1 /* Definitions of target machine for GNU compiler. NEC V850 series 2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 3 Free Software Foundation, Inc. 4 Contributed by Jeff Law (law@cygnus.com). 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2, or (at your option) 11 any later version. 12 13 GCC is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING. If not, write to 20 the Free Software Foundation, 51 Franklin Street, Fifth Floor, 21 Boston, MA 02110-1301, USA. */ 22 23 #ifndef GCC_V850_H 24 #define GCC_V850_H 25 26 /* These are defined in svr4.h but we want to override them. */ 27 #undef LIB_SPEC 28 #undef ENDFILE_SPEC 29 #undef LINK_SPEC 30 #undef STARTFILE_SPEC 31 #undef ASM_SPEC 32 33 #define TARGET_CPU_generic 1 34 #define TARGET_CPU_v850e 2 35 #define TARGET_CPU_v850e1 3 36 37 #ifndef TARGET_CPU_DEFAULT 38 #define TARGET_CPU_DEFAULT TARGET_CPU_generic 39 #endif 40 41 #define MASK_DEFAULT MASK_V850 42 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}" 43 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}" 44 #define TARGET_VERSION fprintf (stderr, " (NEC V850)"); 45 46 /* Choose which processor will be the default. 47 We must pass a -mv850xx option to the assembler if no explicit -mv* option 48 is given, because the assembler's processor default may not be correct. */ 49 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e 50 #undef MASK_DEFAULT 51 #define MASK_DEFAULT MASK_V850E 52 #undef SUBTARGET_ASM_SPEC 53 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}" 54 #undef SUBTARGET_CPP_SPEC 55 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}" 56 #undef TARGET_VERSION 57 #define TARGET_VERSION fprintf (stderr, " (NEC V850E)"); 58 #endif 59 60 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1 61 #undef MASK_DEFAULT 62 #define MASK_DEFAULT MASK_V850E /* No practical difference. */ 63 #undef SUBTARGET_ASM_SPEC 64 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}" 65 #undef SUBTARGET_CPP_SPEC 66 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}" 67 #undef TARGET_VERSION 68 #define TARGET_VERSION fprintf (stderr, " (NEC V850E1)"); 69 #endif 70 71 #define ASM_SPEC "%{mv*:-mv%*}" 72 #define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)" 73 74 #define EXTRA_SPECS \ 75 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \ 76 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC } 77 78 /* Names to predefine in the preprocessor for this target machine. */ 79 #define TARGET_CPU_CPP_BUILTINS() do { \ 80 builtin_define( "__v851__" ); \ 81 builtin_define( "__v850" ); \ 82 builtin_assert( "machine=v850" ); \ 83 builtin_assert( "cpu=v850" ); \ 84 if (TARGET_EP) \ 85 builtin_define ("__EP__"); \ 86 } while(0) 87 88 #define MASK_CPU (MASK_V850 | MASK_V850E) 89 90 /* Information about the various small memory areas. */ 91 struct small_memory_info { 92 const char *name; 93 long max; 94 long physical_max; 95 }; 96 97 enum small_memory_type { 98 /* tiny data area, using EP as base register */ 99 SMALL_MEMORY_TDA = 0, 100 /* small data area using dp as base register */ 101 SMALL_MEMORY_SDA, 102 /* zero data area using r0 as base register */ 103 SMALL_MEMORY_ZDA, 104 SMALL_MEMORY_max 105 }; 106 107 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max]; 108 109 /* Show we can debug even without a frame pointer. */ 110 #define CAN_DEBUG_WITHOUT_FP 111 112 /* Some machines may desire to change what optimizations are 113 performed for various optimization levels. This macro, if 114 defined, is executed once just after the optimization level is 115 determined and before the remainder of the command options have 116 been parsed. Values set in this macro are used as the default 117 values for the other command line options. 118 119 LEVEL is the optimization level specified; 2 if `-O2' is 120 specified, 1 if `-O' is specified, and 0 if neither is specified. 121 122 SIZE is nonzero if `-Os' is specified, 0 otherwise. 123 124 You should not use this macro to change options that are not 125 machine-specific. These should uniformly selected by the same 126 optimization level on all supported machines. Use this macro to 127 enable machine-specific optimizations. 128 129 *Do not examine `write_symbols' in this macro!* The debugging 130 options are not supposed to alter the generated code. */ 131 132 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \ 133 { \ 134 target_flags |= MASK_STRICT_ALIGN; \ 135 if (LEVEL) \ 136 /* Note - we no longer enable MASK_EP when optimizing. This is \ 137 because of a hardware bug which stops the SLD and SST instructions\ 138 from correctly detecting some hazards. If the user is sure that \ 139 their hardware is fixed or that their program will not encounter \ 140 the conditions that trigger the bug then they can enable -mep by \ 141 hand. */ \ 142 target_flags |= MASK_PROLOG_FUNCTION; \ 143 } 144 145 146 /* Target machine storage layout */ 147 148 /* Define this if most significant bit is lowest numbered 149 in instructions that operate on numbered bit-fields. 150 This is not true on the NEC V850. */ 151 #define BITS_BIG_ENDIAN 0 152 153 /* Define this if most significant byte of a word is the lowest numbered. */ 154 /* This is not true on the NEC V850. */ 155 #define BYTES_BIG_ENDIAN 0 156 157 /* Define this if most significant word of a multiword number is lowest 158 numbered. 