1 ///////////////////////////////////////////////////////////////////////
2 // File:        baselinedetect.cpp
3 // Description: Initial Baseline Determination.
4 // Copyright 2012 Google Inc. All Rights Reserved.
5 // Author:      rays@google.com (Ray Smith)
6 //
7 // Licensed under the Apache License, Version 2.0 (the "License");
8 // you may not use this file except in compliance with the License.
9 // You may obtain a copy of the License at
10 // http://www.apache.org/licenses/LICENSE-2.0
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 //
17 ///////////////////////////////////////////////////////////////////////
18 
19 #define _USE_MATH_DEFINES // for M_PI
20 
21 #ifdef HAVE_CONFIG_H
22 #  include "config_auto.h"
23 #endif
24 
25 #include "baselinedetect.h"
26 
27 #include <allheaders.h>
28 #include <algorithm>
29 #include <cfloat> // for FLT_MAX
30 #include <cmath>  // for M_PI
31 #include "blobbox.h"
32 #include "detlinefit.h"
33 #include "drawtord.h"
34 #include "helpers.h"
35 #include "linlsq.h"
36 #include "makerow.h"
37 #include "textord.h"
38 #include "tprintf.h"
39 #include "underlin.h"
40 
41 // Number of displacement modes kept in displacement_modes_;
42 const int kMaxDisplacementsModes = 3;
43 // Number of points to skip when retrying initial fit.
44 const int kNumSkipPoints = 3;
45 // Max angle deviation (in radians) allowed to keep the independent baseline.
46 const double kMaxSkewDeviation = 1.0 / 64;
47 // Fraction of line spacing estimate for quantization of blob displacements.
48 const double kOffsetQuantizationFactor = 3.0 / 64;
49 // Fraction of line spacing estimate for computing blob fit error.
50 const double kFitHalfrangeFactor = 6.0 / 64;
51 // Max fraction of line spacing allowed before a baseline counts as badly
52 // fitting.
53 const double kMaxBaselineError = 3.0 / 64;
54 // Multiple of linespacing that sets max_blob_size in TO_BLOCK.
55 // Copied from textord_excess_blobsize.
56 const double kMaxBlobSizeMultiple = 1.3;
57 // Min fraction of linespacing gaps that should be close to the model before
58 // we will force the linespacing model on all the lines.
59 const double kMinFittingLinespacings = 0.25;
60 // A y-coordinate within a textline that is to be debugged.
61 //#define kDebugYCoord 1525
62 
63 namespace tesseract {
64 
BaselineRow(double line_spacing,TO_ROW * to_row)65 BaselineRow::BaselineRow(double line_spacing, TO_ROW *to_row)
66     : blobs_(to_row->blob_list()),
67       baseline_pt1_(0.0f, 0.0f),
68       baseline_pt2_(0.0f, 0.0f),
69       baseline_error_(0.0),
70       good_baseline_(false) {
71   ComputeBoundingBox();
72   // Compute a scale factor for rounding to ints.
73   disp_quant_factor_ = kOffsetQuantizationFactor * line_spacing;
74   fit_halfrange_ = kFitHalfrangeFactor * line_spacing;
75   max_baseline_error_ = kMaxBaselineError * line_spacing;
76 }
77 
78 // Sets the TO_ROW with the output straight line.
SetupOldLineParameters(TO_ROW * row) const79 void BaselineRow::SetupOldLineParameters(TO_ROW *row) const {
80   // TODO(rays) get rid of this when m and c are no longer used.
81   double gradient = tan(BaselineAngle());
82   // para_c is the actual intercept of the baseline on the y-axis.
83   float para_c = StraightYAtX(0.0);
84   row->set_line(gradient, para_c, baseline_error_);
85   row->set_parallel_line(gradient, para_c, baseline_error_);
86 }
87 
88 // Outputs diagnostic information.
Print() const89 void BaselineRow::Print() const {
90   tprintf("Baseline (%g,%g)->(%g,%g), angle=%g, intercept=%g\n",
91           baseline_pt1_.x(), baseline_pt1_.y(), baseline_pt2_.x(),
92           baseline_pt2_.y(), BaselineAngle(), StraightYAtX(0.0));
93   tprintf("Quant factor=%g, error=%g, good=%d, box:", disp_quant_factor_,
94           baseline_error_, good_baseline_);
95   bounding_box_.print();
96 }
97 
98 // Returns the skew angle (in radians) of the current baseline in [-pi,pi].
BaselineAngle() const99 double BaselineRow::BaselineAngle() const {
100   FCOORD baseline_dir(baseline_pt2_ - baseline_pt1_);
101   double angle = baseline_dir.angle();
102   // Baseline directions are only unique in a range of pi so constrain to
103   // [-pi/2, pi/2].
104   return fmod(angle + M_PI * 1.5, M_PI) - M_PI * 0.5;
105 }
106 
107 // Computes and returns the linespacing at the middle of the overlap
108 // between this and other.
SpaceBetween(const BaselineRow & other) const109 double BaselineRow::SpaceBetween(const BaselineRow &other) const {
110   // Find the x-centre of overlap of the lines.
111   float x = (std::max(bounding_box_.left(), other.bounding_box_.left()) +
112              std::min(bounding_box_.right(), other.bounding_box_.right())) /
113             2.0f;
114   // Find the vertical centre between them.
