1// Copyright 2019 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package loader
6
7import (
8	"bytes"
9	"cmd/internal/bio"
10	"cmd/internal/goobj"
11	"cmd/internal/obj"
12	"cmd/internal/objabi"
13	"cmd/internal/sys"
14	"cmd/link/internal/sym"
15	"debug/elf"
16	"fmt"
17	"log"
18	"math/bits"
19	"os"
20	"sort"
21	"strings"
22)
23
24var _ = fmt.Print
25
26// Sym encapsulates a global symbol index, used to identify a specific
27// Go symbol. The 0-valued Sym is corresponds to an invalid symbol.
28type Sym int
29
30// Relocs encapsulates the set of relocations on a given symbol; an
31// instance of this type is returned by the Loader Relocs() method.
32type Relocs struct {
33	rs []goobj.Reloc
34
35	li uint32   // local index of symbol whose relocs we're examining
36	r  *oReader // object reader for containing package
37	l  *Loader  // loader
38}
39
40// ExtReloc contains the payload for an external relocation.
41type ExtReloc struct {
42	Xsym Sym
43	Xadd int64
44	Type objabi.RelocType
45	Size uint8
46}
47
48// Reloc holds a "handle" to access a relocation record from an
49// object file.
50type Reloc struct {
51	*goobj.Reloc
52	r *oReader
53	l *Loader
54}
55
56func (rel Reloc) Type() objabi.RelocType     { return objabi.RelocType(rel.Reloc.Type()) &^ objabi.R_WEAK }
57func (rel Reloc) Weak() bool                 { return objabi.RelocType(rel.Reloc.Type())&objabi.R_WEAK != 0 }
58func (rel Reloc) SetType(t objabi.RelocType) { rel.Reloc.SetType(uint16(t)) }
59func (rel Reloc) Sym() Sym                   { return rel.l.resolve(rel.r, rel.Reloc.Sym()) }
60func (rel Reloc) SetSym(s Sym)               { rel.Reloc.SetSym(goobj.SymRef{PkgIdx: 0, SymIdx: uint32(s)}) }
61func (rel Reloc) IsMarker() bool             { return rel.Siz() == 0 }
62
63// Aux holds a "handle" to access an aux symbol record from an
64// object file.
65type Aux struct {
66	*goobj.Aux
67	r *oReader
68	l *Loader
69}
70
71func (a Aux) Sym() Sym { return a.l.resolve(a.r, a.Aux.Sym()) }
72
73// oReader is a wrapper type of obj.Reader, along with some
74// extra information.
75type oReader struct {
76	*goobj.Reader
77	unit         *sym.CompilationUnit
78	version      int    // version of static symbol
79	flags        uint32 // read from object file
80	pkgprefix    string
81	syms         []Sym    // Sym's global index, indexed by local index
82	pkg          []uint32 // indices of referenced package by PkgIdx (index into loader.objs array)
83	ndef         int      // cache goobj.Reader.NSym()
84	nhashed64def int      // cache goobj.Reader.NHashed64Def()
85	nhasheddef   int      // cache goobj.Reader.NHashedDef()
86	objidx       uint32   // index of this reader in the objs slice
87}
88
89// Total number of defined symbols (package symbols, hashed symbols, and
90// non-package symbols).
91func (r *oReader) NAlldef() int { return r.ndef + r.nhashed64def + r.nhasheddef + r.NNonpkgdef() }
92
93type objIdx struct {
94	r *oReader
95	i Sym // start index
96}
97
98// objSym represents a symbol in an object file. It is a tuple of
99// the object and the symbol's local index.
100// For external symbols, objidx is the index of l.extReader (extObj),
101// s is its index into the payload array.
102// {0, 0} represents the nil symbol.
103type objSym struct {
104	objidx uint32 // index of the object (in l.objs array)
105	s      uint32 // local index
106}
107
108type nameVer struct {
109	name string
110	v    int
111}
112
113type Bitmap []uint32
114
115// set the i-th bit.
116func (bm Bitmap) Set(i Sym) {
117	n, r := uint(i)/32, uint(i)%32
118	bm[n] |= 1 << r
119}
120
121// unset the i-th bit.
122func (bm Bitmap) Unset(i Sym) {
123	n, r := uint(i)/32, uint(i)%32
124	bm[n] &^= (1 << r)
125}
126
127// whether the i-th bit is set.
128func (bm Bitmap) Has(i Sym) bool {
129	n, r := uint(i)/32, uint(i)%32
130	return bm[n]&(1<<r) != 0
131}
132
133// return current length of bitmap in bits.
134func (bm Bitmap) Len() int {
135	return len(bm) * 32
136}
137
138// return the number of bits set.
139func (bm Bitmap) Count() int {
140	s := 0
141	for _, x := range bm {
142		s += bits.OnesCount32(x)
143	}
144	return s
145}
146
147func MakeBitmap(n int) Bitmap {
148	return make(Bitmap, (n+31)/32)
149}
150
151// growBitmap insures that the specified bitmap has enough capacity,
152// reallocating (doubling the size) if needed.
153func growBitmap(reqLen int, b Bitmap) Bitmap {
154	curLen := b.Len()
155	if reqLen > curLen {
156		b = append(b, MakeBitmap(reqLen+1-curLen)...)
157	}
158	return b
159}
160
161type symAndSize struct {
162	sym  Sym
163	size uint32
164}
165
166// A Loader loads new object files and resolves indexed symbol references.
167//
168// Notes on the layout of global symbol index space:
169//
170// - Go object files are read before host object files; each Go object
171//   read adds its defined package symbols to the global index space.
172//   Nonpackage symbols are not yet added.
173//
174// - In loader.LoadNonpkgSyms, add non-package defined symbols and
175//   references in all object files to the global index space.
176//
177// - Host object file loading happens; the host object loader does a
178//   name/version lookup for each symbol it finds; this can wind up
179//   extending the external symbol index space range. The host object
180//   loader stores symbol payloads in loader.payloads using SymbolBuilder.
181//
182// - Each symbol gets a unique global index. For duplicated and
183//   overwriting/overwritten symbols, the second (or later) appearance
184//   of the symbol gets the same global index as the first appearance.
185type Loader struct {
186	start       map[*oReader]Sym // map from object file to its start index
187	objs        []objIdx         // sorted by start index (i.e. objIdx.i)
188	extStart    Sym              // from this index on, the symbols are externally defined
189	builtinSyms []Sym            // global index of builtin symbols
190
191	objSyms []objSym // global index mapping to local index
192
193	symsByName    [2]map[string]Sym // map symbol name to index, two maps are for ABI0 and ABIInternal
194	extStaticSyms map[nameVer]Sym   // externally defined static symbols, keyed by name
195
196	extReader    *oReader // a dummy oReader, for external symbols
197	payloadBatch []extSymPayload
198	payloads     []*extSymPayload // contents of linker-materialized external syms
199	values       []int64          // symbol values, indexed by global sym index
200
201	sects    []*sym.Section // sections
202	symSects []uint16       // symbol's section, index to sects array
203
204	align []uint8 // symbol 2^N alignment, indexed by global index
205
206	deferReturnTramp map[Sym]bool // whether the symbol is a trampoline of a deferreturn call
207
208	objByPkg map[string]uint32 // map package path to the index of its Go object reader
209
210	anonVersion int // most recently assigned ext static sym pseudo-version
211
212	// Bitmaps and other side structures used to store data used to store
213	// symbol flags/attributes; these are to be accessed via the
214	// corresponding loader "AttrXXX" and "SetAttrXXX" methods. Please
215	// visit the comments on these methods for more details on the
216	// semantics / interpretation of the specific flags or attribute.
217	attrReachable        Bitmap // reachable symbols, indexed by global index
218	attrOnList           Bitmap // "on list" symbols, indexed by global index
219	attrLocal            Bitmap // "local" symbols, indexed by global index
220	attrNotInSymbolTable Bitmap // "not in symtab" symbols, indexed by global idx
221	attrUsedInIface      Bitmap // "used in interface" symbols, indexed by global idx
222	attrVisibilityHidden Bitmap // hidden symbols, indexed by ext sym index
223	attrDuplicateOK      Bitmap // dupOK symbols, indexed by ext sym index
224	attrShared           Bitmap // shared symbols, indexed by ext sym index
225	attrExternal         Bitmap // external symbols, indexed by ext sym index
226
227	attrReadOnly         map[Sym]bool     // readonly data for this sym
228	attrSpecial          map[Sym]struct{} // "special" frame symbols
229	attrCgoExportDynamic map[Sym]struct{} // "cgo_export_dynamic" symbols
230	attrCgoExportStatic  map[Sym]struct{} // "cgo_export_static" symbols
231	generatedSyms        map[Sym]struct{} // symbols that generate their content
232
233	// Outer and Sub relations for symbols.
234	// TODO: figure out whether it's more efficient to just have these
235	// as fields on extSymPayload (note that this won't be a viable
236	// strategy if somewhere in the linker we set sub/outer for a
237	// non-external sym).
238	outer map[Sym]Sym
239	sub   map[Sym]Sym
240
241	dynimplib   map[Sym]string      // stores Dynimplib symbol attribute
242	dynimpvers  map[Sym]string      // stores Dynimpvers symbol attribute
243	localentry  map[Sym]uint8       // stores Localentry symbol attribute
244	extname     map[Sym]string      // stores Extname symbol attribute
245	elfType     map[Sym]elf.SymType // stores elf type symbol property
246	elfSym      map[Sym]int32       // stores elf sym symbol property
247	localElfSym map[Sym]int32       // stores "local" elf sym symbol property
248	symPkg      map[Sym]string      // stores package for symbol, or library for shlib-derived syms
249	plt         map[Sym]int32       // stores dynimport for pe objects
250	got         map[Sym]int32       // stores got for pe objects
251	dynid       map[Sym]int32       // stores Dynid for symbol
252
253	relocVariant map[relocId]sym.RelocVariant // stores variant relocs
254
255	// Used to implement field tracking; created during deadcode if
256	// field tracking is enabled. Reachparent[K] contains the index of
257	// the symbol that triggered the marking of symbol K as live.
258	Reachparent []Sym
259
260	// CgoExports records cgo-exported symbols by SymName.
261	CgoExports map[string]Sym
262
263	flags uint32
264
265	hasUnknownPkgPath bool // if any Go object has unknown package path
266
267	strictDupMsgs int // number of strict-dup warning/errors, when FlagStrictDups is enabled
268
269	elfsetstring elfsetstringFunc
270
271	errorReporter *ErrorReporter
272
273	npkgsyms    int // number of package symbols, for accounting
274	nhashedsyms int // number of hashed symbols, for accounting
275}
276
277const (
278	pkgDef = iota
279	hashed64Def
280	hashedDef
281	nonPkgDef
282	nonPkgRef
283)
284
285// objidx
286const (
287	nilObj = iota
288	extObj
289	goObjStart
290)
291
292type elfsetstringFunc func(str string, off int)
293
294// extSymPayload holds the payload (data + relocations) for linker-synthesized
295// external symbols (note that symbol value is stored in a separate slice).
296type extSymPayload struct {
297	name   string // TODO: would this be better as offset into str table?
298	size   int64
299	ver    int
300	kind   sym.SymKind
301	objidx uint32 // index of original object if sym made by cloneToExternal
302	relocs []goobj.Reloc
303	data   []byte
304	auxs   []goobj.Aux
305}
306
307const (
308	// Loader.flags
309	FlagStrictDups = 1 << iota
310)
311
312func NewLoader(flags uint32, elfsetstring elfsetstringFunc, reporter *ErrorReporter) *Loader {
313	nbuiltin := goobj.NBuiltin()
314	extReader := &oReader{objidx: extObj}
315	ldr := &Loader{
316		start:                make(map[*oReader]Sym),
317		objs:                 []objIdx{{}, {extReader, 0}}, // reserve index 0 for nil symbol, 1 for external symbols
318		objSyms:              make([]objSym, 1, 1),         // This will get overwritten later.
319		extReader:            extReader,
320		symsByName:           [2]map[string]Sym{make(map[string]Sym, 80000), make(map[string]Sym, 50000)}, // preallocate ~2MB for ABI0 and ~1MB for ABI1 symbols
321		objByPkg:             make(map[string]uint32),
322		outer:                make(map[Sym]Sym),
323		sub:                  make(map[Sym]Sym),
324		dynimplib:            make(map[Sym]string),
325		dynimpvers:           make(map[Sym]string),
326		localentry:           make(map[Sym]uint8),
327		extname:              make(map[Sym]string),
328		attrReadOnly:         make(map[Sym]bool),
329		elfType:              make(map[Sym]elf.SymType),
330		elfSym:               make(map[Sym]int32),
331		localElfSym:          make(map[Sym]int32),
332		symPkg:               make(map[Sym]string),
333		plt:                  make(map[Sym]int32),
334		got:                  make(map[Sym]int32),
335		dynid:                make(map[Sym]int32),
336		attrSpecial:          make(map[Sym]struct{}),
337		attrCgoExportDynamic: make(map[Sym]struct{}),
338		attrCgoExportStatic:  make(map[Sym]struct{}),
339		generatedSyms:        make(map[Sym]struct{}),
340		deferReturnTramp:     make(map[Sym]bool),
341		extStaticSyms:        make(map[nameVer]Sym),
342		builtinSyms:          make([]Sym, nbuiltin),
343		flags:                flags,
344		elfsetstring:         elfsetstring,
345		errorReporter:        reporter,
346		sects:                []*sym.Section{nil}, // reserve index 0 for nil section
347	}
348	reporter.ldr = ldr
349	return ldr
350}
351
352// Add object file r, return the start index.
