1 /* Vectorizer
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23
24 typedef class _stmt_vec_info *stmt_vec_info;
25 typedef struct _slp_tree *slp_tree;
26
27 #include "tree-data-ref.h"
28 #include "tree-hash-traits.h"
29 #include "target.h"
30 #include "internal-fn.h"
31 #include "tree-ssa-operands.h"
32 #include "gimple-match.h"
33
34 /* Used for naming of new temporaries. */
35 enum vect_var_kind {
36 vect_simple_var,
37 vect_pointer_var,
38 vect_scalar_var,
39 vect_mask_var
40 };
41
42 /* Defines type of operation. */
43 enum operation_type {
44 unary_op = 1,
45 binary_op,
46 ternary_op
47 };
48
49 /* Define type of available alignment support. */
50 enum dr_alignment_support {
51 dr_unaligned_unsupported,
52 dr_unaligned_supported,
53 dr_explicit_realign,
54 dr_explicit_realign_optimized,
55 dr_aligned
56 };
57
58 /* Define type of def-use cross-iteration cycle. */
59 enum vect_def_type {
60 vect_uninitialized_def = 0,
61 vect_constant_def = 1,
62 vect_external_def,
63 vect_internal_def,
64 vect_induction_def,
65 vect_reduction_def,
66 vect_double_reduction_def,
67 vect_nested_cycle,
68 vect_unknown_def_type
69 };
70
71 /* Define type of reduction. */
72 enum vect_reduction_type {
73 TREE_CODE_REDUCTION,
74 COND_REDUCTION,
75 INTEGER_INDUC_COND_REDUCTION,
76 CONST_COND_REDUCTION,
77
78 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
79 to implement:
80
81 for (int i = 0; i < VF; ++i)
82 res = cond[i] ? val[i] : res; */
83 EXTRACT_LAST_REDUCTION,
84
85 /* Use a folding reduction within the loop to implement:
86
87 for (int i = 0; i < VF; ++i)
88 res = res OP val[i];
89
90 (with no reassocation). */
91 FOLD_LEFT_REDUCTION
92 };
93
94 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
95 || ((D) == vect_double_reduction_def) \
96 || ((D) == vect_nested_cycle))
97
98 /* Structure to encapsulate information about a group of like
99 instructions to be presented to the target cost model. */
100 struct stmt_info_for_cost {
101 int count;
102 enum vect_cost_for_stmt kind;
103 enum vect_cost_model_location where;
104 stmt_vec_info stmt_info;
105 slp_tree node;
106 tree vectype;
107 int misalign;
108 };
109
110 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
111
112 /* Maps base addresses to an innermost_loop_behavior and the stmt it was
113 derived from that gives the maximum known alignment for that base. */
114 typedef hash_map<tree_operand_hash,
115 std::pair<stmt_vec_info, innermost_loop_behavior *> >
116 vec_base_alignments;
117
118 /* Represents elements [START, START + LENGTH) of cyclical array OPS*
119 (i.e. OPS repeated to give at least START + LENGTH elements) */
120 struct vect_scalar_ops_slice
121 {
122 tree op (unsigned int i) const;
123 bool all_same_p () const;
124
125 vec<tree> *ops;
126 unsigned int start;
127 unsigned int length;
128 };
129
130 /* Return element I of the slice. */
131 inline tree
op(unsigned int i)132 vect_scalar_ops_slice::op (unsigned int i) const
133 {
134 return (*ops)[(i + start) % ops->length ()];
135 }
136
137 /* Hash traits for vect_scalar_ops_slice. */
138 struct vect_scalar_ops_slice_hash : typed_noop_remove<vect_scalar_ops_slice>
139 {
140 typedef vect_scalar_ops_slice value_type;
141 typedef vect_scalar_ops_slice compare_type;
142
143 static const bool empty_zero_p = true;
144
mark_deletedvect_scalar_ops_slice_hash145 static void mark_deleted (value_type &s) { s.length = ~0U; }
mark_emptyvect_scalar_ops_slice_hash146 static void mark_empty (value_type &s) { s.length = 0; }
is_deletedvect_scalar_ops_slice_hash147 static bool is_deleted (const value_type &s) { return s.length == ~0U; }
is_emptyvect_scalar_ops_slice_hash148 static bool is_empty (const value_type &s) { return s.length == 0; }
149 static hashval_t hash (const value_type &);
150 static bool equal (const value_type &, const compare_type &);
151 };
152
153 /************************************************************************
154 SLP
155 ************************************************************************/
156 typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
157 typedef vec<unsigned> load_permutation_t;
158
159 /* A computation tree of an SLP instance. Each node corresponds to a group of
160 stmts to be packed in a SIMD stmt. */
161 struct _slp_tree {
162 _slp_tree ();
163 ~_slp_tree ();
164
165 /* Nodes that contain def-stmts of this node statements operands. */
166 vec<slp_tree> children;
167
168 /* A group of scalar stmts to be vectorized together. */
169 vec<stmt_vec_info> stmts;
170 /* A group of scalar operands to be vectorized together. */
171 vec<tree> ops;
172 /* The representative that should be used for analysis and
173 code generation. */
174 stmt_vec_info representative;
175
176 /* Load permutation relative to the stores, NULL if there is no
177 permutation. */
178 load_permutation_t load_permutation;
179 /* Lane permutation of the operands scalar lanes encoded as pairs
180 of { operand number, lane number }. The number of elements
181 denotes the number of output lanes. */
182 lane_permutation_t lane_permutation;
183
184 tree vectype;
185 /* Vectorized stmt/s. */
186 vec<gimple *> vec_stmts;
187 vec<tree> vec_defs;
188 /* Number of vector stmts that are created to replace the group of scalar
189 stmts. It is calculated during the transformation phase as the number of
190 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
191 divided by vector size. */
192 unsigned int vec_stmts_size;
193
194 /* Reference count in the SLP graph. */
195 unsigned int refcnt;
196 /* The maximum number of vector elements for the subtree rooted
197 at this node. */
198 poly_uint64 max_nunits;
199 /* The DEF type of this node. */
200 enum vect_def_type def_type;
201 /* The number of scalar lanes produced by this node. */
202 unsigned int lanes;
203 /* The operation of this node. */
204 enum tree_code code;
205
206 int vertex;
207
208 /* If not NULL this is a cached failed SLP discovery attempt with
209 the lanes that failed during SLP discovery as 'false'. This is
210 a copy of the matches array. */
211 bool *failed;
212
213 /* Allocate from slp_tree_pool. */
214 static void *operator new (size_t);
215
216 /* Return memory to slp_tree_pool. */
217 static void operator delete (void *, size_t);
218
219 /* Linked list of nodes to release when we free the slp_tree_pool. */
220 slp_tree next_node;
221 slp_tree prev_node;
222 };
223
224 /* The enum describes the type of operations that an SLP instance
225 can perform. */
226
227 enum slp_instance_kind {
228 slp_inst_kind_store,
229 slp_inst_kind_reduc_group,
230 slp_inst_kind_reduc_chain,
231 slp_inst_kind_bb_reduc,
232 slp_inst_kind_ctor
233 };
234
235 /* SLP instance is a sequence of stmts in a loop that can be packed into
236 SIMD stmts. */
237 typedef class _slp_instance {
238 public:
239 /* The root of SLP tree. */
240 slp_tree root;
241
242 /* For vector constructors, the constructor stmt that the SLP tree is built
243 from, NULL otherwise. */
244 vec<stmt_vec_info> root_stmts;
245
246 /* The unrolling factor required to vectorized this SLP instance. */
247 poly_uint64 unrolling_factor;
248
249 /* The group of nodes that contain loads of this SLP instance. */
250 vec<slp_tree> loads;
251
252 /* The SLP node containing the reduction PHIs. */
253 slp_tree reduc_phis;
254
255 /* Vector cost of this entry to the SLP graph. */
256 stmt_vector_for_cost cost_vec;
257
258 /* If this instance is the main entry of a subgraph the set of
259 entries into the same subgraph, including itself. */
260 vec<_slp_instance *> subgraph_entries;
261
262 /* The type of operation the SLP instance is performing. */
263 slp_instance_kind kind;
264
265 dump_user_location_t location () const;
266 } *slp_instance;
267
268
269 /* Access Functions. */
270 #define SLP_INSTANCE_TREE(S) (S)->root
271 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
272 #define SLP_INSTANCE_LOADS(S) (S)->loads
273 #define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
274 #define SLP_INSTANCE_KIND(S) (S)->kind
275
276 #define SLP_TREE_CHILDREN(S) (S)->children
277 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
278 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
279 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
280 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
281 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
282 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
283 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
284 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
285 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
286 #define SLP_TREE_VECTYPE(S) (S)->vectype
287 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
288 #define SLP_TREE_LANES(S) (S)->lanes
289 #define SLP_TREE_CODE(S) (S)->code
290
291 /* Key for map that records association between
292 scalar conditions and corresponding loop mask, and
293 is populated by vect_record_loop_mask. */
294
295 struct scalar_cond_masked_key
296 {
scalar_cond_masked_keyscalar_cond_masked_key297 scalar_cond_masked_key (tree t, unsigned ncopies_)
298 : ncopies (ncopies_)
299 {
300 get_cond_ops_from_tree (t);
301 }
302
303 void get_cond_ops_from_tree (tree);
304
305 unsigned ncopies;
306 bool inverted_p;
307 tree_code code;
308 tree op0;
309 tree op1;
310 };
311
312 template<>
313 struct default_hash_traits<scalar_cond_masked_key>
314 {
315 typedef scalar_cond_masked_key compare_type;
316 typedef scalar_cond_masked_key value_type;
317
318 static inline hashval_t
319 hash (value_type v)
320 {
321 inchash::hash h;
322 h.add_int (v.code);
323 inchash::add_expr (v.op0, h, 0);
324 inchash::add_expr (v.op1, h, 0);
325 h.add_int (v.ncopies);
326 h.add_flag (v.inverted_p);
327 return h.end ();
328 }
329
330 static inline bool
331 equal (value_type existing, value_type candidate)
332 {
333 return (existing.ncopies == candidate.ncopies
334 && existing.code == candidate.code
335 && existing.inverted_p == candidate.inverted_p
336 && operand_equal_p (existing.op0, candidate.op0, 0)
337 && operand_equal_p (existing.op1, candidate.op1, 0));
338 }
339
340 static const bool empty_zero_p = true;
341
342 static inline void
343 mark_empty (value_type &v)
344 {
345 v.ncopies = 0;
346 v.inverted_p = false;
347 }
348
349 static inline bool
350 is_empty (value_type v)
351 {
352 return v.ncopies == 0;
353 }
354
355 static inline void mark_deleted (value_type &) {}
356
357 static inline bool is_deleted (const value_type &)
358 {
359 return false;
360 }
361
362 static inline void remove (value_type &) {}
363 };
364
365 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
366
367 /* Key and map that records association between vector conditions and
368 corresponding loop mask, and is populated by prepare_vec_mask. */
369
370 typedef pair_hash<tree_operand_hash, tree_operand_hash> tree_cond_mask_hash;
