1 //===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Contains generic JIT-linker types.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
14 #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
15
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ExecutionEngine/JITLink/JITLinkMemoryManager.h"
21 #include "llvm/ExecutionEngine/JITSymbol.h"
22 #include "llvm/ExecutionEngine/Orc/Shared/MemoryFlags.h"
23 #include "llvm/Support/Allocator.h"
24 #include "llvm/Support/BinaryStreamReader.h"
25 #include "llvm/Support/BinaryStreamWriter.h"
26 #include "llvm/Support/Endian.h"
27 #include "llvm/Support/Error.h"
28 #include "llvm/Support/FormatVariadic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/MemoryBuffer.h"
31 #include <optional>
32
33 #include <map>
34 #include <string>
35 #include <system_error>
36
37 namespace llvm {
38 namespace jitlink {
39
40 class LinkGraph;
41 class Symbol;
42 class Section;
43
44 /// Base class for errors originating in JIT linker, e.g. missing relocation
45 /// support.
46 class JITLinkError : public ErrorInfo<JITLinkError> {
47 public:
48 static char ID;
49
JITLinkError(Twine ErrMsg)50 JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
51
52 void log(raw_ostream &OS) const override;
getErrorMessage()53 const std::string &getErrorMessage() const { return ErrMsg; }
54 std::error_code convertToErrorCode() const override;
55
56 private:
57 std::string ErrMsg;
58 };
59
60 /// Represents fixups and constraints in the LinkGraph.
61 class Edge {
62 public:
63 using Kind = uint8_t;
64
65 enum GenericEdgeKind : Kind {
66 Invalid, // Invalid edge value.
67 FirstKeepAlive, // Keeps target alive. Offset/addend zero.
68 KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
69 FirstRelocation // First architecture specific relocation.
70 };
71
72 using OffsetT = uint32_t;
73 using AddendT = int64_t;
74
Edge(Kind K,OffsetT Offset,Symbol & Target,AddendT Addend)75 Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
76 : Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
77
getOffset()78 OffsetT getOffset() const { return Offset; }
setOffset(OffsetT Offset)79 void setOffset(OffsetT Offset) { this->Offset = Offset; }
getKind()80 Kind getKind() const { return K; }
setKind(Kind K)81 void setKind(Kind K) { this->K = K; }
isRelocation()82 bool isRelocation() const { return K >= FirstRelocation; }
getRelocation()83 Kind getRelocation() const {
84 assert(isRelocation() && "Not a relocation edge");
85 return K - FirstRelocation;
86 }
isKeepAlive()87 bool isKeepAlive() const { return K >= FirstKeepAlive; }
getTarget()88 Symbol &getTarget() const { return *Target; }
setTarget(Symbol & Target)89 void setTarget(Symbol &Target) { this->Target = &Target; }
getAddend()90 AddendT getAddend() const { return Addend; }
setAddend(AddendT Addend)91 void setAddend(AddendT Addend) { this->Addend = Addend; }
92
93 private:
94 Symbol *Target = nullptr;
95 OffsetT Offset = 0;
96 AddendT Addend = 0;
97 Kind K = 0;
98 };
99
100 /// Returns the string name of the given generic edge kind, or "unknown"
101 /// otherwise. Useful for debugging.
102 const char *getGenericEdgeKindName(Edge::Kind K);
103
104 /// Base class for Addressable entities (externals, absolutes, blocks).
105 class Addressable {
106 friend class LinkGraph;
107
108 protected:
Addressable(orc::ExecutorAddr Address,bool IsDefined)109 Addressable(orc::ExecutorAddr Address, bool IsDefined)
110 : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
111
Addressable(orc::ExecutorAddr Address)112 Addressable(orc::ExecutorAddr Address)
113 : Address(Address), IsDefined(false), IsAbsolute(true) {
114 assert(!(IsDefined && IsAbsolute) &&
115 "Block cannot be both defined and absolute");
116 }
117
118 public:
119 Addressable(const Addressable &) = delete;
120 Addressable &operator=(const Addressable &) = default;
121 Addressable(Addressable &&) = delete;
122 Addressable &operator=(Addressable &&) = default;
123
getAddress()124 orc::ExecutorAddr getAddress() const { return Address; }
setAddress(orc::ExecutorAddr Address)125 void setAddress(orc::ExecutorAddr Address) { this->Address = Address; }
126
127 /// Returns true if this is a defined addressable, in which case you
128 /// can downcast this to a Block.
isDefined()129 bool isDefined() const { return static_cast<bool>(IsDefined); }
isAbsolute()130 bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
131
132 private:
setAbsolute(bool IsAbsolute)133 void setAbsolute(bool IsAbsolute) {
134 assert(!IsDefined && "Cannot change the Absolute flag on a defined block");
135 this->IsAbsolute = IsAbsolute;
136 }
137
138 orc::ExecutorAddr Address;
139 uint64_t IsDefined : 1;
140 uint64_t IsAbsolute : 1;
141
142 protected:
143 // bitfields for Block, allocated here to improve packing.
144 uint64_t ContentMutable : 1;
145 uint64_t P2Align : 5;
146 uint64_t AlignmentOffset : 56;
147 };
148
149 using SectionOrdinal = unsigned;
150
151 /// An Addressable with content and edges.
152 class Block : public Addressable {
153 friend class LinkGraph;
154
155 private:
156 /// Create a zero-fill defined addressable.
Block(Section & Parent,orc::ExecutorAddrDiff Size,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)157 Block(Section &Parent, orc::ExecutorAddrDiff Size, orc::ExecutorAddr Address,
158 uint64_t Alignment, uint64_t AlignmentOffset)
159 : Addressable(Address, true), Parent(&Parent), Size(Size) {
160 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
161 assert(AlignmentOffset < Alignment &&
162 "Alignment offset cannot exceed alignment");
163 assert(AlignmentOffset <= MaxAlignmentOffset &&
164 "Alignment offset exceeds maximum");
165 ContentMutable = false;
166 P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
167 this->AlignmentOffset = AlignmentOffset;
168 }
169
170 /// Create a defined addressable for the given content.
171 /// The Content is assumed to be non-writable, and will be copied when
172 /// mutations are required.
Block(Section & Parent,ArrayRef<char> Content,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)173 Block(Section &Parent, ArrayRef<char> Content, orc::ExecutorAddr Address,
174 uint64_t Alignment, uint64_t AlignmentOffset)
175 : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
176 Size(Content.size()) {
177 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
178 assert(AlignmentOffset < Alignment &&
179 "Alignment offset cannot exceed alignment");
180 assert(AlignmentOffset <= MaxAlignmentOffset &&
181 "Alignment offset exceeds maximum");
182 ContentMutable = false;
183 P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
184 this->AlignmentOffset = AlignmentOffset;
185 }
186
187 /// Create a defined addressable for the given content.
188 /// The content is assumed to be writable, and the caller is responsible
189 /// for ensuring that it lives for the duration of the Block's lifetime.
190 /// The standard way to achieve this is to allocate it on the Graph's
191 /// allocator.
Block(Section & Parent,MutableArrayRef<char> Content,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)192 Block(Section &Parent, MutableArrayRef<char> Content,
193 orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset)
194 : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
195 Size(Content.size()) {
196 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
197 assert(AlignmentOffset < Alignment &&
198 "Alignment offset cannot exceed alignment");
199 assert(AlignmentOffset <= MaxAlignmentOffset &&
200 "Alignment offset exceeds maximum");
201 ContentMutable = true;
202 P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
203 this->AlignmentOffset = AlignmentOffset;
204 }
205
206 public:
207 using EdgeVector = std::vector<Edge>;
208 using edge_iterator = EdgeVector::iterator;
209 using const_edge_iterator = EdgeVector::const_iterator;
210
211 Block(const Block &) = delete;
212 Block &operator=(const Block &) = delete;
213 Block(Block &&) = delete;
214 Block &operator=(Block &&) = delete;
215
216 /// Return the parent section for this block.
getSection()217 Section &getSection() const { return *Parent; }
218
219 /// Returns true if this is a zero-fill block.
220 ///
221 /// If true, getSize is callable but getContent is not (the content is
222 /// defined to be a sequence of zero bytes of length Size).
isZeroFill()223 bool isZeroFill() const { return !Data; }
224
225 /// Returns the size of this defined addressable.
getSize()226 size_t getSize() const { return Size; }
227
228 /// Returns the address range of this defined addressable.
getRange()229 orc::ExecutorAddrRange getRange() const {
230 return orc::ExecutorAddrRange(getAddress(), getSize());
231 }
232
233 /// Get the content for this block. Block must not be a zero-fill block.
getContent()234 ArrayRef<char> getContent() const {
235 assert(Data && "Block does not contain content");
236 return ArrayRef<char>(Data, Size);
237 }
238
239 /// Set the content for this block.
240 /// Caller is responsible for ensuring the underlying bytes are not
241 /// deallocated while pointed to by this block.
setContent(ArrayRef<char> Content)242 void setContent(ArrayRef<char> Content) {
243 assert(Content.data() && "Setting null content");
244 Data = Content.data();
245 Size = Content.size();
246 ContentMutable = false;
247 }
248
249 /// Get mutable content for this block.
250 ///
251 /// If this Block's content is not already mutable this will trigger a copy
252 /// of the existing immutable content to a new, mutable buffer allocated using
253 /// LinkGraph::allocateContent.
254 MutableArrayRef<char> getMutableContent(LinkGraph &G);
255
256 /// Get mutable content for this block.
