1 ///////////////////////////////////////////////////////////////////////
2 // File: tabvector.cpp
3 // Description: Class to hold a near-vertical vector representing a tab-stop.
4 // Author: Ray Smith
5 //
6 // (C) Copyright 2008, Google Inc.
7 // Licensed under the Apache License, Version 2.0 (the "License");
8 // you may not use this file except in compliance with the License.
9 // You may obtain a copy of the License at
10 // http://www.apache.org/licenses/LICENSE-2.0
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 //
17 ///////////////////////////////////////////////////////////////////////
18
19 #ifdef HAVE_CONFIG_H
20 # include "config_auto.h"
21 #endif
22
23 #include "blobbox.h"
24 #include "colfind.h"
25 #include "colpartitionset.h"
26 #include "detlinefit.h"
27 #include "helpers.h" // for IntCastRounded
28 #include "statistc.h"
29 #include "tabvector.h"
30
31 #include <algorithm>
32
33 namespace tesseract {
34
35 // Multiple of height used as a gutter for evaluation search.
36 const int kGutterMultiple = 4;
37 // Multiple of neighbour gap that we expect the gutter gap to be at minimum.
38 const int kGutterToNeighbourRatio = 3;
39 // Pixel distance for tab vectors to be considered the same.
40 const int kSimilarVectorDist = 10;
41 // Pixel distance for ragged tab vectors to be considered the same if there
42 // is nothing in the overlap box
43 const int kSimilarRaggedDist = 50;
44 // Max multiple of height to allow filling in between blobs when evaluating.
45 const int kMaxFillinMultiple = 11;
46 // Min fraction of mean gutter size to allow a gutter on a good tab blob.
47 const double kMinGutterFraction = 0.5;
48 // Multiple of 1/n lines as a minimum gutter in evaluation.
49 const double kLineCountReciprocal = 4.0;
50 // Constant add-on for minimum gutter for aligned tabs.
51 const double kMinAlignedGutter = 0.25;
52 // Constant add-on for minimum gutter for ragged tabs.
53 const double kMinRaggedGutter = 1.5;
54
55 double_VAR(textord_tabvector_vertical_gap_fraction, 0.5,
56 "max fraction of mean blob width allowed for vertical gaps in "
57 "vertical text");
58
59 double_VAR(textord_tabvector_vertical_box_ratio, 0.5,
60 "Fraction of box matches required to declare a line vertical");
61
62 // Create a constraint for the top or bottom of this TabVector.
CreateConstraint(TabVector * vector,bool is_top)63 void TabConstraint::CreateConstraint(TabVector *vector, bool is_top) {
64 auto *constraint = new TabConstraint(vector, is_top);
65 auto *constraints = new TabConstraint_LIST;
66 TabConstraint_IT it(constraints);
67 it.add_to_end(constraint);
68 if (is_top) {
69 vector->set_top_constraints(constraints);
70 } else {
71 vector->set_bottom_constraints(constraints);
72 }
73 }
74
75 // Test to see if the constraints are compatible enough to merge.
CompatibleConstraints(TabConstraint_LIST * list1,TabConstraint_LIST * list2)76 bool TabConstraint::CompatibleConstraints(TabConstraint_LIST *list1, TabConstraint_LIST *list2) {
77 if (list1 == list2) {
78 return false;
79 }
80 int y_min = -INT32_MAX;
81 int y_max = INT32_MAX;
82 if (textord_debug_tabfind > 3) {
83 tprintf("Testing constraint compatibility\n");
84 }
85 GetConstraints(list1, &y_min, &y_max);
86 GetConstraints(list2, &y_min, &y_max);
87 if (textord_debug_tabfind > 3) {
88 tprintf("Resulting range = [%d,%d]\n", y_min, y_max);
89 }
90 return y_max >= y_min;
91 }
92
93 // Merge the lists of constraints and update the TabVector pointers.
94 // The second list is deleted.
MergeConstraints(TabConstraint_LIST * list1,TabConstraint_LIST * list2)95 void TabConstraint::MergeConstraints(TabConstraint_LIST *list1, TabConstraint_LIST *list2) {
96 if (list1 == list2) {
97 return;
98 }
99 TabConstraint_IT it(list2);
100 if (textord_debug_tabfind > 3) {
101 tprintf("Merging constraints\n");
102 }
103 // The vectors of all constraints on list2 are now going to be on list1.
104 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
105 TabConstraint *constraint = it.data();
106 if (textord_debug_tabfind > 3) {
107 constraint->vector_->Print("Merge");
108 }
109 if (constraint->is_top_) {
110 constraint->vector_->set_top_constraints(list1);
111 } else {
112 constraint->vector_->set_bottom_constraints(list1);
113 }
114 }
115 it = list1;
116 it.add_list_before(list2);
117 delete list2;
118 }
119
120 // Set all the tops and bottoms as appropriate to a mean of the
121 // constrained range. Delete all the constraints and list.
