1 /**********************************************************************
2  * File:        pageres.cpp  (Formerly page_res.c)
3  * Description: Hierarchy of results classes from PAGE_RES to WERD_RES
4  *              and an iterator class to iterate over the words.
5  * Main purposes:
6  *              Easy way to iterate over the words without a 3-nested loop.
7  *              Holds data used during word recognition.
8  *              Holds information about alternative spacing paths.
9  * Author:      Phil Cheatle
10  *
11  * (C) Copyright 1992, Hewlett-Packard Ltd.
12  ** Licensed under the Apache License, Version 2.0 (the "License");
13  ** you may not use this file except in compliance with the License.
14  ** You may obtain a copy of the License at
15  ** http://www.apache.org/licenses/LICENSE-2.0
16  ** Unless required by applicable law or agreed to in writing, software
17  ** distributed under the License is distributed on an "AS IS" BASIS,
18  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19  ** See the License for the specific language governing permissions and
20  ** limitations under the License.
21  *
22  **********************************************************************/
23 
24 #include "pageres.h"
25 
26 #include "blamer.h"   // for BlamerBundle
27 #include "blobs.h"    // for TWERD, TBLOB
28 #include "boxword.h"  // for BoxWord
29 #include "errcode.h"  // for ASSERT_HOST
30 #include "ocrblock.h" // for BLOCK_IT, BLOCK, BLOCK_LIST (ptr only)
31 #include "ocrrow.h"   // for ROW, ROW_IT
32 #include "pdblock.h"  // for PDBLK
33 #include "polyblk.h"  // for POLY_BLOCK
34 #include "seam.h"     // for SEAM, start_seam_list
35 #include "stepblob.h" // for C_BLOB_IT, C_BLOB, C_BLOB_LIST
36 #include "tprintf.h"  // for tprintf
37 
38 #include <tesseract/publictypes.h> // for OcrEngineMode, OEM_LSTM_ONLY
39 
40 #include <cassert> // for assert
41 #include <cstdint> // for INT32_MAX
42 #include <cstring> // for strlen
43 
44 struct Pix;
45 
46 namespace tesseract {
47 
48 // Gain factor for computing thresholds that determine the ambiguity of a
49 // word.
50 static const double kStopperAmbiguityThresholdGain = 8.0;
51 // Constant offset for computing thresholds that determine the ambiguity of a
52 // word.
53 static const double kStopperAmbiguityThresholdOffset = 1.5;
54 // Max number of broken pieces to associate.
55 const int kWordrecMaxNumJoinChunks = 4;
56 // Max ratio of word box height to line size to allow it to be processed as
57 // a line with other words.
58 const double kMaxWordSizeRatio = 1.25;
59 // Max ratio of line box height to line size to allow a new word to be added.
60 const double kMaxLineSizeRatio = 1.25;
61 // Max ratio of word gap to line size to allow a new word to be added.
62 const double kMaxWordGapRatio = 2.0;
63 
64 // Computes and returns a threshold of certainty difference used to determine
65 // which words to keep, based on the adjustment factors of the two words.
66 // TODO(rays) This is horrible. Replace with an enhance params training model.
StopperAmbigThreshold(double f1,double f2)67 static double StopperAmbigThreshold(double f1, double f2) {
68   return (f2 - f1) * kStopperAmbiguityThresholdGain -
69          kStopperAmbiguityThresholdOffset;
70 }
71 
72 /*************************************************************************
73  * PAGE_RES::PAGE_RES
74  *
75  * Constructor for page results
76  *************************************************************************/
PAGE_RES(bool merge_similar_words,BLOCK_LIST * the_block_list,WERD_CHOICE ** prev_word_best_choice_ptr)77 PAGE_RES::PAGE_RES(bool merge_similar_words, BLOCK_LIST *the_block_list,
78                    WERD_CHOICE **prev_word_best_choice_ptr) {
79   Init();
80   BLOCK_IT block_it(the_block_list);
81   BLOCK_RES_IT block_res_it(&block_res_list);
82   for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) {
83     block_res_it.add_to_end(
84         new BLOCK_RES(merge_similar_words, block_it.data()));
85   }
86   prev_word_best_choice = prev_word_best_choice_ptr;
87 }
88 
89 /*************************************************************************
90  * BLOCK_RES::BLOCK_RES
91  *
92  * Constructor for BLOCK results
93  *************************************************************************/
94 
BLOCK_RES(bool merge_similar_words,BLOCK * the_block)95 BLOCK_RES::BLOCK_RES(bool merge_similar_words, BLOCK *the_block) {
96   ROW_IT row_it(the_block->row_list());
97   ROW_RES_IT row_res_it(&row_res_list);
98 
99   char_count = 0;
100   rej_count = 0;
101   font_class = -1; // not assigned
102   x_height = -1.0;
103   font_assigned = false;
104   row_count = 0;
105 
106   block = the_block;
107 
108   for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
109     row_res_it.add_to_end(new ROW_RES(merge_similar_words, row_it.data()));
110   }
111 }
112 
113 /*************************************************************************
114  * ROW_RES::ROW_RES
115  *
116  * Constructor for ROW results
117  *************************************************************************/
118 
ROW_RES(bool merge_similar_words,ROW * the_row)119 ROW_RES::ROW_RES(bool merge_similar_words, ROW *the_row) {
120   WERD_IT word_it(the_row->word_list());
121   WERD_RES_IT word_res_it(&word_res_list);
122   WERD_RES *combo = nullptr; // current combination of fuzzies
123   WERD *copy_word;
124 
125   char_count = 0;
126   rej_count = 0;
127   whole_word_rej_count = 0;
128 
129   row = the_row;
130   bool add_next_word = false;
131   TBOX union_box;
132   float line_height =
133       the_row->x_height() + the_row->ascenders() - the_row->descenders();
134   for (word_it.mark_cycle_pt(); !word_it.cycled_list(); word_it.forward()) {
135     auto *word_res = new WERD_RES(word_it.data());
136     word_res->x_height = the_row->x_height();
137     if (add_next_word) {
138       ASSERT_HOST(combo != nullptr);
139       // We are adding this word to the combination.
140       word_res->part_of_combo = true;
141       combo->copy_on(word_res);
142     } else if (merge_similar_words) {
143       union_box = word_res->word->bounding_box();
144       add_next_word = !word_res->word->flag(W_REP_CHAR) &&
145                       union_box.height() <= line_height * kMaxWordSizeRatio;
146       word_res->odd_size = !add_next_word;
147     }
148     WERD *next_word = word_it.data_relative(1);
149     if (merge_similar_words) {
150       if (add_next_word && !next_word->flag(W_REP_CHAR)) {
151         // Next word will be added on if all of the following are true:
152         // Not a rep char.
153         // Box height small enough.
154         // Union box height small enough.
155         // Horizontal gap small enough.
156         TBOX next_box = next_word->bounding_box();
157         int prev_right = union_box.right();
158         union_box += next_box;
159         if (next_box.height() > line_height * kMaxWordSizeRatio ||
160             union_box.height() > line_height * kMaxLineSizeRatio ||
161             next_box.left() > prev_right + line_height * kMaxWordGapRatio) {
162           add_next_word = false;
163         }
164       }
165       next_word->set_flag(W_FUZZY_NON, add_next_word);
166     } else {
167       add_next_word = next_word->flag(W_FUZZY_NON);
168     }
169     if (add_next_word) {
170       if (combo == nullptr) {
171         copy_word = new WERD;
172         *copy_word = *(word_it.data()); // deep copy
173         combo = new WERD_RES(copy_word);
174         combo->x_height = the_row->x_height();
175         combo->combination = true;
176         word_res_it.add_to_end(combo);
177       }
178       word_res->part_of_combo = true;
179     } else {
180       combo = nullptr;
181     }
182     word_res_it.add_to_end(word_res);
183   }
184 }
185 
operator =(const WERD_RES & source)186 WERD_RES &WERD_RES::operator=(const WERD_RES &source) {
187   this->ELIST_LINK::operator=(source);
188   Clear();
189   if (source.combination) {
190     word = new WERD;
191     *word = *(source.word); // deep copy
192   } else {
193     word = source.word; // pt to same word
194   }
195   if (source.bln_boxes != nullptr) {
196     bln_boxes = new tesseract::BoxWord(*source.bln_boxes);
197   }
198   if (source.chopped_word != nullptr) {
199     chopped_word = new TWERD(*source.chopped_word);
200   }
201   if (source.rebuild_word != nullptr) {
202     rebuild_word = new TWERD(*source.rebuild_word);
203   }
204   // TODO(rays) Do we ever need to copy the seam_array?
205   blob_row = source.blob_row;
206   denorm = source.denorm;
207   if (source.box_word != nullptr) {
208     box_word = new tesseract::BoxWord(*source.box_word);
209   }
210   best_state = source.best_state;
211   correct_text = source.correct_text;
212   blob_widths = source.blob_widths;
213   blob_gaps = source.blob_gaps;
214   // None of the uses of operator= require the ratings matrix to be copied,
215   // so don't as it would be really slow.
216 
217   // Copy the cooked choices.
218   WERD_CHOICE_IT wc_it(const_cast<WERD_CHOICE_LIST *>(&source.best_choices));
219   WERD_CHOICE_IT wc_dest_it(&best_choices);
220   for (wc_it.mark_cycle_pt(); !wc_it.cycled_list(); wc_it.forward()) {
221     const WERD_CHOICE *choice = wc_it.data();
222     wc_dest_it.add_after_then_move(new WERD_CHOICE(*choice));
223   }
224   if (!wc_dest_it.empty()) {
225     wc_dest_it.move_to_first();
226     best_choice = wc_dest_it.data();
227   } else {
228     best_choice = nullptr;
229   }
230 
231   if (source.raw_choice != nullptr) {
232     raw_choice = new WERD_CHOICE(*source.raw_choice);
233   } else {
234     raw_choice = nullptr;
235   }
236   if (source.ep_choice != nullptr) {
237     ep_choice = new WERD_CHOICE(*source.ep_choice);
238   } else {
239     ep_choice = nullptr;
240   }
241   reject_map = source.reject_map;
242   combination = source.combination;
243   part_of_combo = source.part_of_combo;
244   CopySimpleFields(source);
245   if (source.blamer_bundle != nullptr) {
246     blamer_bundle = new BlamerBundle(*(source.blamer_bundle));
247   }
248   return *this;
249 }
250 
251 // Copies basic fields that don't involve pointers that might be useful
252 // to copy when making one WERD_RES from another.