257 ///
258 /// This block's content must already be mutable. It is a programmatic error
259 /// to call this on a block with immutable content -- consider using
260 /// getMutableContent instead.
getAlreadyMutableContent()261 MutableArrayRef<char> getAlreadyMutableContent() {
262 assert(Data && "Block does not contain content");
263 assert(ContentMutable && "Content is not mutable");
264 return MutableArrayRef<char>(const_cast<char *>(Data), Size);
265 }
266
267 /// Set mutable content for this block.
268 ///
269 /// The caller is responsible for ensuring that the memory pointed to by
270 /// MutableContent is not deallocated while pointed to by this block.
setMutableContent(MutableArrayRef<char> MutableContent)271 void setMutableContent(MutableArrayRef<char> MutableContent) {
272 assert(MutableContent.data() && "Setting null content");
273 Data = MutableContent.data();
274 Size = MutableContent.size();
275 ContentMutable = true;
276 }
277
278 /// Returns true if this block's content is mutable.
279 ///
280 /// This is primarily useful for asserting that a block is already in a
281 /// mutable state prior to modifying the content. E.g. when applying
282 /// fixups we expect the block to already be mutable as it should have been
283 /// copied to working memory.
isContentMutable()284 bool isContentMutable() const { return ContentMutable; }
285
286 /// Get the alignment for this content.
getAlignment()287 uint64_t getAlignment() const { return 1ull << P2Align; }
288
289 /// Set the alignment for this content.
setAlignment(uint64_t Alignment)290 void setAlignment(uint64_t Alignment) {
291 assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two");
292 P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
293 }
294
295 /// Get the alignment offset for this content.
getAlignmentOffset()296 uint64_t getAlignmentOffset() const { return AlignmentOffset; }
297
298 /// Set the alignment offset for this content.
setAlignmentOffset(uint64_t AlignmentOffset)299 void setAlignmentOffset(uint64_t AlignmentOffset) {
300 assert(AlignmentOffset < (1ull << P2Align) &&
301 "Alignment offset can't exceed alignment");
302 this->AlignmentOffset = AlignmentOffset;
303 }
304
305 /// Add an edge to this block.
addEdge(Edge::Kind K,Edge::OffsetT Offset,Symbol & Target,Edge::AddendT Addend)306 void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target,
307 Edge::AddendT Addend) {
308 assert((K == Edge::KeepAlive || !isZeroFill()) &&
309 "Adding edge to zero-fill block?");
310 Edges.push_back(Edge(K, Offset, Target, Addend));
311 }
312
313 /// Add an edge by copying an existing one. This is typically used when
314 /// moving edges between blocks.
addEdge(const Edge & E)315 void addEdge(const Edge &E) { Edges.push_back(E); }
316
317 /// Return the list of edges attached to this content.
edges()318 iterator_range<edge_iterator> edges() {
319 return make_range(Edges.begin(), Edges.end());
320 }
321
322 /// Returns the list of edges attached to this content.
edges()323 iterator_range<const_edge_iterator> edges() const {
324 return make_range(Edges.begin(), Edges.end());
325 }
326
327 /// Return the size of the edges list.
edges_size()328 size_t edges_size() const { return Edges.size(); }
329
330 /// Returns true if the list of edges is empty.
edges_empty()331 bool edges_empty() const { return Edges.empty(); }
332
333 /// Remove the edge pointed to by the given iterator.
334 /// Returns an iterator to the new next element.
removeEdge(edge_iterator I)335 edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); }
336
337 /// Returns the address of the fixup for the given edge, which is equal to
338 /// this block's address plus the edge's offset.
getFixupAddress(const Edge & E)339 orc::ExecutorAddr getFixupAddress(const Edge &E) const {
340 return getAddress() + E.getOffset();
341 }
342
343 private:
344 static constexpr uint64_t MaxAlignmentOffset = (1ULL << 56) - 1;
345
setSection(Section & Parent)346 void setSection(Section &Parent) { this->Parent = &Parent; }
347
348 Section *Parent;
349 const char *Data = nullptr;
350 size_t Size = 0;
351 std::vector<Edge> Edges;
352 };
353
354 // Align an address to conform with block alignment requirements.
alignToBlock(uint64_t Addr,Block & B)355 inline uint64_t alignToBlock(uint64_t Addr, Block &B) {
356 uint64_t Delta = (B.getAlignmentOffset() - Addr) % B.getAlignment();
357 return Addr + Delta;
358 }
359
360 // Align a orc::ExecutorAddr to conform with block alignment requirements.
alignToBlock(orc::ExecutorAddr Addr,Block & B)361 inline orc::ExecutorAddr alignToBlock(orc::ExecutorAddr Addr, Block &B) {
362 return orc::ExecutorAddr(alignToBlock(Addr.getValue(), B));
363 }
364
365 /// Describes symbol linkage. This can be used to make resolve definition
366 /// clashes.
367 enum class Linkage : uint8_t {
368 Strong,
369 Weak,
370 };
371
372 /// For errors and debugging output.
373 const char *getLinkageName(Linkage L);
374
375 /// Defines the scope in which this symbol should be visible:
376 /// Default -- Visible in the public interface of the linkage unit.
377 /// Hidden -- Visible within the linkage unit, but not exported from it.
378 /// Local -- Visible only within the LinkGraph.
379 enum class Scope : uint8_t {
380 Default,
381 Hidden,
382 Local
383 };
384
385 /// For debugging output.
386 const char *getScopeName(Scope S);
387
388 raw_ostream &operator<<(raw_ostream &OS, const Block &B);
389
390 /// Symbol representation.
391 ///
392 /// Symbols represent locations within Addressable objects.
393 /// They can be either Named or Anonymous.
394 /// Anonymous symbols have neither linkage nor visibility, and must point at
395 /// ContentBlocks.
396 /// Named symbols may be in one of four states:
397 /// - Null: Default initialized. Assignable, but otherwise unusable.
398 /// - Defined: Has both linkage and visibility and points to a ContentBlock
399 /// - Common: Has both linkage and visibility, points to a null Addressable.
400 /// - External: Has neither linkage nor visibility, points to an external
401 /// Addressable.
402 ///
403 class Symbol {
404 friend class LinkGraph;
405
406 private:
Symbol(Addressable & Base,orc::ExecutorAddrDiff Offset,StringRef Name,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsLive,bool IsCallable)407 Symbol(Addressable &Base, orc::ExecutorAddrDiff Offset, StringRef Name,
408 orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive,
409 bool IsCallable)
410 : Name(Name), Base(&Base), Offset(Offset), WeakRef(0), Size(Size) {
411 assert(Offset <= MaxOffset && "Offset out of range");
412 setLinkage(L);
413 setScope(S);
414 setLive(IsLive);
415 setCallable(IsCallable);
416 }
417
constructExternal(BumpPtrAllocator & Allocator,Addressable & Base,StringRef Name,orc::ExecutorAddrDiff Size,Linkage L,bool WeaklyReferenced)418 static Symbol &constructExternal(BumpPtrAllocator &Allocator,
419 Addressable &Base, StringRef Name,
420 orc::ExecutorAddrDiff Size, Linkage L,
421 bool WeaklyReferenced) {
422 assert(!Base.isDefined() &&
423 "Cannot create external symbol from defined block");
424 assert(!Name.empty() && "External symbol name cannot be empty");
425 auto *Sym = Allocator.Allocate<Symbol>();
426 new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false);
427 Sym->setWeaklyReferenced(WeaklyReferenced);
428 return *Sym;
429 }
430
constructAbsolute(BumpPtrAllocator & Allocator,Addressable & Base,StringRef Name,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsLive)431 static Symbol &constructAbsolute(BumpPtrAllocator &Allocator,
432 Addressable &Base, StringRef Name,
433 orc::ExecutorAddrDiff Size, Linkage L,
434 Scope S, bool IsLive) {
435 assert(!Base.isDefined() &&
436 "Cannot create absolute symbol from a defined block");
437 auto *Sym = Allocator.Allocate<Symbol>();
438 new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false);
439 return *Sym;
440 }
441
constructAnonDef(BumpPtrAllocator & Allocator,Block & Base,orc::ExecutorAddrDiff Offset,orc::ExecutorAddrDiff Size,bool IsCallable,bool IsLive)442 static Symbol &constructAnonDef(BumpPtrAllocator &Allocator, Block &Base,
443 orc::ExecutorAddrDiff Offset,
444 orc::ExecutorAddrDiff Size, bool IsCallable,
445 bool IsLive) {
446 assert((Offset + Size) <= Base.getSize() &&
447 "Symbol extends past end of block");
448 auto *Sym = Allocator.Allocate<Symbol>();
449 new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong,
450 Scope::Local, IsLive, IsCallable);
451 return *Sym;
452 }
453
constructNamedDef(BumpPtrAllocator & Allocator,Block & Base,orc::ExecutorAddrDiff Offset,StringRef Name,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsLive,bool IsCallable)454 static Symbol &constructNamedDef(BumpPtrAllocator &Allocator, Block &Base,
455 orc::ExecutorAddrDiff Offset, StringRef Name,
456 orc::ExecutorAddrDiff Size, Linkage L,
457 Scope S, bool IsLive, bool IsCallable) {
458 assert((Offset + Size) <= Base.getSize() &&
459 "Symbol extends past end of block");
460 assert(!Name.empty() && "Name cannot be empty");
461 auto *Sym = Allocator.Allocate<Symbol>();
462 new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable);
463 return *Sym;
464 }
465
466 public:
467 /// Create a null Symbol. This allows Symbols to be default initialized for
468 /// use in containers (e.g. as map values). Null symbols are only useful for
469 /// assigning to.
470 Symbol() = default;
471
472 // Symbols are not movable or copyable.