115   float y = (StraightYAtX(x) + other.StraightYAtX(x)) / 2.0f;
116   // Find the perpendicular distance of (x,y) from each line.
117   FCOORD pt(x, y);
118   return PerpDistanceFromBaseline(pt) + other.PerpDistanceFromBaseline(pt);
119 }
120 
121 // Computes and returns the displacement of the center of the line
122 // perpendicular to the given direction.
PerpDisp(const FCOORD & direction) const123 double BaselineRow::PerpDisp(const FCOORD &direction) const {
124   float middle_x = (bounding_box_.left() + bounding_box_.right()) / 2.0f;
125   FCOORD middle_pos(middle_x, StraightYAtX(middle_x));
126   return direction * middle_pos / direction.length();
127 }
128 
129 // Computes the y coordinate at the given x using the straight baseline
130 // defined by baseline_pt1_ and baseline_pt2__.
StraightYAtX(double x) const131 double BaselineRow::StraightYAtX(double x) const {
132   double denominator = baseline_pt2_.x() - baseline_pt1_.x();
133   if (denominator == 0.0) {
134     return (baseline_pt1_.y() + baseline_pt2_.y()) / 2.0;
135   }
136   return baseline_pt1_.y() + (x - baseline_pt1_.x()) *
137                                  (baseline_pt2_.y() - baseline_pt1_.y()) /
138                                  denominator;
139 }
140 
141 // Fits a straight baseline to the points. Returns true if it had enough
142 // points to be reasonably sure of the fitted baseline.
143 // If use_box_bottoms is false, baselines positions are formed by
144 // considering the outlines of the blobs.
FitBaseline(bool use_box_bottoms)145 bool BaselineRow::FitBaseline(bool use_box_bottoms) {
146   // Deterministic fitting is used wherever possible.
147   fitter_.Clear();
148   // Linear least squares is a backup if the DetLineFit produces a bad line.
149   LLSQ llsq;
150   BLOBNBOX_IT blob_it(blobs_);
151 
152   for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
153     BLOBNBOX *blob = blob_it.data();
154     if (!use_box_bottoms) {
155       blob->EstimateBaselinePosition();
156     }
157     const TBOX &box = blob->bounding_box();
158     int x_middle = (box.left() + box.right()) / 2;
159 #ifdef kDebugYCoord
160     if (box.bottom() < kDebugYCoord && box.top() > kDebugYCoord) {
161       tprintf("Box bottom = %d, baseline pos=%d for box at:", box.bottom(),
162               blob->baseline_position());
163       box.print();
164     }
165 #endif
166     fitter_.Add(ICOORD(x_middle, blob->baseline_position()), box.width() / 2);
167     llsq.add(x_middle, blob->baseline_position());
168   }
169   // Fit the line.
170   ICOORD pt1, pt2;
171   baseline_error_ = fitter_.Fit(&pt1, &pt2);
172   baseline_pt1_ = pt1;
173   baseline_pt2_ = pt2;
174   if (baseline_error_ > max_baseline_error_ &&
175       fitter_.SufficientPointsForIndependentFit()) {
176     // The fit was bad but there were plenty of points, so try skipping
177     // the first and last few, and use the new line if it dramatically improves
178     // the error of fit.
179     double error = fitter_.Fit(kNumSkipPoints, kNumSkipPoints, &pt1, &pt2);
180     if (error < baseline_error_ / 2.0) {
181       baseline_error_ = error;
182       baseline_pt1_ = pt1;
183       baseline_pt2_ = pt2;
184     }
185   }
186   int debug = 0;
187 #ifdef kDebugYCoord
188   Print();
189   debug = bounding_box_.bottom() < kDebugYCoord &&
190                   bounding_box_.top() > kDebugYCoord
191               ? 3
192               : 2;
193 #endif
194   // Now we obtained a direction from that fit, see if we can improve the
195   // fit using the same direction and some other start point.
196   FCOORD direction(pt2 - pt1);
197   double target_offset = direction * pt1;
198   good_baseline_ = false;
199   FitConstrainedIfBetter(debug, direction, 0.0, target_offset);
200   // Wild lines can be produced because DetLineFit allows vertical lines, but
201   // vertical text has been rotated so angles over pi/4 should be disallowed.
202   // Near vertical lines can still be produced by vertically aligned components
203   // on very short lines.
204   double angle = BaselineAngle();
205   if (fabs(angle) > M_PI * 0.25) {
206     // Use the llsq fit as a backup.
207     baseline_pt1_ = llsq.mean_point();
208     baseline_pt2_ = baseline_pt1_ + FCOORD(1.0f, llsq.m());
209     // TODO(rays) get rid of this when m and c are no longer used.
210     double m = llsq.m();
211     double c = llsq.c(m);
212     baseline_error_ = llsq.rms(m, c);
213     good_baseline_ = false;
214   }
215   return good_baseline_;
216 }
217 
218 // Modifies an existing result of FitBaseline to be parallel to the given
219 // direction vector if that produces a better result.