159 This is not true on the NEC V850. */ 160 #define WORDS_BIG_ENDIAN 0 161 162 /* Width of a word, in units (bytes). */ 163 #define UNITS_PER_WORD 4 164 165 /* Define this macro if it is advisable to hold scalars in registers 166 in a wider mode than that declared by the program. In such cases, 167 the value is constrained to be within the bounds of the declared 168 type, but kept valid in the wider mode. The signedness of the 169 extension may differ from that of the type. 170 171 Some simple experiments have shown that leaving UNSIGNEDP alone 172 generates the best overall code. */ 173 174 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ 175 if (GET_MODE_CLASS (MODE) == MODE_INT \ 176 && GET_MODE_SIZE (MODE) < 4) \ 177 { (MODE) = SImode; } 178 179 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ 180 #define PARM_BOUNDARY 32 181 182 /* The stack goes in 32 bit lumps. */ 183 #define STACK_BOUNDARY 32 184 185 /* Allocation boundary (in *bits*) for the code of a function. 186 16 is the minimum boundary; 32 would give better performance. */ 187 #define FUNCTION_BOUNDARY 16 188 189 /* No data type wants to be aligned rounder than this. */ 190 #define BIGGEST_ALIGNMENT 32 191 192 /* Alignment of field after `int : 0' in a structure. */ 193 #define EMPTY_FIELD_BOUNDARY 32 194 195 /* No structure field wants to be aligned rounder than this. */ 196 #define BIGGEST_FIELD_ALIGNMENT 32 197 198 /* Define this if move instructions will actually fail to work 199 when given unaligned data. */ 200 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN 201 202 /* Define this as 1 if `char' should by default be signed; else as 0. 203 204 On the NEC V850, loads do sign extension, so make this default. */ 205 #define DEFAULT_SIGNED_CHAR 1 206 207 /* Standard register usage. */ 208 209 /* Number of actual hardware registers. 210 The hardware registers are assigned numbers for the compiler 211 from 0 to just below FIRST_PSEUDO_REGISTER. 212 213 All registers that the compiler knows about must be given numbers, 214 even those that are not normally considered general registers. */ 215 216 #define FIRST_PSEUDO_REGISTER 34 217 218 /* 1 for registers that have pervasive standard uses 219 and are not available for the register allocator. */ 220 221 #define FIXED_REGISTERS \ 222 { 1, 1, 0, 1, 1, 0, 0, 0, \ 223 0, 0, 0, 0, 0, 0, 0, 0, \ 224 0, 0, 0, 0, 0, 0, 0, 0, \ 225 0, 0, 0, 0, 0, 0, 1, 0, \ 226 1, 1} 227 228 /* 1 for registers not available across function calls. 229 These must include the FIXED_REGISTERS and also any 230 registers that can be used without being saved. 231 The latter must include the registers where values are returned 232 and the register where structure-value addresses are passed. 233 Aside from that, you can include as many other registers as you 234 like. */ 235 236 #define CALL_USED_REGISTERS \ 237 { 1, 1, 0, 1, 1, 1, 1, 1, \ 238 1, 1, 1, 1, 1, 1, 1, 1, \ 239 1, 1, 1, 1, 0, 0, 0, 0, \ 240 0, 0, 0, 0, 0, 0, 1, 1, \ 241 1, 1} 242 243 /* List the order in which to allocate registers. Each register must be 244 listed once, even those in FIXED_REGISTERS. 245 246 On the 850, we make the return registers first, then all of the volatile 247 registers, then the saved registers in reverse order to better save the 248 registers with an out of line function, and finally the fixed 249 registers. */ 250 251 #define REG_ALLOC_ORDER \ 252 { \ 253 10, 11, /* return registers */ \ 254 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \ 255 6, 7, 8, 9, 31, /* argument registers */ \ 256 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \ 257 21, 20, 2, \ 258 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \ 259 } 260 261 /* If TARGET_APP_REGS is not defined then add r2 and r5 to 262 the pool of fixed registers. See PR 14505. */ 263 #define CONDITIONAL_REGISTER_USAGE \ 264 { \ 265 if (!TARGET_APP_REGS) \ 266 { \ 267 fixed_regs[2] = 1; call_used_regs[2] = 1; \ 268 fixed_regs[5] = 1; call_used_regs[5] = 1; \ 269 } \ 270 } 271 272 /* Return number of consecutive hard regs needed starting at reg REGNO 273 to hold something of mode MODE. 274 275 This is ordinarily the length in words of a value of mode MODE 276 but can be less for certain modes in special long registers. */ 277 278 #define HARD_REGNO_NREGS(REGNO, MODE) \ 279 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 280 281 /* Value is 1 if hard register REGNO can hold a value of machine-mode 282 MODE. */ 283 284 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ 285 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4)) 286 287 /* Value is 1 if it is a good idea to tie two pseudo registers 288 when one has mode MODE1 and one has mode MODE2. 289 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, 290 for any hard reg, then this must be 0 for correct output. */ 291 #define MODES_TIEABLE_P(MODE1, MODE2) \ 292 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4)) 293 294 295 /* Define the classes of registers for register constraints in the 296 machine description. Also define ranges of constants. 297 298 One of the classes must always be named ALL_REGS and include all hard regs. 299 If there is more than one class, another class must be named NO_REGS 300 and contain no registers. 301 302 The name GENERAL_REGS must be the name of a class (or an alias for 303 another name such as ALL_REGS). This is the class of registers 304 that is allowed by "g" or "r" in a register constraint. 305 Also, registers outside this class are allocated only when 306 instructions express preferences for them. 307 308 The classes must be numbered in nondecreasing order; that is, 309 a larger-numbered class must never be contained completely 310 in a smaller-numbered class. 