473 Symbol(const Symbol &) = delete;
474 Symbol &operator=(const Symbol &) = delete;
475 Symbol(Symbol &&) = delete;
476 Symbol &operator=(Symbol &&) = delete;
477
478 /// Returns true if this symbol has a name.
hasName()479 bool hasName() const { return !Name.empty(); }
480
481 /// Returns the name of this symbol (empty if the symbol is anonymous).
getName()482 StringRef getName() const {
483 assert((!Name.empty() || getScope() == Scope::Local) &&
484 "Anonymous symbol has non-local scope");
485 return Name;
486 }
487
488 /// Rename this symbol. The client is responsible for updating scope and
489 /// linkage if this name-change requires it.
setName(StringRef Name)490 void setName(StringRef Name) { this->Name = Name; }
491
492 /// Returns true if this Symbol has content (potentially) defined within this
493 /// object file (i.e. is anything but an external or absolute symbol).
isDefined()494 bool isDefined() const {
495 assert(Base && "Attempt to access null symbol");
496 return Base->isDefined();
497 }
498
499 /// Returns true if this symbol is live (i.e. should be treated as a root for
500 /// dead stripping).
isLive()501 bool isLive() const {
502 assert(Base && "Attempting to access null symbol");
503 return IsLive;
504 }
505
506 /// Set this symbol's live bit.
setLive(bool IsLive)507 void setLive(bool IsLive) { this->IsLive = IsLive; }
508
509 /// Returns true is this symbol is callable.
isCallable()510 bool isCallable() const { return IsCallable; }
511
512 /// Set this symbol's callable bit.
setCallable(bool IsCallable)513 void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
514
515 /// Returns true if the underlying addressable is an unresolved external.
isExternal()516 bool isExternal() const {
517 assert(Base && "Attempt to access null symbol");
518 return !Base->isDefined() && !Base->isAbsolute();
519 }
520
521 /// Returns true if the underlying addressable is an absolute symbol.
isAbsolute()522 bool isAbsolute() const {
523 assert(Base && "Attempt to access null symbol");
524 return Base->isAbsolute();
525 }
526
527 /// Return the addressable that this symbol points to.
getAddressable()528 Addressable &getAddressable() {
529 assert(Base && "Cannot get underlying addressable for null symbol");
530 return *Base;
531 }
532
533 /// Return the addressable that this symbol points to.
getAddressable()534 const Addressable &getAddressable() const {
535 assert(Base && "Cannot get underlying addressable for null symbol");
536 return *Base;
537 }
538
539 /// Return the Block for this Symbol (Symbol must be defined).
getBlock()540 Block &getBlock() {
541 assert(Base && "Cannot get block for null symbol");
542 assert(Base->isDefined() && "Not a defined symbol");
543 return static_cast<Block &>(*Base);
544 }
545
546 /// Return the Block for this Symbol (Symbol must be defined).
getBlock()547 const Block &getBlock() const {
548 assert(Base && "Cannot get block for null symbol");
549 assert(Base->isDefined() && "Not a defined symbol");
550 return static_cast<const Block &>(*Base);
551 }
552
553 /// Returns the offset for this symbol within the underlying addressable.
getOffset()554 orc::ExecutorAddrDiff getOffset() const { return Offset; }
555
556 /// Returns the address of this symbol.
getAddress()557 orc::ExecutorAddr getAddress() const { return Base->getAddress() + Offset; }
558
559 /// Returns the size of this symbol.
getSize()560 orc::ExecutorAddrDiff getSize() const { return Size; }
561
562 /// Set the size of this symbol.
setSize(orc::ExecutorAddrDiff Size)563 void setSize(orc::ExecutorAddrDiff Size) {
564 assert(Base && "Cannot set size for null Symbol");
565 assert((Size == 0 || Base->isDefined()) &&
566 "Non-zero size can only be set for defined symbols");
567 assert((Offset + Size <= static_cast<const Block &>(*Base).getSize()) &&
568 "Symbol size cannot extend past the end of its containing block");
569 this->Size = Size;
570 }
571
572 /// Returns the address range of this symbol.
getRange()573 orc::ExecutorAddrRange getRange() const {
574 return orc::ExecutorAddrRange(getAddress(), getSize());
575 }
576
577 /// Returns true if this symbol is backed by a zero-fill block.
578 /// This method may only be called on defined symbols.
isSymbolZeroFill()579 bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
580
581 /// Returns the content in the underlying block covered by this symbol.
582 /// This method may only be called on defined non-zero-fill symbols.
getSymbolContent()583 ArrayRef<char> getSymbolContent() const {
584 return getBlock().getContent().slice(Offset, Size);
585 }
586
587 /// Get the linkage for this Symbol.
getLinkage()588 Linkage getLinkage() const { return static_cast<Linkage>(L); }
589
590 /// Set the linkage for this Symbol.
setLinkage(Linkage L)591 void setLinkage(Linkage L) {
592 assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) &&
593 "Linkage can only be applied to defined named symbols");
594 this->L = static_cast<uint8_t>(L);
595 }
596
597 /// Get the visibility for this Symbol.
getScope()598 Scope getScope() const { return static_cast<Scope>(S); }
599
600 /// Set the visibility for this Symbol.
setScope(Scope S)601 void setScope(Scope S) {
602 assert((!Name.empty() || S == Scope::Local) &&
603 "Can not set anonymous symbol to non-local scope");
604 assert((S != Scope::Local || Base->isDefined() || Base->isAbsolute()) &&
605 "Invalid visibility for symbol type");
606 this->S = static_cast<uint8_t>(S);
607 }
608
609 /// Returns true if this is a weakly referenced external symbol.
610 /// This method may only be called on external symbols.
isWeaklyReferenced()611 bool isWeaklyReferenced() const {
612 assert(isExternal() && "isWeaklyReferenced called on non-external");
613 return WeakRef;
614 }
615
616 /// Set the WeaklyReferenced value for this symbol.
617 /// This method may only be called on external symbols.
setWeaklyReferenced(bool WeakRef)618 void setWeaklyReferenced(bool WeakRef) {
619 assert(isExternal() && "setWeaklyReferenced called on non-external");
620 this->WeakRef = WeakRef;
621 }
622
623 private:
makeExternal(Addressable & A)624 void makeExternal(Addressable &A) {
625 assert(!A.isDefined() && !A.isAbsolute() &&
626 "Attempting to make external with defined or absolute block");
627 Base = &A;
628 Offset = 0;
629 setScope(Scope::Default);
630 IsLive = 0;
631 // note: Size, Linkage and IsCallable fields left unchanged.
632 }
633
makeAbsolute(Addressable & A)634 void makeAbsolute(Addressable &A) {
635 assert(!A.isDefined() && A.isAbsolute() &&
636 "Attempting to make absolute with defined or external block");
637 Base = &A;
638 Offset = 0;
639 }
640
setBlock(Block & B)641 void setBlock(Block &B) { Base = &B; }
642
setOffset(orc::ExecutorAddrDiff NewOffset)643 void setOffset(orc::ExecutorAddrDiff NewOffset) {
644 assert(NewOffset <= MaxOffset && "Offset out of range");
645 Offset = NewOffset;
646 }
647
648 static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
649
650 // FIXME: A char* or SymbolStringPtr may pack better.
651 StringRef Name;
652 Addressable *Base = nullptr;
653 uint64_t Offset : 58;
654 uint64_t L : 1;
655 uint64_t S : 2;
656 uint64_t IsLive : 1;
657 uint64_t IsCallable : 1;
658 uint64_t WeakRef : 1;
659 size_t Size = 0;
660 };
661
662 raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
663
664 void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
665 StringRef EdgeKindName);
666
667 /// Represents an object file section.
668 class Section {
669 friend class LinkGraph;
670
671 private:
Section(StringRef Name,orc::MemProt Prot,SectionOrdinal SecOrdinal)672 Section(StringRef Name, orc::MemProt Prot, SectionOrdinal SecOrdinal)
673 : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
674
675 using SymbolSet = DenseSet<Symbol *>;
676 using BlockSet = DenseSet<Block *>;
677
678 public:
679 using symbol_iterator = SymbolSet::iterator;
680 using const_symbol_iterator = SymbolSet::const_iterator;
681
682 using block_iterator = BlockSet::iterator;
683 using const_block_iterator = BlockSet::const_iterator;
684
685 ~Section();
686
687 // Sections are not movable or copyable.
688 Section(const Section &) = delete;
689 Section &operator=(const Section &) = delete;
690 Section(Section &&) = delete;
691 Section &operator=(Section &&) = delete;
692
693 /// Returns the name of this section.
getName()694 StringRef getName() const { return Name; }
695
696 /// Returns the protection flags for this section.
getMemProt()697 orc::MemProt getMemProt() const { return Prot; }
698
699 /// Set the protection flags for this section.
setMemProt(orc::MemProt Prot)700 void setMemProt(orc::MemProt Prot) { this->Prot = Prot; }
701
702 /// Get the deallocation policy for this section.
getMemDeallocPolicy()703 orc::MemDeallocPolicy getMemDeallocPolicy() const { return MDP; }
704
705 /// Set the deallocation policy for this section.
setMemDeallocPolicy(orc::MemDeallocPolicy MDP)706 void setMemDeallocPolicy(orc::MemDeallocPolicy MDP) { this->MDP = MDP; }
707
708 /// Returns the ordinal for this section.
getOrdinal()709 SectionOrdinal getOrdinal() const { return SecOrdinal; }
710
711 /// Returns an iterator over the blocks defined in this section.
blocks()712 iterator_range<block_iterator> blocks() {
713 return make_range(Blocks.begin(), Blocks.end());
714 }
715
716 /// Returns an iterator over the blocks defined in this section.
blocks()717 iterator_range<const_block_iterator> blocks() const {
718 return make_range(Blocks.begin(), Blocks.end());
719 }
720
721 /// Returns the number of blocks in this section.