353func (l *Loader) addObj(pkg string, r *oReader) Sym {
354	if _, ok := l.start[r]; ok {
355		panic("already added")
356	}
357	pkg = objabi.PathToPrefix(pkg) // the object file contains escaped package path
358	if _, ok := l.objByPkg[pkg]; !ok {
359		l.objByPkg[pkg] = r.objidx
360	}
361	i := Sym(len(l.objSyms))
362	l.start[r] = i
363	l.objs = append(l.objs, objIdx{r, i})
364	if r.NeedNameExpansion() && !r.FromAssembly() {
365		l.hasUnknownPkgPath = true
366	}
367	return i
368}
369
370// Add a symbol from an object file, return the global index.
371// If the symbol already exist, it returns the index of that symbol.
372func (st *loadState) addSym(name string, ver int, r *oReader, li uint32, kind int, osym *goobj.Sym) Sym {
373	l := st.l
374	if l.extStart != 0 {
375		panic("addSym called after external symbol is created")
376	}
377	i := Sym(len(l.objSyms))
378	addToGlobal := func() {
379		l.objSyms = append(l.objSyms, objSym{r.objidx, li})
380	}
381	if name == "" && kind != hashed64Def && kind != hashedDef {
382		addToGlobal()
383		return i // unnamed aux symbol
384	}
385	if ver == r.version {
386		// Static symbol. Add its global index but don't
387		// add to name lookup table, as it cannot be
388		// referenced by name.
389		addToGlobal()
390		return i
391	}
392	switch kind {
393	case pkgDef:
394		// Defined package symbols cannot be dup to each other.
395		// We load all the package symbols first, so we don't need
396		// to check dup here.
397		// We still add it to the lookup table, as it may still be
398		// referenced by name (e.g. through linkname).
399		l.symsByName[ver][name] = i
400		addToGlobal()
401		return i
402	case hashed64Def, hashedDef:
403		// Hashed (content-addressable) symbol. Check the hash
404		// but don't add to name lookup table, as they are not
405		// referenced by name. Also no need to do overwriting
406		// check, as same hash indicates same content.
407		var checkHash func() (symAndSize, bool)
408		var addToHashMap func(symAndSize)
409		var h64 uint64        // only used for hashed64Def
410		var h *goobj.HashType // only used for hashedDef
411		if kind == hashed64Def {
412			checkHash = func() (symAndSize, bool) {
413				h64 = r.Hash64(li - uint32(r.ndef))
414				s, existed := st.hashed64Syms[h64]
415				return s, existed
416			}
417			addToHashMap = func(ss symAndSize) { st.hashed64Syms[h64] = ss }
418		} else {
419			checkHash = func() (symAndSize, bool) {
420				h = r.Hash(li - uint32(r.ndef+r.nhashed64def))
421				s, existed := st.hashedSyms[*h]
422				return s, existed
423			}
424			addToHashMap = func(ss symAndSize) { st.hashedSyms[*h] = ss }
425		}
426		siz := osym.Siz()
427		if s, existed := checkHash(); existed {
428			// The content hash is built from symbol data and relocations. In the
429			// object file, the symbol data may not always contain trailing zeros,
430			// e.g. for [5]int{1,2,3} and [100]int{1,2,3}, the data is same
431			// (although the size is different).
432			// Also, for short symbols, the content hash is the identity function of
433			// the 8 bytes, and trailing zeros doesn't change the hash value, e.g.
434			// hash("A") == hash("A\0\0\0").
435			// So when two symbols have the same hash, we need to use the one with
436			// larger size.
437			if siz > s.size {
438				// New symbol has larger size, use the new one. Rewrite the index mapping.
439				l.objSyms[s.sym] = objSym{r.objidx, li}
440				addToHashMap(symAndSize{s.sym, siz})
441			}
442			return s.sym
443		}
444		addToHashMap(symAndSize{i, siz})
445		addToGlobal()
446		return i
447	}
448
449	// Non-package (named) symbol. Check if it already exists.
450	oldi, existed := l.symsByName[ver][name]
451	if !existed {
452		l.symsByName[ver][name] = i
453		addToGlobal()
454		return i
455	}
456	// symbol already exists
457	if osym.Dupok() {
458		if l.flags&FlagStrictDups != 0 {
459			l.checkdup(name, r, li, oldi)
460		}
461		// Fix for issue #47185 -- given two dupok symbols with
462		// different sizes, favor symbol with larger size. See
463		// also issue #46653.
464		szdup := l.SymSize(oldi)
465		sz := int64(r.Sym(li).Siz())
466		if szdup < sz {
467			// new symbol overwrites old symbol.
468			l.objSyms[oldi] = objSym{r.objidx, li}
469		}
470		return oldi
471	}
472	oldr, oldli := l.toLocal(oldi)
473	oldsym := oldr.Sym(oldli)
474	if oldsym.Dupok() {
475		return oldi
476	}
477	overwrite := r.DataSize(li) != 0
478	if overwrite {
479		// new symbol overwrites old symbol.
480		oldtyp := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())]
481		if !(oldtyp.IsData() && oldr.DataSize(oldli) == 0) {
482			log.Fatalf("duplicated definition of symbol %s, from %s and %s", name, r.unit.Lib.Pkg, oldr.unit.Lib.Pkg)
483		}
484		l.objSyms[oldi] = objSym{r.objidx, li}
485	} else {
486		// old symbol overwrites new symbol.
487		typ := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())]
488		if !typ.IsData() { // only allow overwriting data symbol
489			log.Fatalf("duplicated definition of symbol %s, from %s and %s", name, r.unit.Lib.Pkg, oldr.unit.Lib.Pkg)
490		}
491	}
492	return oldi
493}
494
495// newExtSym creates a new external sym with the specified
496// name/version.
497func (l *Loader) newExtSym(name string, ver int) Sym {
498	i := Sym(len(l.objSyms))
499	if l.extStart == 0 {
500		l.extStart = i
501	}
502	l.growValues(int(i) + 1)
503	l.growAttrBitmaps(int(i) + 1)
504	pi := l.newPayload(name, ver)
505	l.objSyms = append(l.objSyms, objSym{l.extReader.objidx, uint32(pi)})
506	l.extReader.syms = append(l.extReader.syms, i)
507	return i
508}
509
510// LookupOrCreateSym looks up the symbol with the specified name/version,
511// returning its Sym index if found. If the lookup fails, a new external
512// Sym will be created, entered into the lookup tables, and returned.
513func (l *Loader) LookupOrCreateSym(name string, ver int) Sym {
514	i := l.Lookup(name, ver)
515	if i != 0 {
516		return i
517	}
518	i = l.newExtSym(name, ver)
519	static := ver >= sym.SymVerStatic || ver < 0
520	if static {
521		l.extStaticSyms[nameVer{name, ver}] = i
522	} else {
523		l.symsByName[ver][name] = i
524	}
525	return i
526}
527
528// AddCgoExport records a cgo-exported symbol in l.CgoExports.
529// This table is used to identify the correct Go symbol ABI to use
530// to resolve references from host objects (which don't have ABIs).
531func (l *Loader) AddCgoExport(s Sym) {
532	if l.CgoExports == nil {
533		l.CgoExports = make(map[string]Sym)
534	}
535	l.CgoExports[l.SymName(s)] = s
536}
537
538// LookupOrCreateCgoExport is like LookupOrCreateSym, but if ver
539// indicates a global symbol, it uses the CgoExport table to determine
540// the appropriate symbol version (ABI) to use. ver must be either 0
541// or a static symbol version.
542func (l *Loader) LookupOrCreateCgoExport(name string, ver int) Sym {
543	if ver >= sym.SymVerStatic {
544		return l.LookupOrCreateSym(name, ver)
545	}
546	if ver != 0 {
547		panic("ver must be 0 or a static version")
548	}
549	// Look for a cgo-exported symbol from Go.
550	if s, ok := l.CgoExports[name]; ok {
551		return s
552	}
553	// Otherwise, this must just be a symbol in the host object.
554	// Create a version 0 symbol for it.
555	return l.LookupOrCreateSym(name, 0)
556}
557
558func (l *Loader) IsExternal(i Sym) bool {
559	r, _ := l.toLocal(i)
560	return l.isExtReader(r)
561}
562
563func (l *Loader) isExtReader(r *oReader) bool {
564	return r == l.extReader
565}
566
567// For external symbol, return its index in the payloads array.
568// XXX result is actually not a global index. We (ab)use the Sym type
569// so we don't need conversion for accessing bitmaps.
570func (l *Loader) extIndex(i Sym) Sym {
571	_, li := l.toLocal(i)
572	return Sym(li)
573}
574
575// Get a new payload for external symbol, return its index in
576// the payloads array.
577func (l *Loader) newPayload(name string, ver int) int {
578	pi := len(l.payloads)
579	pp := l.allocPayload()
580	pp.name = name
581	pp.ver = ver
582	l.payloads = append(l.payloads, pp)
583	l.growExtAttrBitmaps()
584	return pi
585}
586
587// getPayload returns a pointer to the extSymPayload struct for an
588// external symbol if the symbol has a payload. Will panic if the
589// symbol in question is bogus (zero or not an external sym).
590func (l *Loader) getPayload(i Sym) *extSymPayload {
591	if !l.IsExternal(i) {
592		panic(fmt.Sprintf("bogus symbol index %d in getPayload", i))
593	}
594	pi := l.extIndex(i)
595	return l.payloads[pi]
596}
597
598// allocPayload allocates a new payload.
599func (l *Loader) allocPayload() *extSymPayload {
600	batch := l.payloadBatch
601	if len(batch) == 0 {
602		batch = make([]extSymPayload, 1000)
603	}
604	p := &batch[0]
605	l.payloadBatch = batch[1:]
606	return p
607}
608
609func (ms *extSymPayload) Grow(siz int64) {
610	if int64(int(siz)) != siz {
611		log.Fatalf("symgrow size %d too long", siz)
612	}
613	if int64(len(ms.data)) >= siz {
614		return
615	}
616	if cap(ms.data) < int(siz) {
617		cl := len(ms.data)
618		ms.data = append(ms.data, make([]byte, int(siz)+1-cl)...)
619		ms.data = ms.data[0:cl]
620	}
621	ms.data = ms.data[:siz]
622}
623
624// Convert a local index to a global index.
625func (l *Loader) toGlobal(r *oReader, i uint32) Sym {
626	return r.syms[i]
627}
628
629// Convert a global index to a local index.
630func (l *Loader) toLocal(i Sym) (*oReader, uint32) {
631	return l.objs[l.objSyms[i].objidx].r, l.objSyms[i].s
632}
633
634// Resolve a local symbol reference. Return global index.
635func (l *Loader) resolve(r *oReader, s goobj.SymRef) Sym {
636	var rr *oReader
637	switch p := s.PkgIdx; p {
638	case goobj.PkgIdxInvalid:
639		// {0, X} with non-zero X is never a valid sym reference from a Go object.
640		// We steal this space for symbol references from external objects.
641		// In this case, X is just the global index.
642		if l.isExtReader(r) {
643			return Sym(s.SymIdx)
644		}
645		if s.SymIdx != 0 {
646			panic("bad sym ref")
647		}
648		return 0
649	case goobj.PkgIdxHashed64:
650		i := int(s.SymIdx) + r.ndef
651		return r.syms[i]
652	case goobj.PkgIdxHashed:
653		i := int(s.SymIdx) + r.ndef + r.nhashed64def
654		return r.syms[i]
655	case goobj.PkgIdxNone:
656		i := int(s.SymIdx) + r.ndef + r.nhashed64def + r.nhasheddef
657		return r.syms[i]
658	case goobj.PkgIdxBuiltin:
659		if bi := l.builtinSyms[s.SymIdx]; bi != 0 {
660			return bi
661		}
662		l.reportMissingBuiltin(int(s.SymIdx), r.unit.Lib.Pkg)
663		return 0
664	case goobj.PkgIdxSelf:
665		rr = r
666	default:
667		rr = l.objs[r.pkg[p]].r
668	}
669	return l.toGlobal(rr, s.SymIdx)
670}
671
672// reportMissingBuiltin issues an error in the case where we have a
673// relocation against a runtime builtin whose definition is not found
674// when the runtime package is built. The canonical example is
675// "runtime.racefuncenter" -- currently if you do something like
676//
677//    go build -gcflags=-race myprogram.go
678//
679// the compiler will insert calls to the builtin runtime.racefuncenter,
680// but the version of the runtime used for linkage won't actually contain
681// definitions of that symbol. See issue #42396 for details.