ApplyConstraints(TabConstraint_LIST * constraints)122 void TabConstraint::ApplyConstraints(TabConstraint_LIST *constraints) {
123 int y_min = -INT32_MAX;
124 int y_max = INT32_MAX;
125 GetConstraints(constraints, &y_min, &y_max);
126 int y = (y_min + y_max) / 2;
127 TabConstraint_IT it(constraints);
128 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
129 TabConstraint *constraint = it.data();
130 TabVector *v = constraint->vector_;
131 if (constraint->is_top_) {
132 v->SetYEnd(y);
133 v->set_top_constraints(nullptr);
134 } else {
135 v->SetYStart(y);
136 v->set_bottom_constraints(nullptr);
137 }
138 }
139 delete constraints;
140 }
141
TabConstraint(TabVector * vector,bool is_top)142 TabConstraint::TabConstraint(TabVector *vector, bool is_top) : vector_(vector), is_top_(is_top) {
143 if (is_top) {
144 y_min_ = vector->endpt().y();
145 y_max_ = vector->extended_ymax();
146 } else {
147 y_max_ = vector->startpt().y();
148 y_min_ = vector->extended_ymin();
149 }
150 }
151
152 // Get the max of the mins and the min of the maxes.
GetConstraints(TabConstraint_LIST * constraints,int * y_min,int * y_max)153 void TabConstraint::GetConstraints(TabConstraint_LIST *constraints, int *y_min, int *y_max) {
154 TabConstraint_IT it(constraints);
155 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
156 TabConstraint *constraint = it.data();
157 if (textord_debug_tabfind > 3) {
158 tprintf("Constraint is [%d,%d]", constraint->y_min_, constraint->y_max_);
159 constraint->vector_->Print(" for");
160 }
161 *y_min = std::max(*y_min, constraint->y_min_);
162 *y_max = std::min(*y_max, constraint->y_max_);
163 }
164 }
165
166 // The constructor is private. See the bottom of the file...
167
168 // Public factory to build a TabVector from a list of boxes.
169 // The TabVector will be of the given alignment type.
170 // The input vertical vector is used in fitting, and the output
171 // vertical_x, vertical_y have the resulting line vector added to them
172 // if the alignment is not ragged.
173 // The extended_start_y and extended_end_y are the maximum possible
174 // extension to the line segment that can be used to align with others.
175 // The input CLIST of BLOBNBOX good_points is consumed and taken over.
FitVector(TabAlignment alignment,ICOORD vertical,int extended_start_y,int extended_end_y,BLOBNBOX_CLIST * good_points,int * vertical_x,int * vertical_y)176 TabVector *TabVector::FitVector(TabAlignment alignment, ICOORD vertical, int extended_start_y,
177 int extended_end_y, BLOBNBOX_CLIST *good_points, int *vertical_x,
178 int *vertical_y) {
179 auto *vector = new TabVector(extended_start_y, extended_end_y, alignment, good_points);
180 if (!vector->Fit(vertical, false)) {
181 delete vector;
182 return nullptr;
183 }
184 if (!vector->IsRagged()) {
185 vertical = vector->endpt_ - vector->startpt_;
186 int weight = vector->BoxCount();
187 *vertical_x += vertical.x() * weight;
188 *vertical_y += vertical.y() * weight;
189 }
190 return vector;
191 }
192
193 // Build a ragged TabVector by copying another's direction, shifting it
194 // to match the given blob, and making its initial extent the height
195 // of the blob, but its extended bounds from the bounds of the original.
TabVector(const TabVector & src,TabAlignment alignment,const ICOORD & vertical_skew,BLOBNBOX * blob)196 TabVector::TabVector(const TabVector &src, TabAlignment alignment, const ICOORD &vertical_skew,
197 BLOBNBOX *blob)
198 : extended_ymin_(src.extended_ymin_)
199 , extended_ymax_(src.extended_ymax_)
200 , needs_refit_(true)
201 , needs_evaluation_(true)
202 , alignment_(alignment) {
203 BLOBNBOX_C_IT it(&boxes_);
204 it.add_to_end(blob);
205 TBOX box = blob->bounding_box();
206 if (IsLeftTab()) {
207 startpt_ = box.botleft();
208 endpt_ = box.topleft();
209 } else {
210 startpt_ = box.botright();
211 endpt_ = box.topright();
212 }
213 sort_key_ =
214 SortKey(vertical_skew, (startpt_.x() + endpt_.x()) / 2, (startpt_.y() + endpt_.y()) / 2);
215 if (textord_debug_tabfind > 3) {
216 Print("Constructed a new tab vector:");
217 }
218 }
219
220 // Copies basic attributes of a tab vector for simple operations.
221 // Copies things such startpt, endpt, range.
222 // Does not copy things such as partners, boxes, or constraints.
223 // This is useful if you only need vector information for processing, such
224 // as in the table detection code.
ShallowCopy() const225 TabVector *TabVector::ShallowCopy() const {
226 auto *copy = new TabVector();
227 copy->startpt_ = startpt_;
228 copy->endpt_ = endpt_;
229 copy->alignment_ = alignment_;
230 copy->extended_ymax_ = extended_ymax_;
231 copy->extended_ymin_ = extended_ymin_;
232 copy->intersects_other_lines_ = intersects_other_lines_;
233 return copy;
234 }
235
236 // Extend this vector to include the supplied blob if it doesn't
237 // already have it.
ExtendToBox(BLOBNBOX * new_blob)238 void TabVector::ExtendToBox(BLOBNBOX *new_blob) {
239 TBOX new_box = new_blob->bounding_box();
240 BLOBNBOX_C_IT it(&boxes_);
241 if (!it.empty()) {
242 BLOBNBOX *blob = it.data();
243 TBOX box = blob->bounding_box();
244 while (!it.at_last() && box.top() <= new_box.top()) {
245 if (blob == new_blob) {
246 return; // We have it already.