blocks_size()722 BlockSet::size_type blocks_size() const { return Blocks.size(); }
723
724 /// Returns an iterator over the symbols defined in this section.
symbols()725 iterator_range<symbol_iterator> symbols() {
726 return make_range(Symbols.begin(), Symbols.end());
727 }
728
729 /// Returns an iterator over the symbols defined in this section.
symbols()730 iterator_range<const_symbol_iterator> symbols() const {
731 return make_range(Symbols.begin(), Symbols.end());
732 }
733
734 /// Return the number of symbols in this section.
symbols_size()735 SymbolSet::size_type symbols_size() const { return Symbols.size(); }
736
737 private:
addSymbol(Symbol & Sym)738 void addSymbol(Symbol &Sym) {
739 assert(!Symbols.count(&Sym) && "Symbol is already in this section");
740 Symbols.insert(&Sym);
741 }
742
removeSymbol(Symbol & Sym)743 void removeSymbol(Symbol &Sym) {
744 assert(Symbols.count(&Sym) && "symbol is not in this section");
745 Symbols.erase(&Sym);
746 }
747
addBlock(Block & B)748 void addBlock(Block &B) {
749 assert(!Blocks.count(&B) && "Block is already in this section");
750 Blocks.insert(&B);
751 }
752
removeBlock(Block & B)753 void removeBlock(Block &B) {
754 assert(Blocks.count(&B) && "Block is not in this section");
755 Blocks.erase(&B);
756 }
757
transferContentTo(Section & DstSection)758 void transferContentTo(Section &DstSection) {
759 if (&DstSection == this)
760 return;
761 for (auto *S : Symbols)
762 DstSection.addSymbol(*S);
763 for (auto *B : Blocks)
764 DstSection.addBlock(*B);
765 Symbols.clear();
766 Blocks.clear();
767 }
768
769 StringRef Name;
770 orc::MemProt Prot;
771 orc::MemDeallocPolicy MDP = orc::MemDeallocPolicy::Standard;
772 SectionOrdinal SecOrdinal = 0;
773 BlockSet Blocks;
774 SymbolSet Symbols;
775 };
776
777 /// Represents a section address range via a pair of Block pointers
778 /// to the first and last Blocks in the section.
779 class SectionRange {
780 public:
781 SectionRange() = default;
SectionRange(const Section & Sec)782 SectionRange(const Section &Sec) {
783 if (Sec.blocks().empty())
784 return;
785 First = Last = *Sec.blocks().begin();
786 for (auto *B : Sec.blocks()) {
787 if (B->getAddress() < First->getAddress())
788 First = B;
789 if (B->getAddress() > Last->getAddress())
790 Last = B;
791 }
792 }
getFirstBlock()793 Block *getFirstBlock() const {
794 assert((!Last || First) && "First can not be null if end is non-null");
795 return First;
796 }
getLastBlock()797 Block *getLastBlock() const {
798 assert((First || !Last) && "Last can not be null if start is non-null");
799 return Last;
800 }
empty()801 bool empty() const {
802 assert((First || !Last) && "Last can not be null if start is non-null");
803 return !First;
804 }
getStart()805 orc::ExecutorAddr getStart() const {
806 return First ? First->getAddress() : orc::ExecutorAddr();
807 }
getEnd()808 orc::ExecutorAddr getEnd() const {
809 return Last ? Last->getAddress() + Last->getSize() : orc::ExecutorAddr();
810 }
getSize()811 orc::ExecutorAddrDiff getSize() const { return getEnd() - getStart(); }
812
getRange()813 orc::ExecutorAddrRange getRange() const {
814 return orc::ExecutorAddrRange(getStart(), getEnd());
815 }
816
817 private:
818 Block *First = nullptr;
819 Block *Last = nullptr;
820 };
821
822 class LinkGraph {
823 private:
824 using SectionList = std::vector<std::unique_ptr<Section>>;
825 using ExternalSymbolSet = DenseSet<Symbol *>;
826 using BlockSet = DenseSet<Block *>;
827
828 template <typename... ArgTs>
createAddressable(ArgTs &&...Args)829 Addressable &createAddressable(ArgTs &&... Args) {
830 Addressable *A =
831 reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
832 new (A) Addressable(std::forward<ArgTs>(Args)...);
833 return *A;
834 }
835
destroyAddressable(Addressable & A)836 void destroyAddressable(Addressable &A) {
837 A.~Addressable();
838 Allocator.Deallocate(&A);
839 }
840
createBlock(ArgTs &&...Args)841 template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
842 Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
843 new (B) Block(std::forward<ArgTs>(Args)...);
844 B->getSection().addBlock(*B);
845 return *B;
846 }
847
destroyBlock(Block & B)848 void destroyBlock(Block &B) {
849 B.~Block();
850 Allocator.Deallocate(&B);
851 }
852
destroySymbol(Symbol & S)853 void destroySymbol(Symbol &S) {
854 S.~Symbol();
855 Allocator.Deallocate(&S);
856 }
857
getSectionBlocks(Section & S)858 static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) {
859 return S.blocks();
860 }
861
862 static iterator_range<Section::const_block_iterator>
getSectionConstBlocks(Section & S)863 getSectionConstBlocks(Section &S) {
864 return S.blocks();
865 }
866
867 static iterator_range<Section::symbol_iterator>
getSectionSymbols(Section & S)868 getSectionSymbols(Section &S) {
869 return S.symbols();
870 }
871
872 static iterator_range<Section::const_symbol_iterator>
getSectionConstSymbols(Section & S)873 getSectionConstSymbols(Section &S) {
874 return S.symbols();
875 }
876
877 public:
878 using external_symbol_iterator = ExternalSymbolSet::iterator;
879
880 using section_iterator = pointee_iterator<SectionList::iterator>;
881 using const_section_iterator = pointee_iterator<SectionList::const_iterator>;
882
883 template <typename OuterItrT, typename InnerItrT, typename T,
884 iterator_range<InnerItrT> getInnerRange(
885 typename OuterItrT::reference)>
886 class nested_collection_iterator
887 : public iterator_facade_base<
888 nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>,
889 std::forward_iterator_tag, T> {
890 public:
891 nested_collection_iterator() = default;
892
nested_collection_iterator(OuterItrT OuterI,OuterItrT OuterE)893 nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE)
894 : OuterI(OuterI), OuterE(OuterE),
895 InnerI(getInnerBegin(OuterI, OuterE)) {
896 moveToNonEmptyInnerOrEnd();
897 }
898
899 bool operator==(const nested_collection_iterator &RHS) const {
900 return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI);
901 }
902
903 T operator*() const {
904 assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?");
905 return *InnerI;
906 }
907
908 nested_collection_iterator operator++() {
909 ++InnerI;
910 moveToNonEmptyInnerOrEnd();
911 return *this;
912 }
913
914 private:
getInnerBegin(OuterItrT OuterI,OuterItrT OuterE)915 static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) {
916 return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT();
917 }
918
moveToNonEmptyInnerOrEnd()919 void moveToNonEmptyInnerOrEnd() {
920 while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) {
921 ++OuterI;
922 InnerI = getInnerBegin(OuterI, OuterE);
923 }
924 }
925
926 OuterItrT OuterI, OuterE;
927 InnerItrT InnerI;
928 };
929
930 using defined_symbol_iterator =
931 nested_collection_iterator<const_section_iterator,
932 Section::symbol_iterator, Symbol *,
933 getSectionSymbols>;
934
935 using const_defined_symbol_iterator =
936 nested_collection_iterator<const_section_iterator,
937 Section::const_symbol_iterator, const Symbol *,
938 getSectionConstSymbols>;
939
940 using block_iterator = nested_collection_iterator<const_section_iterator,
941 Section::block_iterator,
942 Block *, getSectionBlocks>;
943
944 using const_block_iterator =
945 nested_collection_iterator<const_section_iterator,
946 Section::const_block_iterator, const Block *,
947 getSectionConstBlocks>;
948
949 using GetEdgeKindNameFunction = const char *(*)(Edge::Kind);
950
LinkGraph(std::string Name,const Triple & TT,unsigned PointerSize,support::endianness Endianness,GetEdgeKindNameFunction GetEdgeKindName)951 LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize,
952 support::endianness Endianness,
953 GetEdgeKindNameFunction GetEdgeKindName)
954 : Name(std::move(Name)), TT(TT), PointerSize(PointerSize),
955 Endianness(Endianness), GetEdgeKindName(std::move(GetEdgeKindName)) {}
956
957 LinkGraph(const LinkGraph &) = delete;
958 LinkGraph &operator=(const LinkGraph &) = delete;
959 LinkGraph(LinkGraph &&) = delete;
960 LinkGraph &operator=(LinkGraph &&) = delete;
961
962 /// Returns the name of this graph (usually the name of the original
963 /// underlying MemoryBuffer).
getName()964 const std::string &getName() const { return Name; }
965
966 /// Returns the target triple for this Graph.
getTargetTriple()967 const Triple &getTargetTriple() const { return TT; }
968
969 /// Returns the pointer size for use in this graph.
getPointerSize()970 unsigned getPointerSize() const { return PointerSize; }
971
972 /// Returns the endianness of content in this graph.
getEndianness()973 support::endianness getEndianness() const { return Endianness; }
974
getEdgeKindName(Edge::Kind K)975 const char *getEdgeKindName(Edge::Kind K) const { return GetEdgeKindName(K); }
976
977 /// Allocate a mutable buffer of the given size using the LinkGraph's
978 /// allocator.
allocateBuffer(size_t Size)979 MutableArrayRef<char> allocateBuffer(size_t Size) {
980 return {Allocator.Allocate<char>(Size), Size};
981 }
982
983 /// Allocate a copy of the given string using the LinkGraph's allocator.