682//
683// As currently implemented, this is a fatal error. This has drawbacks
684// in that if there are multiple missing builtins, the error will only
685// cite the first one. On the plus side, terminating the link here has
686// advantages in that we won't run the risk of panics or crashes later
687// on in the linker due to R_CALL relocations with 0-valued target
688// symbols.
689func (l *Loader) reportMissingBuiltin(bsym int, reflib string) {
690	bname, _ := goobj.BuiltinName(bsym)
691	log.Fatalf("reference to undefined builtin %q from package %q",
692		bname, reflib)
693}
694
695// Look up a symbol by name, return global index, or 0 if not found.
696// This is more like Syms.ROLookup than Lookup -- it doesn't create
697// new symbol.
698func (l *Loader) Lookup(name string, ver int) Sym {
699	if ver >= sym.SymVerStatic || ver < 0 {
700		return l.extStaticSyms[nameVer{name, ver}]
701	}
702	return l.symsByName[ver][name]
703}
704
705// Check that duplicate symbols have same contents.
706func (l *Loader) checkdup(name string, r *oReader, li uint32, dup Sym) {
707	p := r.Data(li)
708	rdup, ldup := l.toLocal(dup)
709	pdup := rdup.Data(ldup)
710	reason := "same length but different contents"
711	if len(p) != len(pdup) {
712		reason = fmt.Sprintf("new length %d != old length %d", len(p), len(pdup))
713	} else if bytes.Equal(p, pdup) {
714		// For BSS symbols, we need to check size as well, see issue 46653.
715		szdup := l.SymSize(dup)
716		sz := int64(r.Sym(li).Siz())
717		if szdup == sz {
718			return
719		}
720		reason = fmt.Sprintf("different sizes: new size %d != old size %d",
721			sz, szdup)
722	}
723	fmt.Fprintf(os.Stderr, "cmd/link: while reading object for '%v': duplicate symbol '%s', previous def at '%v', with mismatched payload: %s\n", r.unit.Lib, name, rdup.unit.Lib, reason)
724
725	// For the moment, allow DWARF subprogram DIEs for
726	// auto-generated wrapper functions. What seems to happen
727	// here is that we get different line numbers on formal
728	// params; I am guessing that the pos is being inherited
729	// from the spot where the wrapper is needed.
730	allowed := strings.HasPrefix(name, "go.info.go.interface") ||
731		strings.HasPrefix(name, "go.info.go.builtin") ||
732		strings.HasPrefix(name, "go.debuglines")
733	if !allowed {
734		l.strictDupMsgs++
735	}
736}
737
738func (l *Loader) NStrictDupMsgs() int { return l.strictDupMsgs }
739
740// Number of total symbols.
741func (l *Loader) NSym() int {
742	return len(l.objSyms)
743}
744
745// Number of defined Go symbols.
746func (l *Loader) NDef() int {
747	return int(l.extStart)
748}
749
750// Number of reachable symbols.
751func (l *Loader) NReachableSym() int {
752	return l.attrReachable.Count()
753}
754
755// Returns the raw (unpatched) name of the i-th symbol.
756func (l *Loader) RawSymName(i Sym) string {
757	if l.IsExternal(i) {
758		pp := l.getPayload(i)
759		return pp.name
760	}
761	r, li := l.toLocal(i)
762	return r.Sym(li).Name(r.Reader)
763}
764
765// Returns the (patched) name of the i-th symbol.
766func (l *Loader) SymName(i Sym) string {
767	if l.IsExternal(i) {
768		pp := l.getPayload(i)
769		return pp.name
770	}
771	r, li := l.toLocal(i)
772	if r == nil {
773		return "?"
774	}
775	name := r.Sym(li).Name(r.Reader)
776	if !r.NeedNameExpansion() {
777		return name
778	}
779	return strings.Replace(name, "\"\".", r.pkgprefix, -1)
780}
781
782// Returns the version of the i-th symbol.
783func (l *Loader) SymVersion(i Sym) int {
784	if l.IsExternal(i) {
785		pp := l.getPayload(i)
786		return pp.ver
787	}
788	r, li := l.toLocal(i)
789	return int(abiToVer(r.Sym(li).ABI(), r.version))
790}
791
792func (l *Loader) IsFileLocal(i Sym) bool {
793	return l.SymVersion(i) >= sym.SymVerStatic
794}
795
796// IsFromAssembly returns true if this symbol is derived from an
797// object file generated by the Go assembler.
798func (l *Loader) IsFromAssembly(i Sym) bool {
799	if l.IsExternal(i) {
800		return false
801	}
802	r, _ := l.toLocal(i)
803	return r.FromAssembly()
804}
805
806// Returns the type of the i-th symbol.
807func (l *Loader) SymType(i Sym) sym.SymKind {
808	if l.IsExternal(i) {
809		pp := l.getPayload(i)
810		if pp != nil {
811			return pp.kind
812		}
813		return 0
814	}
815	r, li := l.toLocal(i)
816	return sym.AbiSymKindToSymKind[objabi.SymKind(r.Sym(li).Type())]
817}
818
819// Returns the attributes of the i-th symbol.
820func (l *Loader) SymAttr(i Sym) uint8 {
821	if l.IsExternal(i) {
822		// TODO: do something? External symbols have different representation of attributes.
823		// For now, ReflectMethod, NoSplit, GoType, and Typelink are used and they cannot be
824		// set by external symbol.
825		return 0
826	}
827	r, li := l.toLocal(i)
828	return r.Sym(li).Flag()
829}
830
831// Returns the size of the i-th symbol.
832func (l *Loader) SymSize(i Sym) int64 {
833	if l.IsExternal(i) {
834		pp := l.getPayload(i)
835		return pp.size
836	}
837	r, li := l.toLocal(i)
838	return int64(r.Sym(li).Siz())
839}
840
841// AttrReachable returns true for symbols that are transitively
842// referenced from the entry points. Unreachable symbols are not
843// written to the output.
844func (l *Loader) AttrReachable(i Sym) bool {
845	return l.attrReachable.Has(i)
846}
847
848// SetAttrReachable sets the reachability property for a symbol (see
849// AttrReachable).
850func (l *Loader) SetAttrReachable(i Sym, v bool) {
851	if v {
852		l.attrReachable.Set(i)
853	} else {
854		l.attrReachable.Unset(i)
855	}
856}
857
858// AttrOnList returns true for symbols that are on some list (such as
859// the list of all text symbols, or one of the lists of data symbols)
860// and is consulted to avoid bugs where a symbol is put on a list
861// twice.
862func (l *Loader) AttrOnList(i Sym) bool {
863	return l.attrOnList.Has(i)
864}
865
866// SetAttrOnList sets the "on list" property for a symbol (see
867// AttrOnList).
868func (l *Loader) SetAttrOnList(i Sym, v bool) {
869	if v {
870		l.attrOnList.Set(i)
871	} else {
872		l.attrOnList.Unset(i)
873	}
874}
875
876// AttrLocal returns true for symbols that are only visible within the
877// module (executable or shared library) being linked. This attribute
878// is applied to thunks and certain other linker-generated symbols.
879func (l *Loader) AttrLocal(i Sym) bool {
880	return l.attrLocal.Has(i)
881}
882
883// SetAttrLocal the "local" property for a symbol (see AttrLocal above).
884func (l *Loader) SetAttrLocal(i Sym, v bool) {
885	if v {
886		l.attrLocal.Set(i)
887	} else {
888		l.attrLocal.Unset(i)
889	}
890}
891
892// AttrUsedInIface returns true for a type symbol that is used in
893// an interface.
894func (l *Loader) AttrUsedInIface(i Sym) bool {
895	return l.attrUsedInIface.Has(i)
896}
897
898func (l *Loader) SetAttrUsedInIface(i Sym, v bool) {
899	if v {
900		l.attrUsedInIface.Set(i)
901	} else {
902		l.attrUsedInIface.Unset(i)
903	}
904}
905
906// SymAddr checks that a symbol is reachable, and returns its value.
907func (l *Loader) SymAddr(i Sym) int64 {
908	if !l.AttrReachable(i) {
909		panic("unreachable symbol in symaddr")
910	}
911	return l.values[i]
912}
913
914// AttrNotInSymbolTable returns true for symbols that should not be
915// added to the symbol table of the final generated load module.
916func (l *Loader) AttrNotInSymbolTable(i Sym) bool {
917	return l.attrNotInSymbolTable.Has(i)
918}
919
920// SetAttrNotInSymbolTable the "not in symtab" property for a symbol
921// (see AttrNotInSymbolTable above).
922func (l *Loader) SetAttrNotInSymbolTable(i Sym, v bool) {
923	if v {
924		l.attrNotInSymbolTable.Set(i)
925	} else {
926		l.attrNotInSymbolTable.Unset(i)
927	}
928}
929
930// AttrVisibilityHidden symbols returns true for ELF symbols with
931// visibility set to STV_HIDDEN. They become local symbols in
932// the final executable. Only relevant when internally linking
933// on an ELF platform.
934func (l *Loader) AttrVisibilityHidden(i Sym) bool {
935	if !l.IsExternal(i) {
936		return false
937	}
938	return l.attrVisibilityHidden.Has(l.extIndex(i))
939}
940
941// SetAttrVisibilityHidden sets the "hidden visibility" property for a
942// symbol (see AttrVisibilityHidden).
943func (l *Loader) SetAttrVisibilityHidden(i Sym, v bool) {
944	if !l.IsExternal(i) {
945		panic("tried to set visibility attr on non-external symbol")
946	}
947	if v {
948		l.attrVisibilityHidden.Set(l.extIndex(i))
949	} else {
950		l.attrVisibilityHidden.Unset(l.extIndex(i))
951	}
952}
953
954// AttrDuplicateOK returns true for a symbol that can be present in
955// multiple object files.
956func (l *Loader) AttrDuplicateOK(i Sym) bool {
957	if !l.IsExternal(i) {
958		// TODO: if this path winds up being taken frequently, it
959		// might make more sense to copy the flag value out of the object
960		// into a larger bitmap during preload.
961		r, li := l.toLocal(i)
962		return r.Sym(li).Dupok()
963	}
964	return l.attrDuplicateOK.Has(l.extIndex(i))
965}
966
967// SetAttrDuplicateOK sets the "duplicate OK" property for an external
968// symbol (see AttrDuplicateOK).
969func (l *Loader) SetAttrDuplicateOK(i Sym, v bool) {
970	if !l.IsExternal(i) {
971		panic("tried to set dupok attr on non-external symbol")
972	}
973	if v {
974		l.attrDuplicateOK.Set(l.extIndex(i))
975	} else {
976		l.attrDuplicateOK.Unset(l.extIndex(i))
977	}
978}
979
980// AttrShared returns true for symbols compiled with the -shared option.
981func (l *Loader) AttrShared(i Sym) bool {
982	if !l.IsExternal(i) {
983		// TODO: if this path winds up being taken frequently, it
984		// might make more sense to copy the flag value out of the
985		// object into a larger bitmap during preload.
986		r, _ := l.toLocal(i)
987		return r.Shared()
988	}
989	return l.attrShared.Has(l.extIndex(i))
990}
991
992// SetAttrShared sets the "shared" property for an external
993// symbol (see AttrShared).
994func (l *Loader) SetAttrShared(i Sym, v bool) {
995	if !l.IsExternal(i) {
996		panic(fmt.Sprintf("tried to set shared attr on non-external symbol %d %s", i, l.SymName(i)))
997	}
998	if v {
999		l.attrShared.Set(l.extIndex(i))
1000	} else {
1001		l.attrShared.Unset(l.extIndex(i))
1002	}
1003}
1004
1005// AttrExternal returns true for function symbols loaded from host
1006// object files.
1007func (l *Loader) AttrExternal(i Sym) bool {
1008	if !l.IsExternal(i) {
1009		return false
1010	}
1011	return l.attrExternal.Has(l.extIndex(i))
1012}
1013
1014// SetAttrExternal sets the "external" property for an host object
1015// symbol (see AttrExternal).
1016func (l *Loader) SetAttrExternal(i Sym, v bool) {
1017	if !l.IsExternal(i) {
1018		panic(fmt.Sprintf("tried to set external attr on non-external symbol %q", l.RawSymName(i)))
1019	}
1020	if v {
1021		l.attrExternal.Set(l.extIndex(i))
1022	} else {
1023		l.attrExternal.Unset(l.extIndex(i))
1024	}
1025}
1026
1027// AttrSpecial returns true for a symbols that do not have their
1028// address (i.e. Value) computed by the usual mechanism of
1029// data.go:dodata() & data.go:address().
