1711 		/*
1712 		 * Store a pointer to the packet so we can free it later,
1713 		 * and remember what txdirty will be once the packet is
1714 		 * done.
1715 		 */
1716 		txs->txs_mbuf = m0;
1717 		txs->txs_firstdesc = sc->sc_txnext;
1718 		txs->txs_lastdesc = lasttx;
1719 
1720 		/* Advance the tx pointer. */
1721 		sc->sc_txfree -= dmamap->dm_nsegs;
1722 		sc->sc_txnext = nexttx;
1723 
1724 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1725 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1726 
1727 		/* Pass the packet to any BPF listeners. */
1728 		bpf_mtap(ifp, m0, BPF_D_OUT);
1729 	}
1730 
1731 	if (sc->sc_txfree != ofree) {
1732 		/*
1733 		 * Start the transmit process.  Note, the manual says
1734 		 * that if there are no pending transmissions in the
1735 		 * chip's internal queue (indicated by TXE being clear),
1736 		 * then the driver software must set the TXDP to the
1737 		 * first descriptor to be transmitted.  However, if we
1738 		 * do this, it causes serious performance degradation on
1739 		 * the DP83820 under load, not setting TXDP doesn't seem
1740 		 * to adversely affect the SiS 900 or DP83815.
1741 		 *
1742 		 * Well, I guess it wouldn't be the first time a manual
1743 		 * has lied -- and they could be speaking of the NULL-
1744 		 * terminated descriptor list case, rather than OWN-
1745 		 * terminated rings.
1746 		 */
1747 #if 0
1748 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1749 		     CR_TXE) == 0) {
1750 			sip_set_txdp(sc, SIP_CDTXADDR(sc, firsttx));
1751 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1752 		}
1753 #else
1754 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1755 #endif
1756 
1757 		/* Set a watchdog timer in case the chip flakes out. */
1758 		/* Gigabit autonegotiation takes 5 seconds. */
1759 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1760 	}
1761 }
1762 
1763 /*
1764  * sip_watchdog:	[ifnet interface function]
1765  *
1766  *	Watchdog timer handler.
1767  */
1768 static void
sipcom_watchdog(struct ifnet * ifp)1769 sipcom_watchdog(struct ifnet *ifp)
1770 {
1771 	struct sip_softc *sc = ifp->if_softc;
1772 
1773 	/*
1774 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1775 	 * If we get a timeout, try and sweep up transmit descriptors.
1776 	 * If we manage to sweep them all up, ignore the lack of
1777 	 * interrupt.
1778 	 */
1779 	sipcom_txintr(sc);
1780 
1781 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1782 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1783 		if_statinc(ifp, if_oerrors);
1784 
1785 		/* Reset the interface. */
1786 		(void) sipcom_init(ifp);
1787 	} else if (ifp->if_flags & IFF_DEBUG)
1788 		printf("%s: recovered from device timeout\n",
1789 		    device_xname(sc->sc_dev));
1790 
1791 	/* Try to get more packets going. */
1792 	sipcom_start(ifp);
1793 }
1794 
1795 /* If the interface is up and running, only modify the receive
1796  * filter when setting promiscuous or debug mode.  Otherwise fall
1797  * through to ether_ioctl, which will reset the chip.
1798  */
1799 static int
sip_ifflags_cb(struct ethercom * ec)1800 sip_ifflags_cb(struct ethercom *ec)
1801 {
1802 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1803 			 == (sc)->sc_ethercom.ec_capenable)		\
1804 			&& ((sc)->sc_prev.is_vlan ==			\
1805 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1806 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1807 	struct ifnet *ifp = &ec->ec_if;
1808 	struct sip_softc *sc = ifp->if_softc;
1809 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
1810 
1811 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1812 	    !COMPARE_IC(sc, ifp))
1813 		return ENETRESET;
1814 	/* Set up the receive filter. */
1815 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1816 	return 0;
1817 }
1818 
1819 /*
1820  * sip_ioctl:		[ifnet interface function]
1821  *
1822  *	Handle control requests from the operator.
1823  */
1824 static int
sipcom_ioctl(struct ifnet * ifp,u_long cmd,void * data)1825 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1826 {
1827 	struct sip_softc *sc = ifp->if_softc;
1828 	struct ifreq *ifr = (struct ifreq *)data;
1829 	int s, error;
1830 
1831 	s = splnet();
1832 
1833 	switch (cmd) {
1834 	case SIOCSIFMEDIA:
1835 		/* Flow control requires full-duplex mode. */
1836 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1837 		    (ifr->ifr_media & IFM_FDX) == 0)
1838 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1839 
1840 		/* XXX */
1841 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1842 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1843 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1844 			if (sc->sc_gigabit &&
1845 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1846 				/* We can do both TXPAUSE and RXPAUSE. */
1847 				ifr->ifr_media |=
1848 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1849 			} else if (ifr->ifr_media & IFM_FLOW) {
1850 				/*
1851 				 * Both TXPAUSE and RXPAUSE must be set.
1852 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1853 				 * feature.)
1854 				 *
1855 				 * XXX Can SiS900 and DP83815 send PAUSE?
1856 				 */
1857 				ifr->ifr_media |=
1858 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1859 			}
1860 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1861 		}
1862 		/*FALLTHROUGH*/
1863 	default:
1864 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1865 			break;
1866 
1867 		error = 0;
1868 
1869 		if (cmd == SIOCSIFCAP)
1870 			error = if_init(ifp);
1871 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1872 			;
1873 		else if (ifp->if_flags & IFF_RUNNING) {
1874 			/*
1875 			 * Multicast list has changed; set the hardware filter
1876 			 * accordingly.
1877 			 */
1878 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1879 		}
1880 		break;
1881 	}
1882 
1883 	/* Try to get more packets going. */
1884 	sipcom_start(ifp);
1885 
1886 	sc->sc_if_flags = ifp->if_flags;
1887 	splx(s);
1888 	return error;
1889 }
1890 
1891 /*
1892  * sip_intr:
1893  *
1894  *	Interrupt service routine.
1895  */
1896 static int
sipcom_intr(void * arg)1897 sipcom_intr(void *arg)
1898 {
1899 	struct sip_softc *sc = arg;
1900 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1901 	uint32_t isr;
1902 	int handled = 0;
1903 
1904 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1905 		return 0;
1906 
1907 	/* Disable interrupts. */
1908 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1909 
1910 	for (;;) {
1911 		/* Reading clears interrupt. */
1912 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1913 		if ((isr & sc->sc_imr) == 0)
1914 			break;
1915 
1916 		rnd_add_uint32(&sc->rnd_source, isr);
1917 
1918 		handled = 1;
1919 
1920 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1921 			break;
1922 
1923 		if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
1924 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1925 
1926 			/* Grab any new packets. */
1927 			(*sc->sc_rxintr)(sc);
1928 
1929 			if (isr & ISR_RXORN) {
1930 				printf("%s: receive FIFO overrun\n",
1931 				    device_xname(sc->sc_dev));
1932 
1933 				/* XXX adjust rx_drain_thresh? */
1934 			}
1935 
1936 			if (isr & ISR_RXIDLE) {
1937 				printf("%s: receive ring overrun\n",
1938 				    device_xname(sc->sc_dev));
1939 
1940 				/* Get the receive process going again. */
1941 				sip_set_rxdp(sc,
1942 				    SIP_CDRXADDR(sc, sc->sc_rxptr));
1943 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1944 				    SIP_CR, CR_RXE);
1945 			}
1946 		}
1947 
1948 		if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
1949 #ifdef SIP_EVENT_COUNTERS
1950 			if (isr & ISR_TXDESC)
1951 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1952 			else if (isr & ISR_TXIDLE)
1953 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1954 #endif
1955 
1956 			/* Sweep up transmit descriptors. */
1957 			sipcom_txintr(sc);
1958 
1959 			if (isr & ISR_TXURN) {
1960 				uint32_t thresh;
1961 				int txfifo_size = (sc->sc_gigabit)
1962 				    ? DP83820_SIP_TXFIFO_SIZE
1963 				    : OTHER_SIP_TXFIFO_SIZE;
1964 
1965 				printf("%s: transmit FIFO underrun",
1966 				    device_xname(sc->sc_dev));
1967 				thresh = sc->sc_tx_drain_thresh + 1;
1968 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1969 				&& (thresh * 32) <= (txfifo_size -
1970 				     (sc->sc_tx_fill_thresh * 32))) {
1971 					printf("; increasing Tx drain "
1972 					    "threshold to %u bytes\n",
1973 					    thresh * 32);
1974 					sc->sc_tx_drain_thresh = thresh;
1975 					(void) sipcom_init(ifp);
1976 				} else {
1977 					(void) sipcom_init(ifp);
1978 					printf("\n");
1979 				}
1980 			}
1981 		}
1982 
1983 		if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
1984 			if (isr & ISR_PAUSE_ST) {
1985 				sc->sc_paused = 1;
1986 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1987 			}
1988 			if (isr & ISR_PAUSE_END) {
1989 				sc->sc_paused = 0;
1990 			}
1991 		}
1992 
1993 		if (isr & ISR_HIBERR) {
1994 			int want_init = 0;
1995 
1996 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1997 
1998 #define	PRINTERR(bit, str)						\
1999 			do {						\
2000 				if ((isr & (bit)) != 0) {		\
2001 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
2002 						printf("%s: %s\n",	\
2003 						    device_xname(sc->sc_dev), str); \
2004 					want_init = 1;			\
2005 				}					\
2006 			} while (/*CONSTCOND*/0)
2007 
2008 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
2009 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
2010 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
2011 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
2012 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
2013 			/*
2014 			 * Ignore:
2015 			 *	Tx reset complete
2016 			 *	Rx reset complete
2017 			 */
2018 			if (want_init)
2019 				(void) sipcom_init(ifp);
2020 #undef PRINTERR
2021 		}
2022 	}
2023 
2024 	/* Re-enable interrupts. */
2025 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
2026 
2027 	/* Try to get more packets going. */
2028 	if_schedule_deferred_start(ifp);
2029 
2030 	return handled;
2031 }
2032 
2033 /*
2034  * sip_txintr:
2035  *
2036  *	Helper; handle transmit interrupts.