984 /// This can be useful when renaming symbols or adding new content to the
985 /// graph.
allocateContent(ArrayRef<char> Source)986 MutableArrayRef<char> allocateContent(ArrayRef<char> Source) {
987 auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size());
988 llvm::copy(Source, AllocatedBuffer);
989 return MutableArrayRef<char>(AllocatedBuffer, Source.size());
990 }
991
992 /// Allocate a copy of the given string using the LinkGraph's allocator.
993 /// This can be useful when renaming symbols or adding new content to the
994 /// graph.
995 ///
996 /// Note: This Twine-based overload requires an extra string copy and an
997 /// extra heap allocation for large strings. The ArrayRef<char> overload
998 /// should be preferred where possible.
allocateString(Twine Source)999 MutableArrayRef<char> allocateString(Twine Source) {
1000 SmallString<256> TmpBuffer;
1001 auto SourceStr = Source.toStringRef(TmpBuffer);
1002 auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size());
1003 llvm::copy(SourceStr, AllocatedBuffer);
1004 return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size());
1005 }
1006
1007 /// Create a section with the given name, protection flags, and alignment.
createSection(StringRef Name,orc::MemProt Prot)1008 Section &createSection(StringRef Name, orc::MemProt Prot) {
1009 assert(llvm::none_of(Sections,
1010 [&](std::unique_ptr<Section> &Sec) {
1011 return Sec->getName() == Name;
1012 }) &&
1013 "Duplicate section name");
1014 std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
1015 Sections.push_back(std::move(Sec));
1016 return *Sections.back();
1017 }
1018
1019 /// Create a content block.
createContentBlock(Section & Parent,ArrayRef<char> Content,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)1020 Block &createContentBlock(Section &Parent, ArrayRef<char> Content,
1021 orc::ExecutorAddr Address, uint64_t Alignment,
1022 uint64_t AlignmentOffset) {
1023 return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1024 }
1025
1026 /// Create a content block with initially mutable data.
createMutableContentBlock(Section & Parent,MutableArrayRef<char> MutableContent,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)1027 Block &createMutableContentBlock(Section &Parent,
1028 MutableArrayRef<char> MutableContent,
1029 orc::ExecutorAddr Address,
1030 uint64_t Alignment,
1031 uint64_t AlignmentOffset) {
1032 return createBlock(Parent, MutableContent, Address, Alignment,
1033 AlignmentOffset);
1034 }
1035
1036 /// Create a content block with initially mutable data of the given size.
1037 /// Content will be allocated via the LinkGraph's allocateBuffer method.
1038 /// By default the memory will be zero-initialized. Passing false for
1039 /// ZeroInitialize will prevent this.
1040 Block &createMutableContentBlock(Section &Parent, size_t ContentSize,
1041 orc::ExecutorAddr Address,
1042 uint64_t Alignment, uint64_t AlignmentOffset,
1043 bool ZeroInitialize = true) {
1044 auto Content = allocateContent(ContentSize);
1045 if (ZeroInitialize)
1046 memset(Content.data(), 0, Content.size());
1047 return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1048 }
1049
1050 /// Create a zero-fill block.
createZeroFillBlock(Section & Parent,orc::ExecutorAddrDiff Size,orc::ExecutorAddr Address,uint64_t Alignment,uint64_t AlignmentOffset)1051 Block &createZeroFillBlock(Section &Parent, orc::ExecutorAddrDiff Size,
1052 orc::ExecutorAddr Address, uint64_t Alignment,
1053 uint64_t AlignmentOffset) {
1054 return createBlock(Parent, Size, Address, Alignment, AlignmentOffset);
1055 }
1056
1057 /// Returns a BinaryStreamReader for the given block.
getBlockContentReader(Block & B)1058 BinaryStreamReader getBlockContentReader(Block &B) {
1059 ArrayRef<uint8_t> C(
1060 reinterpret_cast<const uint8_t *>(B.getContent().data()), B.getSize());
1061 return BinaryStreamReader(C, getEndianness());
1062 }
1063
1064 /// Returns a BinaryStreamWriter for the given block.
1065 /// This will call getMutableContent to obtain mutable content for the block.
getBlockContentWriter(Block & B)1066 BinaryStreamWriter getBlockContentWriter(Block &B) {
1067 MutableArrayRef<uint8_t> C(
1068 reinterpret_cast<uint8_t *>(B.getMutableContent(*this).data()),
1069 B.getSize());
1070 return BinaryStreamWriter(C, getEndianness());
1071 }
1072
1073 /// Cache type for the splitBlock function.
1074 using SplitBlockCache = std::optional<SmallVector<Symbol *, 8>>;
1075
1076 /// Splits block B at the given index which must be greater than zero.
1077 /// If SplitIndex == B.getSize() then this function is a no-op and returns B.
1078 /// If SplitIndex < B.getSize() then this function returns a new block
1079 /// covering the range [ 0, SplitIndex ), and B is modified to cover the range
1080 /// [ SplitIndex, B.size() ).
1081 ///
1082 /// The optional Cache parameter can be used to speed up repeated calls to
1083 /// splitBlock for a single block. If the value is None the cache will be
1084 /// treated as uninitialized and splitBlock will populate it. Otherwise it
1085 /// is assumed to contain the list of Symbols pointing at B, sorted in
1086 /// descending order of offset.
1087 ///
1088 /// Notes:
1089 ///
1090 /// 1. splitBlock must be used with care. Splitting a block may cause
1091 /// incoming edges to become invalid if the edge target subexpression
1092 /// points outside the bounds of the newly split target block (E.g. an
1093 /// edge 'S + 10 : Pointer64' where S points to a newly split block
1094 /// whose size is less than 10). No attempt is made to detect invalidation
1095 /// of incoming edges, as in general this requires context that the
1096 /// LinkGraph does not have. Clients are responsible for ensuring that
1097 /// splitBlock is not used in a way that invalidates edges.
1098 ///
1099 /// 2. The newly introduced block will have a new ordinal which will be
1100 /// higher than any other ordinals in the section. Clients are responsible
1101 /// for re-assigning block ordinals to restore a compatible order if
1102 /// needed.
1103 ///
1104 /// 3. The cache is not automatically updated if new symbols are introduced
1105 /// between calls to splitBlock. Any newly introduced symbols may be
1106 /// added to the cache manually (descending offset order must be
1107 /// preserved), or the cache can be set to None and rebuilt by
1108 /// splitBlock on the next call.
1109 Block &splitBlock(Block &B, size_t SplitIndex,
1110 SplitBlockCache *Cache = nullptr);
1111
1112 /// Add an external symbol.
1113 /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
1114 /// size is not known, you should substitute '0'.
1115 /// The IsWeaklyReferenced argument determines whether the symbol must be
1116 /// present during lookup: Externals that are strongly referenced must be
1117 /// found or an error will be emitted. Externals that are weakly referenced
1118 /// are permitted to be undefined, in which case they are assigned an address
1119 /// of 0.
addExternalSymbol(StringRef Name,orc::ExecutorAddrDiff Size,bool IsWeaklyReferenced)1120 Symbol &addExternalSymbol(StringRef Name, orc::ExecutorAddrDiff Size,
1121 bool IsWeaklyReferenced) {
1122 assert(llvm::count_if(ExternalSymbols,
1123 [&](const Symbol *Sym) {
1124 return Sym->getName() == Name;
1125 }) == 0 &&
1126 "Duplicate external symbol");
1127 auto &Sym = Symbol::constructExternal(
1128 Allocator, createAddressable(orc::ExecutorAddr(), false), Name, Size,
1129 Linkage::Strong, IsWeaklyReferenced);
1130 ExternalSymbols.insert(&Sym);
1131 return Sym;
1132 }
1133
1134 /// Add an absolute symbol.
addAbsoluteSymbol(StringRef Name,orc::ExecutorAddr Address,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsLive)1135 Symbol &addAbsoluteSymbol(StringRef Name, orc::ExecutorAddr Address,
1136 orc::ExecutorAddrDiff Size, Linkage L, Scope S,
1137 bool IsLive) {
1138 assert((S == Scope::Local || llvm::count_if(AbsoluteSymbols,
1139 [&](const Symbol *Sym) {
1140 return Sym->getName() == Name;
1141 }) == 0) &&
1142 "Duplicate absolute symbol");
1143 auto &Sym = Symbol::constructAbsolute(Allocator, createAddressable(Address),
1144 Name, Size, L, S, IsLive);
1145 AbsoluteSymbols.insert(&Sym);
1146 return Sym;
1147 }
1148
1149 /// Add an anonymous symbol.
addAnonymousSymbol(Block & Content,orc::ExecutorAddrDiff Offset,orc::ExecutorAddrDiff Size,bool IsCallable,bool IsLive)1150 Symbol &addAnonymousSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
1151 orc::ExecutorAddrDiff Size, bool IsCallable,
1152 bool IsLive) {
1153 auto &Sym = Symbol::constructAnonDef(Allocator, Content, Offset, Size,
1154 IsCallable, IsLive);
1155 Content.getSection().addSymbol(Sym);
1156 return Sym;
1157 }
1158
1159 /// Add a named symbol.
