xref: /qemu/include/hw/core/cpu.h (revision 15d62536)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/thread.h"
37 #include "qom/object.h"
38 
39 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
40                                      void *opaque);
41 
42 /**
43  * SECTION:cpu
44  * @section_id: QEMU-cpu
45  * @title: CPU Class
46  * @short_description: Base class for all CPUs
47  */
48 
49 #define TYPE_CPU "cpu"
50 
51 /* Since this macro is used a lot in hot code paths and in conjunction with
52  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
53  * an unchecked cast.
54  */
55 #define CPU(obj) ((CPUState *)(obj))
56 
57 /*
58  * The class checkers bring in CPU_GET_CLASS() which is potentially
59  * expensive given the eventual call to
60  * object_class_dynamic_cast_assert(). Because of this the CPUState
61  * has a cached value for the class in cs->cc which is set up in
62  * cpu_exec_realizefn() for use in hot code paths.
63  */
64 typedef struct CPUClass CPUClass;
65 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
66                        TYPE_CPU)
67 
68 /**
69  * OBJECT_DECLARE_CPU_TYPE:
70  * @CpuInstanceType: instance struct name
71  * @CpuClassType: class struct name
72  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
73  *
74  * This macro is typically used in "cpu-qom.h" header file, and will:
75  *
76  *   - create the typedefs for the CPU object and class structs
77  *   - register the type for use with g_autoptr
78  *   - provide three standard type cast functions
79  *
80  * The object struct and class struct need to be declared manually.
81  */
82 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
83     typedef struct ArchCPU CpuInstanceType; \
84     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
85 
86 typedef struct CPUWatchpoint CPUWatchpoint;
87 
88 /* see physmem.c */
89 struct CPUAddressSpace;
90 
91 /* see accel/tcg/tb-jmp-cache.h */
92 struct CPUJumpCache;
93 
94 /* see accel-cpu.h */
95 struct AccelCPUClass;
96 
97 /* see sysemu-cpu-ops.h */
98 struct SysemuCPUOps;
99 
100 /**
101  * CPUClass:
102  * @class_by_name: Callback to map -cpu command line model name to an
103  *                 instantiatable CPU type.
104  * @parse_features: Callback to parse command line arguments.
105  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
106  * @has_work: Callback for checking if there is work to do.
107  * @mmu_index: Callback for choosing softmmu mmu index;
108  *       may be used internally by memory_rw_debug without TCG.
109  * @memory_rw_debug: Callback for GDB memory access.
110  * @dump_state: Callback for dumping state.
111  * @query_cpu_fast:
112  *       Fill in target specific information for the "query-cpus-fast"
113  *       QAPI call.
114  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
115  * @set_pc: Callback for setting the Program Counter register. This
116  *       should have the semantics used by the target architecture when
117  *       setting the PC from a source such as an ELF file entry point;
118  *       for example on Arm it will also set the Thumb mode bit based
119  *       on the least significant bit of the new PC value.
120  *       If the target behaviour here is anything other than "set
121  *       the PC register to the value passed in" then the target must
122  *       also implement the synchronize_from_tb hook.
123  * @get_pc: Callback for getting the Program Counter register.
124  *       As above, with the semantics of the target architecture.
125  * @gdb_read_register: Callback for letting GDB read a register.
126  * @gdb_write_register: Callback for letting GDB write a register.
127  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
128  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
129  *       its Harvard architecture split code and data.
130  * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
131  *                     from @gdb_core_xml_file.
132  * @gdb_core_xml_file: File name for core registers GDB XML description.
133  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
134  *           before the insn which triggers a watchpoint rather than after it.
135  * @gdb_arch_name: Optional callback that returns the architecture name known
136  * to GDB. The caller must free the returned string with g_free.
137  * @disas_set_info: Setup architecture specific components of disassembly info
138  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
139  * address before attempting to match it against watchpoints.
140  * @deprecation_note: If this CPUClass is deprecated, this field provides
141  *                    related information.
142  *
143  * Represents a CPU family or model.