CopySimpleFields(const WERD_RES & source)253 void WERD_RES::CopySimpleFields(const WERD_RES &source) {
254   tess_failed = source.tess_failed;
255   tess_accepted = source.tess_accepted;
256   tess_would_adapt = source.tess_would_adapt;
257   done = source.done;
258   unlv_crunch_mode = source.unlv_crunch_mode;
259   small_caps = source.small_caps;
260   odd_size = source.odd_size;
261   fontinfo = source.fontinfo;
262   fontinfo2 = source.fontinfo2;
263   fontinfo_id_count = source.fontinfo_id_count;
264   fontinfo_id2_count = source.fontinfo_id2_count;
265   x_height = source.x_height;
266   caps_height = source.caps_height;
267   baseline_shift = source.baseline_shift;
268   guessed_x_ht = source.guessed_x_ht;
269   guessed_caps_ht = source.guessed_caps_ht;
270   reject_spaces = source.reject_spaces;
271   uch_set = source.uch_set;
272   tesseract = source.tesseract;
273 }
274 
275 // Initializes a blank (default constructed) WERD_RES from one that has
276 // already been recognized.
277 // Use SetupFor*Recognition afterwards to complete the setup and make
278 // it ready for a retry recognition.
InitForRetryRecognition(const WERD_RES & source)279 void WERD_RES::InitForRetryRecognition(const WERD_RES &source) {
280   word = source.word;
281   CopySimpleFields(source);
282   if (source.blamer_bundle != nullptr) {
283     blamer_bundle = new BlamerBundle();
284     blamer_bundle->CopyTruth(*source.blamer_bundle);
285   }
286 }
287 
288 // Sets up the members used in recognition: bln_boxes, chopped_word,
289 // seam_array, denorm.  Returns false if
290 // the word is empty and sets up fake results.  If use_body_size is
291 // true and row->body_size is set, then body_size will be used for
292 // blob normalization instead of xheight + ascrise. This flag is for
293 // those languages that are using CJK pitch model and thus it has to
294 // be true if and only if tesseract->textord_use_cjk_fp_model is
295 // true.
296 // If allow_detailed_fx is true, the feature extractor will receive fine
297 // precision outline information, allowing smoother features and better
298 // features on low resolution images.
299 // The norm_mode_hint sets the default mode for normalization in absence
300 // of any of the above flags.
301 // norm_box is used to override the word bounding box to determine the
302 // normalization scale and offset.
303 // Returns false if the word is empty and sets up fake results.
SetupForRecognition(const UNICHARSET & unicharset_in,tesseract::Tesseract * tess,Image pix,int norm_mode,const TBOX * norm_box,bool numeric_mode,bool use_body_size,bool allow_detailed_fx,ROW * row,const BLOCK * block)304 bool WERD_RES::SetupForRecognition(const UNICHARSET &unicharset_in,
305                                    tesseract::Tesseract *tess, Image pix,
306                                    int norm_mode, const TBOX *norm_box,
307                                    bool numeric_mode, bool use_body_size,
308                                    bool allow_detailed_fx, ROW *row,
309                                    const BLOCK *block) {
310   auto norm_mode_hint = static_cast<tesseract::OcrEngineMode>(norm_mode);
311   tesseract = tess;
312   POLY_BLOCK *pb = block != nullptr ? block->pdblk.poly_block() : nullptr;
313   if ((norm_mode_hint != tesseract::OEM_LSTM_ONLY &&
314        word->cblob_list()->empty()) ||
315       (pb != nullptr && !pb->IsText())) {
316     // Empty words occur when all the blobs have been moved to the rej_blobs
317     // list, which seems to occur frequently in junk.
318     SetupFake(unicharset_in);
319     word->set_flag(W_REP_CHAR, false);
320     return false;
321   }
322   ClearResults();
323   SetupWordScript(unicharset_in);
324   chopped_word = TWERD::PolygonalCopy(allow_detailed_fx, word);
325   float word_xheight =
326       use_body_size && row != nullptr && row->body_size() > 0.0f
327           ? row->body_size()
328           : x_height;
329   chopped_word->BLNormalize(block, row, pix, word->flag(W_INVERSE),
330                             word_xheight, baseline_shift, numeric_mode,
331                             norm_mode_hint, norm_box, &denorm);
332   blob_row = row;
333   SetupBasicsFromChoppedWord(unicharset_in);
334   SetupBlamerBundle();
335   int num_blobs = chopped_word->NumBlobs();
336   ratings = new MATRIX(num_blobs, kWordrecMaxNumJoinChunks);
337   tess_failed = false;
338   return true;
339 }
340 
341 // Set up the seam array, bln_boxes, best_choice, and raw_choice to empty
342 // accumulators from a made chopped word.  We presume the fields are already
343 // empty.
SetupBasicsFromChoppedWord(const UNICHARSET & unicharset_in)344 void WERD_RES::SetupBasicsFromChoppedWord(const UNICHARSET &unicharset_in) {
345   bln_boxes = tesseract::BoxWord::CopyFromNormalized(chopped_word);
346   start_seam_list(chopped_word, &seam_array);
347   SetupBlobWidthsAndGaps();
348   ClearWordChoices();
349 }
350 
351 // Sets up the members used in recognition for an empty recognition result:
352 // bln_boxes, chopped_word, seam_array, denorm, best_choice, raw_choice.
SetupFake(const UNICHARSET & unicharset_in)353 void WERD_RES::SetupFake(const UNICHARSET &unicharset_in) {
354   ClearResults();
355   SetupWordScript(unicharset_in);
356   chopped_word = new TWERD;
357   rebuild_word = new TWERD;
358   bln_boxes = new tesseract::BoxWord;
359   box_word = new tesseract::BoxWord;
360   int blob_count = word->cblob_list()->length();
361   if (blob_count > 0) {
362     auto **fake_choices = new BLOB_CHOICE *[blob_count];
363     // For non-text blocks, just pass any blobs through to the box_word
364     // and call the word failed with a fake classification.
365     C_BLOB_IT b_it(word->cblob_list());
366     int blob_id = 0;
367     for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
368       TBOX box = b_it.data()->bounding_box();
369       box_word->InsertBox(box_word->length(), box);
370       fake_choices[blob_id++] = new BLOB_CHOICE;
371     }
372     FakeClassifyWord(blob_count, fake_choices);
373     delete[] fake_choices;
374   } else {
375     auto *word = new WERD_CHOICE(&unicharset_in);
376     word->make_bad();
377     LogNewRawChoice(word);
378     // Ownership of word is taken by *this WERD_RES in LogNewCookedChoice.
379     LogNewCookedChoice(1, false, word);
380   }
381   tess_failed = true;
382   done = true;
383 }
384 
SetupWordScript(const UNICHARSET & uch)385 void WERD_RES::SetupWordScript(const UNICHARSET &uch) {
386   uch_set = &uch;
387   int script = uch.default_sid();
388   word->set_script_id(script);
389   word->set_flag(W_SCRIPT_HAS_XHEIGHT, uch.script_has_xheight());
390   word->set_flag(W_SCRIPT_IS_LATIN, script == uch.latin_sid());
391 }
392 
393 // Sets up the blamer_bundle if it is not null, using the initialized denorm.
SetupBlamerBundle()394 void WERD_RES::SetupBlamerBundle() {
395   if (blamer_bundle != nullptr) {
396     blamer_bundle->SetupNormTruthWord(denorm);
397   }
398 }
399 
400 // Computes the blob_widths and blob_gaps from the chopped_word.
SetupBlobWidthsAndGaps()401 void WERD_RES::SetupBlobWidthsAndGaps() {
402   blob_widths.clear();
403   blob_gaps.clear();
404   int num_blobs = chopped_word->NumBlobs();
405   for (int b = 0; b < num_blobs; ++b) {
406     TBLOB *blob = chopped_word->blobs[b];
407     TBOX box = blob->bounding_box();
408     blob_widths.push_back(box.width());
409     if (b + 1 < num_blobs) {
410       blob_gaps.push_back(chopped_word->blobs[b + 1]->bounding_box().left() -
411                           box.right());
412     }
413   }
414 }
415 
416 // Updates internal data to account for a new SEAM (chop) at the given
417 // blob_number. Fixes the ratings matrix and states in the choices, as well
418 // as the blob widths and gaps.
InsertSeam(int blob_number,SEAM * seam)419 void WERD_RES::InsertSeam(int blob_number, SEAM *seam) {
420   // Insert the seam into the SEAMS array.
421   seam->PrepareToInsertSeam(seam_array, chopped_word->blobs, blob_number, true);
422   seam_array.insert(seam_array.begin() + blob_number, seam);
423   if (ratings != nullptr) {
424     // Expand the ratings matrix.
425     ratings = ratings->ConsumeAndMakeBigger(blob_number);
426     // Fix all the segmentation states.
427     if (raw_choice != nullptr) {
428       raw_choice->UpdateStateForSplit(blob_number);
429     }
430     WERD_CHOICE_IT wc_it(&best_choices);
431     for (wc_it.mark_cycle_pt(); !wc_it.cycled_list(); wc_it.forward()) {
432       WERD_CHOICE *choice = wc_it.data();
433       choice->UpdateStateForSplit(blob_number);
434     }
435     SetupBlobWidthsAndGaps();
436   }
437 }
438 
439 // Returns true if all the word choices except the first have adjust_factors
440 // worse than the given threshold.
