1 //===- BranchProbabilityInfo.h - Branch Probability Analysis ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass is used to evaluate branch probabilties.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
14 #define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/ValueHandle.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/BranchProbability.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstdint>
28 #include <memory>
29 #include <utility>
30 
31 namespace llvm {
32 
33 class Function;
34 class Loop;
35 class LoopInfo;
36 class raw_ostream;
37 class DominatorTree;
38 class PostDominatorTree;
39 class TargetLibraryInfo;
40 class Value;
41 
42 /// Analysis providing branch probability information.
43 ///
44 /// This is a function analysis which provides information on the relative
45 /// probabilities of each "edge" in the function's CFG where such an edge is
46 /// defined by a pair (PredBlock and an index in the successors). The
47 /// probability of an edge from one block is always relative to the
48 /// probabilities of other edges from the block. The probabilites of all edges
49 /// from a block sum to exactly one (100%).
50 /// We use a pair (PredBlock and an index in the successors) to uniquely
51 /// identify an edge, since we can have multiple edges from Src to Dst.
52 /// As an example, we can have a switch which jumps to Dst with value 0 and
53 /// value 10.
54 ///
55 /// Process of computing branch probabilities can be logically viewed as three
56 /// step process:
57 ///
58 ///   First, if there is a profile information associated with the branch then
59 /// it is trivially translated to branch probabilities. There is one exception
60 /// from this rule though. Probabilities for edges leading to "unreachable"
61 /// blocks (blocks with the estimated weight not greater than
62 /// UNREACHABLE_WEIGHT) are evaluated according to static estimation and
63 /// override profile information. If no branch probabilities were calculated
64 /// on this step then take the next one.
65 ///
66 ///   Second, estimate absolute execution weights for each block based on
67 /// statically known information. Roots of such information are "cold",
68 /// "unreachable", "noreturn" and "unwind" blocks. Those blocks get their
69 /// weights set to BlockExecWeight::COLD, BlockExecWeight::UNREACHABLE,
70 /// BlockExecWeight::NORETURN and BlockExecWeight::UNWIND respectively. Then the
71 /// weights are propagated to the other blocks up the domination line. In
72 /// addition, if all successors have estimated weights set then maximum of these
73 /// weights assigned to the block itself (while this is not ideal heuristic in
74 /// theory it's simple and works reasonably well in most cases) and the process
75 /// repeats. Once the process of weights propagation converges branch
76 /// probabilities are set for all such branches that have at least one successor
77 /// with the weight set. Default execution weight (BlockExecWeight::DEFAULT) is
78 /// used for any successors which doesn't have its weight set. For loop back
79 /// branches we use their weights scaled by loop trip count equal to
80 /// 'LBH_TAKEN_WEIGHT/LBH_NOTTAKEN_WEIGHT'.
81 ///
82 /// Here is a simple example demonstrating how the described algorithm works.
83 ///
84 ///          BB1
85 ///         /   \
86 ///        v     v
87 ///      BB2     BB3
88 ///     /   \
89 ///    v     v
90 ///  ColdBB  UnreachBB
91 ///
92 /// Initially, ColdBB is associated with COLD_WEIGHT and UnreachBB with
93 /// UNREACHABLE_WEIGHT. COLD_WEIGHT is set to BB2 as maximum between its
94 /// successors. BB1 and BB3 has no explicit estimated weights and assumed to
95 /// have DEFAULT_WEIGHT. Based on assigned weights branches will have the
96 /// following probabilities:
97 /// P(BB1->BB2) = COLD_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
98 ///   0xffff / (0xffff + 0xfffff) = 0.0588(5.9%)
99 /// P(BB1->BB3) = DEFAULT_WEIGHT_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
100 ///          0xfffff / (0xffff + 0xfffff) = 0.941(94.1%)
101 /// P(BB2->ColdBB) = COLD_WEIGHT/(COLD_WEIGHT + UNREACHABLE_WEIGHT) = 1(100%)
102 /// P(BB2->UnreachBB) =
103 ///   UNREACHABLE_WEIGHT/(COLD_WEIGHT+UNREACHABLE_WEIGHT) = 0(0%)
104 ///
105 /// If no branch probabilities were calculated on this step then take the next
106 /// one.