247 }
248 it.forward();
249 blob = it.data();
250 box = blob->bounding_box();
251 }
252 if (box.top() >= new_box.top()) {
253 it.add_before_stay_put(new_blob);
254 needs_refit_ = true;
255 return;
256 }
257 }
258 needs_refit_ = true;
259 it.add_after_stay_put(new_blob);
260 }
261
262 // Set the ycoord of the start and move the xcoord to match.
SetYStart(int start_y)263 void TabVector::SetYStart(int start_y) {
264 startpt_.set_x(XAtY(start_y));
265 startpt_.set_y(start_y);
266 }
267 // Set the ycoord of the end and move the xcoord to match.
SetYEnd(int end_y)268 void TabVector::SetYEnd(int end_y) {
269 endpt_.set_x(XAtY(end_y));
270 endpt_.set_y(end_y);
271 }
272
273 // Rotate the ends by the given vector. Auto flip start and end if needed.
Rotate(const FCOORD & rotation)274 void TabVector::Rotate(const FCOORD &rotation) {
275 startpt_.rotate(rotation);
276 endpt_.rotate(rotation);
277 int dx = endpt_.x() - startpt_.x();
278 int dy = endpt_.y() - startpt_.y();
279 if ((dy < 0 && abs(dy) > abs(dx)) || (dx < 0 && abs(dx) > abs(dy))) {
280 // Need to flip start/end.
281 ICOORD tmp = startpt_;
282 startpt_ = endpt_;
283 endpt_ = tmp;
284 }
285 }
286
287 // Setup the initial constraints, being the limits of
288 // the vector and the extended ends.
SetupConstraints()289 void TabVector::SetupConstraints() {
290 TabConstraint::CreateConstraint(this, false);
291 TabConstraint::CreateConstraint(this, true);
292 }
293
294 // Setup the constraints between the partners of this TabVector.
SetupPartnerConstraints()295 void TabVector::SetupPartnerConstraints() {
296 // With the first and last partner, we want a common bottom and top,
297 // respectively, and for each change of partner, we want a common
298 // top of first with bottom of next.
299 TabVector_C_IT it(&partners_);
300 TabVector *prev_partner = nullptr;
301 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
302 TabVector *partner = it.data();
303 if (partner->top_constraints_ == nullptr || partner->bottom_constraints_ == nullptr) {
304 partner->Print("Impossible: has no constraints");
305 Print("This vector has it as a partner");
306 continue;
307 }
308 if (prev_partner == nullptr) {
309 // This is the first partner, so common bottom.
310 if (TabConstraint::CompatibleConstraints(bottom_constraints_, partner->bottom_constraints_)) {
311 TabConstraint::MergeConstraints(bottom_constraints_, partner->bottom_constraints_);
312 }
313 } else {
314 // We need prev top to be common with partner bottom.
315 if (TabConstraint::CompatibleConstraints(prev_partner->top_constraints_,
316 partner->bottom_constraints_)) {
317 TabConstraint::MergeConstraints(prev_partner->top_constraints_,
318 partner->bottom_constraints_);
319 }
320 }
321 prev_partner = partner;
322 if (it.at_last()) {
323 // This is the last partner, so common top.
324 if (TabConstraint::CompatibleConstraints(top_constraints_, partner->top_constraints_)) {
325 TabConstraint::MergeConstraints(top_constraints_, partner->top_constraints_);
326 }
327 }
328 }
329 }
330
331 // Setup the constraints between this and its partner.
SetupPartnerConstraints(TabVector * partner)332 void TabVector::SetupPartnerConstraints(TabVector *partner) {
333 if (TabConstraint::CompatibleConstraints(bottom_constraints_, partner->bottom_constraints_)) {
334 TabConstraint::MergeConstraints(bottom_constraints_, partner->bottom_constraints_);
335 }
336 if (TabConstraint::CompatibleConstraints(top_constraints_, partner->top_constraints_)) {
337 TabConstraint::MergeConstraints(top_constraints_, partner->top_constraints_);
338 }
339 }
340
341 // Use the constraints to modify the top and bottom.
ApplyConstraints()342 void TabVector::ApplyConstraints() {
343 if (top_constraints_ != nullptr) {
344 TabConstraint::ApplyConstraints(top_constraints_);
345 }
346 if (bottom_constraints_ != nullptr) {
347 TabConstraint::ApplyConstraints(bottom_constraints_);
348 }
349 }
350
351 // Merge close tab vectors of the same side that overlap.
MergeSimilarTabVectors(const ICOORD & vertical,TabVector_LIST * vectors,BlobGrid * grid)352 void TabVector::MergeSimilarTabVectors(const ICOORD &vertical, TabVector_LIST *vectors,
353 BlobGrid *grid) {
354 TabVector_IT it1(vectors);
355 for (it1.mark_cycle_pt(); !it1.cycled_list(); it1.forward()) {
356 TabVector *v1 = it1.data();
357 TabVector_IT it2(it1);
358 for (it2.forward(); !it2.at_first(); it2.forward()) {
359 TabVector *v2 = it2.data();
360 if (v2->SimilarTo(vertical, *v1, grid)) {
361 // Merge into the forward one, in case the combined vector now
362 // overlaps one in between.