1030func (l *Loader) AttrSpecial(i Sym) bool {
1031	_, ok := l.attrSpecial[i]
1032	return ok
1033}
1034
1035// SetAttrSpecial sets the "special" property for a symbol (see
1036// AttrSpecial).
1037func (l *Loader) SetAttrSpecial(i Sym, v bool) {
1038	if v {
1039		l.attrSpecial[i] = struct{}{}
1040	} else {
1041		delete(l.attrSpecial, i)
1042	}
1043}
1044
1045// AttrCgoExportDynamic returns true for a symbol that has been
1046// specially marked via the "cgo_export_dynamic" compiler directive
1047// written by cgo (in response to //export directives in the source).
1048func (l *Loader) AttrCgoExportDynamic(i Sym) bool {
1049	_, ok := l.attrCgoExportDynamic[i]
1050	return ok
1051}
1052
1053// SetAttrCgoExportDynamic sets the "cgo_export_dynamic" for a symbol
1054// (see AttrCgoExportDynamic).
1055func (l *Loader) SetAttrCgoExportDynamic(i Sym, v bool) {
1056	if v {
1057		l.attrCgoExportDynamic[i] = struct{}{}
1058	} else {
1059		delete(l.attrCgoExportDynamic, i)
1060	}
1061}
1062
1063// AttrCgoExportStatic returns true for a symbol that has been
1064// specially marked via the "cgo_export_static" directive
1065// written by cgo.
1066func (l *Loader) AttrCgoExportStatic(i Sym) bool {
1067	_, ok := l.attrCgoExportStatic[i]
1068	return ok
1069}
1070
1071// SetAttrCgoExportStatic sets the "cgo_export_static" for a symbol
1072// (see AttrCgoExportStatic).
1073func (l *Loader) SetAttrCgoExportStatic(i Sym, v bool) {
1074	if v {
1075		l.attrCgoExportStatic[i] = struct{}{}
1076	} else {
1077		delete(l.attrCgoExportStatic, i)
1078	}
1079}
1080
1081// IsGeneratedSym returns true if a symbol's been previously marked as a
1082// generator symbol through the SetIsGeneratedSym. The functions for generator
1083// symbols are kept in the Link context.
1084func (l *Loader) IsGeneratedSym(i Sym) bool {
1085	_, ok := l.generatedSyms[i]
1086	return ok
1087}
1088
1089// SetIsGeneratedSym marks symbols as generated symbols. Data shouldn't be
1090// stored in generated symbols, and a function is registered and called for
1091// each of these symbols.
1092func (l *Loader) SetIsGeneratedSym(i Sym, v bool) {
1093	if !l.IsExternal(i) {
1094		panic("only external symbols can be generated")
1095	}
1096	if v {
1097		l.generatedSyms[i] = struct{}{}
1098	} else {
1099		delete(l.generatedSyms, i)
1100	}
1101}
1102
1103func (l *Loader) AttrCgoExport(i Sym) bool {
1104	return l.AttrCgoExportDynamic(i) || l.AttrCgoExportStatic(i)
1105}
1106
1107// AttrReadOnly returns true for a symbol whose underlying data
1108// is stored via a read-only mmap.
1109func (l *Loader) AttrReadOnly(i Sym) bool {
1110	if v, ok := l.attrReadOnly[i]; ok {
1111		return v
1112	}
1113	if l.IsExternal(i) {
1114		pp := l.getPayload(i)
1115		if pp.objidx != 0 {
1116			return l.objs[pp.objidx].r.ReadOnly()
1117		}
1118		return false
1119	}
1120	r, _ := l.toLocal(i)
1121	return r.ReadOnly()
1122}
1123
1124// SetAttrReadOnly sets the "data is read only" property for a symbol
1125// (see AttrReadOnly).
1126func (l *Loader) SetAttrReadOnly(i Sym, v bool) {
1127	l.attrReadOnly[i] = v
1128}
1129
1130// AttrSubSymbol returns true for symbols that are listed as a
1131// sub-symbol of some other outer symbol. The sub/outer mechanism is
1132// used when loading host objects (sections from the host object
1133// become regular linker symbols and symbols go on the Sub list of
1134// their section) and for constructing the global offset table when
1135// internally linking a dynamic executable.
1136//
1137// Note that in later stages of the linker, we set Outer(S) to some
1138// container symbol C, but don't set Sub(C). Thus we have two
1139// distinct scenarios:
1140//
1141// - Outer symbol covers the address ranges of its sub-symbols.
1142//   Outer.Sub is set in this case.
1143// - Outer symbol doesn't conver the address ranges. It is zero-sized
1144//   and doesn't have sub-symbols. In the case, the inner symbol is
1145//   not actually a "SubSymbol". (Tricky!)
1146//
1147// This method returns TRUE only for sub-symbols in the first scenario.
1148//
1149// FIXME: would be better to do away with this and have a better way
1150// to represent container symbols.
1151
1152func (l *Loader) AttrSubSymbol(i Sym) bool {
1153	// we don't explicitly store this attribute any more -- return
1154	// a value based on the sub-symbol setting.
1155	o := l.OuterSym(i)
1156	if o == 0 {
1157		return false
1158	}
1159	return l.SubSym(o) != 0
1160}
1161
1162// Note that we don't have a 'SetAttrSubSymbol' method in the loader;
1163// clients should instead use the AddInteriorSym method to establish
1164// containment relationships for host object symbols.
1165
1166// Returns whether the i-th symbol has ReflectMethod attribute set.
1167func (l *Loader) IsReflectMethod(i Sym) bool {
1168	return l.SymAttr(i)&goobj.SymFlagReflectMethod != 0
1169}
1170
1171// Returns whether the i-th symbol is nosplit.
1172func (l *Loader) IsNoSplit(i Sym) bool {
1173	return l.SymAttr(i)&goobj.SymFlagNoSplit != 0
1174}
1175
1176// Returns whether this is a Go type symbol.
1177func (l *Loader) IsGoType(i Sym) bool {
1178	return l.SymAttr(i)&goobj.SymFlagGoType != 0
1179}
1180
1181// Returns whether this symbol should be included in typelink.
1182func (l *Loader) IsTypelink(i Sym) bool {
1183	return l.SymAttr(i)&goobj.SymFlagTypelink != 0
1184}
1185
1186// Returns whether this symbol is an itab symbol.
1187func (l *Loader) IsItab(i Sym) bool {
1188	if l.IsExternal(i) {
1189		return false
1190	}
1191	r, li := l.toLocal(i)
1192	return r.Sym(li).IsItab()
1193}
1194
1195// Returns whether this symbol is a dictionary symbol.
1196func (l *Loader) IsDict(i Sym) bool {
1197	if l.IsExternal(i) {
1198		return false
1199	}
1200	r, li := l.toLocal(i)
1201	return r.Sym(li).IsDict()
1202}
1203
1204// Return whether this is a trampoline of a deferreturn call.
1205func (l *Loader) IsDeferReturnTramp(i Sym) bool {
1206	return l.deferReturnTramp[i]
1207}
1208
1209// Set that i is a trampoline of a deferreturn call.
1210func (l *Loader) SetIsDeferReturnTramp(i Sym, v bool) {
1211	l.deferReturnTramp[i] = v
1212}
1213
1214// growValues grows the slice used to store symbol values.
1215func (l *Loader) growValues(reqLen int) {
1216	curLen := len(l.values)
1217	if reqLen > curLen {
1218		l.values = append(l.values, make([]int64, reqLen+1-curLen)...)
1219	}
1220}
1221
1222// SymValue returns the value of the i-th symbol. i is global index.
1223func (l *Loader) SymValue(i Sym) int64 {
1224	return l.values[i]
1225}
1226
1227// SetSymValue sets the value of the i-th symbol. i is global index.
1228func (l *Loader) SetSymValue(i Sym, val int64) {
1229	l.values[i] = val
1230}
1231
1232// AddToSymValue adds to the value of the i-th symbol. i is the global index.
1233func (l *Loader) AddToSymValue(i Sym, val int64) {
1234	l.values[i] += val
1235}
1236
1237// Returns the symbol content of the i-th symbol. i is global index.
1238func (l *Loader) Data(i Sym) []byte {
1239	if l.IsExternal(i) {
1240		pp := l.getPayload(i)
1241		if pp != nil {
1242			return pp.data
1243		}
1244		return nil
1245	}
1246	r, li := l.toLocal(i)
1247	return r.Data(li)
1248}
1249
1250// FreeData clears the symbol data of an external symbol, allowing the memory
1251// to be freed earlier. No-op for non-external symbols.
1252// i is global index.
1253func (l *Loader) FreeData(i Sym) {
1254	if l.IsExternal(i) {
1255		pp := l.getPayload(i)
1256		if pp != nil {
1257			pp.data = nil
1258		}
1259	}
1260}
1261
1262// SymAlign returns the alignment for a symbol.
1263func (l *Loader) SymAlign(i Sym) int32 {
1264	if int(i) >= len(l.align) {
1265		// align is extended lazily -- it the sym in question is
1266		// outside the range of the existing slice, then we assume its
1267		// alignment has not yet been set.
1268		return 0
1269	}
1270	// TODO: would it make sense to return an arch-specific
1271	// alignment depending on section type? E.g. STEXT => 32,
1272	// SDATA => 1, etc?
1273	abits := l.align[i]
1274	if abits == 0 {
1275		return 0
1276	}
1277	return int32(1 << (abits - 1))
1278}
1279
1280// SetSymAlign sets the alignment for a symbol.
1281func (l *Loader) SetSymAlign(i Sym, align int32) {
1282	// Reject nonsense alignments.
1283	if align < 0 || align&(align-1) != 0 {
1284		panic("bad alignment value")
1285	}
1286	if int(i) >= len(l.align) {
1287		l.align = append(l.align, make([]uint8, l.NSym()-len(l.align))...)
1288	}
1289	if align == 0 {
1290		l.align[i] = 0
1291	}
1292	l.align[i] = uint8(bits.Len32(uint32(align)))
1293}
1294
1295// SymValue returns the section of the i-th symbol. i is global index.
1296func (l *Loader) SymSect(i Sym) *sym.Section {
1297	if int(i) >= len(l.symSects) {
1298		// symSects is extended lazily -- it the sym in question is
1299		// outside the range of the existing slice, then we assume its
1300		// section has not yet been set.
1301		return nil
1302	}
1303	return l.sects[l.symSects[i]]
1304}
1305
1306// SetSymSect sets the section of the i-th symbol. i is global index.
1307func (l *Loader) SetSymSect(i Sym, sect *sym.Section) {
1308	if int(i) >= len(l.symSects) {
1309		l.symSects = append(l.symSects, make([]uint16, l.NSym()-len(l.symSects))...)
1310	}
1311	l.symSects[i] = sect.Index
1312}
1313
1314// growSects grows the slice used to store symbol sections.
1315func (l *Loader) growSects(reqLen int) {
1316	curLen := len(l.symSects)
1317	if reqLen > curLen {
1318		l.symSects = append(l.symSects, make([]uint16, reqLen+1-curLen)...)
1319	}
1320}
1321
1322// NewSection creates a new (output) section.
1323func (l *Loader) NewSection() *sym.Section {
1324	sect := new(sym.Section)
1325	idx := len(l.sects)
1326	if idx != int(uint16(idx)) {
1327		panic("too many sections created")
1328	}
1329	sect.Index = uint16(idx)
1330	l.sects = append(l.sects, sect)
1331	return sect
1332}
1333
1334// SymDynImplib returns the "dynimplib" attribute for the specified
1335// symbol, making up a portion of the info for a symbol specified
1336// on a "cgo_import_dynamic" compiler directive.
1337func (l *Loader) SymDynimplib(i Sym) string {
1338	return l.dynimplib[i]
1339}
1340
1341// SetSymDynimplib sets the "dynimplib" attribute for a symbol.
1342func (l *Loader) SetSymDynimplib(i Sym, value string) {
1343	// reject bad symbols
1344	if i >= Sym(len(l.objSyms)) || i == 0 {
1345		panic("bad symbol index in SetDynimplib")
1346	}
1347	if value == "" {
1348		delete(l.dynimplib, i)
1349	} else {
1350		l.dynimplib[i] = value
1351	}
1352}
1353
1354// SymDynimpvers returns the "dynimpvers" attribute for the specified
1355// symbol, making up a portion of the info for a symbol specified
1356// on a "cgo_import_dynamic" compiler directive.
1357func (l *Loader) SymDynimpvers(i Sym) string {
1358	return l.dynimpvers[i]
1359}
1360
1361// SetSymDynimpvers sets the "dynimpvers" attribute for a symbol.
1362func (l *Loader) SetSymDynimpvers(i Sym, value string) {
1363	// reject bad symbols
1364	if i >= Sym(len(l.objSyms)) || i == 0 {
1365		panic("bad symbol index in SetDynimpvers")
1366	}
1367	if value == "" {
1368		delete(l.dynimpvers, i)
1369	} else {
1370		l.dynimpvers[i] = value
1371	}
1372}
1373
1374// SymExtname returns the "extname" value for the specified
1375// symbol.