311 312 For any two classes, it is very desirable that there be another 313 class that represents their union. */ 314 315 enum reg_class 316 { 317 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES 318 }; 319 320 #define N_REG_CLASSES (int) LIM_REG_CLASSES 321 322 /* Give names of register classes as strings for dump file. */ 323 324 #define REG_CLASS_NAMES \ 325 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" } 326 327 /* Define which registers fit in which classes. 328 This is an initializer for a vector of HARD_REG_SET 329 of length N_REG_CLASSES. */ 330 331 #define REG_CLASS_CONTENTS \ 332 { \ 333 { 0x00000000 }, /* NO_REGS */ \ 334 { 0xffffffff }, /* GENERAL_REGS */ \ 335 { 0xffffffff }, /* ALL_REGS */ \ 336 } 337 338 /* The same information, inverted: 339 Return the class number of the smallest class containing 340 reg number REGNO. This could be a conditional expression 341 or could index an array. */ 342 343 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS 344 345 /* The class value for index registers, and the one for base regs. */ 346 347 #define INDEX_REG_CLASS NO_REGS 348 #define BASE_REG_CLASS GENERAL_REGS 349 350 /* Get reg_class from a letter such as appears in the machine description. */ 351 352 #define REG_CLASS_FROM_LETTER(C) (NO_REGS) 353 354 /* Macros to check register numbers against specific register classes. */ 355 356 /* These assume that REGNO is a hard or pseudo reg number. 357 They give nonzero only if REGNO is a hard reg of the suitable class 358 or a pseudo reg currently allocated to a suitable hard reg. 359 Since they use reg_renumber, they are safe only once reg_renumber 360 has been allocated, which happens in local-alloc.c. */ 361 362 #define REGNO_OK_FOR_BASE_P(regno) \ 363 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0) 364 365 #define REGNO_OK_FOR_INDEX_P(regno) 0 366 367 /* Given an rtx X being reloaded into a reg required to be 368 in class CLASS, return the class of reg to actually use. 369 In general this is just CLASS; but on some machines 370 in some cases it is preferable to use a more restrictive class. */ 371 372 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS) 373 374 /* Return the maximum number of consecutive registers 375 needed to represent mode MODE in a register of class CLASS. */ 376 377 #define CLASS_MAX_NREGS(CLASS, MODE) \ 378 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 379 380 /* The letters I, J, K, L, M, N, O, P in a register constraint string 381 can be used to stand for particular ranges of immediate operands. 382 This macro defines what the ranges are. 383 C is the letter, and VALUE is a constant value. 384 Return 1 if VALUE is in the range specified by C. */ 385 386 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80) 387 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100) 388 /* zero */ 389 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0) 390 /* 5 bit signed immediate */ 391 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20) 392 /* 16 bit signed immediate */ 393 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000) 394 /* valid constant for movhi instruction. */ 395 #define CONST_OK_FOR_L(VALUE) \ 396 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \ 397 && CONST_OK_FOR_I ((VALUE & 0xffff))) 398 /* 16 bit unsigned immediate */ 399 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000) 400 /* 5 bit unsigned immediate in shift instructions */ 401 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31) 402 /* 9 bit signed immediate for word multiply instruction. */ 403 #define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200) 404 405 #define CONST_OK_FOR_P(VALUE) 0 406 407 #define CONST_OK_FOR_LETTER_P(VALUE, C) \ 408 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \ 409 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \ 410 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \ 411 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \ 412 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \ 413 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \ 414 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \ 415 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \ 416 0) 417 418 /* Similar, but for floating constants, and defining letters G and H. 419 Here VALUE is the CONST_DOUBLE rtx itself. 420 421 `G' is a zero of some form. */ 422 423 #define CONST_DOUBLE_OK_FOR_G(VALUE) \ 424 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \ 425 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \ 426 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \ 427 && CONST_DOUBLE_LOW (VALUE) == 0 \ 428 && CONST_DOUBLE_HIGH (VALUE) == 0)) 429 430 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0 431 432 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ 433 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \ 434 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \ 435 : 0) 436 437 438 /* Stack layout; function entry, exit and calling. */ 439 440 /* Define this if pushing a word on the stack 441 makes the stack pointer a smaller address. */ 442 443 #define STACK_GROWS_DOWNWARD 444 445 /* Define this to nonzero if the nominal address of the stack frame 446 is at the high-address end of the local variables; 447 that is, each additional local variable allocated 448 goes at a more negative offset in the frame. */ 449 450 #define FRAME_GROWS_DOWNWARD 1 451 452 /* Offset within stack frame to start allocating local variables at. 453 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the 454 first local allocated. Otherwise, it is the offset to the BEGINNING 455 of the first local allocated. */ 456 457 #define STARTING_FRAME_OFFSET 0 458 459 /* Offset of first parameter from the argument pointer register value. */ 460 /* Is equal to the size of the saved fp + pc, even if an fp isn't 461 saved since the value is used before we know. */ 462 463 #define FIRST_PARM_OFFSET(FNDECL) 0 464 465 /* Specify the registers used for certain standard purposes. 