AdjustBaselineToParallel(int debug,const FCOORD & direction)220 void BaselineRow::AdjustBaselineToParallel(int debug, const FCOORD &direction) {
221   SetupBlobDisplacements(direction);
222   if (displacement_modes_.empty()) {
223     return;
224   }
225 #ifdef kDebugYCoord
226   if (bounding_box_.bottom() < kDebugYCoord &&
227       bounding_box_.top() > kDebugYCoord && debug < 3)
228     debug = 3;
229 #endif
230   FitConstrainedIfBetter(debug, direction, 0.0, displacement_modes_[0]);
231 }
232 
233 // Modifies the baseline to snap to the textline grid if the existing
234 // result is not good enough.
AdjustBaselineToGrid(int debug,const FCOORD & direction,double line_spacing,double line_offset)235 double BaselineRow::AdjustBaselineToGrid(int debug, const FCOORD &direction,
236                                          double line_spacing,
237                                          double line_offset) {
238   if (blobs_->empty()) {
239     if (debug > 1) {
240       tprintf("Row empty at:");
241       bounding_box_.print();
242     }
243     return line_offset;
244   }
245   // Find the displacement_modes_ entry nearest to the grid.
246   double best_error = 0.0;
247   int best_index = -1;
248   for (unsigned i = 0; i < displacement_modes_.size(); ++i) {
249     double blob_y = displacement_modes_[i];
250     double error =
251         BaselineBlock::SpacingModelError(blob_y, line_spacing, line_offset);
252     if (debug > 1) {
253       tprintf("Mode at %g has error %g from model \n", blob_y, error);
254     }
255     if (best_index < 0 || error < best_error) {
256       best_error = error;
257       best_index = i;
258     }
259   }
260   // We will move the baseline only if the chosen mode is close enough to the
261   // model.
262   double model_margin = max_baseline_error_ - best_error;
263   if (best_index >= 0 && model_margin > 0.0) {
264     // But if the current baseline is already close to the mode there is no
265     // point, and only the potential to damage accuracy by changing its angle.
266     double perp_disp = PerpDisp(direction);
267     double shift = displacement_modes_[best_index] - perp_disp;
268     if (fabs(shift) > max_baseline_error_) {
269       if (debug > 1) {
270         tprintf("Attempting linespacing model fit with mode %g to row at:",
271                 displacement_modes_[best_index]);
272         bounding_box_.print();
273       }
274       FitConstrainedIfBetter(debug, direction, model_margin,
275                              displacement_modes_[best_index]);
276     } else if (debug > 1) {
277       tprintf("Linespacing model only moves current line by %g for row at:",
278               shift);
279       bounding_box_.print();
280     }
281   } else if (debug > 1) {
282     tprintf("Linespacing model not close enough to any mode for row at:");
283     bounding_box_.print();
284   }
285   return fmod(PerpDisp(direction), line_spacing);
286 }
287 
288 // Sets up displacement_modes_ with the top few modes of the perpendicular
289 // distance of each blob from the given direction vector, after rounding.
SetupBlobDisplacements(const FCOORD & direction)290 void BaselineRow::SetupBlobDisplacements(const FCOORD &direction) {
291   // Set of perpendicular displacements of the blob bottoms from the required
292   // baseline direction.
293   std::vector<double> perp_blob_dists;
294   displacement_modes_.clear();
295   // Gather the skew-corrected position of every blob.
296   double min_dist = FLT_MAX;
297   double max_dist = -FLT_MAX;
298   BLOBNBOX_IT blob_it(blobs_);
299 #ifdef kDebugYCoord
300   bool debug = false;
301 #endif
302   for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
303     BLOBNBOX *blob = blob_it.data();
304     const TBOX &box = blob->bounding_box();
305 #ifdef kDebugYCoord
306     if (box.bottom() < kDebugYCoord && box.top() > kDebugYCoord)
307       debug = true;
308 #endif
309     FCOORD blob_pos((box.left() + box.right()) / 2.0f,
310                     blob->baseline_position());
311     double offset = direction * blob_pos;
312     perp_blob_dists.push_back(offset);
313 #ifdef kDebugYCoord
314     if (debug) {
315       tprintf("Displacement %g for blob at:", offset);
316       box.print();
317     }
318 #endif
319     UpdateRange(offset, &min_dist, &max_dist);
320   }
321   // Set up a histogram using disp_quant_factor_ as the bucket size.
322   STATS dist_stats(IntCastRounded(min_dist / disp_quant_factor_),
323                    IntCastRounded(max_dist / disp_quant_factor_) + 1);
324   for (double perp_blob_dist : perp_blob_dists) {
325     dist_stats.add(IntCastRounded(perp_blob_dist / disp_quant_factor_), 1);
326   }
327   std::vector<KDPairInc<float, int>> scaled_modes;
328   dist_stats.top_n_modes(kMaxDisplacementsModes, scaled_modes);
329 #ifdef kDebugYCoord
330   if (debug) {
331     for (int i = 0; i < scaled_modes.size(); ++i) {
332       tprintf("Top mode = %g * %d\n", scaled_modes[i].key * disp_quant_factor_,
333               scaled_modes[i].data());
334     }
335   }
336 #endif
337   for (auto &scaled_mode : scaled_modes) {
338     displacement_modes_.push_back(disp_quant_factor_ * scaled_mode.key());
339   }
340 }
341 
342 // Fits a line in the given direction to blobs that are close to the given
343 // target_offset perpendicular displacement from the direction. The fit
344 // error is allowed to be cheat_allowance worse than the existing fit, and
345 // will still be used.