107 ///
108 ///   Third, apply different kinds of local heuristics for each individual
109 /// branch until first match. For example probability of a pointer to be null is
110 /// estimated as PH_TAKEN_WEIGHT/(PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT). If
111 /// no local heuristic has been matched then branch is left with no explicit
112 /// probability set and assumed to have default probability.
113 class BranchProbabilityInfo {
114 public:
115   BranchProbabilityInfo() = default;
116 
117   BranchProbabilityInfo(const Function &F, const LoopInfo &LI,
118                         const TargetLibraryInfo *TLI = nullptr,
119                         DominatorTree *DT = nullptr,
120                         PostDominatorTree *PDT = nullptr) {
121     calculate(F, LI, TLI, DT, PDT);
122   }
123 
BranchProbabilityInfo(BranchProbabilityInfo && Arg)124   BranchProbabilityInfo(BranchProbabilityInfo &&Arg)
125       : Handles(std::move(Arg.Handles)), Probs(std::move(Arg.Probs)),
126         LastF(Arg.LastF),
127         EstimatedBlockWeight(std::move(Arg.EstimatedBlockWeight)) {
128     for (auto &Handle : Handles)
129       Handle.setBPI(this);
130   }
131 
132   BranchProbabilityInfo(const BranchProbabilityInfo &) = delete;
133   BranchProbabilityInfo &operator=(const BranchProbabilityInfo &) = delete;
134 
135   BranchProbabilityInfo &operator=(BranchProbabilityInfo &&RHS) {
136     releaseMemory();
137     Handles = std::move(RHS.Handles);
138     Probs = std::move(RHS.Probs);
139     EstimatedBlockWeight = std::move(RHS.EstimatedBlockWeight);
140     for (auto &Handle : Handles)
141       Handle.setBPI(this);
142     return *this;
143   }
144 
145   bool invalidate(Function &, const PreservedAnalyses &PA,
146                   FunctionAnalysisManager::Invalidator &);
147 
148   void releaseMemory();
149 
150   void print(raw_ostream &OS) const;
151 
152   /// Get an edge's probability, relative to other out-edges of the Src.
153   ///
154   /// This routine provides access to the fractional probability between zero
155   /// (0%) and one (100%) of this edge executing, relative to other edges
156   /// leaving the 'Src' block. The returned probability is never zero, and can
157   /// only be one if the source block has only one successor.
158   BranchProbability getEdgeProbability(const BasicBlock *Src,
159                                        unsigned IndexInSuccessors) const;
160 
161   /// Get the probability of going from Src to Dst.
162   ///
163   /// It returns the sum of all probabilities for edges from Src to Dst.
164   BranchProbability getEdgeProbability(const BasicBlock *Src,
165                                        const BasicBlock *Dst) const;
166 
167   BranchProbability getEdgeProbability(const BasicBlock *Src,
168                                        const_succ_iterator Dst) const;
169 
170   /// Test if an edge is hot relative to other out-edges of the Src.
171   ///
172   /// Check whether this edge out of the source block is 'hot'. We define hot
173   /// as having a relative probability >= 80%.
174   bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const;
175 
176   /// Print an edge's probability.
177   ///
178   /// Retrieves an edge's probability similarly to \see getEdgeProbability, but
179   /// then prints that probability to the provided stream. That stream is then
180   /// returned.
181   raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src,
182                                     const BasicBlock *Dst) const;
183 
184 public:
185   /// Set the raw probabilities for all edges from the given block.
186   ///
187   /// This allows a pass to explicitly set edge probabilities for a block. It
188   /// can be used when updating the CFG to update the branch probability
189   /// information.
190   void setEdgeProbability(const BasicBlock *Src,
191                           const SmallVectorImpl<BranchProbability> &Probs);
192 
193   /// Copy outgoing edge probabilities from \p Src to \p Dst.
194   ///
195   /// This allows to keep probabilities unset for the destination if they were
196   /// unset for source.
197   void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst);
198 
199   /// Swap outgoing edges probabilities for \p Src with branch terminator
200   void swapSuccEdgesProbabilities(const BasicBlock *Src);
201 
getBranchProbStackProtector(bool IsLikely)202   static BranchProbability getBranchProbStackProtector(bool IsLikely) {
203     static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20);
204     return IsLikely ? LikelyProb : LikelyProb.getCompl();
205   }
206 
207   void calculate(const Function &F, const LoopInfo &LI,
208                  const TargetLibraryInfo *TLI, DominatorTree *DT,
209                  PostDominatorTree *PDT);
210 
211   /// Forget analysis results for the given basic block.