466 The values of these macros are register numbers. */ 467 468 /* Register to use for pushing function arguments. */ 469 #define STACK_POINTER_REGNUM 3 470 471 /* Base register for access to local variables of the function. */ 472 #define FRAME_POINTER_REGNUM 32 473 474 /* Register containing return address from latest function call. */ 475 #define LINK_POINTER_REGNUM 31 476 477 /* On some machines the offset between the frame pointer and starting 478 offset of the automatic variables is not known until after register 479 allocation has been done (for example, because the saved registers 480 are between these two locations). On those machines, define 481 `FRAME_POINTER_REGNUM' the number of a special, fixed register to 482 be used internally until the offset is known, and define 483 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number 484 used for the frame pointer. 485 486 You should define this macro only in the very rare circumstances 487 when it is not possible to calculate the offset between the frame 488 pointer and the automatic variables until after register 489 allocation has been completed. When this macro is defined, you 490 must also indicate in your definition of `ELIMINABLE_REGS' how to 491 eliminate `FRAME_POINTER_REGNUM' into either 492 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'. 493 494 Do not define this macro if it would be the same as 495 `FRAME_POINTER_REGNUM'. */ 496 #undef HARD_FRAME_POINTER_REGNUM 497 #define HARD_FRAME_POINTER_REGNUM 29 498 499 /* Base register for access to arguments of the function. */ 500 #define ARG_POINTER_REGNUM 33 501 502 /* Register in which static-chain is passed to a function. */ 503 #define STATIC_CHAIN_REGNUM 20 504 505 /* Value should be nonzero if functions must have frame pointers. 506 Zero means the frame pointer need not be set up (and parms 507 may be accessed via the stack pointer) in functions that seem suitable. 508 This is computed in `reload', in reload1.c. */ 509 #define FRAME_POINTER_REQUIRED 0 510 511 /* If defined, this macro specifies a table of register pairs used to 512 eliminate unneeded registers that point into the stack frame. If 513 it is not defined, the only elimination attempted by the compiler 514 is to replace references to the frame pointer with references to 515 the stack pointer. 516 517 The definition of this macro is a list of structure 518 initializations, each of which specifies an original and 519 replacement register. 520 521 On some machines, the position of the argument pointer is not 522 known until the compilation is completed. In such a case, a 523 separate hard register must be used for the argument pointer. 524 This register can be eliminated by replacing it with either the 525 frame pointer or the argument pointer, depending on whether or not 526 the frame pointer has been eliminated. 527 528 In this case, you might specify: 529 #define ELIMINABLE_REGS \ 530 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 531 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ 532 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} 533 534 Note that the elimination of the argument pointer with the stack 535 pointer is specified first since that is the preferred elimination. */ 536 537 #define ELIMINABLE_REGS \ 538 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ 539 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \ 540 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ 541 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \ 542 543 /* A C expression that returns nonzero if the compiler is allowed to 544 try to replace register number FROM-REG with register number 545 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is 546 defined, and will usually be the constant 1, since most of the 547 cases preventing register elimination are things that the compiler 548 already knows about. */ 549 550 #define CAN_ELIMINATE(FROM, TO) \ 551 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1) 552 553 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It 554 specifies the initial difference between the specified pair of 555 registers. This macro must be defined if `ELIMINABLE_REGS' is 556 defined. */ 557 558 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 559 { \ 560 if ((FROM) == FRAME_POINTER_REGNUM) \ 561 (OFFSET) = get_frame_size () + current_function_outgoing_args_size; \ 562 else if ((FROM) == ARG_POINTER_REGNUM) \ 563 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \ 564 else \ 565 gcc_unreachable (); \ 566 } 567 568 /* Keep the stack pointer constant throughout the function. */ 569 #define ACCUMULATE_OUTGOING_ARGS 1 570 571 /* Value is the number of bytes of arguments automatically 572 popped when returning from a subroutine call. 573 FUNDECL is the declaration node of the function (as a tree), 574 FUNTYPE is the data type of the function (as a tree), 575 or for a library call it is an identifier node for the subroutine name. 576 SIZE is the number of bytes of arguments passed on the stack. */ 577 578 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 579 580 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT) 581 582 /* Define a data type for recording info about an argument list 583 during the scan of that argument list. This data type should 584 hold all necessary information about the function itself 585 and about the args processed so far, enough to enable macros 586 such as FUNCTION_ARG to determine where the next arg should go. */ 587 588 #define CUMULATIVE_ARGS struct cum_arg 589 struct cum_arg { int nbytes; int anonymous_args; }; 590 591 /* Define where to put the arguments to a function. 