addDefinedSymbol(Block & Content,orc::ExecutorAddrDiff Offset,StringRef Name,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsCallable,bool IsLive)1160 Symbol &addDefinedSymbol(Block &Content, orc::ExecutorAddrDiff Offset,
1161 StringRef Name, orc::ExecutorAddrDiff Size,
1162 Linkage L, Scope S, bool IsCallable, bool IsLive) {
1163 assert((S == Scope::Local || llvm::count_if(defined_symbols(),
1164 [&](const Symbol *Sym) {
1165 return Sym->getName() == Name;
1166 }) == 0) &&
1167 "Duplicate defined symbol");
1168 auto &Sym = Symbol::constructNamedDef(Allocator, Content, Offset, Name,
1169 Size, L, S, IsLive, IsCallable);
1170 Content.getSection().addSymbol(Sym);
1171 return Sym;
1172 }
1173
sections()1174 iterator_range<section_iterator> sections() {
1175 return make_range(section_iterator(Sections.begin()),
1176 section_iterator(Sections.end()));
1177 }
1178
sections_size()1179 SectionList::size_type sections_size() const { return Sections.size(); }
1180
1181 /// Returns the section with the given name if it exists, otherwise returns
1182 /// null.
findSectionByName(StringRef Name)1183 Section *findSectionByName(StringRef Name) {
1184 for (auto &S : sections())
1185 if (S.getName() == Name)
1186 return &S;
1187 return nullptr;
1188 }
1189
blocks()1190 iterator_range<block_iterator> blocks() {
1191 return make_range(block_iterator(Sections.begin(), Sections.end()),
1192 block_iterator(Sections.end(), Sections.end()));
1193 }
1194
blocks()1195 iterator_range<const_block_iterator> blocks() const {
1196 return make_range(const_block_iterator(Sections.begin(), Sections.end()),
1197 const_block_iterator(Sections.end(), Sections.end()));
1198 }
1199
external_symbols()1200 iterator_range<external_symbol_iterator> external_symbols() {
1201 return make_range(ExternalSymbols.begin(), ExternalSymbols.end());
1202 }
1203
absolute_symbols()1204 iterator_range<external_symbol_iterator> absolute_symbols() {
1205 return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1206 }
1207
defined_symbols()1208 iterator_range<defined_symbol_iterator> defined_symbols() {
1209 return make_range(defined_symbol_iterator(Sections.begin(), Sections.end()),
1210 defined_symbol_iterator(Sections.end(), Sections.end()));
1211 }
1212
defined_symbols()1213 iterator_range<const_defined_symbol_iterator> defined_symbols() const {
1214 return make_range(
1215 const_defined_symbol_iterator(Sections.begin(), Sections.end()),
1216 const_defined_symbol_iterator(Sections.end(), Sections.end()));
1217 }
1218
1219 /// Make the given symbol external (must not already be external).
1220 ///
1221 /// Symbol size, linkage and callability will be left unchanged. Symbol scope
1222 /// will be set to Default, and offset will be reset to 0.
makeExternal(Symbol & Sym)1223 void makeExternal(Symbol &Sym) {
1224 assert(!Sym.isExternal() && "Symbol is already external");
1225 if (Sym.isAbsolute()) {
1226 assert(AbsoluteSymbols.count(&Sym) &&
1227 "Sym is not in the absolute symbols set");
1228 assert(Sym.getOffset() == 0 && "Absolute not at offset 0");
1229 AbsoluteSymbols.erase(&Sym);
1230 auto &A = Sym.getAddressable();
1231 A.setAbsolute(false);
1232 A.setAddress(orc::ExecutorAddr());
1233 } else {
1234 assert(Sym.isDefined() && "Sym is not a defined symbol");
1235 Section &Sec = Sym.getBlock().getSection();
1236 Sec.removeSymbol(Sym);
1237 Sym.makeExternal(createAddressable(orc::ExecutorAddr(), false));
1238 }
1239 ExternalSymbols.insert(&Sym);
1240 }
1241
1242 /// Make the given symbol an absolute with the given address (must not already
1243 /// be absolute).
1244 ///
1245 /// The symbol's size, linkage, and callability, and liveness will be left
1246 /// unchanged, and its offset will be reset to 0.
1247 ///
1248 /// If the symbol was external then its scope will be set to local, otherwise
1249 /// it will be left unchanged.
makeAbsolute(Symbol & Sym,orc::ExecutorAddr Address)1250 void makeAbsolute(Symbol &Sym, orc::ExecutorAddr Address) {
1251 assert(!Sym.isAbsolute() && "Symbol is already absolute");
1252 if (Sym.isExternal()) {
1253 assert(ExternalSymbols.count(&Sym) &&
1254 "Sym is not in the absolute symbols set");
1255 assert(Sym.getOffset() == 0 && "External is not at offset 0");
1256 ExternalSymbols.erase(&Sym);
1257 auto &A = Sym.getAddressable();
1258 A.setAbsolute(true);
1259 A.setAddress(Address);
1260 Sym.setScope(Scope::Local);
1261 } else {
1262 assert(Sym.isDefined() && "Sym is not a defined symbol");
1263 Section &Sec = Sym.getBlock().getSection();
1264 Sec.removeSymbol(Sym);
1265 Sym.makeAbsolute(createAddressable(Address));
1266 }
1267 AbsoluteSymbols.insert(&Sym);
1268 }
1269
1270 /// Turn an absolute or external symbol into a defined one by attaching it to
1271 /// a block. Symbol must not already be defined.
makeDefined(Symbol & Sym,Block & Content,orc::ExecutorAddrDiff Offset,orc::ExecutorAddrDiff Size,Linkage L,Scope S,bool IsLive)1272 void makeDefined(Symbol &Sym, Block &Content, orc::ExecutorAddrDiff Offset,
1273 orc::ExecutorAddrDiff Size, Linkage L, Scope S,
1274 bool IsLive) {
1275 assert(!Sym.isDefined() && "Sym is already a defined symbol");
1276 if (Sym.isAbsolute()) {
1277 assert(AbsoluteSymbols.count(&Sym) &&
1278 "Symbol is not in the absolutes set");
1279 AbsoluteSymbols.erase(&Sym);
1280 } else {
1281 assert(ExternalSymbols.count(&Sym) &&
1282 "Symbol is not in the externals set");
1283 ExternalSymbols.erase(&Sym);
1284 }
1285 Addressable &OldBase = *Sym.Base;
1286 Sym.setBlock(Content);
1287 Sym.setOffset(Offset);
1288 Sym.setSize(Size);
1289 Sym.setLinkage(L);
1290 Sym.setScope(S);
1291 Sym.setLive(IsLive);
1292 Content.getSection().addSymbol(Sym);
1293 destroyAddressable(OldBase);
1294 }
1295
1296 /// Transfer a defined symbol from one block to another.
1297 ///
1298 /// The symbol's offset within DestBlock is set to NewOffset.
1299 ///
1300 /// If ExplicitNewSize is given as None then the size of the symbol will be
1301 /// checked and auto-truncated to at most the size of the remainder (from the
1302 /// given offset) of the size of the new block.
1303 ///
1304 /// All other symbol attributes are unchanged.
1305 void
transferDefinedSymbol(Symbol & Sym,Block & DestBlock,orc::ExecutorAddrDiff NewOffset,std::optional<orc::ExecutorAddrDiff> ExplicitNewSize)1306 transferDefinedSymbol(Symbol &Sym, Block &DestBlock,
1307 orc::ExecutorAddrDiff NewOffset,
1308 std::optional<orc::ExecutorAddrDiff> ExplicitNewSize) {
1309 auto &OldSection = Sym.getBlock().getSection();
1310 Sym.setBlock(DestBlock);
1311 Sym.setOffset(NewOffset);
1312 if (ExplicitNewSize)
1313 Sym.setSize(*ExplicitNewSize);
1314 else {
1315 auto RemainingBlockSize = DestBlock.getSize() - NewOffset;
1316 if (Sym.getSize() > RemainingBlockSize)
1317 Sym.setSize(RemainingBlockSize);
1318 }
1319 if (&DestBlock.getSection() != &OldSection) {
1320 OldSection.removeSymbol(Sym);
1321 DestBlock.getSection().addSymbol(Sym);
1322 }
1323 }
1324
1325 /// Transfers the given Block and all Symbols pointing to it to the given
1326 /// Section.
1327 ///
1328 /// No attempt is made to check compatibility of the source and destination
1329 /// sections. Blocks may be moved between sections with incompatible
1330 /// permissions (e.g. from data to text). The client is responsible for
1331 /// ensuring that this is safe.
transferBlock(Block & B,Section & NewSection)1332 void transferBlock(Block &B, Section &NewSection) {
1333 auto &OldSection = B.getSection();
1334 if (&OldSection == &NewSection)
1335 return;
1336 SmallVector<Symbol *> AttachedSymbols;
1337 for (auto *S : OldSection.symbols())
1338 if (&S->getBlock() == &B)
1339 AttachedSymbols.push_back(S);
1340 for (auto *S : AttachedSymbols) {
1341 OldSection.removeSymbol(*S);
1342 NewSection.addSymbol(*S);
1343 }
1344 OldSection.removeBlock(B);
1345 NewSection.addBlock(B);
1346 }
1347
1348 /// Move all blocks and symbols from the source section to the destination
1349 /// section.
1350 ///
1351 /// If PreserveSrcSection is true (or SrcSection and DstSection are the same)
1352 /// then SrcSection is preserved, otherwise it is removed (the default).