1376func (l *Loader) SymExtname(i Sym) string {
1377	if s, ok := l.extname[i]; ok {
1378		return s
1379	}
1380	return l.SymName(i)
1381}
1382
1383// SetSymExtname sets the  "extname" attribute for a symbol.
1384func (l *Loader) SetSymExtname(i Sym, value string) {
1385	// reject bad symbols
1386	if i >= Sym(len(l.objSyms)) || i == 0 {
1387		panic("bad symbol index in SetExtname")
1388	}
1389	if value == "" {
1390		delete(l.extname, i)
1391	} else {
1392		l.extname[i] = value
1393	}
1394}
1395
1396// SymElfType returns the previously recorded ELF type for a symbol
1397// (used only for symbols read from shared libraries by ldshlibsyms).
1398// It is not set for symbols defined by the packages being linked or
1399// by symbols read by ldelf (and so is left as elf.STT_NOTYPE).
1400func (l *Loader) SymElfType(i Sym) elf.SymType {
1401	if et, ok := l.elfType[i]; ok {
1402		return et
1403	}
1404	return elf.STT_NOTYPE
1405}
1406
1407// SetSymElfType sets the elf type attribute for a symbol.
1408func (l *Loader) SetSymElfType(i Sym, et elf.SymType) {
1409	// reject bad symbols
1410	if i >= Sym(len(l.objSyms)) || i == 0 {
1411		panic("bad symbol index in SetSymElfType")
1412	}
1413	if et == elf.STT_NOTYPE {
1414		delete(l.elfType, i)
1415	} else {
1416		l.elfType[i] = et
1417	}
1418}
1419
1420// SymElfSym returns the ELF symbol index for a given loader
1421// symbol, assigned during ELF symtab generation.
1422func (l *Loader) SymElfSym(i Sym) int32 {
1423	return l.elfSym[i]
1424}
1425
1426// SetSymElfSym sets the elf symbol index for a symbol.
1427func (l *Loader) SetSymElfSym(i Sym, es int32) {
1428	if i == 0 {
1429		panic("bad sym index")
1430	}
1431	if es == 0 {
1432		delete(l.elfSym, i)
1433	} else {
1434		l.elfSym[i] = es
1435	}
1436}
1437
1438// SymLocalElfSym returns the "local" ELF symbol index for a given loader
1439// symbol, assigned during ELF symtab generation.
1440func (l *Loader) SymLocalElfSym(i Sym) int32 {
1441	return l.localElfSym[i]
1442}
1443
1444// SetSymLocalElfSym sets the "local" elf symbol index for a symbol.
1445func (l *Loader) SetSymLocalElfSym(i Sym, es int32) {
1446	if i == 0 {
1447		panic("bad sym index")
1448	}
1449	if es == 0 {
1450		delete(l.localElfSym, i)
1451	} else {
1452		l.localElfSym[i] = es
1453	}
1454}
1455
1456// SymPlt returns the PLT offset of symbol s.
1457func (l *Loader) SymPlt(s Sym) int32 {
1458	if v, ok := l.plt[s]; ok {
1459		return v
1460	}
1461	return -1
1462}
1463
1464// SetPlt sets the PLT offset of symbol i.
1465func (l *Loader) SetPlt(i Sym, v int32) {
1466	if i >= Sym(len(l.objSyms)) || i == 0 {
1467		panic("bad symbol for SetPlt")
1468	}
1469	if v == -1 {
1470		delete(l.plt, i)
1471	} else {
1472		l.plt[i] = v
1473	}
1474}
1475
1476// SymGot returns the GOT offset of symbol s.
1477func (l *Loader) SymGot(s Sym) int32 {
1478	if v, ok := l.got[s]; ok {
1479		return v
1480	}
1481	return -1
1482}
1483
1484// SetGot sets the GOT offset of symbol i.
1485func (l *Loader) SetGot(i Sym, v int32) {
1486	if i >= Sym(len(l.objSyms)) || i == 0 {
1487		panic("bad symbol for SetGot")
1488	}
1489	if v == -1 {
1490		delete(l.got, i)
1491	} else {
1492		l.got[i] = v
1493	}
1494}
1495
1496// SymDynid returns the "dynid" property for the specified symbol.
1497func (l *Loader) SymDynid(i Sym) int32 {
1498	if s, ok := l.dynid[i]; ok {
1499		return s
1500	}
1501	return -1
1502}
1503
1504// SetSymDynid sets the "dynid" property for a symbol.
1505func (l *Loader) SetSymDynid(i Sym, val int32) {
1506	// reject bad symbols
1507	if i >= Sym(len(l.objSyms)) || i == 0 {
1508		panic("bad symbol index in SetSymDynid")
1509	}
1510	if val == -1 {
1511		delete(l.dynid, i)
1512	} else {
1513		l.dynid[i] = val
1514	}
1515}
1516
1517// DynIdSyms returns the set of symbols for which dynID is set to an
1518// interesting (non-default) value. This is expected to be a fairly
1519// small set.
1520func (l *Loader) DynidSyms() []Sym {
1521	sl := make([]Sym, 0, len(l.dynid))
1522	for s := range l.dynid {
1523		sl = append(sl, s)
1524	}
1525	sort.Slice(sl, func(i, j int) bool { return sl[i] < sl[j] })
1526	return sl
1527}
1528
1529// SymGoType returns the 'Gotype' property for a given symbol (set by
1530// the Go compiler for variable symbols). This version relies on
1531// reading aux symbols for the target sym -- it could be that a faster
1532// approach would be to check for gotype during preload and copy the
1533// results in to a map (might want to try this at some point and see
1534// if it helps speed things up).
1535func (l *Loader) SymGoType(i Sym) Sym { return l.aux1(i, goobj.AuxGotype) }
1536
1537// SymUnit returns the compilation unit for a given symbol (which will
1538// typically be nil for external or linker-manufactured symbols).
1539func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit {
1540	if l.IsExternal(i) {
1541		pp := l.getPayload(i)
1542		if pp.objidx != 0 {
1543			r := l.objs[pp.objidx].r
1544			return r.unit
1545		}
1546		return nil
1547	}
1548	r, _ := l.toLocal(i)
1549	return r.unit
1550}
1551
1552// SymPkg returns the package where the symbol came from (for
1553// regular compiler-generated Go symbols), but in the case of
1554// building with "-linkshared" (when a symbol is read from a
1555// shared library), will hold the library name.
1556// NOTE: this corresponds to sym.Symbol.File field.
1557func (l *Loader) SymPkg(i Sym) string {
1558	if f, ok := l.symPkg[i]; ok {
1559		return f
1560	}
1561	if l.IsExternal(i) {
1562		pp := l.getPayload(i)
1563		if pp.objidx != 0 {
1564			r := l.objs[pp.objidx].r
1565			return r.unit.Lib.Pkg
1566		}
1567		return ""
1568	}
1569	r, _ := l.toLocal(i)
1570	return r.unit.Lib.Pkg
1571}
1572
1573// SetSymPkg sets the package/library for a symbol. This is
1574// needed mainly for external symbols, specifically those imported
1575// from shared libraries.
1576func (l *Loader) SetSymPkg(i Sym, pkg string) {
1577	// reject bad symbols
1578	if i >= Sym(len(l.objSyms)) || i == 0 {
1579		panic("bad symbol index in SetSymPkg")
1580	}
1581	l.symPkg[i] = pkg
1582}
1583
1584// SymLocalentry returns the "local entry" value for the specified
1585// symbol.
1586func (l *Loader) SymLocalentry(i Sym) uint8 {
1587	return l.localentry[i]
1588}
1589
1590// SetSymLocalentry sets the "local entry" attribute for a symbol.
1591func (l *Loader) SetSymLocalentry(i Sym, value uint8) {
1592	// reject bad symbols
1593	if i >= Sym(len(l.objSyms)) || i == 0 {
1594		panic("bad symbol index in SetSymLocalentry")
1595	}
1596	if value == 0 {
1597		delete(l.localentry, i)
1598	} else {
1599		l.localentry[i] = value
1600	}
1601}
1602
1603// Returns the number of aux symbols given a global index.
1604func (l *Loader) NAux(i Sym) int {
1605	if l.IsExternal(i) {
1606		return 0
1607	}
1608	r, li := l.toLocal(i)
1609	return r.NAux(li)
1610}
1611
1612// Returns the "handle" to the j-th aux symbol of the i-th symbol.
1613func (l *Loader) Aux(i Sym, j int) Aux {
1614	if l.IsExternal(i) {
1615		return Aux{}
1616	}
1617	r, li := l.toLocal(i)
1618	if j >= r.NAux(li) {
1619		return Aux{}
1620	}
1621	return Aux{r.Aux(li, j), r, l}
1622}
1623
1624// GetFuncDwarfAuxSyms collects and returns the auxiliary DWARF
1625// symbols associated with a given function symbol.  Prior to the
1626// introduction of the loader, this was done purely using name
1627// lookups, e.f. for function with name XYZ we would then look up
1628// go.info.XYZ, etc.
1629func (l *Loader) GetFuncDwarfAuxSyms(fnSymIdx Sym) (auxDwarfInfo, auxDwarfLoc, auxDwarfRanges, auxDwarfLines Sym) {
1630	if l.SymType(fnSymIdx) != sym.STEXT {
1631		log.Fatalf("error: non-function sym %d/%s t=%s passed to GetFuncDwarfAuxSyms", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String())
1632	}
1633	if l.IsExternal(fnSymIdx) {
1634		// Current expectation is that any external function will
1635		// not have auxsyms.
1636		return
1637	}
1638	r, li := l.toLocal(fnSymIdx)
1639	auxs := r.Auxs(li)
1640	for i := range auxs {
1641		a := &auxs[i]
1642		switch a.Type() {
1643		case goobj.AuxDwarfInfo:
1644			auxDwarfInfo = l.resolve(r, a.Sym())
1645			if l.SymType(auxDwarfInfo) != sym.SDWARFFCN {
1646				panic("aux dwarf info sym with wrong type")
1647			}
1648		case goobj.AuxDwarfLoc:
1649			auxDwarfLoc = l.resolve(r, a.Sym())
1650			if l.SymType(auxDwarfLoc) != sym.SDWARFLOC {
1651				panic("aux dwarf loc sym with wrong type")
1652			}
1653		case goobj.AuxDwarfRanges:
1654			auxDwarfRanges = l.resolve(r, a.Sym())
1655			if l.SymType(auxDwarfRanges) != sym.SDWARFRANGE {
1656				panic("aux dwarf ranges sym with wrong type")
1657			}
1658		case goobj.AuxDwarfLines:
1659			auxDwarfLines = l.resolve(r, a.Sym())
1660			if l.SymType(auxDwarfLines) != sym.SDWARFLINES {
1661				panic("aux dwarf lines sym with wrong type")
1662			}
1663		}
1664	}
1665	return
1666}
1667
1668// AddInteriorSym sets up 'interior' as an interior symbol of
1669// container/payload symbol 'container'. An interior symbol does not
1670// itself have data, but gives a name to a subrange of the data in its
1671// container symbol. The container itself may or may not have a name.
1672// This method is intended primarily for use in the host object
1673// loaders, to capture the semantics of symbols and sections in an
1674// object file. When reading a host object file, we'll typically
1675// encounter a static section symbol (ex: ".text") containing content
1676// for a collection of functions, then a series of ELF (or macho, etc)
1677// symbol table entries each of which points into a sub-section
1678// (offset and length) of its corresponding container symbol. Within
1679// the go linker we create a loader.Sym for the container (which is
1680// expected to have the actual content/payload) and then a set of
1681// interior loader.Sym's that point into a portion of the container.
1682func (l *Loader) AddInteriorSym(container Sym, interior Sym) {
1683	// Container symbols are expected to have content/data.
1684	// NB: this restriction may turn out to be too strict (it's possible
1685	// to imagine a zero-sized container with an interior symbol pointing
1686	// into it); it's ok to relax or remove it if we counter an
1687	// oddball host object that triggers this.
1688	if l.SymSize(container) == 0 && len(l.Data(container)) == 0 {
1689		panic("unexpected empty container symbol")
1690	}
1691	// The interior symbols for a container are not expected to have
1692	// content/data or relocations.
1693	if len(l.Data(interior)) != 0 {
1694		panic("unexpected non-empty interior symbol")
1695	}
1696	// Interior symbol is expected to be in the symbol table.
1697	if l.AttrNotInSymbolTable(interior) {
1698		panic("interior symbol must be in symtab")
1699	}
1700	// Only a single level of containment is allowed.
1701	if l.OuterSym(container) != 0 {
1702		panic("outer has outer itself")
1703	}
1704	// Interior sym should not already have a sibling.
1705	if l.SubSym(interior) != 0 {
1706		panic("sub set for subsym")
1707	}
1708	// Interior sym should not already point at a container.