592 Value is zero to push the argument on the stack, 593 or a hard register in which to store the argument. 594 595 MODE is the argument's machine mode. 596 TYPE is the data type of the argument (as a tree). 597 This is null for libcalls where that information may 598 not be available. 599 CUM is a variable of type CUMULATIVE_ARGS which gives info about 600 the preceding args and about the function being called. 601 NAMED is nonzero if this argument is a named parameter 602 (otherwise it is an extra parameter matching an ellipsis). */ 603 604 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ 605 function_arg (&CUM, MODE, TYPE, NAMED) 606 607 /* Initialize a variable CUM of type CUMULATIVE_ARGS 608 for a call to a function whose data type is FNTYPE. 609 For a library call, FNTYPE is 0. */ 610 611 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ 612 ((CUM).nbytes = 0, (CUM).anonymous_args = 0) 613 614 /* Update the data in CUM to advance over an argument 615 of mode MODE and data type TYPE. 616 (TYPE is null for libcalls where that information may not be available.) */ 617 618 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ 619 ((CUM).nbytes += ((MODE) != BLKmode \ 620 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \ 621 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)) 622 623 /* When a parameter is passed in a register, stack space is still 624 allocated for it. */ 625 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0) 626 627 /* Define this if the above stack space is to be considered part of the 628 space allocated by the caller. */ 629 #define OUTGOING_REG_PARM_STACK_SPACE 630 631 /* 1 if N is a possible register number for function argument passing. */ 632 633 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9) 634 635 /* Define how to find the value returned by a function. 636 VALTYPE is the data type of the value (as a tree). 637 If the precise function being called is known, FUNC is its FUNCTION_DECL; 638 otherwise, FUNC is 0. */ 639 640 #define FUNCTION_VALUE(VALTYPE, FUNC) \ 641 gen_rtx_REG (TYPE_MODE (VALTYPE), 10) 642 643 /* Define how to find the value returned by a library function 644 assuming the value has mode MODE. */ 645 646 #define LIBCALL_VALUE(MODE) \ 647 gen_rtx_REG (MODE, 10) 648 649 /* 1 if N is a possible register number for a function value. */ 650 651 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10) 652 653 #define DEFAULT_PCC_STRUCT_RETURN 0 654 655 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, 656 the stack pointer does not matter. The value is tested only in 657 functions that have frame pointers. 658 No definition is equivalent to always zero. */ 659 660 #define EXIT_IGNORE_STACK 1 661 662 /* Define this macro as a C expression that is nonzero for registers 663 used by the epilogue or the `return' pattern. */ 664 665 #define EPILOGUE_USES(REGNO) \ 666 (reload_completed && (REGNO) == LINK_POINTER_REGNUM) 667 668 /* Output assembler code to FILE to increment profiler label # LABELNO 669 for profiling a function entry. */ 670 671 #define FUNCTION_PROFILER(FILE, LABELNO) ; 672 673 #define TRAMPOLINE_TEMPLATE(FILE) \ 674 do { \ 675 fprintf (FILE, "\tjarl .+4,r12\n"); \ 676 fprintf (FILE, "\tld.w 12[r12],r20\n"); \ 677 fprintf (FILE, "\tld.w 16[r12],r12\n"); \ 678 fprintf (FILE, "\tjmp [r12]\n"); \ 679 fprintf (FILE, "\tnop\n"); \ 680 fprintf (FILE, "\t.long 0\n"); \ 681 fprintf (FILE, "\t.long 0\n"); \ 682 } while (0) 683 684 /* Length in units of the trampoline for entering a nested function. */ 685 686 #define TRAMPOLINE_SIZE 24 687 688 /* Emit RTL insns to initialize the variable parts of a trampoline. 689 FNADDR is an RTX for the address of the function's pure code. 690 CXT is an RTX for the static chain value for the function. */ 691 692 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ 693 { \ 694 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \ 695 (CXT)); \ 696 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \ 697 (FNADDR)); \ 698 } 699 700 /* Addressing modes, and classification of registers for them. */ 701 702 703 /* 1 if X is an rtx for a constant that is a valid address. */ 704 705 /* ??? This seems too exclusive. May get better code by accepting more 706 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */ 707 708 #define CONSTANT_ADDRESS_P(X) \ 709 (GET_CODE (X) == CONST_INT \ 710 && CONST_OK_FOR_K (INTVAL (X))) 711 712 /* Maximum number of registers that can appear in a valid memory address. */ 713 714 #define MAX_REGS_PER_ADDRESS 1 715 716 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx 717 and check its validity for a certain class. 