AlternativeChoiceAdjustmentsWorseThan(float threshold) const441 bool WERD_RES::AlternativeChoiceAdjustmentsWorseThan(float threshold) const {
442   // The choices are not changed by this iteration.
443   WERD_CHOICE_IT wc_it(const_cast<WERD_CHOICE_LIST *>(&best_choices));
444   for (wc_it.forward(); !wc_it.at_first(); wc_it.forward()) {
445     WERD_CHOICE *choice = wc_it.data();
446     if (choice->adjust_factor() <= threshold) {
447       return false;
448     }
449   }
450   return true;
451 }
452 
453 // Returns true if the current word is ambiguous (by number of answers or
454 // by dangerous ambigs.)
IsAmbiguous()455 bool WERD_RES::IsAmbiguous() {
456   return !best_choices.singleton() || best_choice->dangerous_ambig_found();
457 }
458 
459 // Returns true if the ratings matrix size matches the sum of each of the
460 // segmentation states.
StatesAllValid()461 bool WERD_RES::StatesAllValid() {
462   unsigned ratings_dim = ratings->dimension();
463   if (raw_choice->TotalOfStates() != ratings_dim) {
464     tprintf("raw_choice has total of states = %u vs ratings dim of %u\n",
465             raw_choice->TotalOfStates(), ratings_dim);
466     return false;
467   }
468   WERD_CHOICE_IT it(&best_choices);
469   unsigned index = 0;
470   for (it.mark_cycle_pt(); !it.cycled_list(); it.forward(), ++index) {
471     WERD_CHOICE *choice = it.data();
472     if (choice->TotalOfStates() != ratings_dim) {
473       tprintf("Cooked #%u has total of states = %u vs ratings dim of %u\n",
474               index, choice->TotalOfStates(), ratings_dim);
475       return false;
476     }
477   }
478   return true;
479 }
480 
481 // Prints a list of words found if debug is true or the word result matches
482 // the word_to_debug.
DebugWordChoices(bool debug,const char * word_to_debug)483 void WERD_RES::DebugWordChoices(bool debug, const char *word_to_debug) {
484   if (debug || (word_to_debug != nullptr && *word_to_debug != '\0' &&
485                 best_choice != nullptr &&
486                 best_choice->unichar_string() == std::string(word_to_debug))) {
487     if (raw_choice != nullptr) {
488       raw_choice->print("\nBest Raw Choice");
489     }
490 
491     WERD_CHOICE_IT it(&best_choices);
492     int index = 0;
493     for (it.mark_cycle_pt(); !it.cycled_list(); it.forward(), ++index) {
494       WERD_CHOICE *choice = it.data();
495       std::string label;
496       label += "\nCooked Choice #" + std::to_string(index);
497       choice->print(label.c_str());
498     }
499   }
500 }
501 
502 // Prints the top choice along with the accepted/done flags.
DebugTopChoice(const char * msg) const503 void WERD_RES::DebugTopChoice(const char *msg) const {
504   tprintf("Best choice: accepted=%d, adaptable=%d, done=%d : ", tess_accepted,
505           tess_would_adapt, done);
506   if (best_choice == nullptr) {
507     tprintf("<Null choice>\n");
508   } else {
509     best_choice->print(msg);
510   }
511 }
512 
513 // Removes from best_choices all choices which are not within a reasonable
514 // range of the best choice.
515 // TODO(rays) incorporate the information used here into the params training
516 // re-ranker, in place of this heuristic that is based on the previous
517 // adjustment factor.
FilterWordChoices(int debug_level)518 void WERD_RES::FilterWordChoices(int debug_level) {
519   if (best_choice == nullptr || best_choices.singleton()) {
520     return;
521   }
522 
523   if (debug_level >= 2) {
524     best_choice->print("\nFiltering against best choice");
525   }
526   WERD_CHOICE_IT it(&best_choices);
527   int index = 0;
528   for (it.forward(); !it.at_first(); it.forward(), ++index) {
529     WERD_CHOICE *choice = it.data();
530     float threshold = StopperAmbigThreshold(best_choice->adjust_factor(),
531                                             choice->adjust_factor());
532     // i, j index the blob choice in choice, best_choice.
533     // chunk is an index into the chopped_word blobs (AKA chunks).
534     // Since the two words may use different segmentations of the chunks, we
535     // iterate over the chunks to find out whether a comparable blob
536     // classification is much worse than the best result.
537     unsigned i = 0, j = 0, chunk = 0;
538     // Each iteration of the while deals with 1 chunk. On entry choice_chunk
539     // and best_chunk are the indices of the first chunk in the NEXT blob,
540     // i.e. we don't have to increment i, j while chunk < choice_chunk and
541     // best_chunk respectively.
542     auto choice_chunk = choice->state(0), best_chunk = best_choice->state(0);
543     while (i < choice->length() && j < best_choice->length()) {
544       if (choice->unichar_id(i) != best_choice->unichar_id(j) &&
545           choice->certainty(i) - best_choice->certainty(j) < threshold) {
546         if (debug_level >= 2) {
547           choice->print("WorstCertaintyDiffWorseThan");
548           tprintf(
549               "i %u j %u Choice->Blob[i].Certainty %.4g"
550               " WorstOtherChoiceCertainty %g Threshold %g\n",
551               i, j, choice->certainty(i), best_choice->certainty(j), threshold);
552           tprintf("Discarding bad choice #%d\n", index);
553         }
554         delete it.extract();
555         break;
556       }
557       ++chunk;
558       // If needed, advance choice_chunk to keep up with chunk.
559       while (choice_chunk < chunk && ++i < choice->length()) {
560         choice_chunk += choice->state(i);
561       }
562       // If needed, advance best_chunk to keep up with chunk.
563       while (best_chunk < chunk && ++j < best_choice->length()) {
564         best_chunk += best_choice->state(j);
565       }
566     }
567   }
568 }
569 
ComputeAdaptionThresholds(float certainty_scale,float min_rating,float max_rating,float rating_margin,float * thresholds)570 void WERD_RES::ComputeAdaptionThresholds(float certainty_scale,
571                                          float min_rating, float max_rating,
572                                          float rating_margin,
573                                          float *thresholds) {
574   int chunk = 0;
575   int end_chunk = best_choice->state(0);
576   int end_raw_chunk = raw_choice->state(0);
577   int raw_blob = 0;
578   for (unsigned i = 0; i < best_choice->length(); i++, thresholds++) {
579     float avg_rating = 0.0f;
580     int num_error_chunks = 0;
581 
582     // For each chunk in best choice blob i, count non-matching raw results.
583     while (chunk < end_chunk) {
584       if (chunk >= end_raw_chunk) {
585         ++raw_blob;
586         end_raw_chunk += raw_choice->state(raw_blob);
587       }
588       if (best_choice->unichar_id(i) != raw_choice->unichar_id(raw_blob)) {
589         avg_rating += raw_choice->certainty(raw_blob);
590         ++num_error_chunks;
591       }
592       ++chunk;
593     }
594 
595     if (num_error_chunks > 0) {
596       avg_rating /= num_error_chunks;
597       *thresholds = (avg_rating / -certainty_scale) * (1.0 - rating_margin);
598     } else {
599       *thresholds = max_rating;
600     }
601 
602     if (*thresholds > max_rating) {
603       *thresholds = max_rating;
604     }
605     if (*thresholds < min_rating) {
606       *thresholds = min_rating;
607     }
608   }
609 }
610 
611 // Saves a copy of the word_choice if it has the best unadjusted rating.
612 // Returns true if the word_choice was the new best.
LogNewRawChoice(WERD_CHOICE * word_choice)613 bool WERD_RES::LogNewRawChoice(WERD_CHOICE *word_choice) {
614   if (raw_choice == nullptr || word_choice->rating() < raw_choice->rating()) {
615     delete raw_choice;
616     raw_choice = new WERD_CHOICE(*word_choice);
617     raw_choice->set_permuter(TOP_CHOICE_PERM);
618     return true;
619   }
620   return false;
621 }
622 
623 // Consumes word_choice by adding it to best_choices, (taking ownership) if
624 // the certainty for word_choice is some distance of the best choice in
625 // best_choices, or by deleting the word_choice and returning false.
626 // The best_choices list is kept in sorted order by rating. Duplicates are
627 // removed, and the list is kept no longer than max_num_choices in length.
628 // Returns true if the word_choice is still a valid pointer.
LogNewCookedChoice(int max_num_choices,bool debug,WERD_CHOICE * word_choice)629 bool WERD_RES::LogNewCookedChoice(int max_num_choices, bool debug,
630                                   WERD_CHOICE *word_choice) {
631   if (best_choice != nullptr) {
632     // Throw out obviously bad choices to save some work.
633     // TODO(rays) Get rid of this! This piece of code produces different
634     // results according to the order in which words are found, which is an
635     // undesirable behavior. It would be better to keep all the choices and
636     // prune them later when more information is available.
637     float max_certainty_delta = StopperAmbigThreshold(
638         best_choice->adjust_factor(), word_choice->adjust_factor());
639     if (max_certainty_delta > -kStopperAmbiguityThresholdOffset) {
640       max_certainty_delta = -kStopperAmbiguityThresholdOffset;
641     }
642     if (word_choice->certainty() - best_choice->certainty() <
643         max_certainty_delta) {
644       if (debug) {
645         std::string bad_string;
646         word_choice->string_and_lengths(&bad_string, nullptr);
647         tprintf(
648             "Discarding choice \"%s\" with an overly low certainty"
649             " %.3f vs best choice certainty %.3f (Threshold: %.3f)\n",
650             bad_string.c_str(), word_choice->certainty(),
651             best_choice->certainty(),
652             max_certainty_delta + best_choice->certainty());
653       }
654       delete word_choice;
655       return false;
656     }
657   }
658 
659   // Insert in the list in order of increasing rating, but knock out worse
660   // string duplicates.