346 // If cheat_allowance > 0, the new fit will be good and replace the current
347 // fit if it has better fit (with cheat) OR its error is below
348 // max_baseline_error_ and the old fit is marked bad.
349 // Otherwise the new fit will only replace the old if it is really better,
350 // or the old fit is marked bad and the new fit has sufficient points, as
351 // well as being within the max_baseline_error_.
FitConstrainedIfBetter(int debug,const FCOORD & direction,double cheat_allowance,double target_offset)352 void BaselineRow::FitConstrainedIfBetter(int debug, const FCOORD &direction,
353                                          double cheat_allowance,
354                                          double target_offset) {
355   double halfrange = fit_halfrange_ * direction.length();
356   double min_dist = target_offset - halfrange;
357   double max_dist = target_offset + halfrange;
358   ICOORD line_pt;
359   double new_error = fitter_.ConstrainedFit(direction, min_dist, max_dist,
360                                             debug > 2, &line_pt);
361   // Allow cheat_allowance off the new error
362   new_error -= cheat_allowance;
363   double old_angle = BaselineAngle();
364   double new_angle = direction.angle();
365   if (debug > 1) {
366     tprintf("Constrained error = %g, original = %g", new_error,
367             baseline_error_);
368     tprintf(" angles = %g, %g, delta=%g vs threshold %g\n", old_angle,
369             new_angle, new_angle - old_angle, kMaxSkewDeviation);
370   }
371   bool new_good_baseline =
372       new_error <= max_baseline_error_ &&
373       (cheat_allowance > 0.0 || fitter_.SufficientPointsForIndependentFit());
374   // The new will replace the old if any are true:
375   // 1. the new error is better
376   // 2. the old is NOT good, but the new is
377   // 3. there is a wild angular difference between them (assuming that the new
378   //    is a better guess at the angle.)
379   if (new_error <= baseline_error_ || (!good_baseline_ && new_good_baseline) ||
380       fabs(new_angle - old_angle) > kMaxSkewDeviation) {
381     baseline_error_ = new_error;
382     baseline_pt1_ = line_pt;
383     baseline_pt2_ = baseline_pt1_ + direction;
384     good_baseline_ = new_good_baseline;
385     if (debug > 1) {
386       tprintf("Replacing with constrained baseline, good = %d\n",
387               good_baseline_);
388     }
389   } else if (debug > 1) {
390     tprintf("Keeping old baseline\n");
391   }
392 }
393 
394 // Returns the perpendicular distance of the point from the straight
395 // baseline.
PerpDistanceFromBaseline(const FCOORD & pt) const396 float BaselineRow::PerpDistanceFromBaseline(const FCOORD &pt) const {
397   FCOORD baseline_vector(baseline_pt2_ - baseline_pt1_);
398   FCOORD offset_vector(pt - baseline_pt1_);
399   float distance = baseline_vector * offset_vector;
400   float sqlength = baseline_vector.sqlength();
401   if (sqlength == 0.0f) {
402     tprintf("unexpected baseline vector (0,0)\n");
403     return 0.0f;
404   }
405   return std::sqrt(distance * distance / sqlength);
406 }
407 
408 // Computes the bounding box of the row.
ComputeBoundingBox()409 void BaselineRow::ComputeBoundingBox() {
410   BLOBNBOX_IT it(blobs_);
411   TBOX box;
412   for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
413     box += it.data()->bounding_box();
414   }
415   bounding_box_ = box;
416 }
417 
BaselineBlock(int debug_level,bool non_text,TO_BLOCK * block)418 BaselineBlock::BaselineBlock(int debug_level, bool non_text, TO_BLOCK *block)
419     : block_(block),
420       debug_level_(debug_level),
421       non_text_block_(non_text),
422       good_skew_angle_(false),
423       skew_angle_(0.0),
424       line_spacing_(block->line_spacing),
425       line_offset_(0.0),
426       model_error_(0.0) {
427   TO_ROW_IT row_it(block_->get_rows());
428   for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
429     // Sort the blobs on the rows.
430     row_it.data()->blob_list()->sort(blob_x_order);
431     rows_.push_back(new BaselineRow(block->line_spacing, row_it.data()));
432   }
433 }
434 
435 // Computes and returns the absolute error of the given perp_disp from the
436 // given linespacing model.
SpacingModelError(double perp_disp,double line_spacing,double line_offset)437 double BaselineBlock::SpacingModelError(double perp_disp, double line_spacing,
438                                         double line_offset) {
439   // Round to the nearest multiple of line_spacing + line offset.
440   int multiple = IntCastRounded((perp_disp - line_offset) / line_spacing);
441   double model_y = line_spacing * multiple + line_offset;
442   return fabs(perp_disp - model_y);
443 }
444 
445 // Fits straight line baselines and computes the skew angle from the
446 // median angle. Returns true if a good angle is found.
447 // If use_box_bottoms is false, baseline positions are formed by
448 // considering the outlines of the blobs.