2037  */
2038 static void
sipcom_txintr(struct sip_softc * sc)2039 sipcom_txintr(struct sip_softc *sc)
2040 {
2041 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2042 	struct sip_txsoft *txs;
2043 	uint32_t cmdsts;
2044 
2045 	/*
2046 	 * Go through our Tx list and free mbufs for those
2047 	 * frames which have been transmitted.
2048 	 */
2049 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2050 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
2051 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2052 
2053 		cmdsts = le32toh(sc->sc_txdescs[
2054 		    txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]);
2055 		if (cmdsts & CMDSTS_OWN)
2056 			break;
2057 
2058 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2059 
2060 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
2061 
2062 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2063 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2064 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2065 		m_freem(txs->txs_mbuf);
2066 		txs->txs_mbuf = NULL;
2067 
2068 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2069 
2070 		/* Check for errors and collisions. */
2071 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2072 		if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
2073 		    CMDSTS_Tx_EC)) {
2074 			if_statinc_ref(nsr, if_oerrors);
2075 			if (cmdsts & CMDSTS_Tx_EC)
2076 				if_statadd_ref(nsr, if_collisions, 16);
2077 			if (ifp->if_flags & IFF_DEBUG) {
2078 				if (cmdsts & CMDSTS_Tx_ED)
2079 					printf("%s: excessive deferral\n",
2080 					    device_xname(sc->sc_dev));
2081 				if (cmdsts & CMDSTS_Tx_EC)
2082 					printf("%s: excessive collisions\n",
2083 					    device_xname(sc->sc_dev));
2084 			}
2085 		} else {
2086 			/* Packet was transmitted successfully. */
2087 			if_statinc_ref(nsr, if_opackets);
2088 			if (CMDSTS_COLLISIONS(cmdsts))
2089 				if_statadd_ref(nsr, if_collisions,
2090 				    CMDSTS_COLLISIONS(cmdsts));
2091 		}
2092 		IF_STAT_PUTREF(ifp);
2093 	}
2094 
2095 	/*
2096 	 * If there are no more pending transmissions, cancel the watchdog
2097 	 * timer.
2098 	 */
2099 	if (txs == NULL) {
2100 		ifp->if_timer = 0;
2101 		sc->sc_txwin = 0;
2102 	}
2103 }
2104 
2105 /*
2106  * gsip_rxintr:
2107  *
2108  *	Helper; handle receive interrupts on gigabit parts.
2109  */
2110 static void
gsip_rxintr(struct sip_softc * sc)2111 gsip_rxintr(struct sip_softc *sc)
2112 {
2113 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2114 	struct sip_rxsoft *rxs;
2115 	struct mbuf *m;
2116 	uint32_t cmdsts, extsts;
2117 	int i, len;
2118 
2119 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2120 		rxs = &sc->sc_rxsoft[i];
2121 
2122 		sip_cdrxsync(sc, i,
2123 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2124 
2125 		cmdsts =
2126 		    le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]);
2127 
2128 		/*
2129 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2130 		 * consumer of the receive ring, so if the bit is clear,
2131 		 * we have processed all of the packets.
2132 		 */
2133 		if ((cmdsts & CMDSTS_OWN) == 0) {
2134 			/*
2135 			 * We have processed all of the receive buffers.
2136 			 */
2137 			break;
2138 		}
2139 
2140 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD);
2141 
2142 		extsts =
2143 		    le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_extsts_idx]);
2144 		len = CMDSTS_SIZE(sc, cmdsts);
2145 
2146 		if (__predict_false(sc->sc_rxdiscard)) {
2147 			sip_init_rxdesc(sc, i);
2148 			if ((cmdsts & CMDSTS_MORE) == 0) {
2149 				/* Reset our state. */
2150 				sc->sc_rxdiscard = 0;
2151 			}
2152 			continue;
2153 		}
2154 
2155 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2156 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2157 
2158 		m = rxs->rxs_mbuf;
2159 
2160 		/*
2161 		 * Add a new receive buffer to the ring.
2162 		 */
2163 		if (sipcom_add_rxbuf(sc, i) != 0) {
2164 			/*
2165 			 * Failed, throw away what we've done so
2166 			 * far, and discard the rest of the packet.
2167 			 */
2168 			if_statinc(ifp, if_ierrors);
2169 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2170 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2171 			sip_init_rxdesc(sc, i);
2172 			if (cmdsts & CMDSTS_MORE)
2173 				sc->sc_rxdiscard = 1;
2174 			if (sc->sc_rxhead != NULL)
2175 				m_freem(sc->sc_rxhead);
2176 			sip_rxchain_reset(sc);
2177 			continue;
2178 		}
2179 
2180 		sip_rxchain_link(sc, m);
2181 
2182 		m->m_len = len;
2183 
2184 		/*
2185 		 * If this is not the end of the packet, keep
2186 		 * looking.
2187 		 */
2188 		if (cmdsts & CMDSTS_MORE) {
2189 			sc->sc_rxlen += len;
2190 			continue;
2191 		}
2192 
2193 		/*
2194 		 * Okay, we have the entire packet now.  The chip includes
2195 		 * the FCS, so we need to trim it.
2196 		 */
2197 		m->m_len -= ETHER_CRC_LEN;
2198 
2199 		*sc->sc_rxtailp = NULL;
2200 		len = m->m_len + sc->sc_rxlen;
2201 		m = sc->sc_rxhead;
2202 
2203 		sip_rxchain_reset(sc);
2204 
2205 		/* If an error occurred, update stats and drop the packet. */
2206 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_LONG | CMDSTS_Rx_RUNT |
2207 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2208 			if_statinc(ifp, if_ierrors);
2209 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2210 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2211 				/* Receive overrun handled elsewhere. */
2212 				printf("%s: receive descriptor error\n",
2213 				    device_xname(sc->sc_dev));
2214 			}
2215 #define	PRINTERR(bit, str)						\
2216 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2217 			    (cmdsts & (bit)) != 0)			\
2218 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2219 			PRINTERR(CMDSTS_Rx_LONG, "Too long packet");
2220 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2221 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2222 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2223 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2224 #undef PRINTERR
2225 			m_freem(m);
2226 			continue;
2227 		}
2228 
2229 		/*
2230 		 * If the packet is small enough to fit in a
2231 		 * single header mbuf, allocate one and copy
2232 		 * the data into it.  This greatly reduces
2233 		 * memory consumption when we receive lots
2234 		 * of small packets.
2235 		 */
2236 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2237 			struct mbuf *nm;
2238 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2239 			if (nm == NULL) {
2240 				if_statinc(ifp, if_ierrors);
2241 				m_freem(m);
2242 				continue;
2243 			}
2244 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2245 			nm->m_data += 2;
2246 			nm->m_pkthdr.len = nm->m_len = len;
2247 			m_copydata(m, 0, len, mtod(nm, void *));
2248 			m_freem(m);
2249 			m = nm;
2250 		}
2251 #ifndef __NO_STRICT_ALIGNMENT
2252 		else {
2253 			/*
2254 			 * The DP83820's receive buffers must be 4-byte
2255 			 * aligned.  But this means that the data after
2256 			 * the Ethernet header is misaligned.  To compensate,
2257 			 * we have artificially shortened the buffer size
2258 			 * in the descriptor, and we do an overlapping copy
2259 			 * of the data two bytes further in (in the first
2260 			 * buffer of the chain only).
2261 			 */
2262 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2263 			    m->m_len);
2264 			m->m_data += 2;
2265 		}
2266 #endif /* ! __NO_STRICT_ALIGNMENT */
2267 
2268 		/*
2269 		 * If VLANs are enabled, VLAN packets have been unwrapped
2270 		 * for us.  Associate the tag with the packet.