718 We have two alternate definitions for each of them. 719 The usual definition accepts all pseudo regs; the other rejects 720 them unless they have been allocated suitable hard regs. 721 The symbol REG_OK_STRICT causes the latter definition to be used. 722 723 Most source files want to accept pseudo regs in the hope that 724 they will get allocated to the class that the insn wants them to be in. 725 Source files for reload pass need to be strict. 726 After reload, it makes no difference, since pseudo regs have 727 been eliminated by then. */ 728 729 #ifndef REG_OK_STRICT 730 731 /* Nonzero if X is a hard reg that can be used as an index 732 or if it is a pseudo reg. */ 733 #define REG_OK_FOR_INDEX_P(X) 0 734 /* Nonzero if X is a hard reg that can be used as a base reg 735 or if it is a pseudo reg. */ 736 #define REG_OK_FOR_BASE_P(X) 1 737 #define REG_OK_FOR_INDEX_P_STRICT(X) 0 738 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X)) 739 #define STRICT 0 740 741 #else 742 743 /* Nonzero if X is a hard reg that can be used as an index. */ 744 #define REG_OK_FOR_INDEX_P(X) 0 745 /* Nonzero if X is a hard reg that can be used as a base reg. */ 746 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) 747 #define STRICT 1 748 749 #endif 750 751 /* A C expression that defines the optional machine-dependent 752 constraint letters that can be used to segregate specific types of 753 operands, usually memory references, for the target machine. 754 Normally this macro will not be defined. If it is required for a 755 particular target machine, it should return 1 if VALUE corresponds 756 to the operand type represented by the constraint letter C. If C 757 is not defined as an extra constraint, the value returned should 758 be 0 regardless of VALUE. 759 760 For example, on the ROMP, load instructions cannot have their 761 output in r0 if the memory reference contains a symbolic address. 762 Constraint letter `Q' is defined as representing a memory address 763 that does *not* contain a symbolic address. An alternative is 764 specified with a `Q' constraint on the input and `r' on the 765 output. The next alternative specifies `m' on the input and a 766 register class that does not include r0 on the output. */ 767 768 #define EXTRA_CONSTRAINT(OP, C) \ 769 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \ 770 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \ 771 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \ 772 && !SYMBOL_REF_ZDA_P (OP)) \ 773 : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \ 774 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \ 775 && SYMBOL_REF_ZDA_P (OP)) \ 776 || (GET_CODE (OP) == CONST \ 777 && GET_CODE (XEXP (OP, 0)) == PLUS \ 778 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \ 779 && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \ 780 : 0) 781 782 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression 783 that is a valid memory address for an instruction. 784 The MODE argument is the machine mode for the MEM expression 785 that wants to use this address. 786 787 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, 788 except for CONSTANT_ADDRESS_P which is actually 789 machine-independent. */ 790 791 /* Accept either REG or SUBREG where a register is valid. */ 792 793 #define RTX_OK_FOR_BASE_P(X) \ 794 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \ 795 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \ 796 && REG_OK_FOR_BASE_P (SUBREG_REG (X)))) 797 798 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ 799 do { \ 800 if (RTX_OK_FOR_BASE_P (X)) \ 801 goto ADDR; \ 802 if (CONSTANT_ADDRESS_P (X) \ 803 && (MODE == QImode || INTVAL (X) % 2 == 0) \ 804 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \ 805 goto ADDR; \ 806 if (GET_CODE (X) == LO_SUM \ 807 && REG_P (XEXP (X, 0)) \ 808 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ 809 && CONSTANT_P (XEXP (X, 1)) \ 810 && (GET_CODE (XEXP (X, 1)) != CONST_INT \ 811 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \ 812 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \ 813 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \ 814 goto ADDR; \ 815 if (special_symbolref_operand (X, MODE) \ 816 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \ 817 goto ADDR; \ 818 if (GET_CODE (X) == PLUS \ 819 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \ 820 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \ 821 && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \ 822 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \ 823 + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \ 824 goto ADDR; \ 825 } while (0) 826 827 828 /* Go to LABEL if ADDR (a legitimate address expression) 829 has an effect that depends on the machine mode it is used for. */ 830 831 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {} 832 833 /* Nonzero if the constant value X is a legitimate general operand. 834 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ 835 836 #define LEGITIMATE_CONSTANT_P(X) \ 837 (GET_CODE (X) == CONST_DOUBLE \ 838 || !