371 typedef hash_set<tree_cond_mask_hash> vec_cond_masked_set_type;
372
373 /* Describes two objects whose addresses must be unequal for the vectorized
374 loop to be valid. */
375 typedef std::pair<tree, tree> vec_object_pair;
376
377 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
378 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
379 class vec_lower_bound {
380 public:
381 vec_lower_bound () {}
382 vec_lower_bound (tree e, bool u, poly_uint64 m)
383 : expr (e), unsigned_p (u), min_value (m) {}
384
385 tree expr;
386 bool unsigned_p;
387 poly_uint64 min_value;
388 };
389
390 /* Vectorizer state shared between different analyses like vector sizes
391 of the same CFG region. */
392 class vec_info_shared {
393 public:
394 vec_info_shared();
395 ~vec_info_shared();
396
397 void save_datarefs();
398 void check_datarefs();
399
400 /* The number of scalar stmts. */
401 unsigned n_stmts;
402
403 /* All data references. Freed by free_data_refs, so not an auto_vec. */
404 vec<data_reference_p> datarefs;
405 vec<data_reference> datarefs_copy;
406
407 /* The loop nest in which the data dependences are computed. */
408 auto_vec<loop_p> loop_nest;
409
410 /* All data dependences. Freed by free_dependence_relations, so not
411 an auto_vec. */
412 vec<ddr_p> ddrs;
413 };
414
415 /* Vectorizer state common between loop and basic-block vectorization. */
416 class vec_info {
417 public:
418 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
419 enum vec_kind { bb, loop };
420
421 vec_info (vec_kind, vec_info_shared *);
422 ~vec_info ();
423
424 stmt_vec_info add_stmt (gimple *);
425 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
426 stmt_vec_info lookup_stmt (gimple *);
427 stmt_vec_info lookup_def (tree);
428 stmt_vec_info lookup_single_use (tree);
429 class dr_vec_info *lookup_dr (data_reference *);
430 void move_dr (stmt_vec_info, stmt_vec_info);
431 void remove_stmt (stmt_vec_info);
432 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
433 void insert_on_entry (stmt_vec_info, gimple *);
434 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
435
436 /* The type of vectorization. */
437 vec_kind kind;
438
439 /* Shared vectorizer state. */
440 vec_info_shared *shared;
441
442 /* The mapping of GIMPLE UID to stmt_vec_info. */
443 vec<stmt_vec_info> stmt_vec_infos;
444 /* Whether the above mapping is complete. */
445 bool stmt_vec_info_ro;
446
447 /* The SLP graph. */
448 auto_vec<slp_instance> slp_instances;
449
450 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
451 known alignment for that base. */
452 vec_base_alignments base_alignments;
453
454 /* All interleaving chains of stores, represented by the first
455 stmt in the chain. */
456 auto_vec<stmt_vec_info> grouped_stores;
457
458 /* The set of vector modes used in the vectorized region. */
459 mode_set used_vector_modes;
460
461 /* The argument we should pass to related_vector_mode when looking up
462 the vector mode for a scalar mode, or VOIDmode if we haven't yet
463 made any decisions about which vector modes to use. */
464 machine_mode vector_mode;
465
466 private:
467 stmt_vec_info new_stmt_vec_info (gimple *stmt);
468 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
469 void free_stmt_vec_infos ();
470 void free_stmt_vec_info (stmt_vec_info);
471 };
472
473 class _loop_vec_info;
474 class _bb_vec_info;
475
476 template<>
477 template<>
478 inline bool
479 is_a_helper <_loop_vec_info *>::test (vec_info *i)
480 {
481 return i->kind == vec_info::loop;
482 }
483
484 template<>
485 template<>
486 inline bool
487 is_a_helper <_bb_vec_info *>::test (vec_info *i)
488 {
489 return i->kind == vec_info::bb;
490 }
491
492 /* In general, we can divide the vector statements in a vectorized loop
493 into related groups ("rgroups") and say that for each rgroup there is
494 some nS such that the rgroup operates on nS values from one scalar
495 iteration followed by nS values from the next. That is, if VF is the
496 vectorization factor of the loop, the rgroup operates on a sequence:
497
498 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
499
500 where (i,j) represents a scalar value with index j in a scalar
501 iteration with index i.
502
503 [ We use the term "rgroup" to emphasise that this grouping isn't
504 necessarily the same as the grouping of statements used elsewhere.
505 For example, if we implement a group of scalar loads using gather
506 loads, we'll use a separate gather load for each scalar load, and
507 thus each gather load will belong to its own rgroup. ]
508
509 In general this sequence will occupy nV vectors concatenated
510 together. If these vectors have nL lanes each, the total number
511 of scalar values N is given by:
512
513 N = nS * VF = nV * nL
514
515 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
516 are compile-time constants but VF and nL can be variable (if the target
517 supports variable-length vectors).
518
519 In classical vectorization, each iteration of the vector loop would
520 handle exactly VF iterations of the original scalar loop. However,
521 in vector loops that are able to operate on partial vectors, a
522 particular iteration of the vector loop might handle fewer than VF
523 iterations of the scalar loop. The vector lanes that correspond to
524 iterations of the scalar loop are said to be "active" and the other
525 lanes are said to be "inactive".
526
527 In such vector loops, many rgroups need to be controlled to ensure
528 that they have no effect for the inactive lanes. Conceptually, each
529 such rgroup needs a sequence of booleans in the same order as above,
530 but with each (i,j) replaced by a boolean that indicates whether
531 iteration i is active. This sequence occupies nV vector controls
532 that again have nL lanes each. Thus the control sequence as a whole
533 consists of VF independent booleans that are each repeated nS times.
534
535 Taking mask-based approach as a partially-populated vectors example.
536 We make the simplifying assumption that if a sequence of nV masks is
537 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
538 VIEW_CONVERTing it. This holds for all current targets that support
539 fully-masked loops. For example, suppose the scalar loop is:
540
541 float *f;
542 double *d;
543 for (int i = 0; i < n; ++i)
544 {
545 f[i * 2 + 0] += 1.0f;
546 f[i * 2 + 1] += 2.0f;
547 d[i] += 3.0;
548 }
549
550 and suppose that vectors have 256 bits. The vectorized f accesses
551 will belong to one rgroup and the vectorized d access to another:
552
553 f rgroup: nS = 2, nV = 1, nL = 8
554 d rgroup: nS = 1, nV = 1, nL = 4
555 VF = 4
556
557 [ In this simple example the rgroups do correspond to the normal
558 SLP grouping scheme. ]
559
560 If only the first three lanes are active, the masks we need are:
561
562 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
563 d rgroup: 1 | 1 | 1 | 0
564
565 Here we can use a mask calculated for f's rgroup for d's, but not
566 vice versa.
567
568 Thus for each value of nV, it is enough to provide nV masks, with the
569 mask being calculated based on the highest nL (or, equivalently, based
570 on the highest nS) required by any rgroup with that nV. We therefore
571 represent the entire collection of masks as a two-level table, with the
572 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
573 the second being indexed by the mask index 0 <= i < nV. */
574
575 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
576 according to the description above. */
577 struct rgroup_controls {
578 /* The largest nS for all rgroups that use these controls. */
579 unsigned int max_nscalars_per_iter;
580
581 /* For the largest nS recorded above, the loop controls divide each scalar
582 into FACTOR equal-sized pieces. This is useful if we need to split
583 element-based accesses into byte-based accesses. */
584 unsigned int factor;
585
586 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
587 For mask-based controls, it is the type of the masks in CONTROLS.
588 For length-based controls, it can be any vector type that has the
589 specified number of elements; the type of the elements doesn't matter. */
590 tree type;
591
592 /* A vector of nV controls, in iteration order. */
593 vec<tree> controls;
594
595 /* In case of len_load and len_store with a bias there is only one
596 rgroup. This holds the adjusted loop length for the this rgroup. */
597 tree bias_adjusted_ctrl;
598 };
599
600 typedef auto_vec<rgroup_controls> vec_loop_masks;
601
602 typedef auto_vec<rgroup_controls> vec_loop_lens;
603
604 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
605
606 /* Information about a reduction accumulator from the main loop that could
607 conceivably be reused as the input to a reduction in an epilogue loop. */
608 struct vect_reusable_accumulator {
609 /* The final value of the accumulator, which forms the input to the
610 reduction operation. */
611 tree reduc_input;
612
613 /* The stmt_vec_info that describes the reduction (i.e. the one for
614 which is_reduc_info is true). */
615 stmt_vec_info reduc_info;
616 };
617
618 /*-----------------------------------------------------------------*/
619 /* Info on vectorized loops. */
620 /*-----------------------------------------------------------------*/
621 typedef class _loop_vec_info : public vec_info {
622 public:
623 _loop_vec_info (class loop *, vec_info_shared *);
624 ~_loop_vec_info ();
625
626 /* The loop to which this info struct refers to. */
627 class loop *loop;
628
629 /* The loop basic blocks. */
630 basic_block *bbs;
631
632 /* Number of latch executions. */
633 tree num_itersm1;
634 /* Number of iterations. */
635 tree num_iters;
636 /* Number of iterations of the original loop. */
637 tree num_iters_unchanged;
638 /* Condition under which this loop is analyzed and versioned. */
639 tree num_iters_assumptions;
640
641 /* The cost of the vector code. */
642 class vector_costs *vector_costs;
643
644 /* The cost of the scalar code. */
645 class vector_costs *scalar_costs;
646
647 /* Threshold of number of iterations below which vectorization will not be
648 performed. It is calculated from MIN_PROFITABLE_ITERS and
649 param_min_vect_loop_bound. */
650 unsigned int th;
651
652 /* When applying loop versioning, the vector form should only be used
653 if the number of scalar iterations is >= this value, on top of all
654 the other requirements. Ignored when loop versioning is not being
655 used. */
656 poly_uint64 versioning_threshold;
657
658 /* Unrolling factor */
659 poly_uint64 vectorization_factor;
660
661 /* If this loop is an epilogue loop whose main loop can be skipped,
662 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
663 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
664 main loop and goes straight to this loop's preheader.