144  */
145 struct CPUClass {
146     /*< private >*/
147     DeviceClass parent_class;
148     /*< public >*/
149 
150     ObjectClass *(*class_by_name)(const char *cpu_model);
151     void (*parse_features)(const char *typename, char *str, Error **errp);
152 
153     bool (*has_work)(CPUState *cpu);
154     int (*mmu_index)(CPUState *cpu, bool ifetch);
155     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
156                            uint8_t *buf, int len, bool is_write);
157     void (*dump_state)(CPUState *cpu, FILE *, int flags);
158     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
159     int64_t (*get_arch_id)(CPUState *cpu);
160     void (*set_pc)(CPUState *cpu, vaddr value);
161     vaddr (*get_pc)(CPUState *cpu);
162     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
163     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
164     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
165 
166     const char *gdb_core_xml_file;
167     const gchar * (*gdb_arch_name)(CPUState *cpu);
168 
169     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
170 
171     const char *deprecation_note;
172     struct AccelCPUClass *accel_cpu;
173 
174     /* when system emulation is not available, this pointer is NULL */
175     const struct SysemuCPUOps *sysemu_ops;
176 
177     /* when TCG is not available, this pointer is NULL */
178     const TCGCPUOps *tcg_ops;
179 
180     /*
181      * if not NULL, this is called in order for the CPUClass to initialize
182      * class data that depends on the accelerator, see accel/accel-common.c.
183      */
184     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
185 
186     /*
187      * Keep non-pointer data at the end to minimize holes.
188      */
189     int reset_dump_flags;
190     int gdb_num_core_regs;
191     bool gdb_stop_before_watchpoint;
192 };
193 
194 /*
195  * Fix the number of mmu modes to 16, which is also the maximum
196  * supported by the softmmu tlb api.
197  */
198 #define NB_MMU_MODES 16
199 
200 /* Use a fully associative victim tlb of 8 entries. */
201 #define CPU_VTLB_SIZE 8
202 
203 /*
204  * The full TLB entry, which is not accessed by generated TCG code,
205  * so the layout is not as critical as that of CPUTLBEntry. This is
206  * also why we don't want to combine the two structs.
207  */
208 typedef struct CPUTLBEntryFull {
209     /*
210      * @xlat_section contains:
211      *  - in the lower TARGET_PAGE_BITS, a physical section number
212      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
213      *    must be added to the virtual address to obtain:
214      *     + the ram_addr_t of the target RAM (if the physical section
215      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
216      *     + the offset within the target MemoryRegion (otherwise)
217      */
218     hwaddr xlat_section;
219 
220     /*
221      * @phys_addr contains the physical address in the address space
222      * given by cpu_asidx_from_attrs(cpu, @attrs).
223      */
224     hwaddr phys_addr;
225 
226     /* @attrs contains the memory transaction attributes for the page. */
227     MemTxAttrs attrs;
228 
229     /* @prot contains the complete protections for the page. */
230     uint8_t prot;
231 
232     /* @lg_page_size contains the log2 of the page size. */
233     uint8_t lg_page_size;
234 
235     /* Additional tlb flags requested by tlb_fill. */
236     uint8_t tlb_fill_flags;
237 
238     /*
239      * Additional tlb flags for use by the slow path. If non-zero,
240      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
241      */
242     uint8_t slow_flags[MMU_ACCESS_COUNT];
243 
244     /*
245      * Allow target-specific additions to this structure.
246      * This may be used to cache items from the guest cpu
247      * page tables for later use by the implementation.
248      */
249     union {
250         /*
251          * Cache the attrs and shareability fields from the page table entry.
252          *
253          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
254          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
255          * For shareability and guarded, as in the SH and GP fields respectively
256          * of the VMSAv8-64 PTEs.
257          */
258         struct {
259             uint8_t pte_attrs;
260             uint8_t shareability;
261             bool guarded;
262         } arm;
263     } extra;
264 } CPUTLBEntryFull;
265 
266 /*
267  * Data elements that are per MMU mode, minus the bits accessed by
268  * the TCG fast path.
269  */
270 typedef struct CPUTLBDesc {
271     /*
272      * Describe a region covering all of the large pages allocated
273      * into the tlb.  When any page within this region is flushed,
274      * we must flush the entire tlb.  The region is matched if
275      * (addr & large_page_mask) == large_page_addr.
276      */
277     vaddr large_page_addr;
278     vaddr large_page_mask;
279     /* host time (in ns) at the beginning of the time window */
280     int64_t window_begin_ns;
281     /* maximum number of entries observed in the window */
282     size_t window_max_entries;
283     size_t n_used_entries;
284     /* The next index to use in the tlb victim table.  */
285     size_t vindex;
286     /* The tlb victim table, in two parts.  */
287     CPUTLBEntry vtable[CPU_VTLB_SIZE];
288     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
289     CPUTLBEntryFull *fulltlb;
290 } CPUTLBDesc;
291 
292 /*
293  * Data elements that are shared between all MMU modes.