FitBaselinesAndFindSkew(bool use_box_bottoms)449 bool BaselineBlock::FitBaselinesAndFindSkew(bool use_box_bottoms) {
450   if (non_text_block_) {
451     return false;
452   }
453   std::vector<double> angles;
454   for (auto row : rows_) {
455     if (row->FitBaseline(use_box_bottoms)) {
456       double angle = row->BaselineAngle();
457       angles.push_back(angle);
458     }
459     if (debug_level_ > 1) {
460       row->Print();
461     }
462   }
463 
464   if (!angles.empty()) {
465     skew_angle_ = MedianOfCircularValues(M_PI, angles);
466     good_skew_angle_ = true;
467   } else {
468     skew_angle_ = 0.0f;
469     good_skew_angle_ = false;
470   }
471   if (debug_level_ > 0) {
472     tprintf("Initial block skew angle = %g, good = %d\n", skew_angle_,
473             good_skew_angle_);
474   }
475   return good_skew_angle_;
476 }
477 
478 // Refits the baseline to a constrained angle, using the stored block
479 // skew if good enough, otherwise the supplied default skew.
ParallelizeBaselines(double default_block_skew)480 void BaselineBlock::ParallelizeBaselines(double default_block_skew) {
481   if (non_text_block_) {
482     return;
483   }
484   if (!good_skew_angle_) {
485     skew_angle_ = default_block_skew;
486   }
487   if (debug_level_ > 0) {
488     tprintf("Adjusting block to skew angle %g\n", skew_angle_);
489   }
490   FCOORD direction(cos(skew_angle_), sin(skew_angle_));
491   for (auto row : rows_) {
492     row->AdjustBaselineToParallel(debug_level_, direction);
493     if (debug_level_ > 1) {
494       row->Print();
495     }
496   }
497   if (rows_.size() < 3 || !ComputeLineSpacing()) {
498     return;
499   }
500   // Enforce the line spacing model on all lines that don't yet have a good
501   // baseline.
502   // Start by finding the row that is best fitted to the model.
503   unsigned best_row = 0;
504   double best_error = SpacingModelError(rows_[0]->PerpDisp(direction),
505                                         line_spacing_, line_offset_);
506   for (unsigned r = 1; r < rows_.size(); ++r) {
507     double error = SpacingModelError(rows_[r]->PerpDisp(direction),
508                                      line_spacing_, line_offset_);
509     if (error < best_error) {
510       best_error = error;
511       best_row = r;
512     }
513   }
514   // Starting at the best fitting row, work outwards, syncing the offset.
515   double offset = line_offset_;
516   for (auto r = best_row + 1; r < rows_.size(); ++r) {
517     offset = rows_[r]->AdjustBaselineToGrid(debug_level_, direction,
518                                             line_spacing_, offset);
519   }
520   offset = line_offset_;
521   for (int r = best_row - 1; r >= 0; --r) {
522     offset = rows_[r]->AdjustBaselineToGrid(debug_level_, direction,
523                                             line_spacing_, offset);
524   }
525 }
526 
527 // Sets the parameters in TO_BLOCK that are needed by subsequent processes.
SetupBlockParameters() const528 void BaselineBlock::SetupBlockParameters() const {
529   if (line_spacing_ > 0.0) {
530     // Where was block_line_spacing set before?
531     float min_spacing =
532         std::min(block_->line_spacing, static_cast<float>(line_spacing_));
533     if (min_spacing < block_->line_size) {
534       block_->line_size = min_spacing;
535     }
536     block_->line_spacing = line_spacing_;
537     block_->baseline_offset = line_offset_;
538     block_->max_blob_size = line_spacing_ * kMaxBlobSizeMultiple;
539   }
540   // Setup the parameters on all the rows.
541   TO_ROW_IT row_it(block_->get_rows());
542   for (unsigned r = 0; r < rows_.size(); ++r, row_it.forward()) {
543     BaselineRow *row = rows_[r];
544     TO_ROW *to_row = row_it.data();
545     row->SetupOldLineParameters(to_row);
546   }
547 }
548 
549 // Processing that is required before fitting baseline splines, but requires
550 // linear baselines in order to be successful:
551 //   Removes noise if required
552 //   Separates out underlines
553 //   Pre-associates blob fragments.
554 // TODO(rays/joeliu) This entire section of code is inherited from the past
555 // and could be improved/eliminated.
556 // page_tr is used to size a debug window.
PrepareForSplineFitting(ICOORD page_tr,bool remove_noise)557 void BaselineBlock::PrepareForSplineFitting(ICOORD page_tr, bool remove_noise) {
558   if (non_text_block_) {
559     return;
560   }
561   if (remove_noise) {
562     vigorous_noise_removal(block_);
563   }
564   FCOORD rotation(1.0f, 0.0f);
565   double gradient = tan(skew_angle_);
566   separate_underlines(block_, gradient, rotation, true);
567   pre_associate_blobs(page_tr, block_, rotation, true);
568 }
569 
570 // Fits splines to the textlines, or creates fake QSPLINES from the straight
571 // baselines that are already on the TO_ROWs.
572 // As a side-effect, computes the xheights of the rows and the block.
573 // Although x-height estimation is conceptually separate, it is part of
574 // detecting perspective distortion and therefore baseline fitting.