363 if (textord_debug_tabfind) {
364 v2->Print("Merging");
365 v1->Print("by deleting");
366 }
367 v2->MergeWith(vertical, it1.extract());
368 if (textord_debug_tabfind) {
369 v2->Print("Producing");
370 }
371 ICOORD merged_vector = v2->endpt();
372 merged_vector -= v2->startpt();
373 if (textord_debug_tabfind && abs(merged_vector.x()) > 100) {
374 v2->Print("Garbage result of merge?");
375 }
376 break;
377 }
378 }
379 }
380 }
381
382 // Return true if this vector is the same side, overlaps, and close
383 // enough to the other to be merged.
SimilarTo(const ICOORD & vertical,const TabVector & other,BlobGrid * grid) const384 bool TabVector::SimilarTo(const ICOORD &vertical, const TabVector &other, BlobGrid *grid) const {
385 if ((IsRightTab() && other.IsRightTab()) || (IsLeftTab() && other.IsLeftTab())) {
386 // If they don't overlap, at least in extensions, then there is no chance.
387 if (ExtendedOverlap(other.extended_ymax_, other.extended_ymin_) < 0) {
388 return false;
389 }
390 // A fast approximation to the scale factor of the sort_key_.
391 int v_scale = abs(vertical.y());
392 if (v_scale == 0) {
393 v_scale = 1;
394 }
395 // If they are close enough, then OK.
396 if (sort_key_ + kSimilarVectorDist * v_scale >= other.sort_key_ &&
397 sort_key_ - kSimilarVectorDist * v_scale <= other.sort_key_) {
398 return true;
399 }
400 // Ragged tabs get a bigger threshold.
401 if (!IsRagged() || !other.IsRagged() ||
402 sort_key_ + kSimilarRaggedDist * v_scale < other.sort_key_ ||
403 sort_key_ - kSimilarRaggedDist * v_scale > other.sort_key_) {
404 return false;
405 }
406 if (grid == nullptr) {
407 // There is nothing else to test!
408 return true;
409 }
410 // If there is nothing in the rectangle between the vector that is going to
411 // move, and the place it is moving to, then they can be merged.
412 // Setup a vertical search for any blob.
413 const TabVector *mover = (IsRightTab() && sort_key_ < other.sort_key_) ? this : &other;
414 int top_y = mover->endpt_.y();
415 int bottom_y = mover->startpt_.y();
416 int left = std::min(mover->XAtY(top_y), mover->XAtY(bottom_y));
417 int right = std::max(mover->XAtY(top_y), mover->XAtY(bottom_y));
418 int shift = abs(sort_key_ - other.sort_key_) / v_scale;
419 if (IsRightTab()) {
420 right += shift;
421 } else {
422 left -= shift;
423 }
424
425 GridSearch<BLOBNBOX, BLOBNBOX_CLIST, BLOBNBOX_C_IT> vsearch(grid);
426 vsearch.StartVerticalSearch(left, right, top_y);
427 BLOBNBOX *blob;
428 while ((blob = vsearch.NextVerticalSearch(true)) != nullptr) {
429 const TBOX &box = blob->bounding_box();
430 if (box.top() > bottom_y) {
431 return true; // Nothing found.
432 }
433 if (box.bottom() < top_y) {
434 continue; // Doesn't overlap.
435 }
436 int left_at_box = XAtY(box.bottom());
437 int right_at_box = left_at_box;
438 if (IsRightTab()) {
439 right_at_box += shift;
440 } else {
441 left_at_box -= shift;
442 }
443 if (std::min(right_at_box, static_cast<int>(box.right())) >
444 std::max(left_at_box, static_cast<int>(box.left()))) {
445 return false;
446 }
447 }
448 return true; // Nothing found.
449 }
450 return false;
451 }
452
453 // Eat the other TabVector into this and delete it.
MergeWith(const ICOORD & vertical,TabVector * other)454 void TabVector::MergeWith(const ICOORD &vertical, TabVector *other) {
455 extended_ymin_ = std::min(extended_ymin_, other->extended_ymin_);
456 extended_ymax_ = std::max(extended_ymax_, other->extended_ymax_);
457 if (other->IsRagged()) {
458 alignment_ = other->alignment_;
459 }
460 // Merge sort the two lists of boxes.
461 BLOBNBOX_C_IT it1(&boxes_);
462 BLOBNBOX_C_IT it2(&other->boxes_);
463 while (!it2.empty()) {
464 BLOBNBOX *bbox2 = it2.extract();
465 it2.forward();
466 TBOX box2 = bbox2->bounding_box();
467 BLOBNBOX *bbox1 = it1.data();
468 TBOX box1 = bbox1->bounding_box();
469 while (box1.bottom() < box2.bottom() && !it1.at_last()) {
470 it1.forward();
471 bbox1 = it1.data();
472 box1 = bbox1->bounding_box();
473 }
474 if (box1.bottom() < box2.bottom()) {
475 it1.add_to_end(bbox2);
476 } else if (bbox1 != bbox2) {
477 it1.add_before_stay_put(bbox2);
478 }
479 }
480 Fit(vertical, true);
481 other->Delete(this);
482 }
483
484 // Add a new element to the list of partner TabVectors.
485 // Partners must be added in order of increasing y coordinate of the text line
486 // that makes them partners.
487 // Groups of identical partners are merged into one.
AddPartner(TabVector * partner)488 void TabVector::AddPartner(TabVector *partner) {
489 if (IsSeparator() || partner->IsSeparator()) {
490 return;
491 }
492 TabVector_C_IT it(&partners_);
493 if (!it.empty()) {
494 it.move_to_last();
495 if (it.data() == partner) {
496 return;
497 }
498 }
499 it.add_after_then_move(partner);
500 }
501
502 // Return true if other is a partner of this.