1353 void mergeSections(Section &DstSection, Section &SrcSection,
1354 bool PreserveSrcSection = false) {
1355 if (&DstSection == &SrcSection)
1356 return;
1357 for (auto *B : SrcSection.blocks())
1358 B->setSection(DstSection);
1359 SrcSection.transferContentTo(DstSection);
1360 if (!PreserveSrcSection)
1361 removeSection(SrcSection);
1362 }
1363
1364 /// Removes an external symbol. Also removes the underlying Addressable.
removeExternalSymbol(Symbol & Sym)1365 void removeExternalSymbol(Symbol &Sym) {
1366 assert(!Sym.isDefined() && !Sym.isAbsolute() &&
1367 "Sym is not an external symbol");
1368 assert(ExternalSymbols.count(&Sym) && "Symbol is not in the externals set");
1369 ExternalSymbols.erase(&Sym);
1370 Addressable &Base = *Sym.Base;
1371 assert(llvm::none_of(ExternalSymbols,
1372 [&](Symbol *AS) { return AS->Base == &Base; }) &&
1373 "Base addressable still in use");
1374 destroySymbol(Sym);
1375 destroyAddressable(Base);
1376 }
1377
1378 /// Remove an absolute symbol. Also removes the underlying Addressable.
removeAbsoluteSymbol(Symbol & Sym)1379 void removeAbsoluteSymbol(Symbol &Sym) {
1380 assert(!Sym.isDefined() && Sym.isAbsolute() &&
1381 "Sym is not an absolute symbol");
1382 assert(AbsoluteSymbols.count(&Sym) &&
1383 "Symbol is not in the absolute symbols set");
1384 AbsoluteSymbols.erase(&Sym);
1385 Addressable &Base = *Sym.Base;
1386 assert(llvm::none_of(ExternalSymbols,
1387 [&](Symbol *AS) { return AS->Base == &Base; }) &&
1388 "Base addressable still in use");
1389 destroySymbol(Sym);
1390 destroyAddressable(Base);
1391 }
1392
1393 /// Removes defined symbols. Does not remove the underlying block.
removeDefinedSymbol(Symbol & Sym)1394 void removeDefinedSymbol(Symbol &Sym) {
1395 assert(Sym.isDefined() && "Sym is not a defined symbol");
1396 Sym.getBlock().getSection().removeSymbol(Sym);
1397 destroySymbol(Sym);
1398 }
1399
1400 /// Remove a block. The block reference is defunct after calling this
1401 /// function and should no longer be used.
removeBlock(Block & B)1402 void removeBlock(Block &B) {
1403 assert(llvm::none_of(B.getSection().symbols(),
1404 [&](const Symbol *Sym) {
1405 return &Sym->getBlock() == &B;
1406 }) &&
1407 "Block still has symbols attached");
1408 B.getSection().removeBlock(B);
1409 destroyBlock(B);
1410 }
1411
1412 /// Remove a section. The section reference is defunct after calling this
1413 /// function and should no longer be used.
removeSection(Section & Sec)1414 void removeSection(Section &Sec) {
1415 auto I = llvm::find_if(Sections, [&Sec](const std::unique_ptr<Section> &S) {
1416 return S.get() == &Sec;
1417 });
1418 assert(I != Sections.end() && "Section does not appear in this graph");
1419 Sections.erase(I);
1420 }
1421
1422 /// Accessor for the AllocActions object for this graph. This can be used to
1423 /// register allocation action calls prior to finalization.
1424 ///
1425 /// Accessing this object after finalization will result in undefined
1426 /// behavior.
allocActions()1427 orc::shared::AllocActions &allocActions() { return AAs; }
1428
1429 /// Dump the graph.
1430 void dump(raw_ostream &OS);
1431
1432 private:
1433 // Put the BumpPtrAllocator first so that we don't free any of the underlying
1434 // memory until the Symbol/Addressable destructors have been run.
1435 BumpPtrAllocator Allocator;
1436
1437 std::string Name;
1438 Triple TT;
1439 unsigned PointerSize;
1440 support::endianness Endianness;
1441 GetEdgeKindNameFunction GetEdgeKindName = nullptr;
1442 SectionList Sections;
1443 ExternalSymbolSet ExternalSymbols;
1444 ExternalSymbolSet AbsoluteSymbols;
1445 orc::shared::AllocActions AAs;
1446 };
1447
getMutableContent(LinkGraph & G)1448 inline MutableArrayRef<char> Block::getMutableContent(LinkGraph &G) {
1449 if (!ContentMutable)
1450 setMutableContent(G.allocateContent({Data, Size}));
1451 return MutableArrayRef<char>(const_cast<char *>(Data), Size);
1452 }
1453
1454 /// Enables easy lookup of blocks by addresses.
1455 class BlockAddressMap {
1456 public:
1457 using AddrToBlockMap = std::map<orc::ExecutorAddr, Block *>;
1458 using const_iterator = AddrToBlockMap::const_iterator;
1459
1460 /// A block predicate that always adds all blocks.
includeAllBlocks(const Block & B)1461 static bool includeAllBlocks(const Block &B) { return true; }
1462
1463 /// A block predicate that always includes blocks with non-null addresses.
includeNonNull(const Block & B)1464 static bool includeNonNull(const Block &B) { return !!B.getAddress(); }
1465
1466 BlockAddressMap() = default;
1467
1468 /// Add a block to the map. Returns an error if the block overlaps with any
1469 /// existing block.
1470 template <typename PredFn = decltype(includeAllBlocks)>
1471 Error addBlock(Block &B, PredFn Pred = includeAllBlocks) {
1472 if (!Pred(B))
1473 return Error::success();
1474
1475 auto I = AddrToBlock.upper_bound(B.getAddress());
1476
1477 // If we're not at the end of the map, check for overlap with the next
1478 // element.
1479 if (I != AddrToBlock.end()) {
1480 if (B.getAddress() + B.getSize() > I->second->getAddress())
1481 return overlapError(B, *I->second);
1482 }
1483
1484 // If we're not at the start of the map, check for overlap with the previous
1485 // element.
1486 if (I != AddrToBlock.begin()) {
1487 auto &PrevBlock = *std::prev(I)->second;
1488 if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress())
1489 return overlapError(B, PrevBlock);
1490 }
1491
1492 AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B));
1493 return Error::success();
1494 }
1495
1496 /// Add a block to the map without checking for overlap with existing blocks.
1497 /// The client is responsible for ensuring that the block added does not
1498 /// overlap with any existing block.
addBlockWithoutChecking(Block & B)1499 void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; }
1500
1501 /// Add a range of blocks to the map. Returns an error if any block in the
1502 /// range overlaps with any other block in the range, or with any existing
1503 /// block in the map.
1504 template <typename BlockPtrRange,
1505 typename PredFn = decltype(includeAllBlocks)>
1506 Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) {
1507 for (auto *B : Blocks)
1508 if (auto Err = addBlock(*B, Pred))
1509 return Err;
1510 return Error::success();
1511 }
1512
1513 /// Add a range of blocks to the map without checking for overlap with
1514 /// existing blocks. The client is responsible for ensuring that the block
1515 /// added does not overlap with any existing block.
1516 template <typename BlockPtrRange>
addBlocksWithoutChecking(BlockPtrRange && Blocks)1517 void addBlocksWithoutChecking(BlockPtrRange &&Blocks) {
1518 for (auto *B : Blocks)
1519 addBlockWithoutChecking(*B);
1520 }
1521
1522 /// Iterates over (Address, Block*) pairs in ascending order of address.
begin()1523 const_iterator begin() const { return AddrToBlock.begin(); }
end()1524 const_iterator end() const { return AddrToBlock.end(); }
1525
1526 /// Returns the block starting at the given address, or nullptr if no such
1527 /// block exists.
getBlockAt(orc::ExecutorAddr Addr)1528 Block *getBlockAt(orc::ExecutorAddr Addr) const {
1529 auto I = AddrToBlock.find(Addr);
1530 if (I == AddrToBlock.end())
1531 return nullptr;
1532 return I->second;
1533 }
1534
1535 /// Returns the block covering the given address, or nullptr if no such block
1536 /// exists.
getBlockCovering(orc::ExecutorAddr Addr)1537 Block *getBlockCovering(orc::ExecutorAddr Addr) const {
1538 auto I = AddrToBlock.upper_bound(Addr);
1539 if (I == AddrToBlock.begin())
1540 return nullptr;
1541 auto *B = std::prev(I)->second;
1542 if (Addr < B->getAddress() + B->getSize())
1543 return B;
1544 return nullptr;
1545 }
1546
1547 private:
overlapError(Block & NewBlock,Block & ExistingBlock)1548 Error overlapError(Block &NewBlock, Block &ExistingBlock) {
1549 auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize();
1550 auto ExistingBlockEnd =
1551 ExistingBlock.getAddress() + ExistingBlock.getSize();
1552 return make_error<JITLinkError>(
1553 "Block at " +
1554 formatv("{0:x16} -- {1:x16}", NewBlock.getAddress().getValue(),
1555 NewBlockEnd.getValue()) +
1556 " overlaps " +
1557 formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress().getValue(),
1558 ExistingBlockEnd.getValue()));
1559 }
1560
1561 AddrToBlockMap AddrToBlock;
1562 };
1563
1564 /// A map of addresses to Symbols.
1565 class SymbolAddressMap {
1566 public:
1567 using SymbolVector = SmallVector<Symbol *, 1>;
1568
1569 /// Add a symbol to the SymbolAddressMap.
addSymbol(Symbol & Sym)1570 void addSymbol(Symbol &Sym) {
1571 AddrToSymbols[Sym.getAddress()].push_back(&Sym);
1572 }
1573
1574 /// Add all symbols in a given range to the SymbolAddressMap.
1575 template <typename SymbolPtrCollection>
addSymbols(SymbolPtrCollection && Symbols)1576 void addSymbols(SymbolPtrCollection &&Symbols) {
1577 for (auto *Sym : Symbols)
1578 addSymbol(*Sym);
1579 }
1580
1581 /// Returns the list of symbols that start at the given address, or nullptr if
1582 /// no such symbols exist.
getSymbolsAt(orc::ExecutorAddr Addr)1583 const SymbolVector *getSymbolsAt(orc::ExecutorAddr Addr) const {
1584 auto I = AddrToSymbols.find(Addr);
1585 if (I == AddrToSymbols.end())
1586 return nullptr;
1587 return &I->second;
1588 }
1589
1590 private:
1591 std::map<orc::ExecutorAddr, SymbolVector> AddrToSymbols;
1592 };
1593
1594 /// A function for mutating LinkGraphs.