665
666 Both fields are null otherwise. */
667 edge main_loop_edge;
668 edge skip_main_loop_edge;
669
670 /* If this loop is an epilogue loop that might be skipped after executing
671 the main loop, this edge is the one that skips the epilogue. */
672 edge skip_this_loop_edge;
673
674 /* The vectorized form of a standard reduction replaces the original
675 scalar code's final result (a loop-closed SSA PHI) with the result
676 of a vector-to-scalar reduction operation. After vectorization,
677 this variable maps these vector-to-scalar results to information
678 about the reductions that generated them. */
679 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
680
681 /* The number of times that the target suggested we unroll the vector loop
682 in order to promote more ILP. This value will be used to re-analyze the
683 loop for vectorization and if successful the value will be folded into
684 vectorization_factor (and therefore exactly divides
685 vectorization_factor). */
686 unsigned int suggested_unroll_factor;
687
688 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
689 if there is no particular limit. */
690 unsigned HOST_WIDE_INT max_vectorization_factor;
691
692 /* The masks that a fully-masked loop should use to avoid operating
693 on inactive scalars. */
694 vec_loop_masks masks;
695
696 /* The lengths that a loop with length should use to avoid operating
697 on inactive scalars. */
698 vec_loop_lens lens;
699
700 /* Set of scalar conditions that have loop mask applied. */
701 scalar_cond_masked_set_type scalar_cond_masked_set;
702
703 /* Set of vector conditions that have loop mask applied. */
704 vec_cond_masked_set_type vec_cond_masked_set;
705
706 /* If we are using a loop mask to align memory addresses, this variable
707 contains the number of vector elements that we should skip in the
708 first iteration of the vector loop (i.e. the number of leading
709 elements that should be false in the first mask). */
710 tree mask_skip_niters;
711
712 /* The type that the loop control IV should be converted to before
713 testing which of the VF scalars are active and inactive.
714 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
715 tree rgroup_compare_type;
716
717 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
718 the loop should not be vectorized, if constant non-zero, simd_if_cond
719 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
720 should be versioned on that condition, using scalar loop if the condition
721 is false and vectorized loop otherwise. */
722 tree simd_if_cond;
723
724 /* The type that the vector loop control IV should have when
725 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
726 tree rgroup_iv_type;
727
728 /* Unknown DRs according to which loop was peeled. */
729 class dr_vec_info *unaligned_dr;
730
731 /* peeling_for_alignment indicates whether peeling for alignment will take
732 place, and what the peeling factor should be:
733 peeling_for_alignment = X means:
734 If X=0: Peeling for alignment will not be applied.
735 If X>0: Peel first X iterations.
736 If X=-1: Generate a runtime test to calculate the number of iterations
737 to be peeled, using the dataref recorded in the field
738 unaligned_dr. */
739 int peeling_for_alignment;
740
741 /* The mask used to check the alignment of pointers or arrays. */
742 int ptr_mask;
743
744 /* Data Dependence Relations defining address ranges that are candidates
745 for a run-time aliasing check. */
746 auto_vec<ddr_p> may_alias_ddrs;
747
748 /* Data Dependence Relations defining address ranges together with segment
749 lengths from which the run-time aliasing check is built. */
750 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
751
752 /* Check that the addresses of each pair of objects is unequal. */
753 auto_vec<vec_object_pair> check_unequal_addrs;
754
755 /* List of values that are required to be nonzero. This is used to check
756 whether things like "x[i * n] += 1;" are safe and eventually gets added
757 to the checks for lower bounds below. */
758 auto_vec<tree> check_nonzero;
759
760 /* List of values that need to be checked for a minimum value. */
761 auto_vec<vec_lower_bound> lower_bounds;
762
763 /* Statements in the loop that have data references that are candidates for a
764 runtime (loop versioning) misalignment check. */
765 auto_vec<stmt_vec_info> may_misalign_stmts;
766
767 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
768 auto_vec<stmt_vec_info> reductions;
769
770 /* All reduction chains in the loop, represented by the first
771 stmt in the chain. */
772 auto_vec<stmt_vec_info> reduction_chains;
773
774 /* Cost vector for a single scalar iteration. */
775 auto_vec<stmt_info_for_cost> scalar_cost_vec;
776
777 /* Map of IV base/step expressions to inserted name in the preheader. */
778 hash_map<tree_operand_hash, tree> *ivexpr_map;
779
780 /* Map of OpenMP "omp simd array" scan variables to corresponding
781 rhs of the store of the initializer. */
782 hash_map<tree, tree> *scan_map;
783
784 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
785 applied to the loop, i.e., no unrolling is needed, this is 1. */
786 poly_uint64 slp_unrolling_factor;
787
788 /* The factor used to over weight those statements in an inner loop
789 relative to the loop being vectorized. */
790 unsigned int inner_loop_cost_factor;
791
792 /* Is the loop vectorizable? */
793 bool vectorizable;
794
795 /* Records whether we still have the option of vectorizing this loop
796 using partially-populated vectors; in other words, whether it is
797 still possible for one iteration of the vector loop to handle
798 fewer than VF scalars. */
799 bool can_use_partial_vectors_p;
800
801 /* True if we've decided to use partially-populated vectors, so that
802 the vector loop can handle fewer than VF scalars. */
803 bool using_partial_vectors_p;
804
805 /* True if we've decided to use partially-populated vectors for the
806 epilogue of loop. */
807 bool epil_using_partial_vectors_p;
808
809 /* The bias for len_load and len_store. For now, only 0 and -1 are
810 supported. -1 must be used when a backend does not support
811 len_load/len_store with a length of zero. */
812 signed char partial_load_store_bias;
813
814 /* When we have grouped data accesses with gaps, we may introduce invalid
815 memory accesses. We peel the last iteration of the loop to prevent
816 this. */
817 bool peeling_for_gaps;
818
819 /* When the number of iterations is not a multiple of the vector size
820 we need to peel off iterations at the end to form an epilogue loop. */
821 bool peeling_for_niter;
822
823 /* True if there are no loop carried data dependencies in the loop.
824 If loop->safelen <= 1, then this is always true, either the loop
825 didn't have any loop carried data dependencies, or the loop is being
826 vectorized guarded with some runtime alias checks, or couldn't
827 be vectorized at all, but then this field shouldn't be used.
828 For loop->safelen >= 2, the user has asserted that there are no
829 backward dependencies, but there still could be loop carried forward
830 dependencies in such loops. This flag will be false if normal
831 vectorizer data dependency analysis would fail or require versioning
832 for alias, but because of loop->safelen >= 2 it has been vectorized
833 even without versioning for alias. E.g. in:
834 #pragma omp simd
835 for (int i = 0; i < m; i++)
836 a[i] = a[i + k] * c;
837 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
838 DTRT even for k > 0 && k < m, but without safelen we would not
839 vectorize this, so this field would be false. */
840 bool no_data_dependencies;
841
842 /* Mark loops having masked stores. */
843 bool has_mask_store;
844
845 /* Queued scaling factor for the scalar loop. */
846 profile_probability scalar_loop_scaling;
847
848 /* If if-conversion versioned this loop before conversion, this is the
849 loop version without if-conversion. */
850 class loop *scalar_loop;
851
852 /* For loops being epilogues of already vectorized loops
853 this points to the original vectorized loop. Otherwise NULL. */
854 _loop_vec_info *orig_loop_info;
855
856 /* Used to store loop_vec_infos of epilogues of this loop during
857 analysis. */
858 vec<_loop_vec_info *> epilogue_vinfos;
859
860 } *loop_vec_info;
861
862 /* Access Functions. */
863 #define LOOP_VINFO_LOOP(L) (L)->loop
864 #define LOOP_VINFO_BBS(L) (L)->bbs
865 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
866 #define LOOP_VINFO_NITERS(L) (L)->num_iters
867 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
868 prologue peeling retain total unchanged scalar loop iterations for
869 cost model. */
870 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
871 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
872 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
873 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
874 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
875 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
876 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
877 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
878 (L)->epil_using_partial_vectors_p
879 #define LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS(L) (L)->partial_load_store_bias
880 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
881 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
882 #define LOOP_VINFO_MASKS(L) (L)->masks
883 #define LOOP_VINFO_LENS(L) (L)->lens
884 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
885 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
886 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
887 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
888 #define LOOP_VINFO_N_STMTS(L) (L)->shared->n_stmts
889 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
890 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
891 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
892 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
893 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
894 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
895 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
896 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
897 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
898 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
899 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
900 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
901 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
902 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
903 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
904 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
905 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
906 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
907 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
908 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
909 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
910 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
911 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
912 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
913 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
914 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
915 #define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
916
917 #define LOOP_VINFO_FULLY_MASKED_P(L) \
918 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
919 && !LOOP_VINFO_MASKS (L).is_empty ())
920
921 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
922 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
923 && !LOOP_VINFO_LENS (L).is_empty ())
924
925 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
926 ((L)->may_misalign_stmts.length () > 0)
927 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
928 ((L)->comp_alias_ddrs.length () > 0 \
929 || (L)->check_unequal_addrs.length () > 0 \
930 || (L)->lower_bounds.length () > 0)
931 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
932 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
933 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
934 (LOOP_VINFO_SIMD_IF_COND (L))
935 #define LOOP_REQUIRES_VERSIONING(L) \
936 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
937 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
938 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
939 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
940
941 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
942 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
943
944 #define LOOP_VINFO_EPILOGUE_P(L) \
945 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
946
947 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
948 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
949
950 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
951 value signifies success, and a NULL value signifies failure, supporting
952 propagating an opt_problem * describing the failure back up the call
953 stack. */
954 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
955
956 static inline loop_vec_info
957 loop_vec_info_for_loop (class loop *loop)
958 {
959 return (loop_vec_info) loop->aux;
960 }
961
962 struct slp_root
963 {
964 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
965 vec<stmt_vec_info> roots_)
966 : kind(kind_), stmts(stmts_), roots(roots_) {}
967 slp_instance_kind kind;
968 vec<stmt_vec_info> stmts;
969 vec<stmt_vec_info> roots;
970 };
971
972 typedef class _bb_vec_info : public vec_info
973 {
974 public:
975 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
976 ~_bb_vec_info ();
977
978 /* The region we are operating on. bbs[0] is the entry, excluding
979 its PHI nodes. In the future we might want to track an explicit
980 entry edge to cover bbs[0] PHI nodes and have a region entry
981 insert location. */
982 vec<basic_block> bbs;
983
984 vec<slp_root> roots;
985 } *bb_vec_info;
986
987 #define BB_VINFO_BB(B) (B)->bb
988 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
989 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
990 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
991 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
992
993 /*-----------------------------------------------------------------*/
994 /* Info on vectorized defs. */
995 /*-----------------------------------------------------------------*/
996 enum stmt_vec_info_type {
997 undef_vec_info_type = 0,
998 load_vec_info_type,
999 store_vec_info_type,
1000 shift_vec_info_type,
1001 op_vec_info_type,
1002 call_vec_info_type,
1003 call_simd_clone_vec_info_type,
1004 assignment_vec_info_type,
1005 condition_vec_info_type,
1006 comparison_vec_info_type,
1007 reduc_vec_info_type,
1008 induc_vec_info_type,
1009 type_promotion_vec_info_type,
1010 type_demotion_vec_info_type,
1011 type_conversion_vec_info_type,
1012 cycle_phi_info_type,
1013 lc_phi_info_type,
1014 phi_info_type,
1015 loop_exit_ctrl_vec_info_type
1016 };
1017
1018 /* Indicates whether/how a variable is used in the scope of loop/basic
1019 block. */
1020 enum vect_relevant {
1021 vect_unused_in_scope = 0,
1022
1023 /* The def is only used outside the loop. */
1024 vect_used_only_live,
1025 /* The def is in the inner loop, and the use is in the outer loop, and the
1026 use is a reduction stmt. */
1027 vect_used_in_outer_by_reduction,
1028 /* The def is in the inner loop, and the use is in the outer loop (and is
1029 not part of reduction). */
1030 vect_used_in_outer,
1031
1032 /* defs that feed computations that end up (only) in a reduction. These
1033 defs may be used by non-reduction stmts, but eventually, any
1034 computations/values that are affected by these defs are used to compute
1035 a reduction (i.e. don't get stored to memory, for example). We use this
1036 to identify computations that we can change the order in which they are
1037 computed. */
1038 vect_used_by_reduction,
1039
1040 vect_used_in_scope
1041 };
1042
1043 /* The type of vectorization that can be applied to the stmt: regular loop-based
1044 vectorization; pure SLP - the stmt is a part of SLP instances and does not
1045 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
1046 a part of SLP instance and also must be loop-based vectorized, since it has
1047 uses outside SLP sequences.