661   WERD_CHOICE_IT it(&best_choices);
662   const std::string &new_str = word_choice->unichar_string();
663   bool inserted = false;
664   int num_choices = 0;
665   if (!it.empty()) {
666     do {
667       WERD_CHOICE *choice = it.data();
668       if (choice->rating() > word_choice->rating() && !inserted) {
669         // Time to insert.
670         it.add_before_stay_put(word_choice);
671         inserted = true;
672         if (num_choices == 0) {
673           best_choice = word_choice; // This is the new best.
674         }
675         ++num_choices;
676       }
677       if (choice->unichar_string() == new_str) {
678         if (inserted) {
679           // New is better.
680           delete it.extract();
681         } else {
682           // Old is better.
683           if (debug) {
684             tprintf("Discarding duplicate choice \"%s\", rating %g vs %g\n",
685                     new_str.c_str(), word_choice->rating(), choice->rating());
686           }
687           delete word_choice;
688           return false;
689         }
690       } else {
691         ++num_choices;
692         if (num_choices > max_num_choices) {
693           delete it.extract();
694         }
695       }
696       it.forward();
697     } while (!it.at_first());
698   }
699   if (!inserted && num_choices < max_num_choices) {
700     it.add_to_end(word_choice);
701     inserted = true;
702     if (num_choices == 0) {
703       best_choice = word_choice; // This is the new best.
704     }
705   }
706   if (debug) {
707     if (inserted) {
708       tprintf("New %s", best_choice == word_choice ? "Best" : "Secondary");
709     } else {
710       tprintf("Poor");
711     }
712     word_choice->print(" Word Choice");
713   }
714   if (!inserted) {
715     delete word_choice;
716     return false;
717   }
718   return true;
719 }
720 
721 // Simple helper moves the ownership of the pointer data from src to dest,
722 // first deleting anything in dest, and nulling out src afterwards.
723 template <class T>
MovePointerData(T ** dest,T ** src)724 static void MovePointerData(T **dest, T **src) {
725   delete *dest;
726   *dest = *src;
727   *src = nullptr;
728 }
729 
730 // Prints a brief list of all the best choices.
PrintBestChoices() const731 void WERD_RES::PrintBestChoices() const {
732   std::string alternates_str;
733   WERD_CHOICE_IT it(const_cast<WERD_CHOICE_LIST *>(&best_choices));
734   for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
735     if (!it.at_first()) {
736       alternates_str += "\", \"";
737     }
738     alternates_str += it.data()->unichar_string();
739   }
740   tprintf("Alternates for \"%s\": {\"%s\"}\n",
741           best_choice->unichar_string().c_str(), alternates_str.c_str());
742 }
743 
744 // Returns the sum of the widths of the blob between start_blob and last_blob
745 // inclusive.
GetBlobsWidth(int start_blob,int last_blob) const746 int WERD_RES::GetBlobsWidth(int start_blob, int last_blob) const {
747   int result = 0;
748   for (int b = start_blob; b <= last_blob; ++b) {
749     result += blob_widths[b];
750     if (b < last_blob) {
751       result += blob_gaps[b];
752     }
753   }
754   return result;
755 }
756 // Returns the width of a gap between the specified blob and the next one.
GetBlobsGap(unsigned blob_index) const757 int WERD_RES::GetBlobsGap(unsigned blob_index) const {
758   if (blob_index >= blob_gaps.size()) {
759     return 0;
760   }
761   return blob_gaps[blob_index];
762 }
763 
764 // Returns the BLOB_CHOICE corresponding to the given index in the
765 // best choice word taken from the appropriate cell in the ratings MATRIX.
766 // Borrowed pointer, so do not delete. May return nullptr if there is no
767 // BLOB_CHOICE matching the unichar_id at the given index.
GetBlobChoice(unsigned index) const768 BLOB_CHOICE *WERD_RES::GetBlobChoice(unsigned index) const {
769   if (index >= best_choice->length()) {
770     return nullptr;
771   }
772   BLOB_CHOICE_LIST *choices = GetBlobChoices(index);
773   return FindMatchingChoice(best_choice->unichar_id(index), choices);
774 }
775 
776 // Returns the BLOB_CHOICE_LIST corresponding to the given index in the
777 // best choice word taken from the appropriate cell in the ratings MATRIX.
778 // Borrowed pointer, so do not delete.
GetBlobChoices(int index) const779 BLOB_CHOICE_LIST *WERD_RES::GetBlobChoices(int index) const {
780   return best_choice->blob_choices(index, ratings);
781 }
782 
783 // Moves the results fields from word to this. This takes ownership of all
784 // the data, so src can be destructed.
ConsumeWordResults(WERD_RES * word)785 void WERD_RES::ConsumeWordResults(WERD_RES *word) {
786   denorm = word->denorm;
787   blob_row = word->blob_row;
788   MovePointerData(&chopped_word, &word->chopped_word);
789   MovePointerData(&rebuild_word, &word->rebuild_word);
790   MovePointerData(&box_word, &word->box_word);
791   for (auto data : seam_array) {
792     delete data;
793   }
794   seam_array = word->seam_array;
795   word->seam_array.clear();
796   // TODO: optimize moves.
797   best_state = word->best_state;
798   word->best_state.clear();
799   correct_text = word->correct_text;
800   word->correct_text.clear();
801   blob_widths = word->blob_widths;
802   word->blob_widths.clear();
803   blob_gaps = word->blob_gaps;
804   word->blob_gaps.clear();
805   if (ratings != nullptr) {
806     ratings->delete_matrix_pointers();
807   }
808   MovePointerData(&ratings, &word->ratings);
809   best_choice = word->best_choice;
810   MovePointerData(&raw_choice, &word->raw_choice);
811   best_choices.clear();
812   WERD_CHOICE_IT wc_it(&best_choices);
813   wc_it.add_list_after(&word->best_choices);
814   reject_map = word->reject_map;
815   if (word->blamer_bundle != nullptr) {
816     assert(blamer_bundle != nullptr);
817     blamer_bundle->CopyResults(*(word->blamer_bundle));
818   }
819   CopySimpleFields(*word);
820 }
821 
822 // Replace the best choice and rebuild box word.
823 // choice must be from the current best_choices list.
ReplaceBestChoice(WERD_CHOICE * choice)824 void WERD_RES::ReplaceBestChoice(WERD_CHOICE *choice) {
825   best_choice = choice;
826   RebuildBestState();
827   SetupBoxWord();
828   // Make up a fake reject map of the right length to keep the
829   // rejection pass happy.
830   reject_map.initialise(best_state.size());
831   done = tess_accepted = tess_would_adapt = true;
832   SetScriptPositions();
833 }
834 
835 // Builds the rebuild_word and sets the best_state from the chopped_word and
836 // the best_choice->state.
RebuildBestState()837 void WERD_RES::RebuildBestState() {
838   ASSERT_HOST(best_choice != nullptr);
839   delete rebuild_word;
840   rebuild_word = new TWERD;
841   if (seam_array.empty()) {
842     start_seam_list(chopped_word, &seam_array);
843   }
844   best_state.clear();
845   int start = 0;
846   for (unsigned i = 0; i < best_choice->length(); ++i) {
847     int length = best_choice->state(i);
848     best_state.push_back(length);
849     if (length > 1) {
850       SEAM::JoinPieces(seam_array, chopped_word->blobs, start,
851                        start + length - 1);
852     }
853     TBLOB *blob = chopped_word->blobs[start];
854     rebuild_word->blobs.push_back(new TBLOB(*blob));
855     if (length > 1) {
856       SEAM::BreakPieces(seam_array, chopped_word->blobs, start,
857                         start + length - 1);
858     }
859     start += length;
860   }
861 }
862 
863 // Copies the chopped_word to the rebuild_word, faking a best_state as well.
864 // Also sets up the output box_word.
CloneChoppedToRebuild()865 void WERD_RES::CloneChoppedToRebuild() {
866   delete rebuild_word;
867   rebuild_word = new TWERD(*chopped_word);
868   SetupBoxWord();
869   auto word_len = box_word->length();
870   best_state.reserve(word_len);
871   correct_text.reserve(word_len);
872   for (unsigned i = 0; i < word_len; ++i) {
873     best_state.push_back(1);
874     correct_text.emplace_back("");
875   }
876 }
877 
878 // Sets/replaces the box_word with one made from the rebuild_word.
SetupBoxWord()879 void WERD_RES::SetupBoxWord() {
880   delete box_word;
881   rebuild_word->ComputeBoundingBoxes();
882   box_word = tesseract::BoxWord::CopyFromNormalized(rebuild_word);
883   box_word->ClipToOriginalWord(denorm.block(), word);
884 }
885 
886 // Sets up the script positions in the output best_choice using the best_choice
887 // to get the unichars, and the unicharset to get the target positions.
SetScriptPositions()888 void WERD_RES::SetScriptPositions() {
889   best_choice->SetScriptPositions(small_caps, chopped_word);
890 }
891 // Sets all the blobs in all the words (raw choice and best choices) to be
892 // the given position. (When a sub/superscript is recognized as a separate
893 // word, it falls victim to the rule that a whole word cannot be sub or
894 // superscript, so this function overrides that problem.)
SetAllScriptPositions(tesseract::ScriptPos position)895 void WERD_RES::SetAllScriptPositions(tesseract::ScriptPos position) {
896   raw_choice->SetAllScriptPositions(position);
897   WERD_CHOICE_IT wc_it(&best_choices);
898   for (wc_it.mark_cycle_pt(); !wc_it.cycled_list(); wc_it.forward()) {
899     wc_it.data()->SetAllScriptPositions(position);
900   }
901 }
902 
903 // Classifies the word with some already-calculated BLOB_CHOICEs.