IsAPartner(const TabVector * other)503 bool TabVector::IsAPartner(const TabVector *other) {
504 TabVector_C_IT it(&partners_);
505 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
506 if (it.data() == other) {
507 return true;
508 }
509 }
510 return false;
511 }
512
513 // These names must be synced with the TabAlignment enum in tabvector.h.
514 static const char *const kAlignmentNames[] = {"Left Aligned", "Left Ragged", "Center",
515 "Right Aligned", "Right Ragged", "Separator"};
516
517 // Print basic information about this tab vector.
Print(const char * prefix)518 void TabVector::Print(const char *prefix) {
519 tprintf(
520 "%s %s (%d,%d)->(%d,%d) w=%d s=%d, sort key=%d, boxes=%d,"
521 " partners=%d\n",
522 prefix, kAlignmentNames[alignment_], startpt_.x(), startpt_.y(), endpt_.x(), endpt_.y(),
523 mean_width_, percent_score_, sort_key_, boxes_.length(), partners_.length());
524 }
525
526 // Print basic information about this tab vector and every box in it.
Debug(const char * prefix)527 void TabVector::Debug(const char *prefix) {
528 Print(prefix);
529 BLOBNBOX_C_IT it(&boxes_);
530 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
531 BLOBNBOX *bbox = it.data();
532 const TBOX &box = bbox->bounding_box();
533 tprintf("Box at (%d,%d)->(%d,%d)\n", box.left(), box.bottom(), box.right(), box.top());
534 }
535 }
536
537 #ifndef GRAPHICS_DISABLED
538
539 // Draw this tabvector in place in the given window.
Display(ScrollView * tab_win)540 void TabVector::Display(ScrollView *tab_win) {
541 if (textord_debug_printable) {
542 tab_win->Pen(ScrollView::BLUE);
543 } else if (alignment_ == TA_LEFT_ALIGNED) {
544 tab_win->Pen(ScrollView::LIME_GREEN);
545 } else if (alignment_ == TA_LEFT_RAGGED) {
546 tab_win->Pen(ScrollView::DARK_GREEN);
547 } else if (alignment_ == TA_RIGHT_ALIGNED) {
548 tab_win->Pen(ScrollView::PINK);
549 } else if (alignment_ == TA_RIGHT_RAGGED) {
550 tab_win->Pen(ScrollView::CORAL);
551 } else {
552 tab_win->Pen(ScrollView::WHITE);
553 }
554 tab_win->Line(startpt_.x(), startpt_.y(), endpt_.x(), endpt_.y());
555 tab_win->Pen(ScrollView::GREY);
556 tab_win->Line(startpt_.x(), startpt_.y(), startpt_.x(), extended_ymin_);
557 tab_win->Line(endpt_.x(), extended_ymax_, endpt_.x(), endpt_.y());
558 auto score_string = std::to_string(percent_score_);
559 tab_win->TextAttributes("Times", 50, false, false, false);
560 tab_win->Text(startpt_.x(), startpt_.y(), score_string.c_str());
561 }
562
563 #endif
564
565 // Refit the line and/or re-evaluate the vector if the dirty flags are set.
FitAndEvaluateIfNeeded(const ICOORD & vertical,TabFind * finder)566 void TabVector::FitAndEvaluateIfNeeded(const ICOORD &vertical, TabFind *finder) {
567 if (needs_refit_) {
568 Fit(vertical, true);
569 }
570 if (needs_evaluation_) {
571 Evaluate(vertical, finder);
572 }
573 }
574
575 // Evaluate the vector in terms of coverage of its length by good-looking
576 // box edges. A good looking box is one where its nearest neighbour on the
577 // inside is nearer than half the distance its nearest neighbour on the
578 // outside of the putative column. Bad boxes are removed from the line.
579 // A second pass then further filters boxes by requiring that the gutter
580 // width be a minimum fraction of the mean gutter along the line.
Evaluate(const ICOORD & vertical,TabFind * finder)581 void TabVector::Evaluate(const ICOORD &vertical, TabFind *finder) {
582 bool debug = false;
583 needs_evaluation_ = false;
584 int length = endpt_.y() - startpt_.y();
585 if (length == 0 || boxes_.empty()) {
586 percent_score_ = 0;
587 Print("Zero length in evaluate");
588 return;
589 }
590 // Compute the mean box height.
591 BLOBNBOX_C_IT it(&boxes_);
592 int mean_height = 0;
593 int height_count = 0;
594 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
595 BLOBNBOX *bbox = it.data();
596 const TBOX &box = bbox->bounding_box();
597 int height = box.height();
598 mean_height += height;
599 ++height_count;
600 }
601 if (height_count > 0) {
602 mean_height /= height_count;
603 }
604 int max_gutter = kGutterMultiple * mean_height;
605 if (IsRagged()) {
606 // Ragged edges face a tougher test in that the gap must always be within
607 // the height of the blob.
608 max_gutter = kGutterToNeighbourRatio * mean_height;
609 }
610
611 STATS gutters(0, max_gutter + 1);
612 // Evaluate the boxes for their goodness, calculating the coverage as we go.
613 // Remove boxes that are not good and shorten the list to the first and
614 // last good boxes.