2271 		 */
2272 
2273 		/*
2274 		 * Again, byte swapping is tricky. Hardware provided
2275 		 * the tag in the network byte order, but extsts was
2276 		 * passed through le32toh() in the meantime. On a
2277 		 * big-endian machine, we need to swap it again. On a
2278 		 * little-endian machine, we need to convert from the
2279 		 * network to host byte order. This means that we must
2280 		 * swap it in any case, so unconditional swap instead
2281 		 * of htons() is used.
2282 		 */
2283 		if ((extsts & EXTSTS_VPKT) != 0) {
2284 			vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2285 		}
2286 
2287 		/*
2288 		 * Set the incoming checksum information for the
2289 		 * packet.
2290 		 */
2291 		if ((extsts & EXTSTS_IPPKT) != 0) {
2292 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2293 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2294 			if (extsts & EXTSTS_Rx_IPERR)
2295 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2296 			if (extsts & EXTSTS_TCPPKT) {
2297 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2298 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2299 				if (extsts & EXTSTS_Rx_TCPERR)
2300 					m->m_pkthdr.csum_flags |=
2301 					    M_CSUM_TCP_UDP_BAD;
2302 			} else if (extsts & EXTSTS_UDPPKT) {
2303 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2304 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2305 				if (extsts & EXTSTS_Rx_UDPERR)
2306 					m->m_pkthdr.csum_flags |=
2307 					    M_CSUM_TCP_UDP_BAD;
2308 			}
2309 		}
2310 
2311 		m_set_rcvif(m, ifp);
2312 		m->m_pkthdr.len = len;
2313 
2314 		/* Pass it on. */
2315 		if_percpuq_enqueue(ifp->if_percpuq, m);
2316 	}
2317 
2318 	/* Update the receive pointer. */
2319 	sc->sc_rxptr = i;
2320 }
2321 
2322 /*
2323  * sip_rxintr:
2324  *
2325  *	Helper; handle receive interrupts on 10/100 parts.
2326  */
2327 static void
sip_rxintr(struct sip_softc * sc)2328 sip_rxintr(struct sip_softc *sc)
2329 {
2330 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2331 	struct sip_rxsoft *rxs;
2332 	struct mbuf *m;
2333 	uint32_t cmdsts;
2334 	int i, len;
2335 
2336 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2337 		rxs = &sc->sc_rxsoft[i];
2338 
2339 		sip_cdrxsync(sc, i,
2340 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2341 
2342 		cmdsts =
2343 		    le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]);
2344 
2345 		/*
2346 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2347 		 * consumer of the receive ring, so if the bit is clear,
2348 		 * we have processed all of the packets.
2349 		 */
2350 		if ((cmdsts & CMDSTS_OWN) == 0) {
2351 			/*
2352 			 * We have processed all of the receive buffers.
2353 			 */
2354 			break;
2355 		}
2356 
2357 		/* If any collisions were seen on the wire, count one. */
2358 		if (cmdsts & CMDSTS_Rx_COL)
2359 			if_statinc(ifp, if_collisions);
2360 
2361 		/*
2362 		 * If an error occurred, update stats, clear the status
2363 		 * word, and leave the packet buffer in place.  It will
2364 		 * simply be reused the next time the ring comes around.
2365 		 */
2366 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_LONG | CMDSTS_Rx_RUNT |
2367 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2368 			if_statinc(ifp, if_ierrors);
2369 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2370 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2371 				/* Receive overrun handled elsewhere. */
2372 				printf("%s: receive descriptor error\n",
2373 				    device_xname(sc->sc_dev));
2374 			}
2375 #define	PRINTERR(bit, str)						\
2376 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2377 			    (cmdsts & (bit)) != 0)			\
2378 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2379 			PRINTERR(CMDSTS_Rx_LONG, "Too long packet");
2380 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2381 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2382 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2383 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2384 #undef PRINTERR
2385 			sip_init_rxdesc(sc, i);
2386 			continue;
2387 		}
2388 
2389 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2390 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2391 
2392 		/*
2393 		 * No errors; receive the packet.  Note, the SiS 900
2394 		 * includes the CRC with every packet.
2395 		 */
2396 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2397 
2398 #ifdef __NO_STRICT_ALIGNMENT
2399 		/*
2400 		 * If the packet is small enough to fit in a
2401 		 * single header mbuf, allocate one and copy
2402 		 * the data into it.  This greatly reduces
2403 		 * memory consumption when we receive lots
2404 		 * of small packets.
2405 		 *
2406 		 * Otherwise, we add a new buffer to the receive
2407 		 * chain.  If this fails, we drop the packet and
2408 		 * recycle the old buffer.
2409 		 */
2410 		if (sip_copy_small != 0 && len <= MHLEN) {
2411 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2412 			if (m == NULL)
2413 				goto dropit;
2414 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2415 			memcpy(mtod(m, void *),
2416 			    mtod(rxs->rxs_mbuf, void *), len);
2417 			sip_init_rxdesc(sc, i);
2418 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2419 			    rxs->rxs_dmamap->dm_mapsize,
2420 			    BUS_DMASYNC_PREREAD);
2421 		} else {
2422 			m = rxs->rxs_mbuf;
2423 			if (sipcom_add_rxbuf(sc, i) != 0) {
2424  dropit:
2425 				if_statinc(ifp, if_ierrors);
2426 				sip_init_rxdesc(sc, i);
2427 				bus_dmamap_sync(sc->sc_dmat,
2428 				    rxs->rxs_dmamap, 0,
2429 				    rxs->rxs_dmamap->dm_mapsize,
2430 				    BUS_DMASYNC_PREREAD);
2431 				continue;
2432 			}
2433 		}
2434 #else
2435 		/*
2436 		 * The SiS 900's receive buffers must be 4-byte aligned.
2437 		 * But this means that the data after the Ethernet header
2438 		 * is misaligned.  We must allocate a new buffer and
2439 		 * copy the data, shifted forward 2 bytes.
2440 		 */
2441 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2442 		if (m == NULL) {
2443  dropit:
2444 			if_statinc(ifp, if_ierrors);
2445 			sip_init_rxdesc(sc, i);
2446 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2447 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2448 			continue;
2449 		}
2450 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2451 		if (len > (MHLEN - 2)) {
2452 			MCLGET(m, M_DONTWAIT);
2453 			if ((m->m_flags & M_EXT) == 0) {
2454 				m_freem(m);
2455 				goto dropit;
2456 			}
2457 		}
2458 		m->m_data += 2;
2459 
2460 		/*
2461 		 * Note that we use clusters for incoming frames, so the
2462 		 * buffer is virtually contiguous.
2463 		 */
2464 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2465 
2466 		/* Allow the receive descriptor to continue using its mbuf. */
2467 		sip_init_rxdesc(sc, i);
2468 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2469 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2470 #endif /* __NO_STRICT_ALIGNMENT */
2471 
2472 		m_set_rcvif(m, ifp);
2473 		m->m_pkthdr.len = m->m_len = len;
2474 
2475 		/* Pass it on. */
2476 		if_percpuq_enqueue(ifp->if_percpuq, m);
2477 	}
2478 
2479 	/* Update the receive pointer. */
2480 	sc->sc_rxptr = i;
2481 }
2482 
2483 /*
2484  * sip_tick:
2485  *
2486  *	One second timer, used to tick the MII.
2487  */
2488 static void
sipcom_tick(void * arg)2489 sipcom_tick(void *arg)
2490 {
2491 	struct sip_softc *sc = arg;
2492 	int s;
2493 
2494 	s = splnet();
2495 #ifdef SIP_EVENT_COUNTERS
2496 	if (sc->sc_gigabit) {
2497 		/* Read PAUSE related counts from MIB registers. */
2498 		sc->sc_ev_rxpause.ev_count +=
2499 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2500 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2501 		sc->sc_ev_txpause.ev_count +=
2502 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2503 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2504 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2505 	}
2506 #endif /* SIP_EVENT_COUNTERS */
2507 	mii_tick(&sc->sc_mii);
2508 	splx(s);
2509 
2510 	callout_schedule(&sc->sc_tick_ch, hz);
2511 }
2512 
2513 /*
2514  * sip_reset:
2515  *
2516  *	Perform a soft reset on the SiS 900.
2517  */
2518 static bool
sipcom_reset(struct sip_softc * sc)2519 sipcom_reset(struct sip_softc *sc)
2520 {
2521 	bus_space_tag_t st = sc->sc_st;
2522 	bus_space_handle_t sh = sc->sc_sh;
2523 	int i;
2524 
2525 	bus_space_write_4(st, sh, SIP_IER, 0);
2526 	bus_space_write_4(st, sh, SIP_IMR, 0);
2527 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2528 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2529 
2530 	for (i = 0; i < SIP_TIMEOUT; i++) {
2531 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2532 			break;
2533 		delay(2);
2534 	}
2535 
2536 	if (i == SIP_TIMEOUT) {
2537 		printf("%s: reset failed to complete\n",
2538 		    device_xname(sc->sc_dev));
2539 		return false;
2540 	}
2541 
2542 	delay(1000);
2543 
2544 	if (sc->sc_gigabit) {
2545 		/*
2546 		 * Set the general purpose I/O bits.  Do it here in case we
2547 		 * need to have GPIO set up to talk to the media interface.