FitBaselineSplines(bool enable_splines,bool show_final_rows,Textord * textord)575 void BaselineBlock::FitBaselineSplines(bool enable_splines,
576                                        bool show_final_rows, Textord *textord) {
577   double gradient = tan(skew_angle_);
578   FCOORD rotation(1.0f, 0.0f);
579 
580   if (enable_splines) {
581     textord->make_spline_rows(block_, gradient, show_final_rows);
582   } else {
583     // Make a fake spline from the existing line.
584     TBOX block_box = block_->block->pdblk.bounding_box();
585     TO_ROW_IT row_it = block_->get_rows();
586     for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
587       TO_ROW *row = row_it.data();
588       int32_t xstarts[2] = {block_box.left(), block_box.right()};
589       double coeffs[3] = {0.0, row->line_m(), row->line_c()};
590       row->baseline = QSPLINE(1, xstarts, coeffs);
591       textord->compute_row_xheight(row, block_->block->classify_rotation(),
592                                    row->line_m(), block_->line_size);
593     }
594   }
595   textord->compute_block_xheight(block_, gradient);
596   block_->block->set_xheight(block_->xheight);
597   if (textord_restore_underlines) { // fix underlines
598     restore_underlined_blobs(block_);
599   }
600 }
601 
602 #ifndef GRAPHICS_DISABLED
603 
604 // Draws the (straight) baselines and final blobs colored according to
605 // what was discarded as noise and what is associated with each row.
DrawFinalRows(const ICOORD & page_tr)606 void BaselineBlock::DrawFinalRows(const ICOORD &page_tr) {
607   if (non_text_block_) {
608     return;
609   }
610   double gradient = tan(skew_angle_);
611   FCOORD rotation(1.0f, 0.0f);
612   int left_edge = block_->block->pdblk.bounding_box().left();
613   ScrollView *win = create_to_win(page_tr);
614   ScrollView::Color colour = ScrollView::RED;
615   TO_ROW_IT row_it = block_->get_rows();
616   for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
617     plot_parallel_row(row_it.data(), gradient, left_edge, colour, rotation);
618     colour = static_cast<ScrollView::Color>(colour + 1);
619     if (colour > ScrollView::MAGENTA) {
620       colour = ScrollView::RED;
621     }
622   }
623   plot_blob_list(win, &block_->blobs, ScrollView::MAGENTA, ScrollView::WHITE);
624   // Show discarded blobs.
625   plot_blob_list(win, &block_->underlines, ScrollView::YELLOW,
626                  ScrollView::CORAL);
627   if (block_->blobs.length() > 0) {
628     tprintf("%d blobs discarded as noise\n", block_->blobs.length());
629   }
630   draw_meanlines(block_, gradient, left_edge, ScrollView::WHITE, rotation);
631 }
632 
633 #endif // !GRAPHICS_DISABLED
634 
DrawPixSpline(Image pix_in)635 void BaselineBlock::DrawPixSpline(Image pix_in) {
636   if (non_text_block_) {
637     return;
638   }
639   TO_ROW_IT row_it = block_->get_rows();
640   for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
641     row_it.data()->baseline.plot(pix_in);
642   }
643 }
644 
645 // Top-level line-spacing calculation. Computes an estimate of the line-
646 // spacing, using the current baselines in the TO_ROWS of the block, and
647 // then refines it by fitting a regression line to the baseline positions
648 // as a function of their integer index.
649 // Returns true if it seems that the model is a reasonable fit to the
650 // observations.
ComputeLineSpacing()651 bool BaselineBlock::ComputeLineSpacing() {
652   FCOORD direction(cos(skew_angle_), sin(skew_angle_));
653   std::vector<double> row_positions;
654   ComputeBaselinePositions(direction, &row_positions);
655   if (row_positions.size() < 2) {
656     return false;
657   }
658   EstimateLineSpacing();
659   RefineLineSpacing(row_positions);
660   // Verify that the model is reasonable.
661   double max_baseline_error = kMaxBaselineError * line_spacing_;
662   int non_trivial_gaps = 0;
663   int fitting_gaps = 0;
664   for (unsigned i = 1; i < row_positions.size(); ++i) {
665     double row_gap = fabs(row_positions[i - 1] - row_positions[i]);
666     if (row_gap > max_baseline_error) {
667       ++non_trivial_gaps;
668       if (fabs(row_gap - line_spacing_) <= max_baseline_error) {
669         ++fitting_gaps;
670       }
671     }
672   }
673   if (debug_level_ > 0) {
674     tprintf("Spacing %g, in %zu rows, %d gaps fitted out of %d non-trivial\n",
675             line_spacing_, row_positions.size(), fitting_gaps,
676             non_trivial_gaps);
677   }
678   return fitting_gaps > non_trivial_gaps * kMinFittingLinespacings;
679 }
680 
681 // Computes the deskewed vertical position of each baseline in the block and
682 // stores them in the given vector.
683 // This is calculated as the perpendicular distance of the middle of each
684 // baseline (in case it has a different skew angle) from the line passing
685 // through the origin parallel to the block baseline angle.
686 // NOTE that "distance" above is a signed quantity so we can tell which side
687 // of the block baseline a line sits, hence the function and argument name
688 // positions not distances.