615 int num_deleted_boxes = 0;
616 bool text_on_image = false;
617 int good_length = 0;
618 const TBOX *prev_good_box = nullptr;
619 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
620 BLOBNBOX *bbox = it.data();
621 const TBOX &box = bbox->bounding_box();
622 int mid_y = (box.top() + box.bottom()) / 2;
623 if (TabFind::WithinTestRegion(2, XAtY(box.bottom()), box.bottom())) {
624 if (!debug) {
625 tprintf("After already deleting %d boxes, ", num_deleted_boxes);
626 Print("Starting evaluation");
627 }
628 debug = true;
629 }
630 // A good box is one where the nearest neighbour on the inside is closer
631 // than half the distance to the nearest neighbour on the outside
632 // (of the putative column).
633 bool left = IsLeftTab();
634 int tab_x = XAtY(mid_y);
635 int gutter_width;
636 int neighbour_gap;
637 finder->GutterWidthAndNeighbourGap(tab_x, mean_height, max_gutter, left, bbox, &gutter_width,
638 &neighbour_gap);
639 if (debug) {
640 tprintf("Box (%d,%d)->(%d,%d) has gutter %d, ndist %d\n", box.left(), box.bottom(),
641 box.right(), box.top(), gutter_width, neighbour_gap);
642 }
643 // Now we can make the test.
644 if (neighbour_gap * kGutterToNeighbourRatio <= gutter_width) {
645 // A good box contributes its height to the good_length.
646 good_length += box.top() - box.bottom();
647 gutters.add(gutter_width, 1);
648 // Two good boxes together contribute the gap between them
649 // to the good_length as well, as long as the gap is not
650 // too big.
651 if (prev_good_box != nullptr) {
652 int vertical_gap = box.bottom() - prev_good_box->top();
653 double size1 = sqrt(static_cast<double>(prev_good_box->area()));
654 double size2 = sqrt(static_cast<double>(box.area()));
655 if (vertical_gap < kMaxFillinMultiple * std::min(size1, size2)) {
656 good_length += vertical_gap;
657 }
658 if (debug) {
659 tprintf("Box and prev good, gap=%d, target %g, goodlength=%d\n", vertical_gap,
660 kMaxFillinMultiple * std::min(size1, size2), good_length);
661 }
662 } else {
663 // Adjust the start to the first good box.
664 SetYStart(box.bottom());
665 }
666 prev_good_box = &box;
667 if (bbox->flow() == BTFT_TEXT_ON_IMAGE) {
668 text_on_image = true;
669 }
670 } else {
671 // Get rid of boxes that are not good.
672 if (debug) {
673 tprintf("Bad Box (%d,%d)->(%d,%d) with gutter %d, ndist %d\n", box.left(), box.bottom(),
674 box.right(), box.top(), gutter_width, neighbour_gap);
675 }
676 it.extract();
677 ++num_deleted_boxes;
678 }
679 }
680 if (debug) {
681 Print("Evaluating:");
682 }
683 // If there are any good boxes, do it again, except this time get rid of
684 // boxes that have a gutter that is a small fraction of the mean gutter.
685 // This filters out ends that run into a coincidental gap in the text.
686 int search_top = endpt_.y();
687 int search_bottom = startpt_.y();
688 int median_gutter = IntCastRounded(gutters.median());
689 if (gutters.get_total() > 0) {
690 prev_good_box = nullptr;
691 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
692 BLOBNBOX *bbox = it.data();
693 const TBOX &box = bbox->bounding_box();
694 int mid_y = (box.top() + box.bottom()) / 2;
695 // A good box is one where the gutter width is at least some constant
696 // fraction of the mean gutter width.
697 bool left = IsLeftTab();
698 int tab_x = XAtY(mid_y);
699 int max_gutter = kGutterMultiple * mean_height;
700 if (IsRagged()) {
701 // Ragged edges face a tougher test in that the gap must always be
702 // within the height of the blob.
703 max_gutter = kGutterToNeighbourRatio * mean_height;
704 }
705 int gutter_width;
706 int neighbour_gap;
707 finder->GutterWidthAndNeighbourGap(tab_x, mean_height, max_gutter, left, bbox, &gutter_width,
708 &neighbour_gap);
709 // Now we can make the test.
710 if (gutter_width >= median_gutter * kMinGutterFraction) {
711 if (prev_good_box == nullptr) {
712 // Adjust the start to the first good box.
713 SetYStart(box.bottom());
714 search_bottom = box.top();
715 }
716 prev_good_box = &box;
717 search_top = box.bottom();
718 } else {
719 // Get rid of boxes that are not good.
720 if (debug) {
721 tprintf("Bad Box (%d,%d)->(%d,%d) with gutter %d, mean gutter %d\n", box.left(),
722 box.bottom(), box.right(), box.top(), gutter_width, median_gutter);
723 }
724 it.extract();
725 ++num_deleted_boxes;
726 }
727 }
728 }
729 // If there has been a good box, adjust the end.
730 if (prev_good_box != nullptr) {
731 SetYEnd(prev_good_box->top());
732 // Compute the percentage of the vector that is occupied by good boxes.
733 int length = endpt_.y() - startpt_.y();
734 percent_score_ = 100 * good_length / length;
735 if (num_deleted_boxes > 0) {
736 needs_refit_ = true;
737 FitAndEvaluateIfNeeded(vertical, finder);
738 if (boxes_.empty()) {
739 return;
740 }
741 }
742 // Test the gutter over the whole vector, instead of just at the boxes.