1595 using LinkGraphPassFunction = std::function<Error(LinkGraph &)>;
1596
1597 /// A list of LinkGraph passes.
1598 using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
1599
1600 /// An LinkGraph pass configuration, consisting of a list of pre-prune,
1601 /// post-prune, and post-fixup passes.
1602 struct PassConfiguration {
1603
1604 /// Pre-prune passes.
1605 ///
1606 /// These passes are called on the graph after it is built, and before any
1607 /// symbols have been pruned. Graph nodes still have their original vmaddrs.
1608 ///
1609 /// Notable use cases: Marking symbols live or should-discard.
1610 LinkGraphPassList PrePrunePasses;
1611
1612 /// Post-prune passes.
1613 ///
1614 /// These passes are called on the graph after dead stripping, but before
1615 /// memory is allocated or nodes assigned their final addresses.
1616 ///
1617 /// Notable use cases: Building GOT, stub, and TLV symbols.
1618 LinkGraphPassList PostPrunePasses;
1619
1620 /// Post-allocation passes.
1621 ///
1622 /// These passes are called on the graph after memory has been allocated and
1623 /// defined nodes have been assigned their final addresses, but before the
1624 /// context has been notified of these addresses. At this point externals
1625 /// have not been resolved, and symbol content has not yet been copied into
1626 /// working memory.
1627 ///
1628 /// Notable use cases: Setting up data structures associated with addresses
1629 /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the
1630 /// JIT runtime) -- using a PostAllocationPass for this ensures that the
1631 /// data structures are in-place before any query for resolved symbols
1632 /// can complete.
1633 LinkGraphPassList PostAllocationPasses;
1634
1635 /// Pre-fixup passes.
1636 ///
1637 /// These passes are called on the graph after memory has been allocated,
1638 /// content copied into working memory, and all nodes (including externals)
1639 /// have been assigned their final addresses, but before any fixups have been
1640 /// applied.
1641 ///
1642 /// Notable use cases: Late link-time optimizations like GOT and stub
1643 /// elimination.
1644 LinkGraphPassList PreFixupPasses;
1645
1646 /// Post-fixup passes.
1647 ///
1648 /// These passes are called on the graph after block contents has been copied
1649 /// to working memory, and fixups applied. Blocks have been updated to point
1650 /// to their fixed up content.
1651 ///
1652 /// Notable use cases: Testing and validation.
1653 LinkGraphPassList PostFixupPasses;
1654 };
1655
1656 /// Flags for symbol lookup.
1657 ///
1658 /// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge
1659 /// the two types once we have an OrcSupport library.
1660 enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
1661
1662 raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF);
1663
1664 /// A map of symbol names to resolved addresses.
1665 using AsyncLookupResult = DenseMap<StringRef, JITEvaluatedSymbol>;
1666
1667 /// A function object to call with a resolved symbol map (See AsyncLookupResult)
1668 /// or an error if resolution failed.
1669 class JITLinkAsyncLookupContinuation {
1670 public:
1671 virtual ~JITLinkAsyncLookupContinuation() = default;
1672 virtual void run(Expected<AsyncLookupResult> LR) = 0;
1673
1674 private:
1675 virtual void anchor();
1676 };
1677
1678 /// Create a lookup continuation from a function object.
1679 template <typename Continuation>
1680 std::unique_ptr<JITLinkAsyncLookupContinuation>
createLookupContinuation(Continuation Cont)1681 createLookupContinuation(Continuation Cont) {
1682
1683 class Impl final : public JITLinkAsyncLookupContinuation {
1684 public:
1685 Impl(Continuation C) : C(std::move(C)) {}
1686 void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
1687
1688 private:
1689 Continuation C;
1690 };
1691
1692 return std::make_unique<Impl>(std::move(Cont));
1693 }
1694
1695 /// Holds context for a single jitLink invocation.
1696 class JITLinkContext {
1697 public:
1698 using LookupMap = DenseMap<StringRef, SymbolLookupFlags>;
1699
1700 /// Create a JITLinkContext.
JITLinkContext(const JITLinkDylib * JD)1701 JITLinkContext(const JITLinkDylib *JD) : JD(JD) {}
1702
1703 /// Destroy a JITLinkContext.
1704 virtual ~JITLinkContext();
1705
1706 /// Return the JITLinkDylib that this link is targeting, if any.
getJITLinkDylib()1707 const JITLinkDylib *getJITLinkDylib() const { return JD; }
1708
1709 /// Return the MemoryManager to be used for this link.
1710 virtual JITLinkMemoryManager &getMemoryManager() = 0;
1711
1712 /// Notify this context that linking failed.
1713 /// Called by JITLink if linking cannot be completed.
1714 virtual void notifyFailed(Error Err) = 0;
1715
1716 /// Called by JITLink to resolve external symbols. This method is passed a
1717 /// lookup continutation which it must call with a result to continue the
1718 /// linking process.
1719 virtual void lookup(const LookupMap &Symbols,
1720 std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
1721
1722 /// Called by JITLink once all defined symbols in the graph have been assigned
1723 /// their final memory locations in the target process. At this point the
1724 /// LinkGraph can be inspected to build a symbol table, however the block
1725 /// content will not generally have been copied to the target location yet.
1726 ///
1727 /// If the client detects an error in the LinkGraph state (e.g. unexpected or
1728 /// missing symbols) they may return an error here. The error will be
1729 /// propagated to notifyFailed and the linker will bail out.
1730 virtual Error notifyResolved(LinkGraph &G) = 0;
1731
1732 /// Called by JITLink to notify the context that the object has been
1733 /// finalized (i.e. emitted to memory and memory permissions set). If all of
1734 /// this objects dependencies have also been finalized then the code is ready
1735 /// to run.
1736 virtual void notifyFinalized(JITLinkMemoryManager::FinalizedAlloc Alloc) = 0;
1737
1738 /// Called by JITLink prior to linking to determine whether default passes for
1739 /// the target should be added. The default implementation returns true.
1740 /// If subclasses override this method to return false for any target then
1741 /// they are required to fully configure the pass pipeline for that target.
1742 virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
1743
1744 /// Returns the mark-live pass to be used for this link. If no pass is
1745 /// returned (the default) then the target-specific linker implementation will
1746 /// choose a conservative default (usually marking all symbols live).
1747 /// This function is only called if shouldAddDefaultTargetPasses returns true,
1748 /// otherwise the JITContext is responsible for adding a mark-live pass in
1749 /// modifyPassConfig.
1750 virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
1751
1752 /// Called by JITLink to modify the pass pipeline prior to linking.
1753 /// The default version performs no modification.
1754 virtual Error modifyPassConfig(LinkGraph &G, PassConfiguration &Config);
1755
1756 private:
1757 const JITLinkDylib *JD = nullptr;
1758 };
1759
1760 /// Marks all symbols in a graph live. This can be used as a default,
1761 /// conservative mark-live implementation.
1762 Error markAllSymbolsLive(LinkGraph &G);
1763
1764 /// Create an out of range error for the given edge in the given block.
1765 Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B,
1766 const Edge &E);
1767
1768 Error makeAlignmentError(llvm::orc::ExecutorAddr Loc, uint64_t Value, int N,
1769 const Edge &E);
1770
1771 /// Base case for edge-visitors where the visitor-list is empty.
visitEdge(LinkGraph & G,Block * B,Edge & E)1772 inline void visitEdge(LinkGraph &G, Block *B, Edge &E) {}
1773
1774 /// Applies the first visitor in the list to the given edge. If the visitor's
1775 /// visitEdge method returns true then we return immediately, otherwise we
1776 /// apply the next visitor.
1777 template <typename VisitorT, typename... VisitorTs>
visitEdge(LinkGraph & G,Block * B,Edge & E,VisitorT && V,VisitorTs &&...Vs)1778 void visitEdge(LinkGraph &G, Block *B, Edge &E, VisitorT &&V,
1779 VisitorTs &&...Vs) {
1780 if (!V.visitEdge(G, B, E))
1781 visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
1782 }
1783
1784 /// For each edge in the given graph, apply a list of visitors to the edge,
1785 /// stopping when the first visitor's visitEdge method returns true.
1786 ///
1787 /// Only visits edges that were in the graph at call time: if any visitor
1788 /// adds new edges those will not be visited. Visitors are not allowed to
1789 /// remove edges (though they can change their kind, target, and addend).
1790 template <typename... VisitorTs>
visitExistingEdges(LinkGraph & G,VisitorTs &&...Vs)1791 void visitExistingEdges(LinkGraph &G, VisitorTs &&...Vs) {
1792 // We may add new blocks during this process, but we don't want to iterate
1793 // over them, so build a worklist.
1794 std::vector<Block *> Worklist(G.blocks().begin(), G.blocks().end());
1795
1796 for (auto *B : Worklist)
1797 for (auto &E : B->edges())
1798 visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
1799 }
1800
1801 /// Create a LinkGraph from the given object buffer.
1802 ///
1803 /// Note: The graph does not take ownership of the underlying buffer, nor copy
1804 /// its contents. The caller is responsible for ensuring that the object buffer
1805 /// outlives the graph.
1806 Expected<std::unique_ptr<LinkGraph>>
1807 createLinkGraphFromObject(MemoryBufferRef ObjectBuffer);
1808
1809 /// Link the given graph.
1810 void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx);
1811
1812 } // end namespace jitlink
1813 } // end namespace llvm
1814
1815 #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
1816