1709	if l.OuterSym(interior) != 0 {
1710		panic("outer already set for subsym")
1711	}
1712	l.sub[interior] = l.sub[container]
1713	l.sub[container] = interior
1714	l.outer[interior] = container
1715}
1716
1717// OuterSym gets the outer symbol for host object loaded symbols.
1718func (l *Loader) OuterSym(i Sym) Sym {
1719	// FIXME: add check for isExternal?
1720	return l.outer[i]
1721}
1722
1723// SubSym gets the subsymbol for host object loaded symbols.
1724func (l *Loader) SubSym(i Sym) Sym {
1725	// NB: note -- no check for l.isExternal(), since I am pretty sure
1726	// that later phases in the linker set subsym for "type." syms
1727	return l.sub[i]
1728}
1729
1730// SetCarrierSym declares that 'c' is the carrier or container symbol
1731// for 's'. Carrier symbols are used in the linker to as a container
1732// for a collection of sub-symbols where the content of the
1733// sub-symbols is effectively concatenated to form the content of the
1734// carrier. The carrier is given a name in the output symbol table
1735// while the sub-symbol names are not. For example, the Go compiler
1736// emits named string symbols (type SGOSTRING) when compiling a
1737// package; after being deduplicated, these symbols are collected into
1738// a single unit by assigning them a new carrier symbol named
1739// "go.string.*" (which appears in the final symbol table for the
1740// output load module).
1741func (l *Loader) SetCarrierSym(s Sym, c Sym) {
1742	if c == 0 {
1743		panic("invalid carrier in SetCarrierSym")
1744	}
1745	if s == 0 {
1746		panic("invalid sub-symbol in SetCarrierSym")
1747	}
1748	// Carrier symbols are not expected to have content/data. It is
1749	// ok for them to have non-zero size (to allow for use of generator
1750	// symbols).
1751	if len(l.Data(c)) != 0 {
1752		panic("unexpected non-empty carrier symbol")
1753	}
1754	l.outer[s] = c
1755	// relocsym's foldSubSymbolOffset requires that we only
1756	// have a single level of containment-- enforce here.
1757	if l.outer[c] != 0 {
1758		panic("invalid nested carrier sym")
1759	}
1760}
1761
1762// Initialize Reachable bitmap and its siblings for running deadcode pass.
1763func (l *Loader) InitReachable() {
1764	l.growAttrBitmaps(l.NSym() + 1)
1765}
1766
1767type symWithVal struct {
1768	s Sym
1769	v int64
1770}
1771type bySymValue []symWithVal
1772
1773func (s bySymValue) Len() int           { return len(s) }
1774func (s bySymValue) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
1775func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v }
1776
1777// SortSub walks through the sub-symbols for 's' and sorts them
1778// in place by increasing value. Return value is the new
1779// sub symbol for the specified outer symbol.
1780func (l *Loader) SortSub(s Sym) Sym {
1781
1782	if s == 0 || l.sub[s] == 0 {
1783		return s
1784	}
1785
1786	// Sort symbols using a slice first. Use a stable sort on the off
1787	// chance that there's more than once symbol with the same value,
1788	// so as to preserve reproducible builds.
1789	sl := []symWithVal{}
1790	for ss := l.sub[s]; ss != 0; ss = l.sub[ss] {
1791		sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)})
1792	}
1793	sort.Stable(bySymValue(sl))
1794
1795	// Then apply any changes needed to the sub map.
1796	ns := Sym(0)
1797	for i := len(sl) - 1; i >= 0; i-- {
1798		s := sl[i].s
1799		l.sub[s] = ns
1800		ns = s
1801	}
1802
1803	// Update sub for outer symbol, then return
1804	l.sub[s] = sl[0].s
1805	return sl[0].s
1806}
1807
1808// SortSyms sorts a list of symbols by their value.
1809func (l *Loader) SortSyms(ss []Sym) {
1810	sort.SliceStable(ss, func(i, j int) bool { return l.SymValue(ss[i]) < l.SymValue(ss[j]) })
1811}
1812
1813// Insure that reachable bitmap and its siblings have enough size.
1814func (l *Loader) growAttrBitmaps(reqLen int) {
1815	if reqLen > l.attrReachable.Len() {
1816		// These are indexed by global symbol
1817		l.attrReachable = growBitmap(reqLen, l.attrReachable)
1818		l.attrOnList = growBitmap(reqLen, l.attrOnList)
1819		l.attrLocal = growBitmap(reqLen, l.attrLocal)
1820		l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable)
1821		l.attrUsedInIface = growBitmap(reqLen, l.attrUsedInIface)
1822	}
1823	l.growExtAttrBitmaps()
1824}
1825
1826func (l *Loader) growExtAttrBitmaps() {
1827	// These are indexed by external symbol index (e.g. l.extIndex(i))
1828	extReqLen := len(l.payloads)
1829	if extReqLen > l.attrVisibilityHidden.Len() {
1830		l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden)
1831		l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK)
1832		l.attrShared = growBitmap(extReqLen, l.attrShared)
1833		l.attrExternal = growBitmap(extReqLen, l.attrExternal)
1834	}
1835}
1836
1837func (relocs *Relocs) Count() int { return len(relocs.rs) }
1838
1839// At returns the j-th reloc for a global symbol.
1840func (relocs *Relocs) At(j int) Reloc {
1841	if relocs.l.isExtReader(relocs.r) {
1842		return Reloc{&relocs.rs[j], relocs.r, relocs.l}
1843	}
1844	return Reloc{&relocs.rs[j], relocs.r, relocs.l}
1845}
1846
1847// Relocs returns a Relocs object for the given global sym.
1848func (l *Loader) Relocs(i Sym) Relocs {
1849	r, li := l.toLocal(i)
1850	if r == nil {
1851		panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i))
1852	}
1853	return l.relocs(r, li)
1854}
1855
1856// Relocs returns a Relocs object given a local sym index and reader.
1857func (l *Loader) relocs(r *oReader, li uint32) Relocs {
1858	var rs []goobj.Reloc
1859	if l.isExtReader(r) {
1860		pp := l.payloads[li]
1861		rs = pp.relocs
1862	} else {
1863		rs = r.Relocs(li)
1864	}
1865	return Relocs{
1866		rs: rs,
1867		li: li,
1868		r:  r,
1869		l:  l,
1870	}
1871}
1872
1873func (l *Loader) auxs(i Sym) (*oReader, []goobj.Aux) {
1874	if l.IsExternal(i) {
1875		pp := l.getPayload(i)
1876		return l.objs[pp.objidx].r, pp.auxs
1877	} else {
1878		r, li := l.toLocal(i)
1879		return r, r.Auxs(li)
1880	}
1881}
1882
1883// Returns a specific aux symbol of type t for symbol i.
1884func (l *Loader) aux1(i Sym, t uint8) Sym {
1885	r, auxs := l.auxs(i)
1886	for j := range auxs {
1887		a := &auxs[j]
1888		if a.Type() == t {
1889			return l.resolve(r, a.Sym())
1890		}
1891	}
1892	return 0
1893}
1894
1895func (l *Loader) Pcsp(i Sym) Sym { return l.aux1(i, goobj.AuxPcsp) }
1896
1897// Returns all aux symbols of per-PC data for symbol i.
1898// tmp is a scratch space for the pcdata slice.
1899func (l *Loader) PcdataAuxs(i Sym, tmp []Sym) (pcsp, pcfile, pcline, pcinline Sym, pcdata []Sym) {
1900	pcdata = tmp[:0]
1901	r, auxs := l.auxs(i)
1902	for j := range auxs {
1903		a := &auxs[j]
1904		switch a.Type() {
1905		case goobj.AuxPcsp:
1906			pcsp = l.resolve(r, a.Sym())
1907		case goobj.AuxPcline:
1908			pcline = l.resolve(r, a.Sym())
1909		case goobj.AuxPcfile:
1910			pcfile = l.resolve(r, a.Sym())
1911		case goobj.AuxPcinline:
1912			pcinline = l.resolve(r, a.Sym())
1913		case goobj.AuxPcdata:
1914			pcdata = append(pcdata, l.resolve(r, a.Sym()))
1915		}
1916	}
1917	return
1918}
1919
1920// Returns the number of pcdata for symbol i.
1921func (l *Loader) NumPcdata(i Sym) int {
1922	n := 0
1923	_, auxs := l.auxs(i)
1924	for j := range auxs {
1925		a := &auxs[j]
1926		if a.Type() == goobj.AuxPcdata {
1927			n++
1928		}
1929	}
1930	return n
1931}
1932
1933// Returns all funcdata symbols of symbol i.
1934// tmp is a scratch space.
1935func (l *Loader) Funcdata(i Sym, tmp []Sym) []Sym {
1936	fd := tmp[:0]
1937	r, auxs := l.auxs(i)
1938	for j := range auxs {
1939		a := &auxs[j]
1940		if a.Type() == goobj.AuxFuncdata {
1941			fd = append(fd, l.resolve(r, a.Sym()))
1942		}
1943	}
1944	return fd
1945}
1946
1947// Returns the number of funcdata for symbol i.
1948func (l *Loader) NumFuncdata(i Sym) int {
1949	n := 0
1950	_, auxs := l.auxs(i)
1951	for j := range auxs {
1952		a := &auxs[j]
1953		if a.Type() == goobj.AuxFuncdata {
1954			n++
1955		}
1956	}
1957	return n
1958}
1959
1960// FuncInfo provides hooks to access goobj.FuncInfo in the objects.
1961type FuncInfo struct {
1962	l       *Loader
1963	r       *oReader
1964	data    []byte
1965	lengths goobj.FuncInfoLengths
1966}
1967
1968func (fi *FuncInfo) Valid() bool { return fi.r != nil }
1969
1970func (fi *FuncInfo) Args() int {
1971	return int((*goobj.FuncInfo)(nil).ReadArgs(fi.data))
1972}
1973
1974func (fi *FuncInfo) Locals() int {
1975	return int((*goobj.FuncInfo)(nil).ReadLocals(fi.data))
1976}
1977
1978func (fi *FuncInfo) FuncID() objabi.FuncID {
1979	return (*goobj.FuncInfo)(nil).ReadFuncID(fi.data)
1980}
1981
1982func (fi *FuncInfo) FuncFlag() objabi.FuncFlag {
1983	return (*goobj.FuncInfo)(nil).ReadFuncFlag(fi.data)
1984}
1985
1986// Preload has to be called prior to invoking the various methods
1987// below related to pcdata, funcdataoff, files, and inltree nodes.
1988func (fi *FuncInfo) Preload() {
1989	fi.lengths = (*goobj.FuncInfo)(nil).ReadFuncInfoLengths(fi.data)
1990}
1991
1992func (fi *FuncInfo) NumFile() uint32 {
1993	if !fi.lengths.Initialized {
1994		panic("need to call Preload first")
1995	}
1996	return fi.lengths.NumFile
1997}
1998
1999func (fi *FuncInfo) File(k int) goobj.CUFileIndex {
2000	if !fi.lengths.Initialized {
2001		panic("need to call Preload first")
2002	}
2003	return (*goobj.FuncInfo)(nil).ReadFile(fi.data, fi.lengths.FileOff, uint32(k))
2004}
2005
2006// TopFrame returns true if the function associated with this FuncInfo
2007// is an entry point, meaning that unwinders should stop when they hit
2008// this function.
2009func (fi *FuncInfo) TopFrame() bool {
2010	return (fi.FuncFlag() & objabi.FuncFlag_TOPFRAME) != 0
2011}
2012
2013type InlTreeNode struct {
2014	Parent   int32
2015	File     goobj.CUFileIndex
2016	Line     int32
2017	Func     Sym
2018	ParentPC int32
2019}
2020
2021func (fi *FuncInfo) NumInlTree() uint32 {
2022	if !fi.lengths.Initialized {
2023		panic("need to call Preload first")
2024	}
2025	return fi.lengths.NumInlTree
2026}
2027
2028func (fi *FuncInfo) InlTree(k int) InlTreeNode {
2029	if !fi.lengths.Initialized {
2030		panic("need to call Preload first")
2031	}
2032	node := (*goobj.FuncInfo)(nil).ReadInlTree(fi.data, fi.lengths.InlTreeOff, uint32(k))
2033	return InlTreeNode{
2034		Parent:   node.Parent,
2035		File:     node.File,
2036		Line:     node.Line,
2037		Func:     fi.l.resolve(fi.r, node.Func),
2038		ParentPC: node.ParentPC,
2039	}
2040}
2041
2042func (l *Loader) FuncInfo(i Sym) FuncInfo {
2043	r, auxs := l.auxs(i)
2044	for j := range auxs {
2045		a := &auxs[j]
2046		if a.Type() == goobj.AuxFuncInfo {
2047			b := r.Data(a.Sym().SymIdx)
2048			return FuncInfo{l, r, b, goobj.FuncInfoLengths{}}
2049		}
2050	}
2051	return FuncInfo{}
2052}
2053
2054// Preload a package: adds autolib.