1048
1049 In the loop context the meanings of pure and hybrid SLP are slightly
1050 different. By saying that pure SLP is applied to the loop, we mean that we
1051 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
1052 vectorized without doing any conceptual unrolling, cause we don't pack
1053 together stmts from different iterations, only within a single iteration.
1054 Loop hybrid SLP means that we exploit both intra-iteration and
1055 inter-iteration parallelism (e.g., number of elements in the vector is 4
1056 and the slp-group-size is 2, in which case we don't have enough parallelism
1057 within an iteration, so we obtain the rest of the parallelism from subsequent
1058 iterations by unrolling the loop by 2). */
1059 enum slp_vect_type {
1060 loop_vect = 0,
1061 pure_slp,
1062 hybrid
1063 };
1064
1065 /* Says whether a statement is a load, a store of a vectorized statement
1066 result, or a store of an invariant value. */
1067 enum vec_load_store_type {
1068 VLS_LOAD,
1069 VLS_STORE,
1070 VLS_STORE_INVARIANT
1071 };
1072
1073 /* Describes how we're going to vectorize an individual load or store,
1074 or a group of loads or stores. */
1075 enum vect_memory_access_type {
1076 /* An access to an invariant address. This is used only for loads. */
1077 VMAT_INVARIANT,
1078
1079 /* A simple contiguous access. */
1080 VMAT_CONTIGUOUS,
1081
1082 /* A contiguous access that goes down in memory rather than up,
1083 with no additional permutation. This is used only for stores
1084 of invariants. */
1085 VMAT_CONTIGUOUS_DOWN,
1086
1087 /* A simple contiguous access in which the elements need to be permuted
1088 after loading or before storing. Only used for loop vectorization;
1089 SLP uses separate permutes. */
1090 VMAT_CONTIGUOUS_PERMUTE,
1091
1092 /* A simple contiguous access in which the elements need to be reversed
1093 after loading or before storing. */
1094 VMAT_CONTIGUOUS_REVERSE,
1095
1096 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1097 VMAT_LOAD_STORE_LANES,
1098
1099 /* An access in which each scalar element is loaded or stored
1100 individually. */
1101 VMAT_ELEMENTWISE,
1102
1103 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1104 SLP accesses. Each unrolled iteration uses a contiguous load
1105 or store for the whole group, but the groups from separate iterations
1106 are combined in the same way as for VMAT_ELEMENTWISE. */
1107 VMAT_STRIDED_SLP,
1108
1109 /* The access uses gather loads or scatter stores. */
1110 VMAT_GATHER_SCATTER
1111 };
1112
1113 class dr_vec_info {
1114 public:
1115 /* The data reference itself. */
1116 data_reference *dr;
1117 /* The statement that contains the data reference. */
1118 stmt_vec_info stmt;
1119 /* The analysis group this DR belongs to when doing BB vectorization.
1120 DRs of the same group belong to the same conditional execution context. */
1121 unsigned group;
1122 /* The misalignment in bytes of the reference, or -1 if not known. */
1123 int misalignment;
1124 /* The byte alignment that we'd ideally like the reference to have,
1125 and the value that misalignment is measured against. */
1126 poly_uint64 target_alignment;
1127 /* If true the alignment of base_decl needs to be increased. */
1128 bool base_misaligned;
1129 tree base_decl;
1130
1131 /* Stores current vectorized loop's offset. To be added to the DR's
1132 offset to calculate current offset of data reference. */
1133 tree offset;
1134 };
1135
1136 typedef struct data_reference *dr_p;
1137
1138 class _stmt_vec_info {
1139 public:
1140
1141 enum stmt_vec_info_type type;
1142
1143 /* Indicates whether this stmts is part of a computation whose result is
1144 used outside the loop. */
1145 bool live;
1146
1147 /* Stmt is part of some pattern (computation idiom) */
1148 bool in_pattern_p;
1149
1150 /* True if the statement was created during pattern recognition as
1151 part of the replacement for RELATED_STMT. This implies that the
1152 statement isn't part of any basic block, although for convenience
1153 its gimple_bb is the same as for RELATED_STMT. */
1154 bool pattern_stmt_p;
1155
1156 /* Is this statement vectorizable or should it be skipped in (partial)
1157 vectorization. */
1158 bool vectorizable;
1159
1160 /* The stmt to which this info struct refers to. */
1161 gimple *stmt;
1162
1163 /* The vector type to be used for the LHS of this statement. */
1164 tree vectype;
1165
1166 /* The vectorized stmts. */
1167 vec<gimple *> vec_stmts;
1168
1169 /* The following is relevant only for stmts that contain a non-scalar
1170 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1171 at most one such data-ref. */
1172
1173 dr_vec_info dr_aux;
1174
1175 /* Information about the data-ref relative to this loop
1176 nest (the loop that is being considered for vectorization). */
1177 innermost_loop_behavior dr_wrt_vec_loop;
1178
1179 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1180 this information is still available in vect_update_ivs_after_vectorizer
1181 where we may not be able to re-analyze the PHI nodes evolution as
1182 peeling for the prologue loop can make it unanalyzable. The evolution
1183 part is still correct after peeling, but the base may have changed from
1184 the version here. */
1185 tree loop_phi_evolution_base_unchanged;
1186 tree loop_phi_evolution_part;
1187
1188 /* Used for various bookkeeping purposes, generally holding a pointer to
1189 some other stmt S that is in some way "related" to this stmt.
1190 Current use of this field is:
1191 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1192 true): S is the "pattern stmt" that represents (and replaces) the
1193 sequence of stmts that constitutes the pattern. Similarly, the
1194 related_stmt of the "pattern stmt" points back to this stmt (which is
1195 the last stmt in the original sequence of stmts that constitutes the
1196 pattern). */
1197 stmt_vec_info related_stmt;
1198
1199 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1200 The sequence is attached to the original statement rather than the
1201 pattern statement. */
1202 gimple_seq pattern_def_seq;
1203
1204 /* Selected SIMD clone's function info. First vector element
1205 is SIMD clone's function decl, followed by a pair of trees (base + step)
1206 for linear arguments (pair of NULLs for other arguments). */
1207 vec<tree> simd_clone_info;
1208
1209 /* Classify the def of this stmt. */
1210 enum vect_def_type def_type;
1211
1212 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1213 enum slp_vect_type slp_type;
1214
1215 /* Interleaving and reduction chains info. */
1216 /* First element in the group. */
1217 stmt_vec_info first_element;
1218 /* Pointer to the next element in the group. */
1219 stmt_vec_info next_element;
1220 /* The size of the group. */
1221 unsigned int size;
1222 /* For stores, number of stores from this group seen. We vectorize the last
1223 one. */
1224 unsigned int store_count;
1225 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1226 is 1. */
1227 unsigned int gap;
1228
1229 /* The minimum negative dependence distance this stmt participates in
1230 or zero if none. */
1231 unsigned int min_neg_dist;
1232
1233 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1234 of the loop induction variable and computation of array indexes. relevant
1235 indicates whether the stmt needs to be vectorized. */
1236 enum vect_relevant relevant;
1237
1238 /* For loads if this is a gather, for stores if this is a scatter. */
1239 bool gather_scatter_p;
1240
1241 /* True if this is an access with loop-invariant stride. */
1242 bool strided_p;
1243
1244 /* For both loads and stores. */
1245 unsigned simd_lane_access_p : 3;
1246
1247 /* Classifies how the load or store is going to be implemented
1248 for loop vectorization. */
1249 vect_memory_access_type memory_access_type;
1250
1251 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1252 tree induc_cond_initial_val;
1253
1254 /* If not NULL the value to be added to compute final reduction value. */
1255 tree reduc_epilogue_adjustment;
1256
1257 /* On a reduction PHI the reduction type as detected by
1258 vect_is_simple_reduction and vectorizable_reduction. */
1259 enum vect_reduction_type reduc_type;
1260
1261 /* The original reduction code, to be used in the epilogue. */
1262 code_helper reduc_code;
1263 /* An internal function we should use in the epilogue. */
1264 internal_fn reduc_fn;
1265
1266 /* On a stmt participating in the reduction the index of the operand
1267 on the reduction SSA cycle. */
1268 int reduc_idx;
1269
1270 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1271 On the def returned by vect_force_simple_reduction the
1272 corresponding PHI. */
1273 stmt_vec_info reduc_def;
1274
1275 /* The vector input type relevant for reduction vectorization. */
1276 tree reduc_vectype_in;
1277
1278 /* The vector type for performing the actual reduction. */
1279 tree reduc_vectype;
1280
1281 /* If IS_REDUC_INFO is true and if the vector code is performing
1282 N scalar reductions in parallel, this variable gives the initial
1283 scalar values of those N reductions. */
1284 vec<tree> reduc_initial_values;
1285
1286 /* If IS_REDUC_INFO is true and if the vector code is performing
1287 N scalar reductions in parallel, this variable gives the vectorized code's
1288 final (scalar) result for each of those N reductions. In other words,
1289 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1290 SSA PHI for reduction number I. */
1291 vec<tree> reduc_scalar_results;
1292
1293 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1294 being performed by an epilogue loop and we have decided to reuse
1295 this accumulator from the main loop. */
1296 vect_reusable_accumulator *reused_accumulator;
1297
1298 /* Whether we force a single cycle PHI during reduction vectorization. */
1299 bool force_single_cycle;
1300
1301 /* Whether on this stmt reduction meta is recorded. */
1302 bool is_reduc_info;
1303
1304 /* If nonzero, the lhs of the statement could be truncated to this
1305 many bits without affecting any users of the result. */
1306 unsigned int min_output_precision;
1307
1308 /* If nonzero, all non-boolean input operands have the same precision,
1309 and they could each be truncated to this many bits without changing
1310 the result. */
1311 unsigned int min_input_precision;
1312
1313 /* If OPERATION_BITS is nonzero, the statement could be performed on
1314 an integer with the sign and number of bits given by OPERATION_SIGN
1315 and OPERATION_BITS without changing the result. */
1316 unsigned int operation_precision;
1317 signop operation_sign;
1318
1319 /* If the statement produces a boolean result, this value describes
1320 how we should choose the associated vector type. The possible
1321 values are:
1322
1323 - an integer precision N if we should use the vector mask type
1324 associated with N-bit integers. This is only used if all relevant
1325 input booleans also want the vector mask type for N-bit integers,
1326 or if we can convert them into that form by pattern-matching.