2548 		 */
2549 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2550 		delay(1000);
2551 	}
2552 	return true;
2553 }
2554 
2555 static void
sipcom_dp83820_init(struct sip_softc * sc,uint64_t capenable)2556 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2557 {
2558 	uint32_t reg;
2559 	bus_space_tag_t st = sc->sc_st;
2560 	bus_space_handle_t sh = sc->sc_sh;
2561 	/*
2562 	 * Initialize the VLAN/IP receive control register.
2563 	 * We enable checksum computation on all incoming
2564 	 * packets, and do not reject packets w/ bad checksums.
2565 	 */
2566 	reg = 0;
2567 	if (capenable &
2568 	    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2569 		reg |= VRCR_IPEN;
2570 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2571 		reg |= VRCR_VTDEN | VRCR_VTREN;
2572 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2573 
2574 	/*
2575 	 * Initialize the VLAN/IP transmit control register.
2576 	 * We enable outgoing checksum computation on a
2577 	 * per-packet basis.
2578 	 */
2579 	reg = 0;
2580 	if (capenable &
2581 	    (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
2582 		reg |= VTCR_PPCHK;
2583 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2584 		reg |= VTCR_VPPTI;
2585 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2586 
2587 	/*
2588 	 * If we're using VLANs, initialize the VLAN data register.
2589 	 * To understand why we bswap the VLAN Ethertype, see section
2590 	 * 4.2.36 of the DP83820 manual.
2591 	 */
2592 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2593 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2594 }
2595 
2596 /*
2597  * sip_init:		[ ifnet interface function ]
2598  *
2599  *	Initialize the interface.  Must be called at splnet().
2600  */
2601 static int
sipcom_init(struct ifnet * ifp)2602 sipcom_init(struct ifnet *ifp)
2603 {
2604 	struct sip_softc *sc = ifp->if_softc;
2605 	bus_space_tag_t st = sc->sc_st;
2606 	bus_space_handle_t sh = sc->sc_sh;
2607 	struct sip_txsoft *txs;
2608 	struct sip_rxsoft *rxs;
2609 	int i, error = 0;
2610 
2611 	if (device_is_active(sc->sc_dev)) {
2612 		/*
2613 		 * Cancel any pending I/O.
2614 		 */
2615 		sipcom_stop(ifp, 0);
2616 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2617 		   !device_is_active(sc->sc_dev))
2618 		return 0;
2619 
2620 	/*
2621 	 * Reset the chip to a known state.
2622 	 */
2623 	if (!sipcom_reset(sc))
2624 		return EBUSY;
2625 
2626 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2627 		/*
2628 		 * DP83815 manual, page 78:
2629 		 *    4.4 Recommended Registers Configuration
2630 		 *    For optimum performance of the DP83815, version noted
2631 		 *    as DP83815CVNG (SRR = 203h), the listed register
2632 		 *    modifications must be followed in sequence...
2633 		 *
2634 		 * It's not clear if this should be 302h or 203h because that
2635 		 * chip name is listed as SRR 302h in the description of the
2636 		 * SRR register.  However, my revision 302h DP83815 on the
2637 		 * Netgear FA311 purchased in 02/2001 needs these settings
2638 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2639 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2640 		 * this set or not.  [briggs -- 09 March 2001]
2641 		 *
2642 		 * Note that only the low-order 12 bits of 0xe4 are documented
2643 		 * and that this sets reserved bits in that register.
2644 		 */
2645 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2646 
2647 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2648 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2649 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2650 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2651 
2652 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2653 	}
2654 
2655 	/* Initialize the transmit descriptor ring. */
2656 	sip_init_txring(sc);
2657 
2658 	/*
2659 	 * Initialize the transmit job descriptors.
2660 	 */
2661 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2662 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2663 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2664 		txs = &sc->sc_txsoft[i];
2665 		txs->txs_mbuf = NULL;
2666 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2667 	}
2668 
2669 	/*
2670 	 * Initialize the receive descriptor and receive job
2671 	 * descriptor rings.
2672 	 */
2673 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2674 		rxs = &sc->sc_rxsoft[i];
2675 		if (rxs->rxs_mbuf == NULL) {
2676 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2677 				printf("%s: unable to allocate or map rx "
2678 				    "buffer %d, error = %d\n",
2679 				    device_xname(sc->sc_dev), i, error);
2680 				/*
2681 				 * XXX Should attempt to run with fewer receive
2682 				 * XXX buffers instead of just failing.
2683 				 */
2684 				sipcom_rxdrain(sc);
2685 				goto out;
2686 			}
2687 		} else
2688 			sip_init_rxdesc(sc, i);
2689 	}
2690 	sc->sc_rxptr = 0;
2691 	sc->sc_rxdiscard = 0;
2692 	sip_rxchain_reset(sc);
2693 
2694 	/*
2695 	 * Set the configuration register; it's already initialized
2696 	 * in sip_attach().
2697 	 */
2698 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2699 
2700 	/*
2701 	 * Initialize the prototype TXCFG register.
2702 	 */
2703 	if (sc->sc_gigabit) {
2704 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2705 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2706 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2707 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2708 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2709 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2710 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2711 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2712 	} else {
2713 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2714 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2715 	}
2716 
2717 	sc->sc_txcfg |= TXCFG_ATP |
2718 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2719 	    sc->sc_tx_drain_thresh;
2720 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2721 
2722 	/*
2723 	 * Initialize the receive drain threshold if we have never
2724 	 * done so.
2725 	 */
2726 	if (sc->sc_rx_drain_thresh == 0) {
2727 		/*
2728 		 * XXX This value should be tuned.  This is set to the
2729 		 * maximum of 248 bytes, and we may be able to improve
2730 		 * performance by decreasing it (although we should never
2731 		 * set this value lower than 2; 14 bytes are required to
2732 		 * filter the packet).
2733 		 */
2734 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2735 	}
2736 
2737 	/*
2738 	 * Initialize the prototype RXCFG register.
2739 	 */
2740 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2741 	/*
2742 	 * Accept long packets (including FCS) so we can handle
2743 	 * 802.1q-tagged frames and jumbo frames properly.
2744 	 */
2745 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2746 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2747 		sc->sc_rxcfg |= RXCFG_ALP;
2748 
2749 	/*
2750 	 * Checksum offloading is disabled if the user selects an MTU
2751 	 * larger than 8109.  (FreeBSD says 8152, but there is empirical
2752 	 * evidence that >8109 does not work on some boards, such as the
2753 	 * Planex GN-1000TE).
2754 	 */
2755 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2756 	    (ifp->if_capenable &
2757 	     (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2758 	      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2759 	      IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
2760 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2761 		       "disabled.\n", device_xname(sc->sc_dev));
2762 		ifp->if_capenable &=
2763 		    ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2764 		     IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2765 		     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
2766 		ifp->if_csum_flags_tx = 0;
2767 		ifp->if_csum_flags_rx = 0;
2768 	}
2769 
2770 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2771 
2772 	if (sc->sc_gigabit)
2773 		sipcom_dp83820_init(sc, ifp->if_capenable);
2774 
2775 	/*
2776 	 * Give the transmit and receive rings to the chip.
2777 	 */
2778 	sip_set_txdp(sc, SIP_CDTXADDR(sc, sc->sc_txnext));
2779 	sip_set_rxdp(sc, SIP_CDRXADDR(sc, sc->sc_rxptr));
2780 
2781 	/*
2782 	 * Initialize the interrupt mask.
2783 	 */
2784 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2785 		     sc->sc_bits.b_isr_sserr |
2786 		     sc->sc_bits.b_isr_rmabt |
2787 		     sc->sc_bits.b_isr_rtabt |
2788 	    ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
2789 	    ISR_RXIDLE | ISR_RXDESC;
2790 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2791 
2792 	/* Set up the receive filter. */
2793 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2794 
2795 	/*
2796 	 * Tune sc_rx_flow_thresh.
2797 	 * XXX "More than 8KB" is too short for jumbo frames.
2798 	 * XXX TODO: Threshold value should be user-settable.
2799 	 */
2800 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2801 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2802 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2803 
2804 	/*
2805 	 * Set the current media.  Do this after initializing the prototype
2806 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2807 	 * control.
2808 	 */
2809 	if ((error = ether_mediachange(ifp)) != 0)
2810 		goto out;
2811 
2812 	/*
2813 	 * Set the interrupt hold-off timer to 100us.