2055// Does not add defined package or non-packaged symbols to the symbol table.
2056// These are done in LoadSyms.
2057// Does not read symbol data.
2058// Returns the fingerprint of the object.
2059func (l *Loader) Preload(localSymVersion int, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64) goobj.FingerprintType {
2060	roObject, readonly, err := f.Slice(uint64(length)) // TODO: no need to map blocks that are for tools only (e.g. RefName)
2061	if err != nil {
2062		log.Fatal("cannot read object file:", err)
2063	}
2064	r := goobj.NewReaderFromBytes(roObject, readonly)
2065	if r == nil {
2066		if len(roObject) >= 8 && bytes.Equal(roObject[:8], []byte("\x00go114ld")) {
2067			log.Fatalf("found object file %s in old format", f.File().Name())
2068		}
2069		panic("cannot read object file")
2070	}
2071	pkgprefix := objabi.PathToPrefix(lib.Pkg) + "."
2072	ndef := r.NSym()
2073	nhashed64def := r.NHashed64def()
2074	nhasheddef := r.NHasheddef()
2075	or := &oReader{
2076		Reader:       r,
2077		unit:         unit,
2078		version:      localSymVersion,
2079		flags:        r.Flags(),
2080		pkgprefix:    pkgprefix,
2081		syms:         make([]Sym, ndef+nhashed64def+nhasheddef+r.NNonpkgdef()+r.NNonpkgref()),
2082		ndef:         ndef,
2083		nhasheddef:   nhasheddef,
2084		nhashed64def: nhashed64def,
2085		objidx:       uint32(len(l.objs)),
2086	}
2087
2088	// Autolib
2089	lib.Autolib = append(lib.Autolib, r.Autolib()...)
2090
2091	// DWARF file table
2092	nfile := r.NFile()
2093	unit.FileTable = make([]string, nfile)
2094	for i := range unit.FileTable {
2095		unit.FileTable[i] = r.File(i)
2096	}
2097
2098	l.addObj(lib.Pkg, or)
2099
2100	// The caller expects us consuming all the data
2101	f.MustSeek(length, os.SEEK_CUR)
2102
2103	return r.Fingerprint()
2104}
2105
2106// Holds the loader along with temporary states for loading symbols.
2107type loadState struct {
2108	l            *Loader
2109	hashed64Syms map[uint64]symAndSize         // short hashed (content-addressable) symbols, keyed by content hash
2110	hashedSyms   map[goobj.HashType]symAndSize // hashed (content-addressable) symbols, keyed by content hash
2111}
2112
2113// Preload symbols of given kind from an object.
2114func (st *loadState) preloadSyms(r *oReader, kind int) {
2115	l := st.l
2116	var start, end uint32
2117	switch kind {
2118	case pkgDef:
2119		start = 0
2120		end = uint32(r.ndef)
2121	case hashed64Def:
2122		start = uint32(r.ndef)
2123		end = uint32(r.ndef + r.nhashed64def)
2124	case hashedDef:
2125		start = uint32(r.ndef + r.nhashed64def)
2126		end = uint32(r.ndef + r.nhashed64def + r.nhasheddef)
2127		if l.hasUnknownPkgPath {
2128			// The content hash depends on symbol name expansion. If any package is
2129			// built without fully expanded names, the content hash is unreliable.
2130			// Treat them as named symbols.
2131			// This is rare.
2132			// (We don't need to do this for hashed64Def case, as there the hash
2133			// function is simply the identity function, which doesn't depend on
2134			// name expansion.)
2135			kind = nonPkgDef
2136		}
2137	case nonPkgDef:
2138		start = uint32(r.ndef + r.nhashed64def + r.nhasheddef)
2139		end = uint32(r.ndef + r.nhashed64def + r.nhasheddef + r.NNonpkgdef())
2140	default:
2141		panic("preloadSyms: bad kind")
2142	}
2143	l.growAttrBitmaps(len(l.objSyms) + int(end-start))
2144	needNameExpansion := r.NeedNameExpansion()
2145	loadingRuntimePkg := r.unit.Lib.Pkg == "runtime"
2146	for i := start; i < end; i++ {
2147		osym := r.Sym(i)
2148		var name string
2149		var v int
2150		if kind != hashed64Def && kind != hashedDef { // we don't need the name, etc. for hashed symbols
2151			name = osym.Name(r.Reader)
2152			if needNameExpansion {
2153				name = strings.Replace(name, "\"\".", r.pkgprefix, -1)
2154			}
2155			v = abiToVer(osym.ABI(), r.version)
2156		}
2157		gi := st.addSym(name, v, r, i, kind, osym)
2158		r.syms[i] = gi
2159		if osym.Local() {
2160			l.SetAttrLocal(gi, true)
2161		}
2162		if osym.UsedInIface() {
2163			l.SetAttrUsedInIface(gi, true)
2164		}
2165		if strings.HasPrefix(name, "runtime.") ||
2166			(loadingRuntimePkg && strings.HasPrefix(name, "type.")) {
2167			if bi := goobj.BuiltinIdx(name, int(osym.ABI())); bi != -1 {
2168				// This is a definition of a builtin symbol. Record where it is.
2169				l.builtinSyms[bi] = gi
2170			}
2171		}
2172		if a := int32(osym.Align()); a != 0 && a > l.SymAlign(gi) {
2173			l.SetSymAlign(gi, a)
2174		}
2175	}
2176}
2177
2178// Add syms, hashed (content-addressable) symbols, non-package symbols, and
2179// references to external symbols (which are always named).
2180func (l *Loader) LoadSyms(arch *sys.Arch) {
2181	// Allocate space for symbols, making a guess as to how much space we need.
2182	// This function was determined empirically by looking at the cmd/compile on
2183	// Darwin, and picking factors for hashed and hashed64 syms.
2184	var symSize, hashedSize, hashed64Size int
2185	for _, o := range l.objs[goObjStart:] {
2186		symSize += o.r.ndef + o.r.nhasheddef/2 + o.r.nhashed64def/2 + o.r.NNonpkgdef()
2187		hashedSize += o.r.nhasheddef / 2
2188		hashed64Size += o.r.nhashed64def / 2
2189	}
2190	// Index 0 is invalid for symbols.
2191	l.objSyms = make([]objSym, 1, symSize)
2192
2193	st := loadState{
2194		l:            l,
2195		hashed64Syms: make(map[uint64]symAndSize, hashed64Size),
2196		hashedSyms:   make(map[goobj.HashType]symAndSize, hashedSize),
2197	}
2198
2199	for _, o := range l.objs[goObjStart:] {
2200		st.preloadSyms(o.r, pkgDef)
2201	}
2202	l.npkgsyms = l.NSym()
2203	for _, o := range l.objs[goObjStart:] {
2204		st.preloadSyms(o.r, hashed64Def)
2205		st.preloadSyms(o.r, hashedDef)
2206		st.preloadSyms(o.r, nonPkgDef)
2207	}
2208	l.nhashedsyms = len(st.hashed64Syms) + len(st.hashedSyms)
2209	for _, o := range l.objs[goObjStart:] {
2210		loadObjRefs(l, o.r, arch)
2211	}
2212	l.values = make([]int64, l.NSym(), l.NSym()+1000) // +1000 make some room for external symbols
2213}
2214
2215func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch) {
2216	// load non-package refs
2217	ndef := uint32(r.NAlldef())
2218	needNameExpansion := r.NeedNameExpansion()
2219	for i, n := uint32(0), uint32(r.NNonpkgref()); i < n; i++ {
2220		osym := r.Sym(ndef + i)
2221		name := osym.Name(r.Reader)
2222		if needNameExpansion {
2223			name = strings.Replace(name, "\"\".", r.pkgprefix, -1)
2224		}
2225		v := abiToVer(osym.ABI(), r.version)
2226		r.syms[ndef+i] = l.LookupOrCreateSym(name, v)
2227		gi := r.syms[ndef+i]
2228		if osym.Local() {
2229			l.SetAttrLocal(gi, true)
2230		}
2231		if osym.UsedInIface() {
2232			l.SetAttrUsedInIface(gi, true)
2233		}
2234	}
2235
2236	// referenced packages
2237	npkg := r.NPkg()
2238	r.pkg = make([]uint32, npkg)
2239	for i := 1; i < npkg; i++ { // PkgIdx 0 is a dummy invalid package
2240		pkg := r.Pkg(i)
2241		objidx, ok := l.objByPkg[pkg]
2242		if !ok {
2243			log.Fatalf("%v: reference to nonexistent package %s", r.unit.Lib, pkg)
2244		}
2245		r.pkg[i] = objidx
2246	}
2247
2248	// load flags of package refs
2249	for i, n := 0, r.NRefFlags(); i < n; i++ {
2250		rf := r.RefFlags(i)
2251		gi := l.resolve(r, rf.Sym())
2252		if rf.Flag2()&goobj.SymFlagUsedInIface != 0 {
2253			l.SetAttrUsedInIface(gi, true)
2254		}
2255	}
2256}
2257
2258func abiToVer(abi uint16, localSymVersion int) int {
2259	var v int
2260	if abi == goobj.SymABIstatic {
2261		// Static
2262		v = localSymVersion
2263	} else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 {
2264		// Note that data symbols are "ABI0", which maps to version 0.
2265		v = abiver
2266	} else {
2267		log.Fatalf("invalid symbol ABI: %d", abi)
2268	}
2269	return v
2270}
2271
2272// TopLevelSym tests a symbol (by name and kind) to determine whether
2273// the symbol first class sym (participating in the link) or is an
2274// anonymous aux or sub-symbol containing some sub-part or payload of
2275// another symbol.
2276func (l *Loader) TopLevelSym(s Sym) bool {
2277	return topLevelSym(l.RawSymName(s), l.SymType(s))
2278}
2279
2280// topLevelSym tests a symbol name and kind to determine whether
2281// the symbol first class sym (participating in the link) or is an
2282// anonymous aux or sub-symbol containing some sub-part or payload of
2283// another symbol.
2284func topLevelSym(sname string, skind sym.SymKind) bool {
2285	if sname != "" {
2286		return true
2287	}
2288	switch skind {
2289	case sym.SDWARFFCN, sym.SDWARFABSFCN, sym.SDWARFTYPE, sym.SDWARFCONST, sym.SDWARFCUINFO, sym.SDWARFRANGE, sym.SDWARFLOC, sym.SDWARFLINES, sym.SGOFUNC:
2290		return true
2291	default:
2292		return false
2293	}
2294}
2295
2296// cloneToExternal takes the existing object file symbol (symIdx)
2297// and creates a new external symbol payload that is a clone with
2298// respect to name, version, type, relocations, etc. The idea here
2299// is that if the linker decides it wants to update the contents of
2300// a symbol originally discovered as part of an object file, it's
2301// easier to do this if we make the updates to an external symbol
2302// payload.
2303func (l *Loader) cloneToExternal(symIdx Sym) {
2304	if l.IsExternal(symIdx) {
2305		panic("sym is already external, no need for clone")
2306	}
2307
2308	// Read the particulars from object.
2309	r, li := l.toLocal(symIdx)
2310	osym := r.Sym(li)
2311	sname := osym.Name(r.Reader)
2312	if r.NeedNameExpansion() {
2313		sname = strings.Replace(sname, "\"\".", r.pkgprefix, -1)
2314	}
2315	sver := abiToVer(osym.ABI(), r.version)
2316	skind := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())]
2317
2318	// Create new symbol, update version and kind.
2319	pi := l.newPayload(sname, sver)
2320	pp := l.payloads[pi]
2321	pp.kind = skind
2322	pp.ver = sver
2323	pp.size = int64(osym.Siz())
2324	pp.objidx = r.objidx
2325
2326	// If this is a def, then copy the guts. We expect this case
2327	// to be very rare (one case it may come up is with -X).
2328	if li < uint32(r.NAlldef()) {
2329
2330		// Copy relocations
2331		relocs := l.Relocs(symIdx)
2332		pp.relocs = make([]goobj.Reloc, relocs.Count())
2333		for i := range pp.relocs {
2334			// Copy the relocs slice.
2335			// Convert local reference to global reference.
2336			rel := relocs.At(i)
2337			pp.relocs[i].Set(rel.Off(), rel.Siz(), uint16(rel.Type()), rel.Add(), goobj.SymRef{PkgIdx: 0, SymIdx: uint32(rel.Sym())})
2338		}
2339
2340		// Copy data
2341		pp.data = r.Data(li)
2342	}
2343
2344	// If we're overriding a data symbol, collect the associated
2345	// Gotype, so as to propagate it to the new symbol.
2346	auxs := r.Auxs(li)
2347	pp.auxs = auxs
2348
2349	// Install new payload to global index space.
2350	// (This needs to happen at the end, as the accessors above
2351	// need to access the old symbol content.)