294  */
295 typedef struct CPUTLBCommon {
296     /* Serialize updates to f.table and d.vtable, and others as noted. */
297     QemuSpin lock;
298     /*
299      * Within dirty, for each bit N, modifications have been made to
300      * mmu_idx N since the last time that mmu_idx was flushed.
301      * Protected by tlb_c.lock.
302      */
303     uint16_t dirty;
304     /*
305      * Statistics.  These are not lock protected, but are read and
306      * written atomically.  This allows the monitor to print a snapshot
307      * of the stats without interfering with the cpu.
308      */
309     size_t full_flush_count;
310     size_t part_flush_count;
311     size_t elide_flush_count;
312 } CPUTLBCommon;
313 
314 /*
315  * The entire softmmu tlb, for all MMU modes.
316  * The meaning of each of the MMU modes is defined in the target code.
317  * Since this is placed within CPUNegativeOffsetState, the smallest
318  * negative offsets are at the end of the struct.
319  */
320 typedef struct CPUTLB {
321 #ifdef CONFIG_TCG
322     CPUTLBCommon c;
323     CPUTLBDesc d[NB_MMU_MODES];
324     CPUTLBDescFast f[NB_MMU_MODES];
325 #endif
326 } CPUTLB;
327 
328 /*
329  * Low 16 bits: number of cycles left, used only in icount mode.
330  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
331  * for this CPU and return to its top level loop (even in non-icount mode).
332  * This allows a single read-compare-cbranch-write sequence to test
333  * for both decrementer underflow and exceptions.
334  */
335 typedef union IcountDecr {
336     uint32_t u32;
337     struct {
338 #if HOST_BIG_ENDIAN
339         uint16_t high;
340         uint16_t low;
341 #else
342         uint16_t low;
343         uint16_t high;
344 #endif
345     } u16;
346 } IcountDecr;
347 
348 /**
349  * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed
350  *                         from CPUArchState, via small negative offsets.
351  * @can_do_io: True if memory-mapped IO is allowed.
352  * @plugin_mem_cbs: active plugin memory callbacks
353  */
354 typedef struct CPUNegativeOffsetState {
355     CPUTLB tlb;
356 #ifdef CONFIG_PLUGIN
357     /*
358      * The callback pointer are accessed via TCG (see gen_empty_mem_helper).
359      */
360     GArray *plugin_mem_cbs;
361 #endif
362     IcountDecr icount_decr;
363     bool can_do_io;
364 } CPUNegativeOffsetState;
365 
366 struct KVMState;
367 struct kvm_run;
368 
369 /* work queue */
370 
371 /* The union type allows passing of 64 bit target pointers on 32 bit
372  * hosts in a single parameter
373  */
374 typedef union {
375     int           host_int;
376     unsigned long host_ulong;
377     void         *host_ptr;
378     vaddr         target_ptr;
379 } run_on_cpu_data;
380 
381 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
382 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
383 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
384 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
385 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
386 
387 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
388 
389 struct qemu_work_item;
390 
391 #define CPU_UNSET_NUMA_NODE_ID -1
392 
393 /**
394  * CPUState:
395  * @cpu_index: CPU index (informative).
396  * @cluster_index: Identifies which cluster this CPU is in.
397  *   For boards which don't define clusters or for "loose" CPUs not assigned
398  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
399  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
400  *   QOM parent.
401  *   Under TCG this value is propagated to @tcg_cflags.
402  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
403  * @tcg_cflags: Pre-computed cflags for this cpu.
404  * @nr_cores: Number of cores within this CPU package.
405  * @nr_threads: Number of threads within this CPU core.
406  * @running: #true if CPU is currently running (lockless).
407  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
408  * valid under cpu_list_lock.
409  * @created: Indicates whether the CPU thread has been successfully created.
410  * @interrupt_request: Indicates a pending interrupt request.
411  * @halted: Nonzero if the CPU is in suspended state.
412  * @stop: Indicates a pending stop request.
413  * @stopped: Indicates the CPU has been artificially stopped.
414  * @unplug: Indicates a pending CPU unplug request.
415  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
416  * @singlestep_enabled: Flags for single-stepping.
417  * @icount_extra: Instructions until next timer event.
418  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
419  *            AddressSpaces this CPU has)
420  * @num_ases: number of CPUAddressSpaces in @cpu_ases
421  * @as: Pointer to the first AddressSpace, for the convenience of targets which
422  *      only have a single AddressSpace
423  * @gdb_regs: Additional GDB registers.
424  * @gdb_num_regs: Number of total registers accessible to GDB.
425  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
426  * @node: QTAILQ of CPUs sharing TB cache.
427  * @opaque: User data.