2814 	 */
2815 	if (sc->sc_gigabit)
2816 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2817 
2818 	/*
2819 	 * Enable interrupts.
2820 	 */
2821 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2822 
2823 	/*
2824 	 * Start the transmit and receive processes.
2825 	 */
2826 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2827 
2828 	/*
2829 	 * Start the one second MII clock.
2830 	 */
2831 	callout_schedule(&sc->sc_tick_ch, hz);
2832 
2833 	/*
2834 	 * ...all done!
2835 	 */
2836 	ifp->if_flags |= IFF_RUNNING;
2837 	sc->sc_if_flags = ifp->if_flags;
2838 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2839 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2840 	sc->sc_prev.if_capenable = ifp->if_capenable;
2841 
2842  out:
2843 	if (error)
2844 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2845 	return error;
2846 }
2847 
2848 /*
2849  * sip_drain:
2850  *
2851  *	Drain the receive queue.
2852  */
2853 static void
sipcom_rxdrain(struct sip_softc * sc)2854 sipcom_rxdrain(struct sip_softc *sc)
2855 {
2856 	struct sip_rxsoft *rxs;
2857 	int i;
2858 
2859 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2860 		rxs = &sc->sc_rxsoft[i];
2861 		if (rxs->rxs_mbuf != NULL) {
2862 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2863 			m_freem(rxs->rxs_mbuf);
2864 			rxs->rxs_mbuf = NULL;
2865 		}
2866 	}
2867 }
2868 
2869 /*
2870  * sip_stop:		[ ifnet interface function ]
2871  *
2872  *	Stop transmission on the interface.
2873  */
2874 static void
sipcom_stop(struct ifnet * ifp,int disable)2875 sipcom_stop(struct ifnet *ifp, int disable)
2876 {
2877 	struct sip_softc *sc = ifp->if_softc;
2878 	bus_space_tag_t st = sc->sc_st;
2879 	bus_space_handle_t sh = sc->sc_sh;
2880 	struct sip_txsoft *txs;
2881 	uint32_t cmdsts = 0;		/* DEBUG */
2882 
2883 	/*
2884 	 * Stop the one second clock.
2885 	 */
2886 	callout_stop(&sc->sc_tick_ch);
2887 
2888 	/* Down the MII. */
2889 	mii_down(&sc->sc_mii);
2890 
2891 	if (device_is_active(sc->sc_dev)) {
2892 		/*
2893 		 * Disable interrupts.
2894 		 */
2895 		bus_space_write_4(st, sh, SIP_IER, 0);
2896 
2897 		/*
2898 		 * Stop receiver and transmitter.
2899 		 */
2900 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2901 	}
2902 
2903 	/*
2904 	 * Release any queued transmit buffers.
2905 	 */
2906 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2907 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2908 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2909 		    (sc->sc_txdescs[
2910 		     txs->txs_lastdesc].sipd_words[
2911 		     sc->sc_cmdsts_idx] & htole32(CMDSTS_INTR)) == 0)
2912 			printf("%s: sip_stop: last descriptor does not "
2913 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2914 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2915 #ifdef DIAGNOSTIC
2916 		if (txs->txs_mbuf == NULL) {
2917 			printf("%s: dirty txsoft with no mbuf chain\n",
2918 			    device_xname(sc->sc_dev));
2919 			panic("sip_stop");
2920 		}
2921 #endif
2922 		cmdsts |=		/* DEBUG */
2923 		    le32toh(sc->sc_txdescs[
2924 			txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]);
2925 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2926 		m_freem(txs->txs_mbuf);
2927 		txs->txs_mbuf = NULL;
2928 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2929 	}
2930 
2931 	/*
2932 	 * Mark the interface down and cancel the watchdog timer.
2933 	 */
2934 	ifp->if_flags &= ~IFF_RUNNING;
2935 	ifp->if_timer = 0;
2936 
2937 	if (disable)
2938 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2939 
2940 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2941 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2942 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2943 		    "descriptors\n", device_xname(sc->sc_dev));
2944 }
2945 
2946 /*
2947  * sip_read_eeprom:
2948  *
2949  *	Read data from the serial EEPROM.
2950  */
2951 static void
sipcom_read_eeprom(struct sip_softc * sc,int word,int wordcnt,uint16_t * data)2952 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2953     uint16_t *data)
2954 {
2955 	bus_space_tag_t st = sc->sc_st;
2956 	bus_space_handle_t sh = sc->sc_sh;
2957 	uint16_t reg;
2958 	int i, x;
2959 
2960 	for (i = 0; i < wordcnt; i++) {
2961 		/* Send CHIP SELECT. */
2962 		reg = EROMAR_EECS;
2963 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2964 
2965 		/* Shift in the READ opcode. */
2966 		for (x = 3; x > 0; x--) {
2967 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2968 				reg |= EROMAR_EEDI;
2969 			else
2970 				reg &= ~EROMAR_EEDI;
2971 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2972 			bus_space_write_4(st, sh, SIP_EROMAR,
2973 			    reg | EROMAR_EESK);
2974 			delay(4);
2975 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2976 			delay(4);
2977 		}
2978 
2979 		/* Shift in address. */
2980 		for (x = 6; x > 0; x--) {
2981 			if ((word + i) & (1 << (x - 1)))
2982 				reg |= EROMAR_EEDI;
2983 			else
2984 				reg &= ~EROMAR_EEDI;
2985 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2986 			bus_space_write_4(st, sh, SIP_EROMAR,
2987 			    reg | EROMAR_EESK);
2988 			delay(4);
2989 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2990 			delay(4);
2991 		}
2992 
2993 		/* Shift out data. */
2994 		reg = EROMAR_EECS;
2995 		data[i] = 0;
2996 		for (x = 16; x > 0; x--) {
2997 			bus_space_write_4(st, sh, SIP_EROMAR,
2998 			    reg | EROMAR_EESK);
2999 			delay(4);
3000 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
3001 				data[i] |= (1 << (x - 1));
3002 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
3003 			delay(4);
3004 		}
3005 
3006 		/* Clear CHIP SELECT. */
3007 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
3008 		delay(4);
3009 	}
3010 }
3011 
3012 /*
3013  * sipcom_add_rxbuf:
3014  *
3015  *	Add a receive buffer to the indicated descriptor.
3016  */
3017 static int
sipcom_add_rxbuf(struct sip_softc * sc,int idx)3018 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
3019 {
3020 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
3021 	struct mbuf *m;
3022 	int error;
3023 
3024 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3025 	if (m == NULL)
3026 		return ENOBUFS;
3027 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
3028 
3029 	MCLGET(m, M_DONTWAIT);
3030 	if ((m->m_flags & M_EXT) == 0) {
3031 		m_freem(m);
3032 		return ENOBUFS;
3033 	}
3034 
3035 	/* XXX I don't believe this is necessary. --dyoung */
3036 	if (sc->sc_gigabit)
3037 		m->m_len = sc->sc_parm->p_rxbuf_len;
3038 
3039 	if (rxs->rxs_mbuf != NULL)
3040 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3041 
3042 	rxs->rxs_mbuf = m;
3043 
3044 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3045 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3046 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
3047 	if (error) {
3048 		printf("%s: can't load rx DMA map %d, error = %d\n",
3049 		    device_xname(sc->sc_dev), idx, error);
3050 		panic("%s", __func__);		/* XXX */
3051 	}
3052 
3053 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3054 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3055 
3056 	sip_init_rxdesc(sc, idx);
3057 
3058 	return 0;
3059 }
3060 
3061 /*
3062  * sip_sis900_set_filter:
3063  *
3064  *	Set up the receive filter.
3065  */
3066 static void
sipcom_sis900_set_filter(struct sip_softc * sc)3067 sipcom_sis900_set_filter(struct sip_softc *sc)
3068 {
3069 	bus_space_tag_t st = sc->sc_st;
3070 	bus_space_handle_t sh = sc->sc_sh;
3071 	struct ethercom *ec = &sc->sc_ethercom;
3072 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3073 	struct ether_multi *enm;
3074 	const uint8_t *cp;
3075 	struct ether_multistep step;
3076 	uint32_t crc, mchash[16];
3077 
3078 	/*
3079 	 * Initialize the prototype RFCR.
3080 	 */
3081 	sc->sc_rfcr = RFCR_RFEN;
3082 	if (ifp->if_flags & IFF_BROADCAST)
3083 		sc->sc_rfcr |= RFCR_AAB;
3084 	if (ifp->if_flags & IFF_PROMISC) {
3085 		sc->sc_rfcr |= RFCR_AAP;
3086 		goto allmulti;
3087 	}
3088 
3089 	/*
3090 	 * Set up the multicast address filter by passing all multicast
3091 	 * addresses through a CRC generator, and then using the high-order
3092 	 * 6 bits as an index into the 128 bit multicast hash table (only
3093 	 * the lower 16 bits of each 32 bit multicast hash register are
3094 	 * valid).  The high order bits select the register, while the
3095 	 * rest of the bits select the bit within the register.