1327
1328 - ~0U if we considered choosing a vector mask type but decided
1329 to treat the boolean as a normal integer type instead.
1330
1331 - 0 otherwise. This means either that the operation isn't one that
1332 could have a vector mask type (and so should have a normal vector
1333 type instead) or that we simply haven't made a choice either way. */
1334 unsigned int mask_precision;
1335
1336 /* True if this is only suitable for SLP vectorization. */
1337 bool slp_vect_only_p;
1338
1339 /* True if this is a pattern that can only be handled by SLP
1340 vectorization. */
1341 bool slp_vect_pattern_only_p;
1342 };
1343
1344 /* Information about a gather/scatter call. */
1345 struct gather_scatter_info {
1346 /* The internal function to use for the gather/scatter operation,
1347 or IFN_LAST if a built-in function should be used instead. */
1348 internal_fn ifn;
1349
1350 /* The FUNCTION_DECL for the built-in gather/scatter function,
1351 or null if an internal function should be used instead. */
1352 tree decl;
1353
1354 /* The loop-invariant base value. */
1355 tree base;
1356
1357 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1358 tree offset;
1359
1360 /* Each offset element should be multiplied by this amount before
1361 being added to the base. */
1362 int scale;
1363
1364 /* The definition type for the vectorized offset. */
1365 enum vect_def_type offset_dt;
1366
1367 /* The type of the vectorized offset. */
1368 tree offset_vectype;
1369
1370 /* The type of the scalar elements after loading or before storing. */
1371 tree element_type;
1372
1373 /* The type of the scalar elements being loaded or stored. */
1374 tree memory_type;
1375 };
1376
1377 /* Access Functions. */
1378 #define STMT_VINFO_TYPE(S) (S)->type
1379 #define STMT_VINFO_STMT(S) (S)->stmt
1380 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1381 #define STMT_VINFO_LIVE_P(S) (S)->live
1382 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1383 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1384 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1385 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1386 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1387 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1388 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1389 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1390 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1391 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1392 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1393 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1394
1395 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1396 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1397 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1398 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1399 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1400 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1401 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1402 (S)->dr_wrt_vec_loop.base_misalignment
1403 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1404 (S)->dr_wrt_vec_loop.offset_alignment
1405 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1406 (S)->dr_wrt_vec_loop.step_alignment
1407
1408 #define STMT_VINFO_DR_INFO(S) \
1409 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1410
1411 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1412 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1413 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1414 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1415 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1416 #define STMT_VINFO_GROUPED_ACCESS(S) \
1417 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1418 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1419 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1420 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1421 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1422 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1423 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1424 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1425 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1426 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1427 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1428 #define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1429
1430 #define DR_GROUP_FIRST_ELEMENT(S) \
1431 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1432 #define DR_GROUP_NEXT_ELEMENT(S) \
1433 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1434 #define DR_GROUP_SIZE(S) \
1435 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1436 #define DR_GROUP_STORE_COUNT(S) \
1437 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1438 #define DR_GROUP_GAP(S) \
1439 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1440
1441 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1442 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1443 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1444 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1445 #define REDUC_GROUP_SIZE(S) \
1446 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1447
1448 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1449
1450 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1451 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1452 #define STMT_SLP_TYPE(S) (S)->slp_type
1453
1454 /* Contains the scalar or vector costs for a vec_info. */
1455 class vector_costs
1456 {
1457 public:
1458 vector_costs (vec_info *, bool);
1459 virtual ~vector_costs () {}
1460
1461 /* Update the costs in response to adding COUNT copies of a statement.
1462
1463 - WHERE specifies whether the cost occurs in the loop prologue,
1464 the loop body, or the loop epilogue.
1465 - KIND is the kind of statement, which is always meaningful.
1466 - STMT_INFO or NODE, if nonnull, describe the statement that will be
1467 vectorized.
1468 - VECTYPE, if nonnull, is the vector type that the vectorized
1469 statement will operate on. Note that this should be used in
1470 preference to STMT_VINFO_VECTYPE (STMT_INFO) since the latter
1471 is not correct for SLP.
1472 - for unaligned_load and unaligned_store statements, MISALIGN is
1473 the byte misalignment of the load or store relative to the target's
1474 preferred alignment for VECTYPE, or DR_MISALIGNMENT_UNKNOWN
1475 if the misalignment is not known.
1476
1477 Return the calculated cost as well as recording it. The return
1478 value is used for dumping purposes. */
1479 virtual unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
1480 stmt_vec_info stmt_info,
1481 slp_tree node,
1482 tree vectype, int misalign,
1483 vect_cost_model_location where);
1484
1485 /* Finish calculating the cost of the code. The results can be
1486 read back using the functions below.
1487
1488 If the costs describe vector code, SCALAR_COSTS gives the costs
1489 of the corresponding scalar code, otherwise it is null. */
1490 virtual void finish_cost (const vector_costs *scalar_costs);
1491
1492 /* The costs in THIS and OTHER both describe ways of vectorizing
1493 a main loop. Return true if the costs described by THIS are
1494 cheaper than the costs described by OTHER. Return false if any
1495 of the following are true:
1496
1497 - THIS and OTHER are of equal cost
1498 - OTHER is better than THIS
1499 - we can't be sure about the relative costs of THIS and OTHER. */
1500 virtual bool better_main_loop_than_p (const vector_costs *other) const;
1501
1502 /* Likewise, but the costs in THIS and OTHER both describe ways of
1503 vectorizing an epilogue loop of MAIN_LOOP. */
1504 virtual bool better_epilogue_loop_than_p (const vector_costs *other,
1505 loop_vec_info main_loop) const;
1506
1507 unsigned int prologue_cost () const;
1508 unsigned int body_cost () const;
1509 unsigned int epilogue_cost () const;
1510 unsigned int outside_cost () const;
1511 unsigned int total_cost () const;
1512 unsigned int suggested_unroll_factor () const;
1513
1514 protected:
1515 unsigned int record_stmt_cost (stmt_vec_info, vect_cost_model_location,
1516 unsigned int);
1517 unsigned int adjust_cost_for_freq (stmt_vec_info, vect_cost_model_location,
1518 unsigned int);
1519 int compare_inside_loop_cost (const vector_costs *) const;
1520 int compare_outside_loop_cost (const vector_costs *) const;
1521
1522 /* The region of code that we're considering vectorizing. */
1523 vec_info *m_vinfo;
1524
1525 /* True if we're costing the scalar code, false if we're costing
1526 the vector code. */
1527 bool m_costing_for_scalar;
1528
1529 /* The costs of the three regions, indexed by vect_cost_model_location. */
1530 unsigned int m_costs[3];
1531
1532 /* The suggested unrolling factor determined at finish_cost. */
1533 unsigned int m_suggested_unroll_factor;
1534
1535 /* True if finish_cost has been called. */
1536 bool m_finished;
1537 };
1538
1539 /* Create costs for VINFO. COSTING_FOR_SCALAR is true if the costs
1540 are for scalar code, false if they are for vector code. */
1541
1542 inline
1543 vector_costs::vector_costs (vec_info *vinfo, bool costing_for_scalar)
1544 : m_vinfo (vinfo),
1545 m_costing_for_scalar (costing_for_scalar),
1546 m_costs (),
1547 m_suggested_unroll_factor(1),
1548 m_finished (false)
1549 {
1550 }
1551
1552 /* Return the cost of the prologue code (in abstract units). */
1553
1554 inline unsigned int
1555 vector_costs::prologue_cost () const
1556 {
1557 gcc_checking_assert (m_finished);
1558 return m_costs[vect_prologue];
1559 }
1560
1561 /* Return the cost of the body code (in abstract units). */
1562
1563 inline unsigned int
1564 vector_costs::body_cost () const
1565 {
1566 gcc_checking_assert (m_finished);
1567 return m_costs[vect_body];
1568 }
1569
1570 /* Return the cost of the epilogue code (in abstract units). */
1571
1572 inline unsigned int
1573 vector_costs::epilogue_cost () const
1574 {
1575 gcc_checking_assert (m_finished);
1576 return m_costs[vect_epilogue];
1577 }
1578
1579 /* Return the cost of the prologue and epilogue code (in abstract units). */
1580
1581 inline unsigned int
1582 vector_costs::outside_cost () const
1583 {
1584 return prologue_cost () + epilogue_cost ();
1585 }
1586
1587 /* Return the cost of the prologue, body and epilogue code
1588 (in abstract units). */
1589
1590 inline unsigned int
1591 vector_costs::total_cost () const
1592 {
1593 return body_cost () + outside_cost ();
1594 }
1595
1596 /* Return the suggested unroll factor. */
1597
1598 inline unsigned int
1599 vector_costs::suggested_unroll_factor () const
1600 {
1601 gcc_checking_assert (m_finished);
1602 return m_suggested_unroll_factor;
1603 }
1604
1605 #define VECT_MAX_COST 1000
1606
1607 /* The maximum number of intermediate steps required in multi-step type
1608 conversion. */
1609 #define MAX_INTERM_CVT_STEPS 3
1610
1611 #define MAX_VECTORIZATION_FACTOR INT_MAX
1612
1613 /* Nonzero if TYPE represents a (scalar) boolean type or type
1614 in the middle-end compatible with it (unsigned precision 1 integral
1615 types). Used to determine which types should be vectorized as
1616 VECTOR_BOOLEAN_TYPE_P. */
1617
1618 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1619 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1620 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1621 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1622 && TYPE_PRECISION (TYPE) == 1 \
1623 && TYPE_UNSIGNED (TYPE)))
1624
1625 static inline bool
1626 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1627 {
1628 return (loop->inner
1629 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1630 }
1631
1632 /* PHI is either a scalar reduction phi or a scalar induction phi.