212   void eraseBlock(const BasicBlock *BB);
213 
214   // Data structure to track SCCs for handling irreducible loops.
215   class SccInfo {
216     // Enum of types to classify basic blocks in SCC. Basic block belonging to
217     // SCC is 'Inner' until it is either 'Header' or 'Exiting'. Note that a
218     // basic block can be 'Header' and 'Exiting' at the same time.
219     enum SccBlockType {
220       Inner = 0x0,
221       Header = 0x1,
222       Exiting = 0x2,
223     };
224     // Map of basic blocks to SCC IDs they belong to. If basic block doesn't
225     // belong to any SCC it is not in the map.
226     using SccMap = DenseMap<const BasicBlock *, int>;
227     // Each basic block in SCC is attributed with one or several types from
228     // SccBlockType. Map value has uint32_t type (instead of SccBlockType)
229     // since basic block may be for example "Header" and "Exiting" at the same
230     // time and we need to be able to keep more than one value from
231     // SccBlockType.
232     using SccBlockTypeMap = DenseMap<const BasicBlock *, uint32_t>;
233     // Vector containing classification of basic blocks for all  SCCs where i'th
234     // vector element corresponds to SCC with ID equal to i.
235     using SccBlockTypeMaps = std::vector<SccBlockTypeMap>;
236 
237     SccMap SccNums;
238     SccBlockTypeMaps SccBlocks;
239 
240   public:
241     explicit SccInfo(const Function &F);
242 
243     /// If \p BB belongs to some SCC then ID of that SCC is returned, otherwise
244     /// -1 is returned. If \p BB belongs to more than one SCC at the same time
245     /// result is undefined.
246     int getSCCNum(const BasicBlock *BB) const;
247     /// Returns true if \p BB is a 'header' block in SCC with \p SccNum ID,
248     /// false otherwise.
isSCCHeader(const BasicBlock * BB,int SccNum)249     bool isSCCHeader(const BasicBlock *BB, int SccNum) const {
250       return getSccBlockType(BB, SccNum) & Header;
251     }
252     /// Returns true if \p BB is an 'exiting' block in SCC with \p SccNum ID,
253     /// false otherwise.
isSCCExitingBlock(const BasicBlock * BB,int SccNum)254     bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const {
255       return getSccBlockType(BB, SccNum) & Exiting;
256     }
257     /// Fills in \p Enters vector with all such blocks that don't belong to
258     /// SCC with \p SccNum ID but there is an edge to a block belonging to the
259     /// SCC.
260     void getSccEnterBlocks(int SccNum,
261                            SmallVectorImpl<BasicBlock *> &Enters) const;
262     /// Fills in \p Exits vector with all such blocks that don't belong to
263     /// SCC with \p SccNum ID but there is an edge from a block belonging to the
264     /// SCC.
265     void getSccExitBlocks(int SccNum,
266                           SmallVectorImpl<BasicBlock *> &Exits) const;
267 
268   private:
269     /// Returns \p BB's type according to classification given by SccBlockType
270     /// enum. Please note that \p BB must belong to SSC with \p SccNum ID.
271     uint32_t getSccBlockType(const BasicBlock *BB, int SccNum) const;
272     /// Calculates \p BB's type and stores it in internal data structures for
273     /// future use. Please note that \p BB must belong to SSC with \p SccNum ID.
274     void calculateSccBlockType(const BasicBlock *BB, int SccNum);
275   };
276 
277 private:
278   // We need to store CallbackVH's in order to correctly handle basic block
279   // removal.
280   class BasicBlockCallbackVH final : public CallbackVH {
281     BranchProbabilityInfo *BPI;
282 
deleted()283     void deleted() override {
284       assert(BPI != nullptr);
285       BPI->eraseBlock(cast<BasicBlock>(getValPtr()));
286     }
287 
288   public:
setBPI(BranchProbabilityInfo * BPI)289     void setBPI(BranchProbabilityInfo *BPI) { this->BPI = BPI; }
290 
291     BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI = nullptr)
CallbackVH(const_cast<Value * > (V))292         : CallbackVH(const_cast<Value *>(V)), BPI(BPI) {}
293   };
294 
295   /// Pair of Loop and SCC ID number. Used to unify handling of normal and
296   /// SCC based loop representations.