ComputeBaselinePositions(const FCOORD & direction,std::vector<double> * positions)689 void BaselineBlock::ComputeBaselinePositions(const FCOORD &direction,
690                                              std::vector<double> *positions) {
691   positions->clear();
692   for (auto row : rows_) {
693     const TBOX &row_box = row->bounding_box();
694     float x_middle = (row_box.left() + row_box.right()) / 2.0f;
695     FCOORD row_pos(x_middle, static_cast<float>(row->StraightYAtX(x_middle)));
696     float offset = direction * row_pos;
697     positions->push_back(offset);
698   }
699 }
700 
701 // Computes an estimate of the line spacing of the block from the median
702 // of the spacings between adjacent overlapping textlines.
EstimateLineSpacing()703 void BaselineBlock::EstimateLineSpacing() {
704   std::vector<float> spacings;
705   for (unsigned r = 0; r < rows_.size(); ++r) {
706     BaselineRow *row = rows_[r];
707     // Exclude silly lines.
708     if (fabs(row->BaselineAngle()) > M_PI * 0.25) {
709       continue;
710     }
711     // Find the first row after row that overlaps it significantly.
712     const TBOX &row_box = row->bounding_box();
713     unsigned r2;
714     for (r2 = r + 1; r2 < rows_.size() &&
715                      !row_box.major_x_overlap(rows_[r2]->bounding_box());
716          ++r2) {
717       ;
718     }
719     if (r2 < rows_.size()) {
720       BaselineRow *row2 = rows_[r2];
721       // Exclude silly lines.
722       if (fabs(row2->BaselineAngle()) > M_PI * 0.25) {
723         continue;
724       }
725       float spacing = row->SpaceBetween(*row2);
726       spacings.push_back(spacing);
727     }
728   }
729   // If we have at least one value, use it, otherwise leave the previous
730   // value unchanged.
731   if (!spacings.empty()) {
732     std::nth_element(spacings.begin(), spacings.begin() + spacings.size() / 2,
733                      spacings.end());
734     line_spacing_ = spacings[spacings.size() / 2];
735     if (debug_level_ > 1) {
736       tprintf("Estimate of linespacing = %g\n", line_spacing_);
737     }
738   }
739 }
740 
741 // Refines the line spacing of the block by fitting a regression
742 // line to the deskewed y-position of each baseline as a function of its
743 // estimated line index, allowing for a small error in the initial linespacing
744 // and choosing the best available model.
RefineLineSpacing(const std::vector<double> & positions)745 void BaselineBlock::RefineLineSpacing(const std::vector<double> &positions) {
746   double spacings[3], offsets[3], errors[3];
747   int index_range;
748   errors[0] = FitLineSpacingModel(positions, line_spacing_, &spacings[0],
749                                   &offsets[0], &index_range);
750   if (index_range > 1) {
751     double spacing_plus = line_spacing_ / (1.0 + 1.0 / index_range);
752     // Try the hypotheses that there might be index_range +/- 1 line spaces.
753     errors[1] = FitLineSpacingModel(positions, spacing_plus, &spacings[1],
754                                     &offsets[1], nullptr);
755     double spacing_minus = line_spacing_ / (1.0 - 1.0 / index_range);
756     errors[2] = FitLineSpacingModel(positions, spacing_minus, &spacings[2],
757                                     &offsets[2], nullptr);
758     for (int i = 1; i <= 2; ++i) {
759       if (errors[i] < errors[0]) {
760         spacings[0] = spacings[i];
761         offsets[0] = offsets[i];
762         errors[0] = errors[i];
763       }
764     }
765   }
766   if (spacings[0] > 0.0) {
767     line_spacing_ = spacings[0];
768     line_offset_ = offsets[0];
769     model_error_ = errors[0];
770     if (debug_level_ > 0) {
771       tprintf("Final linespacing model = %g + offset %g, error %g\n",
772               line_spacing_, line_offset_, model_error_);
773     }
774   }
775 }
776 
777 // Given an initial estimate of line spacing (m_in) and the positions of each
778 // baseline, computes the line spacing of the block more accurately in m_out,
779 // and the corresponding intercept in c_out, and the number of spacings seen
780 // in index_delta. Returns the error of fit to the line spacing model.
781 // Uses a simple linear regression, but optimized the offset using the median.
FitLineSpacingModel(const std::vector<double> & positions,double m_in,double * m_out,double * c_out,int * index_delta)782 double BaselineBlock::FitLineSpacingModel(const std::vector<double> &positions,
783                                           double m_in, double *m_out,
784                                           double *c_out, int *index_delta) {
785   if (m_in == 0.0f || positions.size() < 2) {
786     *m_out = m_in;
787     *c_out = 0.0;
788     if (index_delta != nullptr) {
789       *index_delta = 0;
790     }
791     return 0.0;
792   }
793   std::vector<double> offsets;
794   // Get the offset (remainder) linespacing for each line and choose the median.
795   offsets.reserve(positions.size());
796   for (double position : positions) {
797     offsets.push_back(fmod(position, m_in));
798   }
799   // Get the median offset.
800   double median_offset = MedianOfCircularValues(m_in, offsets);
801   // Now fit a line to quantized line number and offset.