(GET_CODE (X) == CONST \ 839 && GET_CODE (XEXP (X, 0)) == PLUS \ 840 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \ 841 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \ 842 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1))))) 843 844 /* Tell final.c how to eliminate redundant test instructions. */ 845 846 /* Here we define machine-dependent flags and fields in cc_status 847 (see `conditions.h'). No extra ones are needed for the VAX. */ 848 849 /* Store in cc_status the expressions 850 that the condition codes will describe 851 after execution of an instruction whose pattern is EXP. 852 Do not alter them if the instruction would not alter the cc's. */ 853 854 #define CC_OVERFLOW_UNUSABLE 0x200 855 #define CC_NO_CARRY CC_NO_OVERFLOW 856 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN) 857 858 /* Nonzero if access to memory by bytes or half words is no faster 859 than accessing full words. */ 860 #define SLOW_BYTE_ACCESS 1 861 862 /* According expr.c, a value of around 6 should minimize code size, and 863 for the V850 series, that's our primary concern. */ 864 #define MOVE_RATIO 6 865 866 /* Indirect calls are expensive, never turn a direct call 867 into an indirect call. */ 868 #define NO_FUNCTION_CSE 869 870 /* The four different data regions on the v850. */ 871 typedef enum 872 { 873 DATA_AREA_NORMAL, 874 DATA_AREA_SDA, 875 DATA_AREA_TDA, 876 DATA_AREA_ZDA 877 } v850_data_area; 878 879 #define TEXT_SECTION_ASM_OP "\t.section .text" 880 #define DATA_SECTION_ASM_OP "\t.section .data" 881 #define BSS_SECTION_ASM_OP "\t.section .bss" 882 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\"" 883 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\"" 884 885 #define SCOMMON_ASM_OP "\t.scomm\t" 886 #define ZCOMMON_ASM_OP "\t.zcomm\t" 887 #define TCOMMON_ASM_OP "\t.tcomm\t" 888 889 #define ASM_COMMENT_START "#" 890 891 /* Output to assembler file text saying following lines 892 may contain character constants, extra white space, comments, etc. */ 893 894 #define ASM_APP_ON "#APP\n" 895 896 /* Output to assembler file text saying following lines 897 no longer contain unusual constructs. */ 898 899 #define ASM_APP_OFF "#NO_APP\n" 900 901 #undef USER_LABEL_PREFIX 902 #define USER_LABEL_PREFIX "_" 903 904 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \ 905 if (! v850_output_addr_const_extra (FILE, X)) \ 906 goto FAIL 907 908 /* This says how to output the assembler to define a global 909 uninitialized but not common symbol. */ 910 911 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ 912 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN)) 913 914 #undef ASM_OUTPUT_ALIGNED_BSS 915 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ 916 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN) 917 918 /* This says how to output the assembler to define a global 919 uninitialized, common symbol. */ 920 #undef ASM_OUTPUT_ALIGNED_COMMON 921 #undef ASM_OUTPUT_COMMON 922 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \ 923 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN) 924 925 /* This says how to output the assembler to define a local 926 uninitialized symbol. */ 927 #undef ASM_OUTPUT_ALIGNED_LOCAL 928 #undef ASM_OUTPUT_LOCAL 929 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \ 930 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN) 931 932 /* Globalizing directive for a label. */ 933 #define GLOBAL_ASM_OP "\t.global " 934 935 #define ASM_PN_FORMAT "%s___%lu" 936 937 /* This is how we tell the assembler that two symbols have the same value. */ 938 939 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \ 940 do { assemble_name(FILE, NAME1); \ 941 fputs(" = ", FILE); \ 942 assemble_name(FILE, NAME2); \ 943 fputc('\n', FILE); } while (0) 944 945 946 /* How to refer to registers in assembler output. 947 This sequence is indexed by compiler's hard-register-number (see above). */ 948 949 #define REGISTER_NAMES \ 950 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \ 951 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ 952 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \ 953 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \ 954 ".fp", ".ap"} 955 956 #define ADDITIONAL_REGISTER_NAMES \ 957 { { "zero", 0 }, \ 958 { "hp", 2 }, \ 959 { "r3", 3 }, \ 960 { "r4", 4 }, \ 961 { "tp", 5 }, \ 962 { "fp", 29 }, \ 963 { "r30", 30 }, \ 964 { "lp", 31} } 965 966 /* Print an instruction operand X on file FILE. 967 look in v850.c for details */ 968 969 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) 970 971 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ 972 ((CODE) == '.') 973 974 /* Print a memory operand whose address is X, on file FILE. 975 This uses a function in output-vax.c. */ 976 977 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) 978 979 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) 980 #define ASM_OUTPUT_REG_POP(FILE,REGNO) 981 982 /* This is how to output an element of a case-vector that is absolute. */ 983 984 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ 985 fprintf (FILE, "\t%s .L%d\n", \ 986 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE) 987 988 /* This is how to output an element of a case-vector that is relative. */ 989 990 /* Disable the shift, which is for the currently disabled "switch" 991 opcode. Se casesi in v850.md. */ 992 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ 993 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \ 994 (TARGET_BIG_SWITCH ? ".long" : ".short"), \ 995 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \ 996 VALUE, REL, \ 997 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : "")) 998 999 #define ASM_OUTPUT_ALIGN(FILE, LOG) \ 1000 if ((LOG) != 0) \ 1001 fprintf (FILE, "\t.align %d\n", (LOG)) 1002 1003 /* We don't have to worry about dbx compatibility for the v850. */ 1004 #define DEFAULT_GDB_EXTENSIONS 1 1005 1006 /* Use stabs debugging info by default. */ 1007 #undef PREFERRED_DEBUGGING_TYPE 1008 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG 1009 1010 /* Specify the machine mode that this machine uses 1011 for the index in the tablejump instruction. */ 1012 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode) 1013 1014 /* Define as C expression which evaluates to nonzero if the tablejump 1015 instruction expects the table to contain offsets from the address of the 1016 table. 