3096 	 */
3097 
3098 	memset(mchash, 0, sizeof(mchash));
3099 
3100 	/*
3101 	 * SiS900 (at least SiS963) requires us to register the address of
3102 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3103 	 */
3104 	crc = 0x0ed423f9;
3105 
3106 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3107 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3108 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3109 		/* Just want the 8 most significant bits. */
3110 		crc >>= 24;
3111 	} else {
3112 		/* Just want the 7 most significant bits. */
3113 		crc >>= 25;
3114 	}
3115 
3116 	/* Set the corresponding bit in the hash table. */
3117 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3118 
3119 	ETHER_LOCK(ec);
3120 	ETHER_FIRST_MULTI(step, ec, enm);
3121 	while (enm != NULL) {
3122 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3123 			/*
3124 			 * We must listen to a range of multicast addresses.
3125 			 * For now, just accept all multicasts, rather than
3126 			 * trying to set only those filter bits needed to match
3127 			 * the range.  (At this time, the only use of address
3128 			 * ranges is for IP multicast routing, for which the
3129 			 * range is big enough to require all bits set.)
3130 			 */
3131 			ETHER_UNLOCK(ec);
3132 			goto allmulti;
3133 		}
3134 
3135 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3136 
3137 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3138 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3139 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3140 			/* Just want the 8 most significant bits. */
3141 			crc >>= 24;
3142 		} else {
3143 			/* Just want the 7 most significant bits. */
3144 			crc >>= 25;
3145 		}
3146 
3147 		/* Set the corresponding bit in the hash table. */
3148 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3149 
3150 		ETHER_NEXT_MULTI(step, enm);
3151 	}
3152 	ETHER_UNLOCK(ec);
3153 
3154 	ifp->if_flags &= ~IFF_ALLMULTI;
3155 	goto setit;
3156 
3157  allmulti:
3158 	ifp->if_flags |= IFF_ALLMULTI;
3159 	sc->sc_rfcr |= RFCR_AAM;
3160 
3161  setit:
3162 #define	FILTER_EMIT(addr, data)						\
3163 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3164 	delay(1);							\
3165 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3166 	delay(1)
3167 
3168 	/*
3169 	 * Disable receive filter, and program the node address.
3170 	 */
3171 	cp = CLLADDR(ifp->if_sadl);
3172 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3173 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3174 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3175 
3176 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3177 		/*
3178 		 * Program the multicast hash table.
3179 		 */
3180 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3181 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3182 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3183 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3184 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3185 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3186 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3187 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3188 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3189 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3190 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3191 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3192 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3193 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3194 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3195 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3196 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3197 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3198 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3199 		}
3200 	}
3201 #undef FILTER_EMIT
3202 
3203 	/*
3204 	 * Re-enable the receiver filter.
3205 	 */
3206 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3207 }
3208 
3209 /*
3210  * sip_dp83815_set_filter:
3211  *
3212  *	Set up the receive filter.
3213  */
3214 static void
sipcom_dp83815_set_filter(struct sip_softc * sc)3215 sipcom_dp83815_set_filter(struct sip_softc *sc)
3216 {
3217 	bus_space_tag_t st = sc->sc_st;
3218 	bus_space_handle_t sh = sc->sc_sh;
3219 	struct ethercom *ec = &sc->sc_ethercom;
3220 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3221 	struct ether_multi *enm;
3222 	const uint8_t *cp;
3223 	struct ether_multistep step;
3224 	uint32_t crc, hash, slot, bit;
3225 #define	MCHASH_NWORDS_83820	128
3226 #define	MCHASH_NWORDS_83815	32
3227 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3228 	uint16_t mchash[MCHASH_NWORDS];
3229 	int i;
3230 
3231 	/*
3232 	 * Initialize the prototype RFCR.
3233 	 * Enable the receive filter, and accept on
3234 	 *    Perfect (destination address) Match
3235 	 * If IFF_BROADCAST, also accept all broadcast packets.
3236 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3237 	 *    IFF_ALLMULTI and accept all multicast, too).
3238 	 */
3239 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3240 	if (ifp->if_flags & IFF_BROADCAST)
3241 		sc->sc_rfcr |= RFCR_AAB;
3242 	if (ifp->if_flags & IFF_PROMISC) {
3243 		sc->sc_rfcr |= RFCR_AAP;
3244 		goto allmulti;
3245 	}
3246 
3247 	/*
3248 	 * Set up the DP83820/DP83815 multicast address filter by
3249 	 * passing all multicast addresses through a CRC generator,
3250 	 * and then using the high-order 11/9 bits as an index into
3251 	 * the 2048/512 bit multicast hash table.  The high-order
3252 	 * 7/5 bits select the slot, while the low-order 4 bits
3253 	 * select the bit within the slot.  Note that only the low
3254 	 * 16-bits of each filter word are used, and there are
3255 	 * 128/32 filter words.
3256 	 */
3257 
3258 	memset(mchash, 0, sizeof(mchash));
3259 
3260 	ifp->if_flags &= ~IFF_ALLMULTI;
3261 	ETHER_FIRST_MULTI(step, ec, enm);
3262 	if (enm == NULL)
3263 		goto setit;
3264 	while (enm != NULL) {
3265 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3266 			/*
3267 			 * We must listen to a range of multicast addresses.
3268 			 * For now, just accept all multicasts, rather than
3269 			 * trying to set only those filter bits needed to match
3270 			 * the range.  (At this time, the only use of address
3271 			 * ranges is for IP multicast routing, for which the
3272 			 * range is big enough to require all bits set.)
3273 			 */
3274 			goto allmulti;
3275 		}
3276 
3277 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3278 
3279 		if (sc->sc_gigabit) {
3280 			/* Just want the 11 most significant bits. */
3281 			hash = crc >> 21;
3282 		} else {
3283 			/* Just want the 9 most significant bits. */
3284 			hash = crc >> 23;
3285 		}
3286 
3287 		slot = hash >> 4;
3288 		bit = hash & 0xf;
3289 
3290 		/* Set the corresponding bit in the hash table. */
3291 		mchash[slot] |= 1 << bit;
3292 
3293 		ETHER_NEXT_MULTI(step, enm);
3294 	}
3295 	sc->sc_rfcr |= RFCR_MHEN;
3296 	goto setit;
3297 
3298  allmulti:
3299 	ifp->if_flags |= IFF_ALLMULTI;
3300 	sc->sc_rfcr |= RFCR_AAM;
3301 
3302  setit:
3303 #define	FILTER_EMIT(addr, data)						\
3304 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3305 	delay(1);							\
3306 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3307 	delay(1)
3308 
3309 	/*
3310 	 * Disable receive filter, and program the node address.
3311 	 */
3312 	cp = CLLADDR(ifp->if_sadl);
3313 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3314 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3315 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3316 
3317 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3318 		int nwords =
3319 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3320 		/*
3321 		 * Program the multicast hash table.
3322 		 */
3323 		for (i = 0; i < nwords; i++) {
3324 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3325 		}
3326 	}
3327 #undef FILTER_EMIT
3328 #undef MCHASH_NWORDS
3329 #undef MCHASH_NWORDS_83815
3330 #undef MCHASH_NWORDS_83820
3331 
3332 	/*
3333 	 * Re-enable the receiver filter.
3334 	 */
3335 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3336 }
3337 
3338 /*
3339  * sip_dp83820_mii_readreg:	[mii interface function]
3340  *
3341  *	Read a PHY register on the MII of the DP83820.
3342  */
3343 static int
sipcom_dp83820_mii_readreg(device_t self,int phy,int reg,uint16_t * val)3344 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3345 {
3346 	struct sip_softc *sc = device_private(self);
3347 
3348 	if (sc->sc_cfg & CFG_TBI_EN) {
3349 		bus_addr_t tbireg;
3350 
3351 		if (phy != 0)
3352 			return -1;
3353 
3354 		switch (reg) {
3355 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3356 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3357 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3358 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3359 		case MII_ANER:		tbireg = SIP_TANER; break;
3360 		case MII_EXTSR:
3361 			/*
3362 			 * Don't even bother reading the TESR register.
3363 			 * The manual documents that the device has
3364 			 * 1000baseX full/half capability, but the
3365 			 * register itself seems read back 0 on some
3366 			 * boards.  Just hard-code the result.
3367 			 */
3368 			*val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3369 			return 0;
3370 
3371 		default:
3372 			return 0;
3373 		}
3374 
3375 		*val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3376 		if (tbireg == SIP_TBISR) {
3377 			/* LINK and ACOMP are switched! */
3378 			int sr = *val;
3379 
3380 			*val = 0;
3381 			if (sr & TBISR_MR_LINK_STATUS)
3382 				*val |= BMSR_LINK;
3383 			if (sr & TBISR_MR_AN_COMPLETE)
3384 				*val |= BMSR_ACOMP;
3385 
3386 			/*
3387 			 * The manual claims this register reads back 0
3388 			 * on hard and soft reset.  But we want to let
3389 			 * the gentbi driver know that we support auto-
3390 			 * negotiation, so hard-code this bit in the
3391 			 * result.