297   using LoopData = std::pair<Loop *, int>;
298   /// Helper class to keep basic block along with its loop data information.
299   class LoopBlock {
300   public:
301     explicit LoopBlock(const BasicBlock *BB, const LoopInfo &LI,
302                        const SccInfo &SccI);
303 
getBlock()304     const BasicBlock *getBlock() const { return BB; }
getBlock()305     BasicBlock *getBlock() { return const_cast<BasicBlock *>(BB); }
getLoopData()306     LoopData getLoopData() const { return LD; }
getLoop()307     Loop *getLoop() const { return LD.first; }
getSccNum()308     int getSccNum() const { return LD.second; }
309 
belongsToLoop()310     bool belongsToLoop() const { return getLoop() || getSccNum() != -1; }
belongsToSameLoop(const LoopBlock & LB)311     bool belongsToSameLoop(const LoopBlock &LB) const {
312       return (LB.getLoop() && getLoop() == LB.getLoop()) ||
313              (LB.getSccNum() != -1 && getSccNum() == LB.getSccNum());
314     }
315 
316   private:
317     const BasicBlock *const BB = nullptr;
318     LoopData LD = {nullptr, -1};
319   };
320 
321   // Pair of LoopBlocks representing an edge from first to second block.
322   using LoopEdge = std::pair<const LoopBlock &, const LoopBlock &>;
323 
324   DenseSet<BasicBlockCallbackVH, DenseMapInfo<Value*>> Handles;
325 
326   // Since we allow duplicate edges from one basic block to another, we use
327   // a pair (PredBlock and an index in the successors) to specify an edge.
328   using Edge = std::pair<const BasicBlock *, unsigned>;
329 
330   DenseMap<Edge, BranchProbability> Probs;
331 
332   /// Track the last function we run over for printing.
333   const Function *LastF = nullptr;
334 
335   const LoopInfo *LI = nullptr;
336 
337   /// Keeps information about all SCCs in a function.
338   std::unique_ptr<const SccInfo> SccI;
339 
340   /// Keeps mapping of a basic block to its estimated weight.
341   SmallDenseMap<const BasicBlock *, uint32_t> EstimatedBlockWeight;
342 
343   /// Keeps mapping of a loop to estimated weight to enter the loop.
344   SmallDenseMap<LoopData, uint32_t> EstimatedLoopWeight;
345 
346   /// Helper to construct LoopBlock for \p BB.
getLoopBlock(const BasicBlock * BB)347   LoopBlock getLoopBlock(const BasicBlock *BB) const {
348     return LoopBlock(BB, *LI, *SccI.get());
349   }
350 
351   /// Returns true if destination block belongs to some loop and source block is
352   /// either doesn't belong to any loop or belongs to a loop which is not inner
353   /// relative to the destination block.
354   bool isLoopEnteringEdge(const LoopEdge &Edge) const;
355   /// Returns true if source block belongs to some loop and destination block is
356   /// either doesn't belong to any loop or belongs to a loop which is not inner
357   /// relative to the source block.
358   bool isLoopExitingEdge(const LoopEdge &Edge) const;
359   /// Returns true if \p Edge is either enters to or exits from some loop, false
360   /// in all other cases.
361   bool isLoopEnteringExitingEdge(const LoopEdge &Edge) const;
362   /// Returns true if source and destination blocks belongs to the same loop and
363   /// destination block is loop header.
364   bool isLoopBackEdge(const LoopEdge &Edge) const;
365   // Fills in \p Enters vector with all "enter" blocks to a loop \LB belongs to.
366   void getLoopEnterBlocks(const LoopBlock &LB,
367                           SmallVectorImpl<BasicBlock *> &Enters) const;
368   // Fills in \p Exits vector with all "exit" blocks from a loop \LB belongs to.
369   void getLoopExitBlocks(const LoopBlock &LB,
370                          SmallVectorImpl<BasicBlock *> &Exits) const;
371 
372   /// Returns estimated weight for \p BB. std::nullopt if \p BB has no estimated
373   /// weight.
374   std::optional<uint32_t> getEstimatedBlockWeight(const BasicBlock *BB) const;
375 
376   /// Returns estimated weight to enter \p L. In other words it is weight of
377   /// loop's header block not scaled by trip count. Returns std::nullopt if \p L
378   /// has no no estimated weight.