1017 Do not define this if the table should contain absolute addresses. */ 1018 #define CASE_VECTOR_PC_RELATIVE 1 1019 1020 /* The switch instruction requires that the jump table immediately follow 1021 it. */ 1022 #define JUMP_TABLES_IN_TEXT_SECTION 1 1023 1024 /* svr4.h defines this assuming that 4 byte alignment is required. */ 1025 #undef ASM_OUTPUT_BEFORE_CASE_LABEL 1026 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \ 1027 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1)); 1028 1029 #define WORD_REGISTER_OPERATIONS 1030 1031 /* Byte and short loads sign extend the value to a word. */ 1032 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND 1033 1034 /* This flag, if defined, says the same insns that convert to a signed fixnum 1035 also convert validly to an unsigned one. */ 1036 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC 1037 1038 /* Max number of bytes we can move from memory to memory 1039 in one reasonably fast instruction. */ 1040 #define MOVE_MAX 4 1041 1042 /* Define if shifts truncate the shift count 1043 which implies one can omit a sign-extension or zero-extension 1044 of a shift count. */ 1045 #define SHIFT_COUNT_TRUNCATED 1 1046 1047 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits 1048 is done just by pretending it is already truncated. */ 1049 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 1050 1051 /* Specify the machine mode that pointers have. 1052 After generation of rtl, the compiler makes no further distinction 1053 between pointers and any other objects of this machine mode. */ 1054 #define Pmode SImode 1055 1056 /* A function address in a call instruction 1057 is a byte address (for indexing purposes) 1058 so give the MEM rtx a byte's mode. */ 1059 #define FUNCTION_MODE QImode 1060 1061 /* Tell compiler we want to support GHS pragmas */ 1062 #define REGISTER_TARGET_PRAGMAS() do { \ 1063 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \ 1064 c_register_pragma ("ghs", "section", ghs_pragma_section); \ 1065 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \ 1066 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \ 1067 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \ 1068 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \ 1069 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \ 1070 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \ 1071 } while (0) 1072 1073 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that 1074 can appear in the "ghs section" pragma. These names are used to index 1075 into the GHS_default_section_names[] and GHS_current_section_names[] 1076 that are defined in v850.c, and so the ordering of each must remain 1077 consistent. 1078 1079 These arrays give the default and current names for each kind of 1080 section defined by the GHS pragmas. The current names can be changed 1081 by the "ghs section" pragma. If the current names are null, use 1082 the default names. Note that the two arrays have different types. 1083 1084 For the *normal* section kinds (like .data, .text, etc.) we do not 1085 want to explicitly force the name of these sections, but would rather 1086 let the linker (or at least the back end) choose the name of the 1087 section, UNLESS the user has force a specific name for these section 1088 kinds. To accomplish this set the name in ghs_default_section_names 1089 to null. */ 1090 1091 enum GHS_section_kind 1092 { 1093 GHS_SECTION_KIND_DEFAULT, 1094 1095 GHS_SECTION_KIND_TEXT, 1096 GHS_SECTION_KIND_DATA, 1097 GHS_SECTION_KIND_RODATA, 1098 GHS_SECTION_KIND_BSS, 1099 GHS_SECTION_KIND_SDATA, 1100 GHS_SECTION_KIND_ROSDATA, 1101 GHS_SECTION_KIND_TDATA, 1102 GHS_SECTION_KIND_ZDATA, 1103 GHS_SECTION_KIND_ROZDATA, 1104 1105 COUNT_OF_GHS_SECTION_KINDS /* must be last */ 1106 }; 1107 1108 /* The following code is for handling pragmas supported by the 1109 v850 compiler produced by Green Hills Software. This is at 1110 the specific request of a customer. */ 1111 1112 typedef struct data_area_stack_element 1113 { 1114 struct data_area_stack_element * prev; 1115 v850_data_area data_area; /* Current default data area. */ 1116 } data_area_stack_element; 1117 1118 /* Track the current data area set by the 1119 data area pragma (which can be nested). */ 1120 extern data_area_stack_element * data_area_stack; 1121 1122 /* Names of the various data areas used on the v850. */ 1123 extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS]; 1124 extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS]; 1125 1126 /* The assembler op to start the file. */ 1127 1128 #define FILE_ASM_OP "\t.file\n" 1129 1130 /* Enable the register move pass to improve code. */ 1131 #define ENABLE_REGMOVE_PASS 1132 1133 1134 /* Implement ZDA, TDA, and SDA */ 1135 1136 #define EP_REGNUM 30 /* ep register number */ 1137 1138 #define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0) 1139 #define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1) 1140 #define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2) 1141 #define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0) 1142 #define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0) 1143 #define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0) 1144 1145 #define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections 1146 1147 #endif /* ! GCC_V850_H */ 1148