2352	l.objSyms[symIdx] = objSym{l.extReader.objidx, uint32(pi)}
2353	l.extReader.syms = append(l.extReader.syms, symIdx)
2354}
2355
2356// Copy the payload of symbol src to dst. Both src and dst must be external
2357// symbols.
2358// The intended use case is that when building/linking against a shared library,
2359// where we do symbol name mangling, the Go object file may have reference to
2360// the original symbol name whereas the shared library provides a symbol with
2361// the mangled name. When we do mangling, we copy payload of mangled to original.
2362func (l *Loader) CopySym(src, dst Sym) {
2363	if !l.IsExternal(dst) {
2364		panic("dst is not external") //l.newExtSym(l.SymName(dst), l.SymVersion(dst))
2365	}
2366	if !l.IsExternal(src) {
2367		panic("src is not external") //l.cloneToExternal(src)
2368	}
2369	l.payloads[l.extIndex(dst)] = l.payloads[l.extIndex(src)]
2370	l.SetSymPkg(dst, l.SymPkg(src))
2371	// TODO: other attributes?
2372}
2373
2374// CopyAttributes copies over all of the attributes of symbol 'src' to
2375// symbol 'dst'.
2376func (l *Loader) CopyAttributes(src Sym, dst Sym) {
2377	l.SetAttrReachable(dst, l.AttrReachable(src))
2378	l.SetAttrOnList(dst, l.AttrOnList(src))
2379	l.SetAttrLocal(dst, l.AttrLocal(src))
2380	l.SetAttrNotInSymbolTable(dst, l.AttrNotInSymbolTable(src))
2381	if l.IsExternal(dst) {
2382		l.SetAttrVisibilityHidden(dst, l.AttrVisibilityHidden(src))
2383		l.SetAttrDuplicateOK(dst, l.AttrDuplicateOK(src))
2384		l.SetAttrShared(dst, l.AttrShared(src))
2385		l.SetAttrExternal(dst, l.AttrExternal(src))
2386	} else {
2387		// Some attributes are modifiable only for external symbols.
2388		// In such cases, don't try to transfer over the attribute
2389		// from the source even if there is a clash. This comes up
2390		// when copying attributes from a dupOK ABI wrapper symbol to
2391		// the real target symbol (which may not be marked dupOK).
2392	}
2393	l.SetAttrSpecial(dst, l.AttrSpecial(src))
2394	l.SetAttrCgoExportDynamic(dst, l.AttrCgoExportDynamic(src))
2395	l.SetAttrCgoExportStatic(dst, l.AttrCgoExportStatic(src))
2396	l.SetAttrReadOnly(dst, l.AttrReadOnly(src))
2397}
2398
2399// CreateExtSym creates a new external symbol with the specified name
2400// without adding it to any lookup tables, returning a Sym index for it.
2401func (l *Loader) CreateExtSym(name string, ver int) Sym {
2402	return l.newExtSym(name, ver)
2403}
2404
2405// CreateStaticSym creates a new static symbol with the specified name
2406// without adding it to any lookup tables, returning a Sym index for it.
2407func (l *Loader) CreateStaticSym(name string) Sym {
2408	// Assign a new unique negative version -- this is to mark the
2409	// symbol so that it is not included in the name lookup table.
2410	l.anonVersion--
2411	return l.newExtSym(name, l.anonVersion)
2412}
2413
2414func (l *Loader) FreeSym(i Sym) {
2415	if l.IsExternal(i) {
2416		pp := l.getPayload(i)
2417		*pp = extSymPayload{}
2418	}
2419}
2420
2421// relocId is essentially a <S,R> tuple identifying the Rth
2422// relocation of symbol S.
2423type relocId struct {
2424	sym  Sym
2425	ridx int
2426}
2427
2428// SetRelocVariant sets the 'variant' property of a relocation on
2429// some specific symbol.
2430func (l *Loader) SetRelocVariant(s Sym, ri int, v sym.RelocVariant) {
2431	// sanity check
2432	if relocs := l.Relocs(s); ri >= relocs.Count() {
2433		panic("invalid relocation ID")
2434	}
2435	if l.relocVariant == nil {
2436		l.relocVariant = make(map[relocId]sym.RelocVariant)
2437	}
2438	if v != 0 {
2439		l.relocVariant[relocId{s, ri}] = v
2440	} else {
2441		delete(l.relocVariant, relocId{s, ri})
2442	}
2443}
2444
2445// RelocVariant returns the 'variant' property of a relocation on
2446// some specific symbol.
2447func (l *Loader) RelocVariant(s Sym, ri int) sym.RelocVariant {
2448	return l.relocVariant[relocId{s, ri}]
2449}
2450
2451// UndefinedRelocTargets iterates through the global symbol index
2452// space, looking for symbols with relocations targeting undefined
2453// references. The linker's loadlib method uses this to determine if
2454// there are unresolved references to functions in system libraries
2455// (for example, libgcc.a), presumably due to CGO code. Return
2456// value is a list of loader.Sym's corresponding to the undefined
2457// cross-refs. The "limit" param controls the maximum number of
2458// results returned; if "limit" is -1, then all undefs are returned.
2459func (l *Loader) UndefinedRelocTargets(limit int) []Sym {
2460	result := []Sym{}
2461	for si := Sym(1); si < Sym(len(l.objSyms)); si++ {
2462		relocs := l.Relocs(si)
2463		for ri := 0; ri < relocs.Count(); ri++ {
2464			r := relocs.At(ri)
2465			rs := r.Sym()
2466			if rs != 0 && l.SymType(rs) == sym.SXREF && l.RawSymName(rs) != ".got" {
2467				result = append(result, rs)
2468				if limit != -1 && len(result) >= limit {
2469					break
2470				}
2471			}
2472		}
2473	}
2474	return result
2475}
2476
2477// AssignTextSymbolOrder populates the Textp slices within each
2478// library and compilation unit, insuring that packages are laid down
2479// in dependency order (internal first, then everything else). Return value
2480// is a slice of all text syms.
2481func (l *Loader) AssignTextSymbolOrder(libs []*sym.Library, intlibs []bool, extsyms []Sym) []Sym {
2482
2483	// Library Textp lists should be empty at this point.
2484	for _, lib := range libs {
2485		if len(lib.Textp) != 0 {
2486			panic("expected empty Textp slice for library")
2487		}
2488		if len(lib.DupTextSyms) != 0 {
2489			panic("expected empty DupTextSyms slice for library")
2490		}
2491	}
2492
2493	// Used to record which dupok symbol we've assigned to a unit.
2494	// Can't use the onlist attribute here because it will need to
2495	// clear for the later assignment of the sym.Symbol to a unit.
2496	// NB: we can convert to using onList once we no longer have to
2497	// call the regular addToTextp.
2498	assignedToUnit := MakeBitmap(l.NSym() + 1)
2499
2500	// Start off textp with reachable external syms.
2501	textp := []Sym{}
2502	for _, sym := range extsyms {
2503		if !l.attrReachable.Has(sym) {
2504			continue
2505		}
2506		textp = append(textp, sym)
2507	}
2508
2509	// Walk through all text symbols from Go object files and append
2510	// them to their corresponding library's textp list.
2511	for _, o := range l.objs[goObjStart:] {
2512		r := o.r
2513		lib := r.unit.Lib
2514		for i, n := uint32(0), uint32(r.NAlldef()); i < n; i++ {
2515			gi := l.toGlobal(r, i)
2516			if !l.attrReachable.Has(gi) {
2517				continue
2518			}
2519			osym := r.Sym(i)
2520			st := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())]
2521			if st != sym.STEXT {
2522				continue
2523			}
2524			dupok := osym.Dupok()
2525			if r2, i2 := l.toLocal(gi); r2 != r || i2 != i {
2526				// A dupok text symbol is resolved to another package.
2527				// We still need to record its presence in the current
2528				// package, as the trampoline pass expects packages
2529				// are laid out in dependency order.
2530				lib.DupTextSyms = append(lib.DupTextSyms, sym.LoaderSym(gi))
2531				continue // symbol in different object
2532			}
2533			if dupok {
2534				lib.DupTextSyms = append(lib.DupTextSyms, sym.LoaderSym(gi))
2535				continue
2536			}
2537
2538			lib.Textp = append(lib.Textp, sym.LoaderSym(gi))
2539		}
2540	}
2541
2542	// Now assemble global textp, and assign text symbols to units.
2543	for _, doInternal := range [2]bool{true, false} {
2544		for idx, lib := range libs {
2545			if intlibs[idx] != doInternal {
2546				continue
2547			}
2548			lists := [2][]sym.LoaderSym{lib.Textp, lib.DupTextSyms}
2549			for i, list := range lists {
2550				for _, s := range list {
2551					sym := Sym(s)
2552					if !assignedToUnit.Has(sym) {
2553						textp = append(textp, sym)
2554						unit := l.SymUnit(sym)
2555						if unit != nil {
2556							unit.Textp = append(unit.Textp, s)
2557							assignedToUnit.Set(sym)
2558						}
2559						// Dupok symbols may be defined in multiple packages; the
2560						// associated package for a dupok sym is chosen sort of
2561						// arbitrarily (the first containing package that the linker
2562						// loads). Canonicalizes its Pkg to the package with which
2563						// it will be laid down in text.
2564						if i == 1 /* DupTextSyms2 */ && l.SymPkg(sym) != lib.Pkg {
2565							l.SetSymPkg(sym, lib.Pkg)
2566						}
2567					}
2568				}
2569			}
2570			lib.Textp = nil
2571			lib.DupTextSyms = nil
2572		}
2573	}
2574
2575	return textp
2576}
2577
2578// ErrorReporter is a helper class for reporting errors.
2579type ErrorReporter struct {
2580	ldr              *Loader
2581	AfterErrorAction func()
2582}
2583
2584// Errorf method logs an error message.
2585//
2586// After each error, the error actions function will be invoked; this
2587// will either terminate the link immediately (if -h option given)
2588// or it will keep a count and exit if more than 20 errors have been printed.
2589//
2590// Logging an error means that on exit cmd/link will delete any
2591// output file and return a non-zero error code.
2592//
2593func (reporter *ErrorReporter) Errorf(s Sym, format string, args ...interface{}) {
2594	if s != 0 && reporter.ldr.SymName(s) != "" {
2595		// Note: Replace is needed here because symbol names might have % in them,
2596		// due to the use of LinkString for names of instantiating types.
2597		format = strings.Replace(reporter.ldr.SymName(s), "%", "%%", -1) + ": " + format
2598	} else {
2599		format = fmt.Sprintf("sym %d: %s", s, format)
2600	}
2601	format += "\n"
2602	fmt.Fprintf(os.Stderr, format, args...)
2603	reporter.AfterErrorAction()
2604}
2605
2606// GetErrorReporter returns the loader's associated error reporter.
2607func (l *Loader) GetErrorReporter() *ErrorReporter {
2608	return l.errorReporter
2609}
2610
2611// Errorf method logs an error message. See ErrorReporter.Errorf for details.
2612func (l *Loader) Errorf(s Sym, format string, args ...interface{}) {
2613	l.errorReporter.Errorf(s, format, args...)
2614}
2615
2616// Symbol statistics.
2617func (l *Loader) Stat() string {
2618	s := fmt.Sprintf("%d symbols, %d reachable\n", l.NSym(), l.NReachableSym())
2619	s += fmt.Sprintf("\t%d package symbols, %d hashed symbols, %d non-package symbols, %d external symbols\n",
2620		l.npkgsyms, l.nhashedsyms, int(l.extStart)-l.npkgsyms-l.nhashedsyms, l.NSym()-int(l.extStart))
2621	return s
2622}
2623
2624// For debugging.
2625func (l *Loader) Dump() {
2626	fmt.Println("objs")
2627	for _, obj := range l.objs[goObjStart:] {
2628		if obj.r != nil {
2629			fmt.Println(obj.i, obj.r.unit.Lib)
2630		}
2631	}
2632	fmt.Println("extStart:", l.extStart)
2633	fmt.Println("Nsyms:", len(l.objSyms))
2634	fmt.Println("syms")
2635	for i := Sym(1); i < Sym(len(l.objSyms)); i++ {
2636		pi := ""
2637		if l.IsExternal(i) {
2638			pi = fmt.Sprintf("<ext %d>", l.extIndex(i))
2639		}
2640		sect := ""
2641		if l.SymSect(i) != nil {
2642			sect = l.SymSect(i).Name
2643		}
2644		fmt.Printf("%v %v %v %v %x %v\n", i, l.SymName(i), l.SymType(i), pi, l.SymValue(i), sect)
2645	}
2646	fmt.Println("symsByName")
2647	for name, i := range l.symsByName[0] {
2648		fmt.Println(i, name, 0)
2649	}
2650	for name, i := range l.symsByName[1] {
2651		fmt.Println(i, name, 1)
2652	}
2653	fmt.Println("payloads:")
2654	for i := range l.payloads {
2655		pp := l.payloads[i]
2656		fmt.Println(i, pp.name, pp.ver, pp.kind)
2657	}
2658}
2659