379   std::optional<uint32_t> getEstimatedLoopWeight(const LoopData &L) const;
380 
381   /// Return estimated weight for \p Edge. Returns std::nullopt if estimated
382   /// weight is unknown.
383   std::optional<uint32_t> getEstimatedEdgeWeight(const LoopEdge &Edge) const;
384 
385   /// Iterates over all edges leading from \p SrcBB to \p Successors and
386   /// returns maximum of all estimated weights. If at least one edge has unknown
387   /// estimated weight std::nullopt is returned.
388   template <class IterT>
389   std::optional<uint32_t>
390   getMaxEstimatedEdgeWeight(const LoopBlock &SrcBB,
391                             iterator_range<IterT> Successors) const;
392 
393   /// If \p LoopBB has no estimated weight then set it to \p BBWeight and
394   /// return true. Otherwise \p BB's weight remains unchanged and false is
395   /// returned. In addition all blocks/loops that might need their weight to be
396   /// re-estimated are put into BlockWorkList/LoopWorkList.
397   bool updateEstimatedBlockWeight(LoopBlock &LoopBB, uint32_t BBWeight,
398                                   SmallVectorImpl<BasicBlock *> &BlockWorkList,
399                                   SmallVectorImpl<LoopBlock> &LoopWorkList);
400 
401   /// Starting from \p LoopBB (including \p LoopBB itself) propagate \p BBWeight
402   /// up the domination tree.
403   void propagateEstimatedBlockWeight(const LoopBlock &LoopBB, DominatorTree *DT,
404                                      PostDominatorTree *PDT, uint32_t BBWeight,
405                                      SmallVectorImpl<BasicBlock *> &WorkList,
406                                      SmallVectorImpl<LoopBlock> &LoopWorkList);
407 
408   /// Returns block's weight encoded in the IR.
409   std::optional<uint32_t> getInitialEstimatedBlockWeight(const BasicBlock *BB);
410 
411   // Computes estimated weights for all blocks in \p F.
412   void computeEestimateBlockWeight(const Function &F, DominatorTree *DT,
413                                    PostDominatorTree *PDT);
414 
415   /// Based on computed weights by \p computeEstimatedBlockWeight set
416   /// probabilities on branches.
417   bool calcEstimatedHeuristics(const BasicBlock *BB);
418   bool calcMetadataWeights(const BasicBlock *BB);
419   bool calcPointerHeuristics(const BasicBlock *BB);
420   bool calcZeroHeuristics(const BasicBlock *BB, const TargetLibraryInfo *TLI);
421   bool calcFloatingPointHeuristics(const BasicBlock *BB);
422 };
423 
424 /// Analysis pass which computes \c BranchProbabilityInfo.
425 class BranchProbabilityAnalysis
426     : public AnalysisInfoMixin<BranchProbabilityAnalysis> {
427   friend AnalysisInfoMixin<BranchProbabilityAnalysis>;
428 
429   static AnalysisKey Key;
430 
431 public:
432   /// Provide the result type for this analysis pass.
433   using Result = BranchProbabilityInfo;
434 
435   /// Run the analysis pass over a function and produce BPI.
436   BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM);
437 };
438 
439 /// Printer pass for the \c BranchProbabilityAnalysis results.
440 class BranchProbabilityPrinterPass
441     : public PassInfoMixin<BranchProbabilityPrinterPass> {
442   raw_ostream &OS;
443 
444 public:
BranchProbabilityPrinterPass(raw_ostream & OS)445   explicit BranchProbabilityPrinterPass(raw_ostream &OS) : OS(OS) {}
446 
447   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
448 
isRequired()449   static bool isRequired() { return true; }
450 };
451 
452 /// Legacy analysis pass which computes \c BranchProbabilityInfo.
453 class BranchProbabilityInfoWrapperPass : public FunctionPass {
454   BranchProbabilityInfo BPI;
455 
456 public:
457   static char ID;
458 
459   BranchProbabilityInfoWrapperPass();
460 
getBPI()461   BranchProbabilityInfo &getBPI() { return BPI; }
getBPI()462   const BranchProbabilityInfo &getBPI() const { return BPI; }
463 
464   void getAnalysisUsage(AnalysisUsage &AU) const override;
465   bool runOnFunction(Function &F) override;
466   void releaseMemory() override;
467   void print(raw_ostream &OS, const Module *M = nullptr) const override;
468 };
469 
470 } // end namespace llvm
471 
472 #endif // LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
473