428  * @mem_io_pc: Host Program Counter at which the memory was accessed.
429  * @accel: Pointer to accelerator specific state.
430  * @kvm_fd: vCPU file descriptor for KVM.
431  * @work_mutex: Lock to prevent multiple access to @work_list.
432  * @work_list: List of pending asynchronous work.
433  * @plugin_state: per-CPU plugin state
434  * @ignore_memory_transaction_failures: Cached copy of the MachineState
435  *    flag of the same name: allows the board to suppress calling of the
436  *    CPU do_transaction_failed hook function.
437  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
438  *    ring is enabled.
439  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
440  *    dirty ring structure.
441  *
442  * State of one CPU core or thread.
443  *
444  * Align, in order to match possible alignment required by CPUArchState,
445  * and eliminate a hole between CPUState and CPUArchState within ArchCPU.
446  */
447 struct CPUState {
448     /*< private >*/
449     DeviceState parent_obj;
450     /* cache to avoid expensive CPU_GET_CLASS */
451     CPUClass *cc;
452     /*< public >*/
453 
454     int nr_cores;
455     int nr_threads;
456 
457     struct QemuThread *thread;
458 #ifdef _WIN32
459     QemuSemaphore sem;
460 #endif
461     int thread_id;
462     bool running, has_waiter;
463     struct QemuCond *halt_cond;
464     bool thread_kicked;
465     bool created;
466     bool stop;
467     bool stopped;
468 
469     /* Should CPU start in powered-off state? */
470     bool start_powered_off;
471 
472     bool unplug;
473     bool crash_occurred;
474     bool exit_request;
475     int exclusive_context_count;
476     uint32_t cflags_next_tb;
477     /* updates protected by BQL */
478     uint32_t interrupt_request;
479     int singlestep_enabled;
480     int64_t icount_budget;
481     int64_t icount_extra;
482     uint64_t random_seed;
483     sigjmp_buf jmp_env;
484 
485     QemuMutex work_mutex;
486     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
487 
488     struct CPUAddressSpace *cpu_ases;
489     int num_ases;
490     AddressSpace *as;
491     MemoryRegion *memory;
492 
493     struct CPUJumpCache *tb_jmp_cache;
494 
495     GArray *gdb_regs;
496     int gdb_num_regs;
497     int gdb_num_g_regs;
498     QTAILQ_ENTRY(CPUState) node;
499 
500     /* ice debug support */
501     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
502 
503     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
504     CPUWatchpoint *watchpoint_hit;
505 
506     void *opaque;
507 
508     /* In order to avoid passing too many arguments to the MMIO helpers,
509      * we store some rarely used information in the CPU context.
510      */
511     uintptr_t mem_io_pc;
512 
513     /* Only used in KVM */
514     int kvm_fd;
515     struct KVMState *kvm_state;
516     struct kvm_run *kvm_run;
517     struct kvm_dirty_gfn *kvm_dirty_gfns;
518     uint32_t kvm_fetch_index;
519     uint64_t dirty_pages;
520     int kvm_vcpu_stats_fd;
521     bool vcpu_dirty;
522 
523     /* Use by accel-block: CPU is executing an ioctl() */
524     QemuLockCnt in_ioctl_lock;
525 
526 #ifdef CONFIG_PLUGIN
527     CPUPluginState *plugin_state;
528 #endif
529 
530     /* TODO Move common fields from CPUArchState here. */
531     int cpu_index;
532     int cluster_index;
533     uint32_t tcg_cflags;
534     uint32_t halted;
535     int32_t exception_index;
536 
537     AccelCPUState *accel;
538 
539     /* Used to keep track of an outstanding cpu throttle thread for migration
540      * autoconverge
541      */
542     bool throttle_thread_scheduled;
543 
544     /*
545      * Sleep throttle_us_per_full microseconds once dirty ring is full
546      * if dirty page rate limit is enabled.
547      */
548     int64_t throttle_us_per_full;
549 
550     bool ignore_memory_transaction_failures;
551 
552     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
553     bool prctl_unalign_sigbus;
554 
555     /* track IOMMUs whose translations we've cached in the TCG TLB */
556     GArray *iommu_notifiers;
557 
558     /*
559      * MUST BE LAST in order to minimize the displacement to CPUArchState.