3392 			 */
3393 			*val |= BMSR_ANEG | BMSR_EXTSTAT;
3394 		}
3395 
3396 		return 0;
3397 	}
3398 
3399 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3400 	    val);
3401 }
3402 
3403 /*
3404  * sip_dp83820_mii_writereg:	[mii interface function]
3405  *
3406  *	Write a PHY register on the MII of the DP83820.
3407  */
3408 static int
sipcom_dp83820_mii_writereg(device_t self,int phy,int reg,uint16_t val)3409 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3410 {
3411 	struct sip_softc *sc = device_private(self);
3412 
3413 	if (sc->sc_cfg & CFG_TBI_EN) {
3414 		bus_addr_t tbireg;
3415 
3416 		if (phy != 0)
3417 			return -1;
3418 
3419 		switch (reg) {
3420 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3421 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3422 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3423 		default:
3424 			return 0;
3425 		}
3426 
3427 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3428 		return 0;
3429 	}
3430 
3431 	return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3432 	    val);
3433 }
3434 
3435 /*
3436  * sip_dp83820_mii_statchg:	[mii interface function]
3437  *
3438  *	Callback from MII layer when media changes.
3439  */
3440 static void
sipcom_dp83820_mii_statchg(struct ifnet * ifp)3441 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3442 {
3443 	struct sip_softc *sc = ifp->if_softc;
3444 	struct mii_data *mii = &sc->sc_mii;
3445 	uint32_t cfg, pcr;
3446 
3447 	/*
3448 	 * Get flow control negotiation result.
3449 	 */
3450 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3451 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3452 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3453 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3454 	}
3455 
3456 	/*
3457 	 * Update TXCFG for full-duplex operation.
3458 	 */
3459 	if ((mii->mii_media_active & IFM_FDX) != 0)
3460 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3461 	else
3462 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3463 
3464 	/*
3465 	 * Update RXCFG for full-duplex or loopback.
3466 	 */
3467 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3468 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3469 		sc->sc_rxcfg |= RXCFG_ATX;
3470 	else
3471 		sc->sc_rxcfg &= ~RXCFG_ATX;
3472 
3473 	/*
3474 	 * Update CFG for MII/GMII.
3475 	 */
3476 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3477 		cfg = sc->sc_cfg | CFG_MODE_1000;
3478 	else
3479 		cfg = sc->sc_cfg;
3480 
3481 	/*
3482 	 * 802.3x flow control.
3483 	 */
3484 	pcr = 0;
3485 	if (sc->sc_flowflags & IFM_FLOW) {
3486 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3487 			pcr |= sc->sc_rx_flow_thresh;
3488 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3489 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3490 	}
3491 
3492 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3493 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3494 	    sc->sc_txcfg);
3495 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3496 	    sc->sc_rxcfg);
3497 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3498 }
3499 
3500 /*
3501  * sip_mii_bitbang_read: [mii bit-bang interface function]
3502  *
3503  *	Read the MII serial port for the MII bit-bang module.
3504  */
3505 static uint32_t
sipcom_mii_bitbang_read(device_t self)3506 sipcom_mii_bitbang_read(device_t self)
3507 {
3508 	struct sip_softc *sc = device_private(self);
3509 
3510 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3511 }
3512 
3513 /*
3514  * sip_mii_bitbang_write: [mii big-bang interface function]
3515  *
3516  *	Write the MII serial port for the MII bit-bang module.
3517  */
3518 static void
sipcom_mii_bitbang_write(device_t self,uint32_t val)3519 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3520 {
3521 	struct sip_softc *sc = device_private(self);
3522 
3523 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3524 }
3525 
3526 /*
3527  * sip_sis900_mii_readreg:	[mii interface function]
3528  *
3529  *	Read a PHY register on the MII.
3530  */
3531 static int
sipcom_sis900_mii_readreg(device_t self,int phy,int reg,uint16_t * val)3532 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3533 {
3534 	struct sip_softc *sc = device_private(self);
3535 	uint32_t enphy;
3536 
3537 	/*
3538 	 * The PHY of recent SiS chipsets is accessed through bitbang
3539 	 * operations.
3540 	 */
3541 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3542 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3543 		    phy, reg, val);
3544 
3545 #ifndef SIS900_MII_RESTRICT
3546 	/*
3547 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3548 	 * MII address 0.
3549 	 */
3550 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3551 		return -1;
3552 #endif
3553 
3554 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3555 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3556 	    ENPHY_RWCMD | ENPHY_ACCESS);
3557 	do {
3558 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3559 	} while (enphy & ENPHY_ACCESS);
3560 
3561 	*val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3562 	return 0;
3563 }
3564 
3565 /*
3566  * sip_sis900_mii_writereg:	[mii interface function]
3567  *
3568  *	Write a PHY register on the MII.
3569  */
3570 static int
sipcom_sis900_mii_writereg(device_t self,int phy,int reg,uint16_t val)3571 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3572 {
3573 	struct sip_softc *sc = device_private(self);
3574 	uint32_t enphy;
3575 
3576 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3577 		return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3578 		    phy, reg, val);
3579 	}
3580 
3581 #ifndef SIS900_MII_RESTRICT
3582 	/*
3583 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3584 	 * MII address 0.
3585 	 */
3586 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3587 		return -1;
3588 #endif
3589 
3590 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3591 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3592 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3593 	do {
3594 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3595 	} while (enphy & ENPHY_ACCESS);
3596 
3597 	return 0;
3598 }
3599 
3600 /*
3601  * sip_sis900_mii_statchg:	[mii interface function]
3602  *
3603  *	Callback from MII layer when media changes.
3604  */
3605 static void
sipcom_sis900_mii_statchg(struct ifnet * ifp)3606 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3607 {
3608 	struct sip_softc *sc = ifp->if_softc;
3609 	struct mii_data *mii = &sc->sc_mii;
3610 	uint32_t flowctl;
3611 
3612 	/*
3613 	 * Get flow control negotiation result.
3614 	 */
3615 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3616 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3617 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3618 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3619 	}
3620 
3621 	/*
3622 	 * Update TXCFG for full-duplex operation.
3623 	 */
3624 	if ((mii->mii_media_active & IFM_FDX) != 0)
3625 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3626 	else
3627 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3628 
3629 	/*
3630 	 * Update RXCFG for full-duplex or loopback.
3631 	 */
3632 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3633 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3634 		sc->sc_rxcfg |= RXCFG_ATX;
3635 	else
3636 		sc->sc_rxcfg &= ~RXCFG_ATX;
3637 
3638 	/*
3639 	 * Update IMR for use of 802.3x flow control.
3640 	 */
3641 	if (sc->sc_flowflags & IFM_FLOW) {
3642 		sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
3643 		flowctl = FLOWCTL_FLOWEN;
3644 	} else {
3645 		sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
3646 		flowctl = 0;
3647 	}
3648 
3649 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3650 	    sc->sc_txcfg);
3651 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3652 	    sc->sc_rxcfg);
3653 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3654 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3655 }
3656 
3657 /*
3658  * sip_dp83815_mii_readreg:	[mii interface function]
3659  *
3660  *	Read a PHY register on the MII.
3661  */
3662 static int
sipcom_dp83815_mii_readreg(device_t self,int phy,int reg,uint16_t * val)3663 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3664 {
3665 	struct sip_softc *sc = device_private(self);
3666 	uint32_t data;
3667 
3668 	/*
3669 	 * The DP83815 only has an internal PHY.  Only allow
3670 	 * MII address 0.
3671 	 */
3672 	if (phy != 0)
3673 		return -1;
3674 
3675 	/*
3676 	 * Apparently, after a reset, the DP83815 can take a while
3677 	 * to respond.  During this recovery period, the BMSR returns
3678 	 * a value of 0.  Catch this -- it's not supposed to happen
3679 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3680 	 * PHY to come back to life.
3681 	 *
3682 	 * This works out because the BMSR is the first register
3683 	 * read during the PHY probe process.
3684 	 */
3685 	do {
3686 		data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3687 	} while (reg == MII_BMSR && data == 0);
3688 
3689 	*val = data & 0xffff;
3690 	return 0;
3691 }
3692 
3693 /*
3694  * sip_dp83815_mii_writereg:	[mii interface function]
3695  *
3696  *	Write a PHY register to the MII.
3697  */
3698 static int
sipcom_dp83815_mii_writereg(device_t self,int phy,int reg,uint16_t val)3699 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3700 {
3701 	struct sip_softc *sc = device_private(self);
3702 
3703 	/*
3704 	 * The DP83815 only has an internal PHY.  Only allow
3705 	 * MII address 0.