743 int required_shift;
744 if (search_bottom > search_top) {
745 search_bottom = startpt_.y();
746 search_top = endpt_.y();
747 }
748 double min_gutter_width = kLineCountReciprocal / boxes_.length();
749 min_gutter_width += IsRagged() ? kMinRaggedGutter : kMinAlignedGutter;
750 min_gutter_width *= mean_height;
751 int max_gutter_width = IntCastRounded(min_gutter_width) + 1;
752 if (median_gutter > max_gutter_width) {
753 max_gutter_width = median_gutter;
754 }
755 int gutter_width = finder->GutterWidth(search_bottom, search_top, *this, text_on_image,
756 max_gutter_width, &required_shift);
757 if (gutter_width < min_gutter_width) {
758 if (debug) {
759 tprintf("Rejecting bad tab Vector with %d gutter vs %g min\n", gutter_width,
760 min_gutter_width);
761 }
762 boxes_.shallow_clear();
763 percent_score_ = 0;
764 } else if (debug) {
765 tprintf("Final gutter %d, vs limit of %g, required shift = %d\n", gutter_width,
766 min_gutter_width, required_shift);
767 }
768 } else {
769 // There are no good boxes left, so score is 0.
770 percent_score_ = 0;
771 }
772
773 if (debug) {
774 Print("Evaluation complete:");
775 }
776 }
777
778 // (Re)Fit a line to the stored points. Returns false if the line
779 // is degenerate. Although the TabVector code mostly doesn't care about the
780 // direction of lines, XAtY would give silly results for a horizontal line.
781 // The class is mostly aimed at use for vertical lines representing
782 // horizontal tab stops.
Fit(ICOORD vertical,bool force_parallel)783 bool TabVector::Fit(ICOORD vertical, bool force_parallel) {
784 needs_refit_ = false;
785 if (boxes_.empty()) {
786 // Don't refit something with no boxes, as that only happens
787 // in Evaluate, and we don't want to end up with a zero vector.
788 if (!force_parallel) {
789 return false;
790 }
791 // If we are forcing parallel, then we just need to set the sort_key_.
792 ICOORD midpt = startpt_;
793 midpt += endpt_;
794 midpt /= 2;
795 sort_key_ = SortKey(vertical, midpt.x(), midpt.y());
796 return startpt_.y() != endpt_.y();
797 }
798 if (!force_parallel && !IsRagged()) {
799 // Use a fitted line as the vertical.
800 DetLineFit linepoints;
801 BLOBNBOX_C_IT it(&boxes_);
802 // Fit a line to all the boxes in the list.
803 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
804 BLOBNBOX *bbox = it.data();
805 const TBOX &box = bbox->bounding_box();
806 int x1 = IsRightTab() ? box.right() : box.left();
807 ICOORD boxpt(x1, box.bottom());
808 linepoints.Add(boxpt);
809 if (it.at_last()) {
810 ICOORD top_pt(x1, box.top());
811 linepoints.Add(top_pt);
812 }
813 }
814 linepoints.Fit(&startpt_, &endpt_);
815 if (startpt_.y() != endpt_.y()) {
816 vertical = endpt_;
817 vertical -= startpt_;
818 }
819 }
820 int start_y = startpt_.y();
821 int end_y = endpt_.y();
822 sort_key_ = IsLeftTab() ? INT32_MAX : -INT32_MAX;
823 BLOBNBOX_C_IT it(&boxes_);
824 // Choose a line parallel to the vertical such that all boxes are on the
825 // correct side of it.
826 mean_width_ = 0;
827 int width_count = 0;
828 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
829 BLOBNBOX *bbox = it.data();
830 const TBOX &box = bbox->bounding_box();
831 mean_width_ += box.width();
832 ++width_count;
833 int x1 = IsRightTab() ? box.right() : box.left();
834 // Test both the bottom and the top, as one will be more extreme, depending
835 // on the direction of skew.
836 int bottom_y = box.bottom();
837 int top_y = box.top();
838 int key = SortKey(vertical, x1, bottom_y);
839 if (IsLeftTab() == (key < sort_key_)) {
840 sort_key_ = key;
841 startpt_ = ICOORD(x1, bottom_y);
842 }
843 key = SortKey(vertical, x1, top_y);
844 if (IsLeftTab() == (key < sort_key_)) {
845 sort_key_ = key;
846 startpt_ = ICOORD(x1, top_y);
847 }
848 if (it.at_first()) {
849 start_y = bottom_y;
850 }
851 if (it.at_last()) {
852 end_y = top_y;
853 }
854 }
855 if (width_count > 0) {
856 mean_width_ = (mean_width_ + width_count - 1) / width_count;
857 }
858 endpt_ = startpt_ + vertical;
859 needs_evaluation_ = true;
860 if (start_y != end_y) {
861 // Set the ends of the vector to fully include the first and last blobs.
862 startpt_.set_x(XAtY(vertical, sort_key_, start_y));
863 startpt_.set_y(start_y);
864 endpt_.set_x(XAtY(vertical, sort_key_, end_y));
865 endpt_.set_y(end_y);
866 return true;
867 }
868 return false;
869 }
870
871 // Returns the singleton partner if there is one, or nullptr otherwise.