560      */
561     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
562     CPUNegativeOffsetState neg;
563 };
564 
565 /* Validate placement of CPUNegativeOffsetState. */
566 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
567                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
568 
cpu_env(CPUState * cpu)569 static inline CPUArchState *cpu_env(CPUState *cpu)
570 {
571     /* We validate that CPUArchState follows CPUState in cpu-all.h. */
572     return (CPUArchState *)(cpu + 1);
573 }
574 
575 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
576 extern CPUTailQ cpus_queue;
577 
578 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
579 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
580 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
581 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
582     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
583 
584 extern __thread CPUState *current_cpu;
585 
586 /**
587  * qemu_tcg_mttcg_enabled:
588  * Check whether we are running MultiThread TCG or not.
589  *
590  * Returns: %true if we are in MTTCG mode %false otherwise.
591  */
592 extern bool mttcg_enabled;
593 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
594 
595 /**
596  * cpu_paging_enabled:
597  * @cpu: The CPU whose state is to be inspected.
598  *
599  * Returns: %true if paging is enabled, %false otherwise.
600  */
601 bool cpu_paging_enabled(const CPUState *cpu);
602 
603 /**
604  * cpu_get_memory_mapping:
605  * @cpu: The CPU whose memory mappings are to be obtained.
606  * @list: Where to write the memory mappings to.
607  * @errp: Pointer for reporting an #Error.
608  *
609  * Returns: %true on success, %false otherwise.
610  */
611 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
612                             Error **errp);
613 
614 #if !defined(CONFIG_USER_ONLY)
615 
616 /**
617  * cpu_write_elf64_note:
618  * @f: pointer to a function that writes memory to a file
619  * @cpu: The CPU whose memory is to be dumped
620  * @cpuid: ID number of the CPU
621  * @opaque: pointer to the CPUState struct
622  */
623 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
624                          int cpuid, void *opaque);
625 
626 /**
627  * cpu_write_elf64_qemunote:
628  * @f: pointer to a function that writes memory to a file
629  * @cpu: The CPU whose memory is to be dumped
630  * @cpuid: ID number of the CPU
631  * @opaque: pointer to the CPUState struct
632  */
633 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
634                              void *opaque);
635 
636 /**
637  * cpu_write_elf32_note:
638  * @f: pointer to a function that writes memory to a file
639  * @cpu: The CPU whose memory is to be dumped
640  * @cpuid: ID number of the CPU
641  * @opaque: pointer to the CPUState struct
642  */
643 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
644                          int cpuid, void *opaque);
645 
646 /**
647  * cpu_write_elf32_qemunote:
648  * @f: pointer to a function that writes memory to a file
649  * @cpu: The CPU whose memory is to be dumped
650  * @cpuid: ID number of the CPU
651  * @opaque: pointer to the CPUState struct
652  */
653 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
654                              void *opaque);
655 
656 /**
657  * cpu_get_crash_info:
658  * @cpu: The CPU to get crash information for
659  *
660  * Gets the previously saved crash information.
661  * Caller is responsible for freeing the data.
662  */
663 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
664 
665 #endif /* !CONFIG_USER_ONLY */
666 
667 /**
668  * CPUDumpFlags:
669  * @CPU_DUMP_CODE:
670  * @CPU_DUMP_FPU: dump FPU register state, not just integer
671  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
672  * @CPU_DUMP_VPU: dump VPU registers
673  */
674 enum CPUDumpFlags {
675     CPU_DUMP_CODE = 0x00010000,
676     CPU_DUMP_FPU  = 0x00020000,
677     CPU_DUMP_CCOP = 0x00040000,
678     CPU_DUMP_VPU  = 0x00080000,
679 };
680 
681 /**
682  * cpu_dump_state:
683  * @cpu: The CPU whose state is to be dumped.
684  * @f: If non-null, dump to this stream, else to current print sink.
685  *
686  * Dumps CPU state.
687  */
688 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
689 
690 #ifndef CONFIG_USER_ONLY
691 /**
692  * cpu_get_phys_page_attrs_debug:
693  * @cpu: The CPU to obtain the physical page address for.
694  * @addr: The virtual address.
695  * @attrs: Updated on return with the memory transaction attributes to use
696  *         for this access.
697  *
698  * Obtains the physical page corresponding to a virtual one, together
699  * with the corresponding memory transaction attributes to use for the access.
700  * Use it only for debugging because no protection checks are done.
701  *
702  * Returns: Corresponding physical page address or -1 if no page found.
703  */
704 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
705                                      MemTxAttrs *attrs);
706 
707 /**
708  * cpu_get_phys_page_debug:
709  * @cpu: The CPU to obtain the physical page address for.
710  * @addr: The virtual address.
711  *
712  * Obtains the physical page corresponding to a virtual one.
713  * Use it only for debugging because no protection checks are done.
714  *
715  * Returns: Corresponding physical page address or -1 if no page found.