904 // The choices are an array of blob_count pointers to BLOB_CHOICE,
905 // providing a single classifier result for each blob.
906 // The BLOB_CHOICEs are consumed and the word takes ownership.
907 // The number of blobs in the box_word must match blob_count.
FakeClassifyWord(unsigned blob_count,BLOB_CHOICE ** choices)908 void WERD_RES::FakeClassifyWord(unsigned blob_count, BLOB_CHOICE **choices) {
909   // Setup the WERD_RES.
910   ASSERT_HOST(box_word != nullptr);
911   ASSERT_HOST(blob_count == box_word->length());
912   ClearWordChoices();
913   ClearRatings();
914   ratings = new MATRIX(blob_count, 1);
915   for (unsigned c = 0; c < blob_count; ++c) {
916     auto *choice_list = new BLOB_CHOICE_LIST;
917     BLOB_CHOICE_IT choice_it(choice_list);
918     choice_it.add_after_then_move(choices[c]);
919     ratings->put(c, c, choice_list);
920   }
921   FakeWordFromRatings(TOP_CHOICE_PERM);
922   reject_map.initialise(blob_count);
923   best_state.clear();
924   best_state.resize(blob_count, 1);
925   done = true;
926 }
927 
928 // Creates a WERD_CHOICE for the word using the top choices from the leading
929 // diagonal of the ratings matrix.
FakeWordFromRatings(PermuterType permuter)930 void WERD_RES::FakeWordFromRatings(PermuterType permuter) {
931   int num_blobs = ratings->dimension();
932   auto *word_choice = new WERD_CHOICE(uch_set, num_blobs);
933   word_choice->set_permuter(permuter);
934   for (int b = 0; b < num_blobs; ++b) {
935     UNICHAR_ID unichar_id = UNICHAR_SPACE;
936     // Initialize rating and certainty like in WERD_CHOICE::make_bad().
937     float rating = WERD_CHOICE::kBadRating;
938     float certainty = -FLT_MAX;
939     BLOB_CHOICE_LIST *choices = ratings->get(b, b);
940     if (choices != nullptr && !choices->empty()) {
941       BLOB_CHOICE_IT bc_it(choices);
942       BLOB_CHOICE *choice = bc_it.data();
943       unichar_id = choice->unichar_id();
944       rating = choice->rating();
945       certainty = choice->certainty();
946     }
947     word_choice->append_unichar_id_space_allocated(unichar_id, 1, rating,
948                                                    certainty);
949   }
950   LogNewRawChoice(word_choice);
951   // Ownership of word_choice taken by word here.
952   LogNewCookedChoice(1, false, word_choice);
953 }
954 
955 // Copies the best_choice strings to the correct_text for adaption/training.
BestChoiceToCorrectText()956 void WERD_RES::BestChoiceToCorrectText() {
957   correct_text.clear();
958   ASSERT_HOST(best_choice != nullptr);
959   for (unsigned i = 0; i < best_choice->length(); ++i) {
960     UNICHAR_ID choice_id = best_choice->unichar_id(i);
961     const char *blob_choice = uch_set->id_to_unichar(choice_id);
962     correct_text.emplace_back(blob_choice);
963   }
964 }
965 
966 // Merges 2 adjacent blobs in the result if the permanent callback
967 // class_cb returns other than INVALID_UNICHAR_ID, AND the permanent
968 // callback box_cb is nullptr or returns true, setting the merged blob
969 // result to the class returned from class_cb.
970 // Returns true if anything was merged.
ConditionalBlobMerge(const std::function<UNICHAR_ID (UNICHAR_ID,UNICHAR_ID)> & class_cb,const std::function<bool (const TBOX &,const TBOX &)> & box_cb)971 bool WERD_RES::ConditionalBlobMerge(
972     const std::function<UNICHAR_ID(UNICHAR_ID, UNICHAR_ID)> &class_cb,
973     const std::function<bool(const TBOX &, const TBOX &)> &box_cb) {
974   ASSERT_HOST(best_choice->empty() || ratings != nullptr);
975   bool modified = false;
976   for (unsigned i = 0; i + 1 < best_choice->length(); ++i) {
977     UNICHAR_ID new_id =
978         class_cb(best_choice->unichar_id(i), best_choice->unichar_id(i + 1));
979     if (new_id != INVALID_UNICHAR_ID &&
980         (box_cb == nullptr ||
981          box_cb(box_word->BlobBox(i), box_word->BlobBox(i + 1)))) {
982       // Raw choice should not be fixed.
983       best_choice->set_unichar_id(new_id, i);
984       modified = true;
985       MergeAdjacentBlobs(i);
986       const MATRIX_COORD &coord = best_choice->MatrixCoord(i);
987       if (!coord.Valid(*ratings)) {
988         ratings->IncreaseBandSize(coord.row + 1 - coord.col);
989       }
990       BLOB_CHOICE_LIST *blob_choices = GetBlobChoices(i);
991       if (FindMatchingChoice(new_id, blob_choices) == nullptr) {
992         // Insert a fake result.
993         auto *blob_choice = new BLOB_CHOICE;
994         blob_choice->set_unichar_id(new_id);
995         BLOB_CHOICE_IT bc_it(blob_choices);
996         bc_it.add_before_then_move(blob_choice);
997       }
998     }
999   }
1000   return modified;
1001 }
1002 
1003 // Merges 2 adjacent blobs in the result (index and index+1) and corrects
1004 // all the data to account for the change.
MergeAdjacentBlobs(unsigned index)1005 void WERD_RES::MergeAdjacentBlobs(unsigned index) {
1006   if (reject_map.length() == best_choice->length()) {
1007     reject_map.remove_pos(index);
1008   }
1009   best_choice->remove_unichar_id(index + 1);
1010   rebuild_word->MergeBlobs(index, index + 2);
1011   box_word->MergeBoxes(index, index + 2);
1012   if (index + 1 < best_state.size()) {
1013     best_state[index] += best_state[index + 1];
1014     best_state.erase(best_state.begin() + index + 1);
1015   }
1016 }
1017 
1018 // TODO(tkielbus) Decide between keeping this behavior here or modifying the
1019 // training data.
1020 
1021 // Utility function for fix_quotes
1022 // Return true if the next character in the string (given the UTF8 length in
1023 // bytes) is a quote character.
is_simple_quote(const char * signed_str,int length)1024 static int is_simple_quote(const char *signed_str, int length) {
1025   const auto *str = reinterpret_cast<const unsigned char *>(signed_str);
1026   // Standard 1 byte quotes.
1027   return (length == 1 && (*str == '\'' || *str == '`')) ||
1028          // UTF-8 3 bytes curved quotes.
1029          (length == 3 &&
1030           ((*str == 0xe2 && *(str + 1) == 0x80 && *(str + 2) == 0x98) ||
1031            (*str == 0xe2 && *(str + 1) == 0x80 && *(str + 2) == 0x99)));
1032 }
1033 
1034 // Callback helper for fix_quotes returns a double quote if both
1035 // arguments are quote, otherwise INVALID_UNICHAR_ID.
BothQuotes(UNICHAR_ID id1,UNICHAR_ID id2)1036 UNICHAR_ID WERD_RES::BothQuotes(UNICHAR_ID id1, UNICHAR_ID id2) {
1037   const char *ch = uch_set->id_to_unichar(id1);
1038   const char *next_ch = uch_set->id_to_unichar(id2);
1039   if (is_simple_quote(ch, strlen(ch)) &&
1040       is_simple_quote(next_ch, strlen(next_ch))) {
1041     return uch_set->unichar_to_id("\"");
1042   }
1043   return INVALID_UNICHAR_ID;
1044 }
1045 
1046 // Change pairs of quotes to double quotes.
fix_quotes()1047 void WERD_RES::fix_quotes() {
1048   if (!uch_set->contains_unichar("\"") ||
1049       !uch_set->get_enabled(uch_set->unichar_to_id("\""))) {
1050     return; // Don't create it if it is disallowed.
1051   }
1052 
1053   using namespace std::placeholders; // for _1, _2
1054   ConditionalBlobMerge(std::bind(&WERD_RES::BothQuotes, this, _1, _2), nullptr);
1055 }
1056 
1057 // Callback helper for fix_hyphens returns UNICHAR_ID of - if both
1058 // arguments are hyphen, otherwise INVALID_UNICHAR_ID.
BothHyphens(UNICHAR_ID id1,UNICHAR_ID id2)1059 UNICHAR_ID WERD_RES::BothHyphens(UNICHAR_ID id1, UNICHAR_ID id2) {
1060   const char *ch = uch_set->id_to_unichar(id1);
1061   const char *next_ch = uch_set->id_to_unichar(id2);
1062   if (strlen(ch) == 1 && strlen(next_ch) == 1 && (*ch == '-' || *ch == '~') &&
1063       (*next_ch == '-' || *next_ch == '~')) {
1064     return uch_set->unichar_to_id("-");
1065   }
1066   return INVALID_UNICHAR_ID;
1067 }
1068 
1069 // Callback helper for fix_hyphens returns true if box1 and box2 overlap
1070 // (assuming both on the same textline, are in order and a chopped em dash.)
HyphenBoxesOverlap(const TBOX & box1,const TBOX & box2)1071 bool WERD_RES::HyphenBoxesOverlap(const TBOX &box1, const TBOX &box2) {
1072   return box1.right() >= box2.left();
1073 }
1074 
1075 // Change pairs of hyphens to a single hyphen if the bounding boxes touch
1076 // Typically a long dash which has been segmented.
fix_hyphens()1077 void WERD_RES::fix_hyphens() {
1078   if (!uch_set->contains_unichar("-") ||
1079       !uch_set->get_enabled(uch_set->unichar_to_id("-"))) {
1080     return; // Don't create it if it is disallowed.