1633 Return the initial value of the variable on entry to the containing
1634 loop. */
1635
1636 static inline tree
1637 vect_phi_initial_value (gphi *phi)
1638 {
1639 basic_block bb = gimple_bb (phi);
1640 edge pe = loop_preheader_edge (bb->loop_father);
1641 gcc_assert (pe->dest == bb);
1642 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1643 }
1644
1645 /* Return true if STMT_INFO should produce a vector mask type rather than
1646 a normal nonmask type. */
1647
1648 static inline bool
1649 vect_use_mask_type_p (stmt_vec_info stmt_info)
1650 {
1651 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1652 }
1653
1654 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1655 pattern. */
1656
1657 static inline bool
1658 is_pattern_stmt_p (stmt_vec_info stmt_info)
1659 {
1660 return stmt_info->pattern_stmt_p;
1661 }
1662
1663 /* If STMT_INFO is a pattern statement, return the statement that it
1664 replaces, otherwise return STMT_INFO itself. */
1665
1666 inline stmt_vec_info
1667 vect_orig_stmt (stmt_vec_info stmt_info)
1668 {
1669 if (is_pattern_stmt_p (stmt_info))
1670 return STMT_VINFO_RELATED_STMT (stmt_info);
1671 return stmt_info;
1672 }
1673
1674 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1675
1676 static inline stmt_vec_info
1677 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1678 {
1679 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1680 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1681 return stmt1_info;
1682 else
1683 return stmt2_info;
1684 }
1685
1686 /* If STMT_INFO has been replaced by a pattern statement, return the
1687 replacement statement, otherwise return STMT_INFO itself. */
1688
1689 inline stmt_vec_info
1690 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1691 {
1692 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1693 return STMT_VINFO_RELATED_STMT (stmt_info);
1694 return stmt_info;
1695 }
1696
1697 /* Return true if BB is a loop header. */
1698
1699 static inline bool
1700 is_loop_header_bb_p (basic_block bb)
1701 {
1702 if (bb == (bb->loop_father)->header)
1703 return true;
1704 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1705 return false;
1706 }
1707
1708 /* Return pow2 (X). */
1709
1710 static inline int
1711 vect_pow2 (int x)
1712 {
1713 int i, res = 1;
1714
1715 for (i = 0; i < x; i++)
1716 res *= 2;
1717
1718 return res;
1719 }
1720
1721 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1722
1723 static inline int
1724 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1725 tree vectype, int misalign)
1726 {
1727 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1728 vectype, misalign);
1729 }
1730
1731 /* Get cost by calling cost target builtin. */
1732
1733 static inline
1734 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1735 {
1736 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1737 }
1738
1739 /* Alias targetm.vectorize.init_cost. */
1740
1741 static inline vector_costs *
1742 init_cost (vec_info *vinfo, bool costing_for_scalar)
1743 {
1744 return targetm.vectorize.create_costs (vinfo, costing_for_scalar);
1745 }
1746
1747 extern void dump_stmt_cost (FILE *, int, enum vect_cost_for_stmt,
1748 stmt_vec_info, slp_tree, tree, int, unsigned,
1749 enum vect_cost_model_location);
1750
1751 /* Alias targetm.vectorize.add_stmt_cost. */
1752
1753 static inline unsigned
1754 add_stmt_cost (vector_costs *costs, int count,
1755 enum vect_cost_for_stmt kind,
1756 stmt_vec_info stmt_info, slp_tree node,
1757 tree vectype, int misalign,
1758 enum vect_cost_model_location where)
1759 {
1760 unsigned cost = costs->add_stmt_cost (count, kind, stmt_info, node, vectype,
1761 misalign, where);
1762 if (dump_file && (dump_flags & TDF_DETAILS))
1763 dump_stmt_cost (dump_file, count, kind, stmt_info, node, vectype, misalign,
1764 cost, where);
1765 return cost;
1766 }
1767
1768 static inline unsigned
1769 add_stmt_cost (vector_costs *costs, int count, enum vect_cost_for_stmt kind,
1770 enum vect_cost_model_location where)
1771 {
1772 gcc_assert (kind == cond_branch_taken || kind == cond_branch_not_taken
1773 || kind == scalar_stmt);
1774 return add_stmt_cost (costs, count, kind, NULL, NULL, NULL_TREE, 0, where);
1775 }
1776
1777 /* Alias targetm.vectorize.add_stmt_cost. */
1778
1779 static inline unsigned
1780 add_stmt_cost (vector_costs *costs, stmt_info_for_cost *i)
1781 {
1782 return add_stmt_cost (costs, i->count, i->kind, i->stmt_info, i->node,
1783 i->vectype, i->misalign, i->where);
1784 }
1785
1786 /* Alias targetm.vectorize.finish_cost. */
1787
1788 static inline void
1789 finish_cost (vector_costs *costs, const vector_costs *scalar_costs,
1790 unsigned *prologue_cost, unsigned *body_cost,
1791 unsigned *epilogue_cost, unsigned *suggested_unroll_factor = NULL)
1792 {
1793 costs->finish_cost (scalar_costs);
1794 *prologue_cost = costs->prologue_cost ();
1795 *body_cost = costs->body_cost ();
1796 *epilogue_cost = costs->epilogue_cost ();
1797 if (suggested_unroll_factor)
1798 *suggested_unroll_factor = costs->suggested_unroll_factor ();
1799 }
1800
1801 inline void
1802 add_stmt_costs (vector_costs *costs, stmt_vector_for_cost *cost_vec)
1803 {
1804 stmt_info_for_cost *cost;
1805 unsigned i;
1806 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1807 add_stmt_cost (costs, cost->count, cost->kind, cost->stmt_info,
1808 cost->node, cost->vectype, cost->misalign, cost->where);
1809 }
1810
1811 /*-----------------------------------------------------------------*/
1812 /* Info on data references alignment. */
1813 /*-----------------------------------------------------------------*/
1814 #define DR_MISALIGNMENT_UNKNOWN (-1)
1815 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1816
1817 inline void
1818 set_dr_misalignment (dr_vec_info *dr_info, int val)
1819 {
1820 dr_info->misalignment = val;
1821 }
1822
1823 extern int dr_misalignment (dr_vec_info *dr_info, tree vectype,
1824 poly_int64 offset = 0);
1825
1826 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1827
1828 /* Only defined once DR_MISALIGNMENT is defined. */
1829 static inline const poly_uint64
1830 dr_target_alignment (dr_vec_info *dr_info)
1831 {
1832 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
1833 dr_info = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
1834 return dr_info->target_alignment;
1835 }
1836 #define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
1837
1838 static inline void
1839 set_dr_target_alignment (dr_vec_info *dr_info, poly_uint64 val)
1840 {
1841 dr_info->target_alignment = val;
1842 }
1843 #define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
1844
1845 /* Return true if data access DR_INFO is aligned to the targets
1846 preferred alignment for VECTYPE (which may be less than a full vector). */
1847
1848 static inline bool
1849 aligned_access_p (dr_vec_info *dr_info, tree vectype)
1850 {
1851 return (dr_misalignment (dr_info, vectype) == 0);
1852 }
1853
1854 /* Return TRUE if the (mis-)alignment of the data access is known with
1855 respect to the targets preferred alignment for VECTYPE, and FALSE
1856 otherwise. */
1857
1858 static inline bool
1859 known_alignment_for_access_p (dr_vec_info *dr_info, tree vectype)
1860 {
1861 return (dr_misalignment (dr_info, vectype) != DR_MISALIGNMENT_UNKNOWN);
1862 }
1863
1864 /* Return the minimum alignment in bytes that the vectorized version
1865 of DR_INFO is guaranteed to have. */
1866
1867 static inline unsigned int
1868 vect_known_alignment_in_bytes (dr_vec_info *dr_info, tree vectype)
1869 {
1870 int misalignment = dr_misalignment (dr_info, vectype);
1871 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
1872 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1873 else if (misalignment == 0)
1874 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1875 return misalignment & -misalignment;
1876 }
1877
1878 /* Return the behavior of DR_INFO with respect to the vectorization context
1879 (which for outer loop vectorization might not be the behavior recorded
1880 in DR_INFO itself). */
1881
1882 static inline innermost_loop_behavior *
1883 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1884 {
1885 stmt_vec_info stmt_info = dr_info->stmt;
1886 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1887 if (loop_vinfo == NULL
1888 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1889 return &DR_INNERMOST (dr_info->dr);
1890 else
1891 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1892 }
1893
1894 /* Return the offset calculated by adding the offset of this DR_INFO to the
1895 corresponding data_reference's offset. If CHECK_OUTER then use
1896 vect_dr_behavior to select the appropriate data_reference to use. */
1897
1898 inline tree
1899 get_dr_vinfo_offset (vec_info *vinfo,
1900 dr_vec_info *dr_info, bool check_outer = false)
1901 {
1902 innermost_loop_behavior *base;
1903 if (check_outer)
1904 base = vect_dr_behavior (vinfo, dr_info);
1905 else
1906 base = &dr_info->dr->innermost;
1907
1908 tree offset = base->offset;
1909
1910 if (!dr_info->offset)
1911 return offset;
1912
1913 offset = fold_convert (sizetype, offset);
1914 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1915 dr_info->offset);
1916 }
1917
1918
1919 /* Return the vect cost model for LOOP. */
1920 static inline enum vect_cost_model
1921 loop_cost_model (loop_p loop)
1922 {
1923 if (loop != NULL
1924 && loop->force_vectorize
1925 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1926 return flag_simd_cost_model;
1927 return flag_vect_cost_model;
1928 }
1929
1930 /* Return true if the vect cost model is unlimited. */
1931 static inline bool
1932 unlimited_cost_model (loop_p loop)
1933 {
1934 return loop_cost_model (loop) == VECT_COST_MODEL_UNLIMITED;
1935 }
1936
1937 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1938 if the first iteration should use a partial mask in order to achieve
1939 alignment. */
1940
1941 static inline bool
1942 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1943 {
1944 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1945 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1946 }
1947
1948 /* Return the number of vectors of type VECTYPE that are needed to get
1949 NUNITS elements. NUNITS should be based on the vectorization factor,
1950 so it is always a known multiple of the number of elements in VECTYPE. */
1951
1952 static inline unsigned int
1953 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1954 {
1955 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1956 }
1957
1958 /* Return the number of copies needed for loop vectorization when
1959 a statement operates on vectors of type VECTYPE. This is the
1960 vectorization factor divided by the number of elements in
1961 VECTYPE and is always known at compile time. */
1962
1963 static inline unsigned int
1964 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1965 {
1966 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1967 }
1968
1969 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1970 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1971
1972 static inline void
1973 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1974 {
1975 /* All unit counts have the form vec_info::vector_size * X for some
1976 rational X, so two unit sizes must have a common multiple.