802   LLSQ llsq;
803   int min_index = INT32_MAX;
804   int max_index = -INT32_MAX;
805   for (double y_pos : positions) {
806     int row_index = IntCastRounded((y_pos - median_offset) / m_in);
807     UpdateRange(row_index, &min_index, &max_index);
808     llsq.add(row_index, y_pos);
809   }
810   // Get the refined line spacing.
811   *m_out = llsq.m();
812   // Use the median offset rather than the mean.
813   offsets.clear();
814   if (*m_out != 0.0) {
815     for (double position : positions) {
816       offsets.push_back(fmod(position, *m_out));
817     }
818     // Get the median offset.
819     if (debug_level_ > 2) {
820       for (unsigned i = 0; i < offsets.size(); ++i) {
821         tprintf("%u: %g\n", i, offsets[i]);
822       }
823     }
824     *c_out = MedianOfCircularValues(*m_out, offsets);
825   } else {
826     *c_out = 0.0;
827   }
828   if (debug_level_ > 1) {
829     tprintf("Median offset = %g, compared to mean of %g.\n", *c_out,
830             llsq.c(*m_out));
831   }
832   // Index_delta is the number of hypothesized line gaps present.
833   if (index_delta != nullptr) {
834     *index_delta = max_index - min_index;
835   }
836   // Use the regression model's intercept to compute the error, as it may be
837   // a full line-spacing in disagreement with the median.
838   double rms_error = llsq.rms(*m_out, llsq.c(*m_out));
839   if (debug_level_ > 1) {
840     tprintf("Linespacing of y=%g x + %g improved to %g x + %g, rms=%g\n", m_in,
841             median_offset, *m_out, *c_out, rms_error);
842   }
843   return rms_error;
844 }
845 
BaselineDetect(int debug_level,const FCOORD & page_skew,TO_BLOCK_LIST * blocks)846 BaselineDetect::BaselineDetect(int debug_level, const FCOORD &page_skew,
847                                TO_BLOCK_LIST *blocks)
848     : page_skew_(page_skew), debug_level_(debug_level) {
849   TO_BLOCK_IT it(blocks);
850   for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
851     TO_BLOCK *to_block = it.data();
852     BLOCK *block = to_block->block;
853     POLY_BLOCK *pb = block->pdblk.poly_block();
854     // A note about non-text blocks.
855     // On output, non-text blocks are supposed to contain a single empty word
856     // in each incoming text line. These mark out the polygonal bounds of the
857     // block. Ideally no baselines should be required, but currently
858     // make_words crashes if a baseline and xheight are not provided, so we
859     // include non-text blocks here, but flag them for special treatment.
860     bool non_text = pb != nullptr && !pb->IsText();
861     blocks_.push_back(new BaselineBlock(debug_level_, non_text, to_block));
862   }
863 }
864 
865 // Finds the initial baselines for each TO_ROW in each TO_BLOCK, gathers
866 // block-wise and page-wise data to smooth small blocks/rows, and applies
867 // smoothing based on block/page-level skew and block-level linespacing.
ComputeStraightBaselines(bool use_box_bottoms)868 void BaselineDetect::ComputeStraightBaselines(bool use_box_bottoms) {
869   std::vector<double> block_skew_angles;
870   for (auto bl_block : blocks_) {
871     if (debug_level_ > 0) {
872       tprintf("Fitting initial baselines...\n");
873     }
874     if (bl_block->FitBaselinesAndFindSkew(use_box_bottoms)) {
875       block_skew_angles.push_back(bl_block->skew_angle());
876     }
877   }
878   // Compute a page-wide default skew for blocks with too little information.
879   double default_block_skew = page_skew_.angle();
880   if (!block_skew_angles.empty()) {
881     default_block_skew = MedianOfCircularValues(M_PI, block_skew_angles);
882   }
883   if (debug_level_ > 0) {
884     tprintf("Page skew angle = %g\n", default_block_skew);
885   }
886   // Set bad lines in each block to the default block skew and then force fit
887   // a linespacing model where it makes sense to do so.
888   for (auto bl_block : blocks_) {
889     bl_block->ParallelizeBaselines(default_block_skew);
890     bl_block->SetupBlockParameters(); // This replaced compute_row_stats.
891   }
892 }
893 
894 // Computes the baseline splines for each TO_ROW in each TO_BLOCK and
895 // other associated side-effects, including pre-associating blobs, computing
896 // x-heights and displaying debug information.
897 // NOTE that ComputeStraightBaselines must have been called first as this
898 // sets up data in the TO_ROWs upon which this function depends.
ComputeBaselineSplinesAndXheights(const ICOORD & page_tr,bool enable_splines,bool remove_noise,bool show_final_rows,Textord * textord)899 void BaselineDetect::ComputeBaselineSplinesAndXheights(const ICOORD &page_tr,
900                                                        bool enable_splines,
901                                                        bool remove_noise,
902                                                        bool show_final_rows,
903                                                        Textord *textord) {
904   for (auto bl_block : blocks_) {
905     if (enable_splines) {
906       bl_block->PrepareForSplineFitting(page_tr, remove_noise);
907     }
908     bl_block->FitBaselineSplines(enable_splines, show_final_rows, textord);
909 #ifndef GRAPHICS_DISABLED
910     if (show_final_rows) {
911       bl_block->DrawFinalRows(page_tr);
912     }
913 #endif
914   }
915 }
916 
917 } // namespace tesseract.
918