1081   }
1082 
1083   using namespace std::placeholders; // for _1, _2
1084   ConditionalBlobMerge(std::bind(&WERD_RES::BothHyphens, this, _1, _2),
1085                        std::bind(&WERD_RES::HyphenBoxesOverlap, this, _1, _2));
1086 }
1087 
1088 // Callback helper for merge_tess_fails returns a space if both
1089 // arguments are space, otherwise INVALID_UNICHAR_ID.
BothSpaces(UNICHAR_ID id1,UNICHAR_ID id2)1090 UNICHAR_ID WERD_RES::BothSpaces(UNICHAR_ID id1, UNICHAR_ID id2) {
1091   if (id1 == id2 && id1 == uch_set->unichar_to_id(" ")) {
1092     return id1;
1093   } else {
1094     return INVALID_UNICHAR_ID;
1095   }
1096 }
1097 
1098 // Change pairs of tess failures to a single one
merge_tess_fails()1099 void WERD_RES::merge_tess_fails() {
1100   using namespace std::placeholders; // for _1, _2
1101   if (ConditionalBlobMerge(std::bind(&WERD_RES::BothSpaces, this, _1, _2),
1102                            nullptr)) {
1103     unsigned len = best_choice->length();
1104     ASSERT_HOST(reject_map.length() == len);
1105     ASSERT_HOST(box_word->length() == len);
1106   }
1107 }
1108 
1109 // Returns true if the collection of count pieces, starting at start, are all
1110 // natural connected components, ie there are no real chops involved.
PiecesAllNatural(int start,int count) const1111 bool WERD_RES::PiecesAllNatural(int start, int count) const {
1112   // all seams must have no splits.
1113   for (int index = start; index < start + count - 1; ++index) {
1114     if (index >= 0 && static_cast<size_t>(index) < seam_array.size()) {
1115       SEAM *seam = seam_array[index];
1116       if (seam != nullptr && seam->HasAnySplits()) {
1117         return false;
1118       }
1119     }
1120   }
1121   return true;
1122 }
1123 
~WERD_RES()1124 WERD_RES::~WERD_RES() {
1125   Clear();
1126 }
1127 
Clear()1128 void WERD_RES::Clear() {
1129   if (combination) {
1130     delete word;
1131   }
1132   word = nullptr;
1133   delete blamer_bundle;
1134   blamer_bundle = nullptr;
1135   ClearResults();
1136 }
1137 
ClearResults()1138 void WERD_RES::ClearResults() {
1139   done = false;
1140   fontinfo = nullptr;
1141   fontinfo2 = nullptr;
1142   fontinfo_id_count = 0;
1143   fontinfo_id2_count = 0;
1144   delete bln_boxes;
1145   bln_boxes = nullptr;
1146   blob_row = nullptr;
1147   delete chopped_word;
1148   chopped_word = nullptr;
1149   delete rebuild_word;
1150   rebuild_word = nullptr;
1151   delete box_word;
1152   box_word = nullptr;
1153   best_state.clear();
1154   correct_text.clear();
1155   for (auto data : seam_array) {
1156     delete data;
1157   }
1158   seam_array.clear();
1159   blob_widths.clear();
1160   blob_gaps.clear();
1161   ClearRatings();
1162   ClearWordChoices();
1163   if (blamer_bundle != nullptr) {
1164     blamer_bundle->ClearResults();
1165   }
1166 }
ClearWordChoices()1167 void WERD_RES::ClearWordChoices() {
1168   best_choice = nullptr;
1169   delete raw_choice;
1170   raw_choice = nullptr;
1171   best_choices.clear();
1172   delete ep_choice;
1173   ep_choice = nullptr;
1174 }
ClearRatings()1175 void WERD_RES::ClearRatings() {
1176   if (ratings != nullptr) {
1177     ratings->delete_matrix_pointers();
1178     delete ratings;
1179     ratings = nullptr;
1180   }
1181 }
1182 
cmp(const PAGE_RES_IT & other) const1183 int PAGE_RES_IT::cmp(const PAGE_RES_IT &other) const {
1184   ASSERT_HOST(page_res == other.page_res);
1185   if (other.block_res == nullptr) {
1186     // other points to the end of the page.
1187     if (block_res == nullptr) {
1188       return 0;
1189     }
1190     return -1;
1191   }
1192   if (block_res == nullptr) {
1193     return 1; // we point to the end of the page.
1194   }
1195   if (block_res == other.block_res) {
1196     if (other.row_res == nullptr || row_res == nullptr) {
1197       // this should only happen if we hit an image block.
1198       return 0;
1199     }
1200     if (row_res == other.row_res) {
1201       // we point to the same block and row.
1202       ASSERT_HOST(other.word_res != nullptr && word_res != nullptr);
1203       if (word_res == other.word_res) {
1204         // we point to the same word!
1205         return 0;
1206       }
1207 
1208       WERD_RES_IT word_res_it(&row_res->word_res_list);
1209       for (word_res_it.mark_cycle_pt(); !word_res_it.cycled_list();
1210            word_res_it.forward()) {
1211         if (word_res_it.data() == word_res) {
1212           return -1;
1213         } else if (word_res_it.data() == other.word_res) {
1214           return 1;
1215         }
1216       }
1217       ASSERT_HOST("Error: Incomparable PAGE_RES_ITs" == nullptr);
1218     }
1219 
1220     // we both point to the same block, but different rows.
1221     ROW_RES_IT row_res_it(&block_res->row_res_list);
1222     for (row_res_it.mark_cycle_pt(); !row_res_it.cycled_list();
1223          row_res_it.forward()) {
1224       if (row_res_it.data() == row_res) {
1225         return -1;
1226       } else if (row_res_it.data() == other.row_res) {
1227         return 1;
1228       }
1229     }
1230     ASSERT_HOST("Error: Incomparable PAGE_RES_ITs" == nullptr);
1231   }
1232 
1233   // We point to different blocks.
1234   BLOCK_RES_IT block_res_it(&page_res->block_res_list);
1235   for (block_res_it.mark_cycle_pt(); !block_res_it.cycled_list();
1236        block_res_it.forward()) {
1237     if (block_res_it.data() == block_res) {
1238       return -1;
1239     } else if (block_res_it.data() == other.block_res) {
1240       return 1;
1241     }
1242   }
1243   // Shouldn't happen...
1244   ASSERT_HOST("Error: Incomparable PAGE_RES_ITs" == nullptr);
1245   return 0;
1246 }
1247 
1248 // Inserts the new_word as a combination owned by a corresponding WERD_RES
1249 // before the current position. The simple fields of the WERD_RES are copied
1250 // from clone_res and the resulting WERD_RES is returned for further setup
1251 // with best_choice etc.
InsertSimpleCloneWord(const WERD_RES & clone_res,WERD * new_word)1252 WERD_RES *PAGE_RES_IT::InsertSimpleCloneWord(const WERD_RES &clone_res,
1253                                              WERD *new_word) {
1254   // Make a WERD_RES for the new_word.
1255   auto *new_res = new WERD_RES(new_word);
1256   new_res->CopySimpleFields(clone_res);
1257   new_res->combination = true;
1258   // Insert into the appropriate place in the ROW_RES.
1259   WERD_RES_IT wr_it(&row()->word_res_list);
1260   for (wr_it.mark_cycle_pt(); !wr_it.cycled_list(); wr_it.forward()) {
1261     WERD_RES *word = wr_it.data();
1262     if (word == word_res) {
1263       break;
1264     }
1265   }
1266   ASSERT_HOST(!wr_it.cycled_list());
1267   wr_it.add_before_then_move(new_res);
1268   if (wr_it.at_first()) {
1269     // This is the new first word, so reset the member iterator so it
1270     // detects the cycled_list state correctly.
1271     ResetWordIterator();
1272   }
1273   return new_res;
1274 }
1275 
1276 // Helper computes the boundaries between blobs in the word. The blob bounds
1277 // are likely very poor, if they come from LSTM, where it only outputs the
1278 // character at one pixel within it, so we find the midpoints between them.
ComputeBlobEnds(const WERD_RES & word,const TBOX & clip_box,C_BLOB_LIST * next_word_blobs,std::vector<int> * blob_ends)1279 static void ComputeBlobEnds(const WERD_RES &word, const TBOX &clip_box,
1280                             C_BLOB_LIST *next_word_blobs,
1281                             std::vector<int> *blob_ends) {
1282   C_BLOB_IT blob_it(word.word->cblob_list());
1283   for (int length : word.best_state) {
1284     // Get the bounding box of the fake blobs
1285     TBOX blob_box = blob_it.data()->bounding_box();
1286     blob_it.forward();
1287     for (int b = 1; b < length; ++b) {
1288       blob_box += blob_it.data()->bounding_box();
1289       blob_it.forward();
1290     }
1291     // This blob_box is crap, so for now we are only looking for the
1292     // boundaries between them.
1293     int blob_end = INT32_MAX;
1294     if (!blob_it.at_first() || next_word_blobs != nullptr) {
1295       if (blob_it.at_first()) {
1296         blob_it.set_to_list(next_word_blobs);
1297       }
1298       blob_end = (blob_box.right() + blob_it.data()->bounding_box().left()) / 2;
1299     }
1300     blob_end = ClipToRange<int>(blob_end, clip_box.left(), clip_box.right());
1301     blob_ends->push_back(blob_end);
1302   }
1303   blob_ends->back() = clip_box.right();
1304 }
1305 
1306 // Helper computes the bounds of a word by restricting it to existing words
1307 // that significantly overlap.