1977 Everything is a multiple of the initial value of 1. */
1978 *max_nunits = force_common_multiple (*max_nunits, nunits);
1979 }
1980
1981 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1982 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1983 if we haven't yet recorded any vector types. */
1984
1985 static inline void
1986 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1987 {
1988 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1989 }
1990
1991 /* Return the vectorization factor that should be used for costing
1992 purposes while vectorizing the loop described by LOOP_VINFO.
1993 Pick a reasonable estimate if the vectorization factor isn't
1994 known at compile time. */
1995
1996 static inline unsigned int
1997 vect_vf_for_cost (loop_vec_info loop_vinfo)
1998 {
1999 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2000 }
2001
2002 /* Estimate the number of elements in VEC_TYPE for costing purposes.
2003 Pick a reasonable estimate if the exact number isn't known at
2004 compile time. */
2005
2006 static inline unsigned int
2007 vect_nunits_for_cost (tree vec_type)
2008 {
2009 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
2010 }
2011
2012 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
2013
2014 static inline unsigned HOST_WIDE_INT
2015 vect_max_vf (loop_vec_info loop_vinfo)
2016 {
2017 unsigned HOST_WIDE_INT vf;
2018 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
2019 return vf;
2020 return MAX_VECTORIZATION_FACTOR;
2021 }
2022
2023 /* Return the size of the value accessed by unvectorized data reference
2024 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
2025 for the associated gimple statement, since that guarantees that DR_INFO
2026 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
2027 here includes things like V1SI, which can be vectorized in the same way
2028 as a plain SI.) */
2029
2030 inline unsigned int
2031 vect_get_scalar_dr_size (dr_vec_info *dr_info)
2032 {
2033 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
2034 }
2035
2036 /* Return true if LOOP_VINFO requires a runtime check for whether the
2037 vector loop is profitable. */
2038
2039 inline bool
2040 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
2041 {
2042 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
2043 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2044 && th >= vect_vf_for_cost (loop_vinfo));
2045 }
2046
2047 /* Source location + hotness information. */
2048 extern dump_user_location_t vect_location;
2049
2050 /* A macro for calling:
2051 dump_begin_scope (MSG, vect_location);
2052 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
2053 and then calling
2054 dump_end_scope ();
2055 once the object goes out of scope, thus capturing the nesting of
2056 the scopes.
2057
2058 These scopes affect dump messages within them: dump messages at the
2059 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
2060 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
2061
2062 #define DUMP_VECT_SCOPE(MSG) \
2063 AUTO_DUMP_SCOPE (MSG, vect_location)
2064
2065 /* A sentinel class for ensuring that the "vect_location" global gets
2066 reset at the end of a scope.
2067
2068 The "vect_location" global is used during dumping and contains a
2069 location_t, which could contain references to a tree block via the
2070 ad-hoc data. This data is used for tracking inlining information,
2071 but it's not a GC root; it's simply assumed that such locations never
2072 get accessed if the blocks are optimized away.
2073
2074 Hence we need to ensure that such locations are purged at the end
2075 of any operations using them (e.g. via this class). */
2076
2077 class auto_purge_vect_location
2078 {
2079 public:
2080 ~auto_purge_vect_location ();
2081 };
2082
2083 /*-----------------------------------------------------------------*/
2084 /* Function prototypes. */
2085 /*-----------------------------------------------------------------*/
2086
2087 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
2088 in tree-vect-loop-manip.cc. */
2089 extern void vect_set_loop_condition (class loop *, loop_vec_info,
2090 tree, tree, tree, bool);
2091 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
2092 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
2093 class loop *, edge);
2094 class loop *vect_loop_versioning (loop_vec_info, gimple *);
2095 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
2096 tree *, tree *, tree *, int, bool, bool,
2097 tree *);
2098 extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
2099 extern void vect_prepare_for_masked_peels (loop_vec_info);
2100 extern dump_user_location_t find_loop_location (class loop *);
2101 extern bool vect_can_advance_ivs_p (loop_vec_info);
2102 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
2103
2104 /* In tree-vect-stmts.cc. */
2105 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
2106 poly_uint64 = 0);
2107 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
2108 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
2109 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
2110 extern tree get_same_sized_vectype (tree, tree);
2111 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
2112 extern bool vect_get_loop_mask_type (loop_vec_info);
2113 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2114 stmt_vec_info * = NULL, gimple ** = NULL);
2115 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2116 tree *, stmt_vec_info * = NULL,
2117 gimple ** = NULL);
2118 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
2119 unsigned, tree *, slp_tree *,
2120 enum vect_def_type *,
2121 tree *, stmt_vec_info * = NULL);
2122 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
2123 extern bool supportable_widening_operation (vec_info *,
2124 enum tree_code, stmt_vec_info,
2125 tree, tree, enum tree_code *,
2126 enum tree_code *, int *,
2127 vec<tree> *);
2128 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
2129 enum tree_code *, int *,
2130 vec<tree> *);
2131
2132 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2133 enum vect_cost_for_stmt, stmt_vec_info,
2134 tree, int, enum vect_cost_model_location);
2135 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2136 enum vect_cost_for_stmt, slp_tree,
2137 tree, int, enum vect_cost_model_location);
2138 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2139 enum vect_cost_for_stmt,
2140 enum vect_cost_model_location);
2141
2142 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
2143
2144 static inline unsigned
2145 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
2146 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
2147 int misalign, enum vect_cost_model_location where)
2148 {
2149 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
2150 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
2151 }
2152
2153 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
2154 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
2155 gimple_stmt_iterator *);
2156 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
2157 extern tree vect_get_store_rhs (stmt_vec_info);
2158 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
2159 tree op, vec<tree> *, tree = NULL);
2160 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2161 tree, vec<tree> *,
2162 tree = NULL, vec<tree> * = NULL,
2163 tree = NULL, vec<tree> * = NULL,
2164 tree = NULL, vec<tree> * = NULL);
2165 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2166 tree, vec<tree> *, tree,
2167 tree = NULL, vec<tree> * = NULL, tree = NULL,
2168 tree = NULL, vec<tree> * = NULL, tree = NULL,
2169 tree = NULL, vec<tree> * = NULL, tree = NULL);
2170 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
2171 gimple_stmt_iterator *);
2172 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
2173 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
2174 gimple_stmt_iterator *,
2175 slp_tree, slp_instance);
2176 extern void vect_remove_stores (vec_info *, stmt_vec_info);
2177 extern bool vect_nop_conversion_p (stmt_vec_info);
2178 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
2179 slp_tree,
2180 slp_instance, stmt_vector_for_cost *);
2181 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int,
2182 dr_alignment_support, int, bool,
2183 unsigned int *, unsigned int *,
2184 stmt_vector_for_cost *,
2185 stmt_vector_for_cost *, bool);
2186 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
2187 dr_alignment_support, int,
2188 unsigned int *, stmt_vector_for_cost *);
2189 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
2190 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
2191 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
2192 extern void optimize_mask_stores (class loop*);
2193 extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
2194 const char * = nullptr);
2195 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
2196 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
2197 stmt_vec_info, tree *,
2198 tree *, unsigned int = 0);
2199 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
2200
2201 /* In tree-vect-data-refs.cc. */
2202 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
2203 extern enum dr_alignment_support vect_supportable_dr_alignment
2204 (vec_info *, dr_vec_info *, tree, int);
2205 extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
2206 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
2207 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
2208 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
2209 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
2210 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
2211 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
2212 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
2213 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
2214 tree, int, internal_fn *, tree *);
2215 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
2216 gather_scatter_info *);
2217 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
2218 vec<data_reference_p> *,
2219 vec<int> *, int);
2220 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
2221 extern void vect_record_base_alignments (vec_info *);
2222 extern tree vect_create_data_ref_ptr (vec_info *,
2223 stmt_vec_info, tree, class loop *, tree,
2224 tree *, gimple_stmt_iterator *,
2225 gimple **, bool,
2226 tree = NULL_TREE);
2227 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
2228 stmt_vec_info, tree);
2229 extern void vect_copy_ref_info (tree, tree);
2230 extern tree vect_create_destination_var (tree, tree);
2231 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2232 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2233 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2234 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2235 extern void vect_permute_store_chain (vec_info *, vec<tree> &,
2236 unsigned int, stmt_vec_info,
2237 gimple_stmt_iterator *, vec<tree> *);
2238 extern tree vect_setup_realignment (vec_info *,
2239 stmt_vec_info, gimple_stmt_iterator *,
2240 tree *, enum dr_alignment_support, tree,
2241 class loop **);
2242 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2243 int, gimple_stmt_iterator *);
2244 extern void vect_record_grouped_load_vectors (vec_info *,
2245 stmt_vec_info, vec<tree>);
2246 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2247 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2248 const char * = NULL);
2249 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2250 stmt_vec_info, gimple_seq *,
2251 tree);
2252
2253 /* In tree-vect-loop.cc. */
2254 extern tree neutral_op_for_reduction (tree, code_helper, tree);
2255 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2256 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2257 /* Used in tree-vect-loop-manip.cc */