3706 	 */
3707 	if (phy != 0)
3708 		return -1;
3709 
3710 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3711 
3712 	return 0;
3713 }
3714 
3715 /*
3716  * sip_dp83815_mii_statchg:	[mii interface function]
3717  *
3718  *	Callback from MII layer when media changes.
3719  */
3720 static void
sipcom_dp83815_mii_statchg(struct ifnet * ifp)3721 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3722 {
3723 	struct sip_softc *sc = ifp->if_softc;
3724 
3725 	/*
3726 	 * Update TXCFG for full-duplex operation.
3727 	 */
3728 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3729 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3730 	else
3731 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3732 
3733 	/*
3734 	 * Update RXCFG for full-duplex or loopback.
3735 	 */
3736 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3737 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3738 		sc->sc_rxcfg |= RXCFG_ATX;
3739 	else
3740 		sc->sc_rxcfg &= ~RXCFG_ATX;
3741 
3742 	/*
3743 	 * XXX 802.3x flow control.
3744 	 */
3745 
3746 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3747 	    sc->sc_txcfg);
3748 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3749 	    sc->sc_rxcfg);
3750 
3751 	/*
3752 	 * Some DP83815s experience problems when used with short
3753 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3754 	 * sequence adjusts the DSP's signal attenuation to fix the
3755 	 * problem.
3756 	 */
3757 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3758 		uint32_t reg;
3759 
3760 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3761 
3762 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3763 		reg &= 0x0fff;
3764 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3765 		delay(100);
3766 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3767 		reg &= 0x00ff;
3768 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3769 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3770 			    0x00e8);
3771 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3772 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3773 			    reg | 0x20);
3774 		}
3775 
3776 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3777 	}
3778 }
3779 
3780 static void
sipcom_dp83820_read_macaddr(struct sip_softc * sc,const struct pci_attach_args * pa,uint8_t * enaddr)3781 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3782     const struct pci_attach_args *pa, uint8_t *enaddr)
3783 {
3784 	uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3785 	uint8_t cksum, *e, match;
3786 	int i;
3787 
3788 	/*
3789 	 * EEPROM data format for the DP83820 can be found in
3790 	 * the DP83820 manual, section 4.2.4.
3791 	 */
3792 
3793 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3794 
3795 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3796 	match = ~(match - 1);
3797 
3798 	cksum = 0x55;
3799 	e = (uint8_t *)eeprom_data;
3800 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3801 		cksum += *e++;
3802 
3803 	if (cksum != match)
3804 		printf("%s: Checksum (%x) mismatch (%x)",
3805 		    device_xname(sc->sc_dev), cksum, match);
3806 
3807 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3808 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3809 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3810 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3811 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3812 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3813 }
3814 
3815 static void
sipcom_sis900_eeprom_delay(struct sip_softc * sc)3816 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3817 {
3818 	int i;
3819 
3820 	/*
3821 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3822 	 * a reason, but I don't know it.
3823 	 */
3824 	for (i = 0; i < 10; i++)
3825 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3826 }
3827 
3828 static void
sipcom_sis900_read_macaddr(struct sip_softc * sc,const struct pci_attach_args * pa,uint8_t * enaddr)3829 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3830     const struct pci_attach_args *pa, uint8_t *enaddr)
3831 {
3832 	uint16_t myea[ETHER_ADDR_LEN / 2];
3833 
3834 	switch (sc->sc_rev) {
3835 	case SIS_REV_630S:
3836 	case SIS_REV_630E:
3837 	case SIS_REV_630EA1:
3838 	case SIS_REV_630ET:
3839 	case SIS_REV_635:
3840 		/*
3841 		 * The MAC address for the on-board Ethernet of
3842 		 * the SiS 630 chipset is in the NVRAM.  Kick
3843 		 * the chip into re-loading it from NVRAM, and
3844 		 * read the MAC address out of the filter registers.
3845 		 */
3846 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3847 
3848 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3849 		    RFCR_RFADDR_NODE0);
3850 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3851 		    0xffff;
3852 
3853 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3854 		    RFCR_RFADDR_NODE2);
3855 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3856 		    0xffff;
3857 
3858 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3859 		    RFCR_RFADDR_NODE4);
3860 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3861 		    0xffff;
3862 		break;
3863 
3864 	case SIS_REV_960:
3865 		{
3866 #define	SIS_SET_EROMAR(x, y)						     \
3867 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
3868 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3869 
3870 #define	SIS_CLR_EROMAR(x, y)						     \
3871 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
3872 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3873 
3874 			int waittime, i;
3875 
3876 			/* Allow to read EEPROM from LAN. It is shared
3877 			 * between a 1394 controller and the NIC and each
3878 			 * time we access it, we need to set SIS_EECMD_REQ.
3879 			 */
3880 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3881 
3882 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3883 				/* Force EEPROM to idle state. */
3884 
3885 				/*
3886 				 * XXX-cube This is ugly.
3887 				 * I'll look for docs about it.
3888 				 */
3889 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3890 				sipcom_sis900_eeprom_delay(sc);
3891 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3892 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3893 					sipcom_sis900_eeprom_delay(sc);
3894 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3895 					sipcom_sis900_eeprom_delay(sc);
3896 				}
3897 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3898 				sipcom_sis900_eeprom_delay(sc);
3899 				bus_space_write_4(sc->sc_st, sc->sc_sh,
3900 				    SIP_EROMAR, 0);
3901 
3902 				if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3903 				    SIP_EROMAR) & EROMAR_GNT) {
3904 					sipcom_read_eeprom(sc,
3905 					    SIP_EEPROM_ETHERNET_ID0 >> 1,
3906 					    sizeof(myea) / sizeof(myea[0]),
3907 					    myea);
3908 					break;
3909 				}
3910 				DELAY(1);
3911 			}
3912 
3913 			/*
3914 			 * Set SIS_EECTL_CLK to high, so a other master
3915 			 * can operate on the i2c bus.
3916 			 */
3917 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3918 
3919 			/* Refuse EEPROM access by LAN */
3920 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3921 		} break;
3922 
3923 	default:
3924 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3925 		    sizeof(myea) / sizeof(myea[0]), myea);
3926 	}
3927 
3928 	enaddr[0] = myea[0] & 0xff;
3929 	enaddr[1] = myea[0] >> 8;
3930 	enaddr[2] = myea[1] & 0xff;
3931 	enaddr[3] = myea[1] >> 8;
3932 	enaddr[4] = myea[2] & 0xff;
3933 	enaddr[5] = myea[2] >> 8;
3934 }
3935 
3936 /* Table and macro to bit-reverse an octet. */
3937 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3938 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3939 
3940 static void
sipcom_dp83815_read_macaddr(struct sip_softc * sc,const struct pci_attach_args * pa,uint8_t * enaddr)3941 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3942     const struct pci_attach_args *pa, uint8_t *enaddr)
3943 {
3944 	uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3945 	uint8_t cksum, *e, match;
3946 	int i;
3947 
3948 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3949 	    sizeof(eeprom_data[0]), eeprom_data);
3950 
3951 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3952 	match = ~(match - 1);
3953 
3954 	cksum = 0x55;
3955 	e = (uint8_t *)eeprom_data;
3956 	for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3957 		cksum += *e++;
3958 
3959 	if (cksum != match)
3960 		printf("%s: Checksum (%x) mismatch (%x)",
3961 		    device_xname(sc->sc_dev), cksum, match);
3962 
3963 	/*
3964 	 * Unrolled because it makes slightly more sense this way.
3965 	 * The DP83815 stores the MAC address in bit 0 of word 6
3966 	 * through bit 15 of word 8.
3967 	 */
3968 	ea = &eeprom_data[6];
3969 	enaddr[0] = ((*ea & 0x1) << 7);
3970 	ea++;
3971 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3972 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3973 	enaddr[2] = ((*ea & 0x1) << 7);
3974 	ea++;
3975 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3976 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3977 	enaddr[4] = ((*ea & 0x1) << 7);
3978 	ea++;
3979 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3980 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3981 
3982 	/*
3983 	 * In case that's not weird enough, we also need to reverse
3984 	 * the bits in each byte.  This all actually makes more sense
3985 	 * if you think about the EEPROM storage as an array of bits
3986 	 * being shifted into bytes, but that's not how we're looking
3987 	 * at it here...
3988 	 */
3989 	for (i = 0; i < 6 ;i++)
3990 		enaddr[i] = bbr(enaddr[i]);
3991 }
3992 
3993 /*
3994  * sip_mediastatus:	[ifmedia interface function]
3995  *
3996  *	Get the current interface media status.
3997  */
3998 static void
sipcom_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)3999 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
4000 {
4001 	struct sip_softc *sc = ifp->if_softc;
4002 
4003 	if (!device_is_active(sc->sc_dev)) {
4004 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
4005 		ifmr->ifm_status = 0;
4006 		return;
4007 	}
4008 	ether_mediastatus(ifp, ifmr);
4009 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
4010 			   sc->sc_flowflags;
4011 }
4012