716  */
717 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
718 
719 /** cpu_asidx_from_attrs:
720  * @cpu: CPU
721  * @attrs: memory transaction attributes
722  *
723  * Returns the address space index specifying the CPU AddressSpace
724  * to use for a memory access with the given transaction attributes.
725  */
726 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
727 
728 /**
729  * cpu_virtio_is_big_endian:
730  * @cpu: CPU
731 
732  * Returns %true if a CPU which supports runtime configurable endianness
733  * is currently big-endian.
734  */
735 bool cpu_virtio_is_big_endian(CPUState *cpu);
736 
737 #endif /* CONFIG_USER_ONLY */
738 
739 /**
740  * cpu_list_add:
741  * @cpu: The CPU to be added to the list of CPUs.
742  */
743 void cpu_list_add(CPUState *cpu);
744 
745 /**
746  * cpu_list_remove:
747  * @cpu: The CPU to be removed from the list of CPUs.
748  */
749 void cpu_list_remove(CPUState *cpu);
750 
751 /**
752  * cpu_reset:
753  * @cpu: The CPU whose state is to be reset.
754  */
755 void cpu_reset(CPUState *cpu);
756 
757 /**
758  * cpu_class_by_name:
759  * @typename: The CPU base type.
760  * @cpu_model: The model string without any parameters.
761  *
762  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
763  *
764  * Returns: A concrete #CPUClass or %NULL if no matching class is found
765  *          or if the matching class is abstract.
766  */
767 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
768 
769 /**
770  * cpu_model_from_type:
771  * @typename: The CPU type name
772  *
773  * Extract the CPU model name from the CPU type name. The
774  * CPU type name is either the combination of the CPU model
775  * name and suffix, or same to the CPU model name.
776  *
777  * Returns: CPU model name or NULL if the CPU class doesn't exist
778  *          The user should g_free() the string once no longer needed.
779  */
780 char *cpu_model_from_type(const char *typename);
781 
782 /**
783  * cpu_create:
784  * @typename: The CPU type.
785  *
786  * Instantiates a CPU and realizes the CPU.
787  *
788  * Returns: A #CPUState or %NULL if an error occurred.
789  */
790 CPUState *cpu_create(const char *typename);
791 
792 /**
793  * parse_cpu_option:
794  * @cpu_option: The -cpu option including optional parameters.
795  *
796  * processes optional parameters and registers them as global properties
797  *
798  * Returns: type of CPU to create or prints error and terminates process
799  *          if an error occurred.
800  */
801 const char *parse_cpu_option(const char *cpu_option);
802 
803 /**
804  * cpu_has_work:
805  * @cpu: The vCPU to check.
806  *
807  * Checks whether the CPU has work to do.
808  *
809  * Returns: %true if the CPU has work, %false otherwise.
810  */
cpu_has_work(CPUState * cpu)811 static inline bool cpu_has_work(CPUState *cpu)
812 {
813     CPUClass *cc = CPU_GET_CLASS(cpu);
814 
815     g_assert(cc->has_work);
816     return cc->has_work(cpu);
817 }
818 
819 /**
820  * qemu_cpu_is_self:
821  * @cpu: The vCPU to check against.
822  *
823  * Checks whether the caller is executing on the vCPU thread.
824  *
825  * Returns: %true if called from @cpu's thread, %false otherwise.
826  */
827 bool qemu_cpu_is_self(CPUState *cpu);
828 
829 /**
830  * qemu_cpu_kick:
831  * @cpu: The vCPU to kick.
832  *
833  * Kicks @cpu's thread.
834  */
835 void qemu_cpu_kick(CPUState *cpu);
836 
837 /**
838  * cpu_is_stopped:
839  * @cpu: The CPU to check.
840  *
841  * Checks whether the CPU is stopped.
842  *
843  * Returns: %true if run state is not running or if artificially stopped;
844  * %false otherwise.
845  */
846 bool cpu_is_stopped(CPUState *cpu);
847 
848 /**
849  * do_run_on_cpu:
850  * @cpu: The vCPU to run on.
851  * @func: The function to be executed.
852  * @data: Data to pass to the function.
853  * @mutex: Mutex to release while waiting for @func to run.
854  *
855  * Used internally in the implementation of run_on_cpu.
856  */
857 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
858                    QemuMutex *mutex);
859 
860 /**
861  * run_on_cpu:
862  * @cpu: The vCPU to run on.
863  * @func: The function to be executed.
864  * @data: Data to pass to the function.
865  *
866  * Schedules the function @func for execution on the vCPU @cpu.