2258 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info,
2259 bool);
2260 /* Used in gimple-loop-interchange.c and tree-parloops.cc. */
2261 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2262 enum tree_code);
2263 extern bool needs_fold_left_reduction_p (tree, code_helper);
2264 /* Drive for loop analysis stage. */
2265 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2266 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2267 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2268 tree *, bool);
2269 extern tree vect_halve_mask_nunits (tree, machine_mode);
2270 extern tree vect_double_mask_nunits (tree, machine_mode);
2271 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2272 unsigned int, tree, tree);
2273 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
2274 unsigned int, tree, unsigned int);
2275 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2276 tree, unsigned int);
2277 extern tree vect_get_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2278 unsigned int);
2279 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2280 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2281 extern bool reduction_fn_for_scalar_code (code_helper, internal_fn *);
2282
2283 /* Drive for loop transformation stage. */
2284 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2285 struct vect_loop_form_info
2286 {
2287 tree number_of_iterations;
2288 tree number_of_iterationsm1;
2289 tree assumptions;
2290 gcond *loop_cond;
2291 gcond *inner_loop_cond;
2292 };
2293 extern opt_result vect_analyze_loop_form (class loop *, vect_loop_form_info *);
2294 extern loop_vec_info vect_create_loop_vinfo (class loop *, vec_info_shared *,
2295 const vect_loop_form_info *,
2296 loop_vec_info = nullptr);
2297 extern bool vectorizable_live_operation (vec_info *,
2298 stmt_vec_info, gimple_stmt_iterator *,
2299 slp_tree, slp_instance, int,
2300 bool, stmt_vector_for_cost *);
2301 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2302 slp_tree, slp_instance,
2303 stmt_vector_for_cost *);
2304 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2305 gimple **, slp_tree,
2306 stmt_vector_for_cost *);
2307 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2308 gimple_stmt_iterator *,
2309 gimple **, slp_tree);
2310 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2311 gimple **,
2312 slp_tree, slp_instance);
2313 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2314 gimple **, slp_tree);
2315 extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2316 stmt_vector_for_cost *);
2317 extern bool vect_emulated_vector_p (tree);
2318 extern bool vect_can_vectorize_without_simd_p (tree_code);
2319 extern bool vect_can_vectorize_without_simd_p (code_helper);
2320 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2321 stmt_vector_for_cost *,
2322 stmt_vector_for_cost *,
2323 stmt_vector_for_cost *);
2324 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2325
2326 /* In tree-vect-slp.cc. */
2327 extern void vect_slp_init (void);
2328 extern void vect_slp_fini (void);
2329 extern void vect_free_slp_instance (slp_instance);
2330 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2331 gimple_stmt_iterator *, poly_uint64,
2332 bool, unsigned *,
2333 unsigned * = nullptr, bool = false);
2334 extern bool vect_slp_analyze_operations (vec_info *);
2335 extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2336 extern opt_result vect_analyze_slp (vec_info *, unsigned);
2337 extern bool vect_make_slp_decision (loop_vec_info);
2338 extern void vect_detect_hybrid_slp (loop_vec_info);
2339 extern void vect_optimize_slp (vec_info *);
2340 extern void vect_gather_slp_loads (vec_info *);
2341 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2342 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2343 unsigned n = -1U);
2344 extern bool vect_slp_if_converted_bb (basic_block bb, loop_p orig_loop);
2345 extern bool vect_slp_function (function *);
2346 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2347 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2348 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2349 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2350 unsigned int * = NULL,
2351 tree * = NULL, tree * = NULL);
2352 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2353 const vec<tree> &, unsigned int, vec<tree> &);
2354 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2355 extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2356 extern void vect_free_slp_tree (slp_tree);
2357 extern bool compatible_calls_p (gcall *, gcall *);
2358
2359 /* In tree-vect-patterns.cc. */
2360 extern void
2361 vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2362
2363 /* Pattern recognition functions.
2364 Additional pattern recognition functions can (and will) be added
2365 in the future. */
2366 void vect_pattern_recog (vec_info *);
2367
2368 /* In tree-vectorizer.cc. */
2369 unsigned vectorize_loops (void);
2370 void vect_free_loop_info_assumptions (class loop *);
2371 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2372 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2373
2374 /* SLP Pattern matcher types, tree-vect-slp-patterns.cc. */
2375
2376 /* Forward declaration of possible two operands operation that can be matched
2377 by the complex numbers pattern matchers. */
2378 enum _complex_operation : unsigned;
2379
2380 /* All possible load permute values that could result from the partial data-flow
2381 analysis. */
2382 typedef enum _complex_perm_kinds {
2383 PERM_UNKNOWN,
2384 PERM_EVENODD,
2385 PERM_ODDEVEN,
2386 PERM_ODDODD,
2387 PERM_EVENEVEN,
2388 /* Can be combined with any other PERM values. */
2389 PERM_TOP
2390 } complex_perm_kinds_t;
2391
2392 /* Cache from nodes to the load permutation they represent. */
2393 typedef hash_map <slp_tree, complex_perm_kinds_t>
2394 slp_tree_to_load_perm_map_t;
2395
2396 /* Cache from nodes pair to being compatible or not. */
2397 typedef pair_hash <nofree_ptr_hash <_slp_tree>,
2398 nofree_ptr_hash <_slp_tree>> slp_node_hash;
2399 typedef hash_map <slp_node_hash, bool> slp_compat_nodes_map_t;
2400
2401
2402 /* Vector pattern matcher base class. All SLP pattern matchers must inherit
2403 from this type. */
2404
2405 class vect_pattern
2406 {
2407 protected:
2408 /* The number of arguments that the IFN requires. */
2409 unsigned m_num_args;
2410
2411 /* The internal function that will be used when a pattern is created. */
2412 internal_fn m_ifn;
2413
2414 /* The current node being inspected. */
2415 slp_tree *m_node;
2416
2417 /* The list of operands to be the children for the node produced when the
2418 internal function is created. */
2419 vec<slp_tree> m_ops;
2420
2421 /* Default constructor where NODE is the root of the tree to inspect. */
2422 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2423 {
2424 this->m_ifn = ifn;
2425 this->m_node = node;
2426 this->m_ops.create (0);
2427 if (m_ops)
2428 this->m_ops.safe_splice (*m_ops);
2429 }
2430
2431 public:
2432
2433 /* Create a new instance of the pattern matcher class of the given type. */
2434 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *,
2435 slp_compat_nodes_map_t *, slp_tree *);
2436
2437 /* Build the pattern from the data collected so far. */
2438 virtual void build (vec_info *) = 0;
2439
2440 /* Default destructor. */
2441 virtual ~vect_pattern ()
2442 {
2443 this->m_ops.release ();
2444 }
2445 };
2446
2447 /* Function pointer to create a new pattern matcher from a generic type. */
2448 typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2449 slp_compat_nodes_map_t *,
2450 slp_tree *);
2451
2452 /* List of supported pattern matchers. */
2453 extern vect_pattern_decl_t slp_patterns[];
2454
2455 /* Number of supported pattern matchers. */
2456 extern size_t num__slp_patterns;
2457
2458 /* ----------------------------------------------------------------------
2459 Target support routines
2460 -----------------------------------------------------------------------
2461 The following routines are provided to simplify costing decisions in
2462 target code. Please add more as needed. */
2463
2464 /* Return true if an operaton of kind KIND for STMT_INFO represents
2465 the extraction of an element from a vector in preparation for
2466 storing the element to memory. */
2467 inline bool
2468 vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2469 {
2470 return (kind == vec_to_scalar
2471 && STMT_VINFO_DATA_REF (stmt_info)
2472 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2473 }
2474
2475 /* Return true if STMT_INFO represents part of a reduction. */
2476 inline bool
2477 vect_is_reduction (stmt_vec_info stmt_info)
2478 {
2479 return STMT_VINFO_REDUC_IDX (stmt_info) >= 0;
2480 }
2481
2482 /* If STMT_INFO describes a reduction, return the vect_reduction_type
2483 of the reduction it describes, otherwise return -1. */
2484 inline int
2485 vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2486 {
2487 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo))
2488 if (STMT_VINFO_REDUC_DEF (stmt_info))
2489 {
2490 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2491 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2492 }
2493 return -1;
2494 }
2495
2496 /* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2497 scalar type of the values being compared. Return null otherwise. */
2498 inline tree
2499 vect_embedded_comparison_type (stmt_vec_info stmt_info)
2500 {
2501 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2502 if (gimple_assign_rhs_code (assign) == COND_EXPR)
2503 {
2504 tree cond = gimple_assign_rhs1 (assign);
2505 if (COMPARISON_CLASS_P (cond))
2506 return TREE_TYPE (TREE_OPERAND (cond, 0));
2507 }
2508 return NULL_TREE;
2509 }
2510
2511 /* If STMT_INFO is a comparison or contains an embedded comparison, return the
2512 scalar type of the values being compared. Return null otherwise. */
2513 inline tree
2514 vect_comparison_type (stmt_vec_info stmt_info)
2515 {
2516 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2517 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2518 return TREE_TYPE (gimple_assign_rhs1 (assign));
2519 return vect_embedded_comparison_type (stmt_info);
2520 }
2521
2522 /* Return true if STMT_INFO extends the result of a load. */
2523 inline bool
2524 vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2525 {
2526 /* Although this is quite large for an inline function, this part
2527 at least should be inline. */
2528 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2529 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2530 return false;
2531
2532 tree rhs = gimple_assign_rhs1 (stmt_info->stmt);
2533 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2534 tree rhs_type = TREE_TYPE (rhs);
2535 if (!INTEGRAL_TYPE_P (lhs_type)
2536 || !INTEGRAL_TYPE_P (rhs_type)
2537 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2538 return false;
2539
2540 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2541 return (def_stmt_info
2542 && STMT_VINFO_DATA_REF (def_stmt_info)
2543 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2544 }
2545
2546 /* Return true if STMT_INFO is an integer truncation. */
2547 inline bool
2548 vect_is_integer_truncation (stmt_vec_info stmt_info)
2549 {
2550 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2551 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2552 return false;
2553
2554 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2555 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2556 return (INTEGRAL_TYPE_P (lhs_type)
2557 && INTEGRAL_TYPE_P (rhs_type)
2558 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2559 }
2560
2561 #endif /* GCC_TREE_VECTORIZER_H */
2562