ComputeWordBounds(const tesseract::PointerVector<WERD_RES> & words,int w_index,TBOX prev_box,WERD_RES_IT w_it)1308 static TBOX ComputeWordBounds(const tesseract::PointerVector<WERD_RES> &words,
1309                               int w_index, TBOX prev_box, WERD_RES_IT w_it) {
1310   constexpr int kSignificantOverlapFraction = 4;
1311   TBOX clipped_box;
1312   TBOX current_box = words[w_index]->word->bounding_box();
1313   TBOX next_box;
1314   if (static_cast<size_t>(w_index + 1) < words.size() &&
1315       words[w_index + 1] != nullptr && words[w_index + 1]->word != nullptr) {
1316     next_box = words[w_index + 1]->word->bounding_box();
1317   }
1318   for (w_it.forward(); !w_it.at_first() && w_it.data()->part_of_combo;
1319        w_it.forward()) {
1320     if (w_it.data() == nullptr || w_it.data()->word == nullptr) {
1321       continue;
1322     }
1323     TBOX w_box = w_it.data()->word->bounding_box();
1324     int height_limit = std::min<int>(w_box.height(), w_box.width() / 2);
1325     int width_limit = w_box.width() / kSignificantOverlapFraction;
1326     int min_significant_overlap = std::max(height_limit, width_limit);
1327     int overlap = w_box.intersection(current_box).width();
1328     int prev_overlap = w_box.intersection(prev_box).width();
1329     int next_overlap = w_box.intersection(next_box).width();
1330     if (overlap > min_significant_overlap) {
1331       if (prev_overlap > min_significant_overlap) {
1332         // We have no choice but to use the LSTM word edge.
1333         clipped_box.set_left(current_box.left());
1334       } else if (next_overlap > min_significant_overlap) {
1335         // We have no choice but to use the LSTM word edge.
1336         clipped_box.set_right(current_box.right());
1337       } else {
1338         clipped_box += w_box;
1339       }
1340     }
1341   }
1342   if (clipped_box.height() <= 0) {
1343     clipped_box.set_top(current_box.top());
1344     clipped_box.set_bottom(current_box.bottom());
1345   }
1346   if (clipped_box.width() <= 0) {
1347     clipped_box = current_box;
1348   }
1349   return clipped_box;
1350 }
1351 
1352 // Helper moves the blob from src to dest. If it isn't contained by clip_box,
1353 // the blob is replaced by a fake that is contained.
MoveAndClipBlob(C_BLOB_IT * src_it,C_BLOB_IT * dest_it,const TBOX & clip_box)1354 static TBOX MoveAndClipBlob(C_BLOB_IT *src_it, C_BLOB_IT *dest_it,
1355                             const TBOX &clip_box) {
1356   C_BLOB *src_blob = src_it->extract();
1357   TBOX box = src_blob->bounding_box();
1358   if (!clip_box.contains(box)) {
1359     int left =
1360         ClipToRange<int>(box.left(), clip_box.left(), clip_box.right() - 1);
1361     int right =
1362         ClipToRange<int>(box.right(), clip_box.left() + 1, clip_box.right());
1363     int top =
1364         ClipToRange<int>(box.top(), clip_box.bottom() + 1, clip_box.top());
1365     int bottom =
1366         ClipToRange<int>(box.bottom(), clip_box.bottom(), clip_box.top() - 1);
1367     box = TBOX(left, bottom, right, top);
1368     delete src_blob;
1369     src_blob = C_BLOB::FakeBlob(box);
1370   }
1371   dest_it->add_after_then_move(src_blob);
1372   return box;
1373 }
1374 
1375 // Replaces the current WERD/WERD_RES with the given words. The given words
1376 // contain fake blobs that indicate the position of the characters. These are
1377 // replaced with real blobs from the current word as much as possible.
ReplaceCurrentWord(tesseract::PointerVector<WERD_RES> * words)1378 void PAGE_RES_IT::ReplaceCurrentWord(
1379     tesseract::PointerVector<WERD_RES> *words) {
1380   if (words->empty()) {
1381     DeleteCurrentWord();
1382     return;
1383   }
1384   WERD_RES *input_word = word();
1385   // Set the BOL/EOL flags on the words from the input word.
1386   if (input_word->word->flag(W_BOL)) {
1387     (*words)[0]->word->set_flag(W_BOL, true);
1388   } else {
1389     (*words)[0]->word->set_blanks(input_word->word->space());
1390   }
1391   words->back()->word->set_flag(W_EOL, input_word->word->flag(W_EOL));
1392 
1393   // Move the blobs from the input word to the new set of words.
1394   // If the input word_res is a combination, then the replacements will also be
1395   // combinations, and will own their own words. If the input word_res is not a
1396   // combination, then the final replacements will not be either, (although it
1397   // is allowed for the input words to be combinations) and their words
1398   // will get put on the row list. This maintains the ownership rules.
1399   WERD_IT w_it(row()->row->word_list());
1400   if (!input_word->combination) {
1401     for (w_it.mark_cycle_pt(); !w_it.cycled_list(); w_it.forward()) {
1402       WERD *word = w_it.data();
1403       if (word == input_word->word) {
1404         break;
1405       }
1406     }
1407     // w_it is now set to the input_word's word.
1408     ASSERT_HOST(!w_it.cycled_list());
1409   }
1410   // Insert into the appropriate place in the ROW_RES.
1411   WERD_RES_IT wr_it(&row()->word_res_list);
1412   for (wr_it.mark_cycle_pt(); !wr_it.cycled_list(); wr_it.forward()) {
1413     WERD_RES *word = wr_it.data();
1414     if (word == input_word) {
1415       break;
1416     }
1417   }
1418   ASSERT_HOST(!wr_it.cycled_list());
1419   // Since we only have an estimate of the bounds between blobs, use the blob
1420   // x-middle as the determiner of where to put the blobs
1421   C_BLOB_IT src_b_it(input_word->word->cblob_list());
1422   src_b_it.sort(&C_BLOB::SortByXMiddle);
1423   C_BLOB_IT rej_b_it(input_word->word->rej_cblob_list());
1424   rej_b_it.sort(&C_BLOB::SortByXMiddle);
1425   TBOX clip_box;
1426   for (size_t w = 0; w < words->size(); ++w) {
1427     WERD_RES *word_w = (*words)[w];
1428     clip_box = ComputeWordBounds(*words, w, clip_box, wr_it_of_current_word);
1429     // Compute blob boundaries.
1430     std::vector<int> blob_ends;
1431     C_BLOB_LIST *next_word_blobs =
1432         w + 1 < words->size() ? (*words)[w + 1]->word->cblob_list() : nullptr;
1433     ComputeBlobEnds(*word_w, clip_box, next_word_blobs, &blob_ends);
1434     // Remove the fake blobs on the current word, but keep safe for back-up if
1435     // no blob can be found.
1436     C_BLOB_LIST fake_blobs;
1437     C_BLOB_IT fake_b_it(&fake_blobs);
1438     fake_b_it.add_list_after(word_w->word->cblob_list());
1439     fake_b_it.move_to_first();
1440     word_w->word->cblob_list()->clear();
1441     C_BLOB_IT dest_it(word_w->word->cblob_list());
1442     // Build the box word as we move the blobs.
1443     auto *box_word = new tesseract::BoxWord;
1444     for (size_t i = 0; i < blob_ends.size(); ++i, fake_b_it.forward()) {
1445       int end_x = blob_ends[i];
1446       TBOX blob_box;
1447       // Add the blobs up to end_x.
1448       while (!src_b_it.empty() &&
1449              src_b_it.data()->bounding_box().x_middle() < end_x) {
1450         blob_box += MoveAndClipBlob(&src_b_it, &dest_it, clip_box);
1451         src_b_it.forward();
1452       }
1453       while (!rej_b_it.empty() &&
1454              rej_b_it.data()->bounding_box().x_middle() < end_x) {
1455         blob_box += MoveAndClipBlob(&rej_b_it, &dest_it, clip_box);
1456         rej_b_it.forward();
1457       }
1458       if (blob_box.null_box()) {
1459         // Use the original box as a back-up.
1460         blob_box = MoveAndClipBlob(&fake_b_it, &dest_it, clip_box);
1461       }
1462       box_word->InsertBox(i, blob_box);
1463     }
1464     delete word_w->box_word;
1465     word_w->box_word = box_word;
1466     if (!input_word->combination) {
1467       // Insert word_w->word into the ROW. It doesn't own its word, so the
1468       // ROW needs to own it.
1469       w_it.add_before_stay_put(word_w->word);
1470       word_w->combination = false;
1471     }
1472     (*words)[w] = nullptr; // We are taking ownership.
1473     wr_it.add_before_stay_put(word_w);
1474   }
1475   // We have taken ownership of the words.
1476   words->clear();
1477   // Delete the current word, which has been replaced. We could just call
1478   // DeleteCurrentWord, but that would iterate both lists again, and we know
1479   // we are already in the right place.
1480   if (!input_word->combination) {
1481     delete w_it.extract();
1482   }
1483   delete wr_it.extract();
1484   ResetWordIterator();
1485 }
1486 
1487 // Deletes the current WERD_RES and its underlying WERD.
DeleteCurrentWord()1488 void PAGE_RES_IT::DeleteCurrentWord() {
1489   // Check that this word is as we expect. part_of_combos are NEVER iterated
1490   // by the normal iterator, so we should never be trying to delete them.
1491   ASSERT_HOST(!word_res->part_of_combo);
1492   if (!word_res->combination) {
1493     // Combinations own their own word, so we won't find the word on the
1494     // row's word_list, but it is legitimate to try to delete them.
1495     // Delete word from the ROW when not a combination.
1496     WERD_IT w_it(row()->row->word_list());
1497     for (w_it.mark_cycle_pt(); !w_it.cycled_list(); w_it.forward()) {
1498       if (w_it.data() == word_res->word) {
1499         break;
1500       }
1501     }
1502     ASSERT_HOST(!w_it.cycled_list());
1503     delete w_it.extract();
1504   }
1505   // Remove the WERD_RES for the new_word.