867  */
868 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
869 
870 /**
871  * async_run_on_cpu:
872  * @cpu: The vCPU to run on.
873  * @func: The function to be executed.
874  * @data: Data to pass to the function.
875  *
876  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
877  */
878 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
879 
880 /**
881  * async_safe_run_on_cpu:
882  * @cpu: The vCPU to run on.
883  * @func: The function to be executed.
884  * @data: Data to pass to the function.
885  *
886  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
887  * while all other vCPUs are sleeping.
888  *
889  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
890  * BQL.
891  */
892 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
893 
894 /**
895  * cpu_in_exclusive_context()
896  * @cpu: The vCPU to check
897  *
898  * Returns true if @cpu is an exclusive context, for example running
899  * something which has previously been queued via async_safe_run_on_cpu().
900  */
cpu_in_exclusive_context(const CPUState * cpu)901 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
902 {
903     return cpu->exclusive_context_count;
904 }
905 
906 /**
907  * qemu_get_cpu:
908  * @index: The CPUState@cpu_index value of the CPU to obtain.
909  *
910  * Gets a CPU matching @index.
911  *
912  * Returns: The CPU or %NULL if there is no matching CPU.
913  */
914 CPUState *qemu_get_cpu(int index);
915 
916 /**
917  * cpu_exists:
918  * @id: Guest-exposed CPU ID to lookup.
919  *
920  * Search for CPU with specified ID.
921  *
922  * Returns: %true - CPU is found, %false - CPU isn't found.
923  */
924 bool cpu_exists(int64_t id);
925 
926 /**
927  * cpu_by_arch_id:
928  * @id: Guest-exposed CPU ID of the CPU to obtain.
929  *
930  * Get a CPU with matching @id.
931  *
932  * Returns: The CPU or %NULL if there is no matching CPU.
933  */
934 CPUState *cpu_by_arch_id(int64_t id);
935 
936 /**
937  * cpu_interrupt:
938  * @cpu: The CPU to set an interrupt on.
939  * @mask: The interrupts to set.
940  *
941  * Invokes the interrupt handler.
942  */
943 
944 void cpu_interrupt(CPUState *cpu, int mask);
945 
946 /**
947  * cpu_set_pc:
948  * @cpu: The CPU to set the program counter for.
949  * @addr: Program counter value.
950  *
951  * Sets the program counter for a CPU.
952  */
cpu_set_pc(CPUState * cpu,vaddr addr)953 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
954 {
955     CPUClass *cc = CPU_GET_CLASS(cpu);
956 
957     cc->set_pc(cpu, addr);
958 }
959 
960 /**
961  * cpu_reset_interrupt:
962  * @cpu: The CPU to clear the interrupt on.
963  * @mask: The interrupt mask to clear.
964  *
965  * Resets interrupts on the vCPU @cpu.
966  */
967 void cpu_reset_interrupt(CPUState *cpu, int mask);
968 
969 /**
970  * cpu_exit:
971  * @cpu: The CPU to exit.
972  *
973  * Requests the CPU @cpu to exit execution.
974  */
975 void cpu_exit(CPUState *cpu);
976 
977 /**
978  * cpu_resume:
979  * @cpu: The CPU to resume.
980  *
981  * Resumes CPU, i.e. puts CPU into runnable state.
982  */
983 void cpu_resume(CPUState *cpu);
984 
985 /**
986  * cpu_remove_sync:
987  * @cpu: The CPU to remove.
988  *
989  * Requests the CPU to be removed and waits till it is removed.
990  */
991 void cpu_remove_sync(CPUState *cpu);
992 
993 /**
994  * process_queued_cpu_work() - process all items on CPU work queue
995  * @cpu: The CPU which work queue to process.
996  */
997 void process_queued_cpu_work(CPUState *cpu);
998 
999 /**
1000  * cpu_exec_start:
1001  * @cpu: The CPU for the current thread.
1002  *
1003  * Record that a CPU has started execution and can be interrupted with
1004  * cpu_exit.
1005  */
1006 void cpu_exec_start(CPUState *cpu);
1007 
1008 /**
1009  * cpu_exec_end:
1010  * @cpu: The CPU for the current thread.
1011  *
1012  * Record that a CPU has stopped execution and exclusive sections
1013  * can be executed without interrupting it.
1014  */
1015 void cpu_exec_end(CPUState *cpu);
1016 
1017 /**
1018  * start_exclusive:
1019  *
1020  * Wait for a concurrent exclusive section to end, and then start
1021  * a section of work that is run while other CPUs are not running
1022  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1023  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1024  * during the exclusive section go to sleep until this CPU calls
1025  * end_exclusive.