GetSinglePartner()872 TabVector *TabVector::GetSinglePartner() {
873 if (!partners_.singleton()) {
874 return nullptr;
875 }
876 TabVector_C_IT partner_it(&partners_);
877 TabVector *partner = partner_it.data();
878 return partner;
879 }
880
881 // Return the partner of this TabVector if the vector qualifies as
882 // being a vertical text line, otherwise nullptr.
VerticalTextlinePartner()883 TabVector *TabVector::VerticalTextlinePartner() {
884 if (!partners_.singleton()) {
885 return nullptr;
886 }
887 TabVector_C_IT partner_it(&partners_);
888 TabVector *partner = partner_it.data();
889 BLOBNBOX_C_IT box_it1(&boxes_);
890 BLOBNBOX_C_IT box_it2(&partner->boxes_);
891 // Count how many boxes are also in the other list.
892 // At the same time, gather the mean width and median vertical gap.
893 if (textord_debug_tabfind > 1) {
894 Print("Testing for vertical text");
895 partner->Print(" partner");
896 }
897 int num_matched = 0;
898 int num_unmatched = 0;
899 int total_widths = 0;
900 int width = startpt().x() - partner->startpt().x();
901 if (width < 0) {
902 width = -width;
903 }
904 STATS gaps(0, width * 2);
905 BLOBNBOX *prev_bbox = nullptr;
906 box_it2.mark_cycle_pt();
907 for (box_it1.mark_cycle_pt(); !box_it1.cycled_list(); box_it1.forward()) {
908 BLOBNBOX *bbox = box_it1.data();
909 TBOX box = bbox->bounding_box();
910 if (prev_bbox != nullptr) {
911 gaps.add(box.bottom() - prev_bbox->bounding_box().top(), 1);
912 }
913 while (!box_it2.cycled_list() && box_it2.data() != bbox &&
914 box_it2.data()->bounding_box().bottom() < box.bottom()) {
915 box_it2.forward();
916 }
917 if (!box_it2.cycled_list() && box_it2.data() == bbox && bbox->region_type() >= BRT_UNKNOWN &&
918 (prev_bbox == nullptr || prev_bbox->region_type() >= BRT_UNKNOWN)) {
919 ++num_matched;
920 } else {
921 ++num_unmatched;
922 }
923 total_widths += box.width();
924 prev_bbox = bbox;
925 }
926 if (num_unmatched + num_matched == 0) {
927 return nullptr;
928 }
929 double avg_width = total_widths * 1.0 / (num_unmatched + num_matched);
930 double max_gap = textord_tabvector_vertical_gap_fraction * avg_width;
931 int min_box_match =
932 static_cast<int>((num_matched + num_unmatched) * textord_tabvector_vertical_box_ratio);
933 bool is_vertical =
934 (gaps.get_total() > 0 && num_matched >= min_box_match && gaps.median() <= max_gap);
935 if (textord_debug_tabfind > 1) {
936 tprintf(
937 "gaps=%d, matched=%d, unmatched=%d, min_match=%d "
938 "median gap=%.2f, width=%.2f max_gap=%.2f Vertical=%s\n",
939 gaps.get_total(), num_matched, num_unmatched, min_box_match, gaps.median(), avg_width,
940 max_gap, is_vertical ? "Yes" : "No");
941 }
942 return (is_vertical) ? partner : nullptr;
943 }
944
945 // The constructor is private.
TabVector(int extended_ymin,int extended_ymax,TabAlignment alignment,BLOBNBOX_CLIST * boxes)946 TabVector::TabVector(int extended_ymin, int extended_ymax, TabAlignment alignment,
947 BLOBNBOX_CLIST *boxes)
948 : extended_ymin_(extended_ymin)
949 , extended_ymax_(extended_ymax)
950 , sort_key_(0)
951 , percent_score_(0)
952 , mean_width_(0)
953 , needs_refit_(true)
954 , needs_evaluation_(true)
955 , alignment_(alignment)
956 , top_constraints_(nullptr)
957 , bottom_constraints_(nullptr) {
958 BLOBNBOX_C_IT it(&boxes_);
959 it.add_list_after(boxes);
960 }
961
962 // Delete this, but first, repoint all the partners to point to
963 // replacement. If replacement is nullptr, then partner relationships
964 // are removed.
Delete(TabVector * replacement)965 void TabVector::Delete(TabVector *replacement) {
966 TabVector_C_IT it(&partners_);
967 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
968 TabVector *partner = it.data();
969 TabVector_C_IT p_it(&partner->partners_);
970 // If partner already has replacement in its list, then make
971 // replacement null, and just remove this TabVector when we find it.
972 TabVector *partner_replacement = replacement;
973 for (p_it.mark_cycle_pt(); !p_it.cycled_list(); p_it.forward()) {
974 TabVector *p_partner = p_it.data();
975 if (p_partner == partner_replacement) {
976 partner_replacement = nullptr;
977 break;
978 }
979 }
980 // Remove all references to this, and replace with replacement if not
981 // nullptr.
982 for (p_it.mark_cycle_pt(); !p_it.cycled_list(); p_it.forward()) {
983 TabVector *p_partner = p_it.data();
984 if (p_partner == this) {
985 p_it.extract();
986 if (partner_replacement != nullptr) {
987 p_it.add_before_stay_put(partner_replacement);
988 }
989 }
990 }
991 if (partner_replacement != nullptr) {
992 partner_replacement->AddPartner(partner);
993 }
994 }
995 delete this;
996 }
997
998 } // namespace tesseract.
999