1506   // Remove the WORD_RES from the ROW_RES.
1507   WERD_RES_IT wr_it(&row()->word_res_list);
1508   for (wr_it.mark_cycle_pt(); !wr_it.cycled_list(); wr_it.forward()) {
1509     if (wr_it.data() == word_res) {
1510       word_res = nullptr;
1511       break;
1512     }
1513   }
1514   ASSERT_HOST(!wr_it.cycled_list());
1515   delete wr_it.extract();
1516   ResetWordIterator();
1517 }
1518 
1519 // Makes the current word a fuzzy space if not already fuzzy. Updates
1520 // corresponding part of combo if required.
MakeCurrentWordFuzzy()1521 void PAGE_RES_IT::MakeCurrentWordFuzzy() {
1522   WERD *real_word = word_res->word;
1523   if (!real_word->flag(W_FUZZY_SP) && !real_word->flag(W_FUZZY_NON)) {
1524     real_word->set_flag(W_FUZZY_SP, true);
1525     if (word_res->combination) {
1526       // The next word should be the corresponding part of combo, but we have
1527       // already stepped past it, so find it by search.
1528       WERD_RES_IT wr_it(&row()->word_res_list);
1529       for (wr_it.mark_cycle_pt();
1530            !wr_it.cycled_list() && wr_it.data() != word_res; wr_it.forward()) {
1531       }
1532       wr_it.forward();
1533       ASSERT_HOST(wr_it.data()->part_of_combo);
1534       real_word = wr_it.data()->word;
1535       ASSERT_HOST(!real_word->flag(W_FUZZY_SP) &&
1536                   !real_word->flag(W_FUZZY_NON));
1537       real_word->set_flag(W_FUZZY_SP, true);
1538     }
1539   }
1540 }
1541 
1542 /*************************************************************************
1543  * PAGE_RES_IT::restart_page
1544  *
1545  * Set things up at the start of the page
1546  *************************************************************************/
1547 
start_page(bool empty_ok)1548 WERD_RES *PAGE_RES_IT::start_page(bool empty_ok) {
1549   block_res_it.set_to_list(&page_res->block_res_list);
1550   block_res_it.mark_cycle_pt();
1551   prev_block_res = nullptr;
1552   prev_row_res = nullptr;
1553   prev_word_res = nullptr;
1554   block_res = nullptr;
1555   row_res = nullptr;
1556   word_res = nullptr;
1557   next_block_res = nullptr;
1558   next_row_res = nullptr;
1559   next_word_res = nullptr;
1560   internal_forward(true, empty_ok);
1561   return internal_forward(false, empty_ok);
1562 }
1563 
1564 // Recovers from operations on the current word, such as in InsertCloneWord
1565 // and DeleteCurrentWord.
1566 // Resets the word_res_it so that it is one past the next_word_res, as
1567 // it should be after internal_forward. If next_row_res != row_res,
1568 // then the next_word_res is in the next row, so there is no need to do
1569 // anything to word_res_it, but it is still a good idea to reset the pointers
1570 // word_res and prev_word_res, which are still in the current row.
ResetWordIterator()1571 void PAGE_RES_IT::ResetWordIterator() {
1572   if (row_res == next_row_res) {
1573     // Reset the member iterator so it can move forward and detect the
1574     // cycled_list state correctly.
1575     word_res_it.move_to_first();
1576     for (word_res_it.mark_cycle_pt();
1577          !word_res_it.cycled_list() && word_res_it.data() != next_word_res;
1578          word_res_it.forward()) {
1579       if (!word_res_it.data()->part_of_combo) {
1580         if (prev_row_res == row_res) {
1581           prev_word_res = word_res;
1582         }
1583         word_res = word_res_it.data();
1584       }
1585     }
1586     ASSERT_HOST(!word_res_it.cycled_list());
1587     wr_it_of_next_word = word_res_it;
1588     word_res_it.forward();
1589   } else {
1590     // word_res_it is OK, but reset word_res and prev_word_res if needed.
1591     WERD_RES_IT wr_it(&row_res->word_res_list);
1592     for (wr_it.mark_cycle_pt(); !wr_it.cycled_list(); wr_it.forward()) {
1593       if (!wr_it.data()->part_of_combo) {
1594         if (prev_row_res == row_res) {
1595           prev_word_res = word_res;
1596         }
1597         word_res = wr_it.data();
1598       }
1599     }
1600   }
1601 }
1602 
1603 /*************************************************************************
1604  * PAGE_RES_IT::internal_forward
1605  *
1606  * Find the next word on the page. If empty_ok is true, then non-text blocks
1607  * and text blocks with no text are visited as if they contain a single
1608  * imaginary word in a single imaginary row. (word() and row() both return
1609  *nullptr in such a block and the return value is nullptr.) If empty_ok is
1610  *false, the old behaviour is maintained. Each real word is visited and empty
1611  *and non-text blocks and rows are skipped. new_block is used to initialize the
1612  *iterators for a new block. The iterator maintains pointers to block, row and
1613  *word for the previous, current and next words.  These are correct, regardless
1614  *of block/row boundaries. nullptr values denote start and end of the page.
1615  *************************************************************************/
1616 
internal_forward(bool new_block,bool empty_ok)1617 WERD_RES *PAGE_RES_IT::internal_forward(bool new_block, bool empty_ok) {
1618   bool new_row = false;
1619 
1620   prev_block_res = block_res;
1621   prev_row_res = row_res;
1622   prev_word_res = word_res;
1623   block_res = next_block_res;
1624   row_res = next_row_res;
1625   word_res = next_word_res;
1626   wr_it_of_current_word = wr_it_of_next_word;
1627   next_block_res = nullptr;
1628   next_row_res = nullptr;
1629   next_word_res = nullptr;
1630 
1631   while (!block_res_it.cycled_list()) {
1632     if (new_block) {
1633       new_block = false;
1634       row_res_it.set_to_list(&block_res_it.data()->row_res_list);
1635       row_res_it.mark_cycle_pt();
1636       if (row_res_it.empty() && empty_ok) {
1637         next_block_res = block_res_it.data();
1638         break;
1639       }
1640       new_row = true;
1641     }
1642     while (!row_res_it.cycled_list()) {
1643       if (new_row) {
1644         new_row = false;
1645         word_res_it.set_to_list(&row_res_it.data()->word_res_list);
1646         word_res_it.mark_cycle_pt();
1647       }
1648       // Skip any part_of_combo words.
1649       while (!word_res_it.cycled_list() && word_res_it.data()->part_of_combo) {
1650         word_res_it.forward();
1651       }
1652       if (!word_res_it.cycled_list()) {
1653         next_block_res = block_res_it.data();
1654         next_row_res = row_res_it.data();
1655         next_word_res = word_res_it.data();
1656         wr_it_of_next_word = word_res_it;
1657         word_res_it.forward();
1658         goto foundword;
1659       }
1660       // end of row reached
1661       row_res_it.forward();
1662       new_row = true;
1663     }
1664     // end of block reached
1665     block_res_it.forward();
1666     new_block = true;
1667   }
1668 foundword:
1669   // Update prev_word_best_choice pointer.
1670   if (page_res != nullptr && page_res->prev_word_best_choice != nullptr) {
1671     *page_res->prev_word_best_choice = (new_block || prev_word_res == nullptr)
1672                                            ? nullptr
1673                                            : prev_word_res->best_choice;
1674   }
1675   return word_res;
1676 }
1677 
1678 /*************************************************************************
1679  * PAGE_RES_IT::restart_row()
1680  *
1681  * Move to the beginning (leftmost word) of the current row.
1682  *************************************************************************/
restart_row()1683 WERD_RES *PAGE_RES_IT::restart_row() {
1684   ROW_RES *row = this->row();
1685   if (!row) {
1686     return nullptr;
1687   }
1688   for (restart_page(); this->row() != row; forward()) {
1689     // pass
1690   }
1691   return word();
1692 }
1693 
1694 /*************************************************************************
1695  * PAGE_RES_IT::forward_paragraph
1696  *
1697  * Move to the beginning of the next paragraph, allowing empty blocks.
1698  *************************************************************************/
1699 
forward_paragraph()1700 WERD_RES *PAGE_RES_IT::forward_paragraph() {
1701   while (block_res == next_block_res &&
1702          (next_row_res != nullptr && next_row_res->row != nullptr &&
1703           row_res->row->para() == next_row_res->row->para())) {
1704     internal_forward(false, true);
1705   }
1706   return internal_forward(false, true);
1707 }
1708 
1709 /*************************************************************************
1710  * PAGE_RES_IT::forward_block
1711  *
1712  * Move to the beginning of the next block, allowing empty blocks.
1713  *************************************************************************/
1714 
forward_block()1715 WERD_RES *PAGE_RES_IT::forward_block() {
1716   while (block_res == next_block_res) {
1717     internal_forward(false, true);
1718   }
1719   return internal_forward(false, true);
1720 }
1721 
rej_stat_word()1722 void PAGE_RES_IT::rej_stat_word() {
1723   int16_t chars_in_word;
1724   int16_t rejects_in_word = 0;
1725 
1726   chars_in_word = word_res->reject_map.length();
1727   page_res->char_count += chars_in_word;
1728   block_res->char_count += chars_in_word;
1729   row_res->char_count += chars_in_word;
1730 
1731   rejects_in_word = word_res->reject_map.reject_count();
1732 
1733   page_res->rej_count += rejects_in_word;
1734   block_res->rej_count += rejects_in_word;
1735   row_res->rej_count += rejects_in_word;
1736   if (chars_in_word == rejects_in_word) {
1737     row_res->whole_word_rej_count += rejects_in_word;
1738   }
1739 }
1740 
1741 } // namespace tesseract
1742