1026  */
1027 void start_exclusive(void);
1028 
1029 /**
1030  * end_exclusive:
1031  *
1032  * Concludes an exclusive execution section started by start_exclusive.
1033  */
1034 void end_exclusive(void);
1035 
1036 /**
1037  * qemu_init_vcpu:
1038  * @cpu: The vCPU to initialize.
1039  *
1040  * Initializes a vCPU.
1041  */
1042 void qemu_init_vcpu(CPUState *cpu);
1043 
1044 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1045 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1046 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1047 
1048 /**
1049  * cpu_single_step:
1050  * @cpu: CPU to the flags for.
1051  * @enabled: Flags to enable.
1052  *
1053  * Enables or disables single-stepping for @cpu.
1054  */
1055 void cpu_single_step(CPUState *cpu, int enabled);
1056 
1057 /* Breakpoint/watchpoint flags */
1058 #define BP_MEM_READ           0x01
1059 #define BP_MEM_WRITE          0x02
1060 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1061 #define BP_STOP_BEFORE_ACCESS 0x04
1062 /* 0x08 currently unused */
1063 #define BP_GDB                0x10
1064 #define BP_CPU                0x20
1065 #define BP_ANY                (BP_GDB | BP_CPU)
1066 #define BP_HIT_SHIFT          6
1067 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1068 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1069 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1070 
1071 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1072                           CPUBreakpoint **breakpoint);
1073 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1074 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1075 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1076 
1077 /* Return true if PC matches an installed breakpoint.  */
cpu_breakpoint_test(CPUState * cpu,vaddr pc,int mask)1078 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1079 {
1080     CPUBreakpoint *bp;
1081 
1082     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1083         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1084             if (bp->pc == pc && (bp->flags & mask)) {
1085                 return true;
1086             }
1087         }
1088     }
1089     return false;
1090 }
1091 
1092 #if defined(CONFIG_USER_ONLY)
cpu_watchpoint_insert(CPUState * cpu,vaddr addr,vaddr len,int flags,CPUWatchpoint ** watchpoint)1093 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1094                                         int flags, CPUWatchpoint **watchpoint)
1095 {
1096     return -ENOSYS;
1097 }
1098 
cpu_watchpoint_remove(CPUState * cpu,vaddr addr,vaddr len,int flags)1099 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1100                                         vaddr len, int flags)
1101 {
1102     return -ENOSYS;
1103 }
1104 
cpu_watchpoint_remove_by_ref(CPUState * cpu,CPUWatchpoint * wp)1105 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1106                                                 CPUWatchpoint *wp)
1107 {
1108 }
1109 
cpu_watchpoint_remove_all(CPUState * cpu,int mask)1110 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1111 {
1112 }
1113 #else
1114 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1115                           int flags, CPUWatchpoint **watchpoint);
1116 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1117                           vaddr len, int flags);
1118 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1119 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1120 #endif
1121 
1122 /**
1123  * cpu_get_address_space:
1124  * @cpu: CPU to get address space from
1125  * @asidx: index identifying which address space to get
1126  *
1127  * Return the requested address space of this CPU. @asidx
1128  * specifies which address space to read.
1129  */
1130 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1131 
1132 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1133     G_GNUC_PRINTF(2, 3);
1134 
1135 /* $(top_srcdir)/cpu.c */
1136 void cpu_class_init_props(DeviceClass *dc);
1137 void cpu_exec_initfn(CPUState *cpu);
1138 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1139 void cpu_exec_unrealizefn(CPUState *cpu);
1140 void cpu_exec_reset_hold(CPUState *cpu);
1141 
1142 const char *target_name(void);
1143 
1144 #ifdef COMPILING_PER_TARGET
1145 
1146 #ifndef CONFIG_USER_ONLY
1147 
1148 extern const VMStateDescription vmstate_cpu_common;
1149 
1150 #define VMSTATE_CPU() {                                                     \
1151     .name = "parent_obj",                                                   \
1152     .size = sizeof(CPUState),                                               \
1153     .vmsd = &vmstate_cpu_common,                                            \
1154     .flags = VMS_STRUCT,                                                    \
1155     .offset = 0,                                                            \
1156 }
1157 #endif /* !CONFIG_USER_ONLY */
1158 
1159 #endif /* COMPILING_PER_TARGET */
1160 
1161 #define UNASSIGNED_CPU_INDEX -1
1162 #define UNASSIGNED_CLUSTER_INDEX -1
1163 
1164 #endif
1165