1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetOperations.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringSet.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/DebugInfo/BTF/BTFParser.h"
33 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
34 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
35 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
36 #include "llvm/Debuginfod/BuildIDFetcher.h"
37 #include "llvm/Debuginfod/Debuginfod.h"
38 #include "llvm/Debuginfod/HTTPClient.h"
39 #include "llvm/Demangle/Demangle.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
43 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
44 #include "llvm/MC/MCInst.h"
45 #include "llvm/MC/MCInstPrinter.h"
46 #include "llvm/MC/MCInstrAnalysis.h"
47 #include "llvm/MC/MCInstrInfo.h"
48 #include "llvm/MC/MCObjectFileInfo.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/MC/MCTargetOptions.h"
51 #include "llvm/MC/TargetRegistry.h"
52 #include "llvm/Object/Archive.h"
53 #include "llvm/Object/BuildID.h"
54 #include "llvm/Object/COFF.h"
55 #include "llvm/Object/COFFImportFile.h"
56 #include "llvm/Object/ELFObjectFile.h"
57 #include "llvm/Object/ELFTypes.h"
58 #include "llvm/Object/FaultMapParser.h"
59 #include "llvm/Object/MachO.h"
60 #include "llvm/Object/MachOUniversal.h"
61 #include "llvm/Object/ObjectFile.h"
62 #include "llvm/Object/OffloadBinary.h"
63 #include "llvm/Object/Wasm.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/Option.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Errc.h"
70 #include "llvm/Support/FileSystem.h"
71 #include "llvm/Support/Format.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/GraphWriter.h"
74 #include "llvm/Support/LLVMDriver.h"
75 #include "llvm/Support/MemoryBuffer.h"
76 #include "llvm/Support/SourceMgr.h"
77 #include "llvm/Support/StringSaver.h"
78 #include "llvm/Support/TargetSelect.h"
79 #include "llvm/Support/WithColor.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/TargetParser/Host.h"
82 #include "llvm/TargetParser/Triple.h"
83 #include <algorithm>
84 #include <cctype>
85 #include <cstring>
86 #include <optional>
87 #include <set>
88 #include <system_error>
89 #include <unordered_map>
90 #include <utility>
91 
92 using namespace llvm;
93 using namespace llvm::object;
94 using namespace llvm::objdump;
95 using namespace llvm::opt;
96 
97 namespace {
98 
99 class CommonOptTable : public opt::GenericOptTable {
100 public:
CommonOptTable(ArrayRef<Info> OptionInfos,const char * Usage,const char * Description)101   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
102                  const char *Description)
103       : opt::GenericOptTable(OptionInfos), Usage(Usage),
104         Description(Description) {
105     setGroupedShortOptions(true);
106   }
107 
printHelp(StringRef Argv0,bool ShowHidden=false) const108   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
109     Argv0 = sys::path::filename(Argv0);
110     opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
111                                     Description, ShowHidden, ShowHidden);
112     // TODO Replace this with OptTable API once it adds extrahelp support.
113     outs() << "\nPass @FILE as argument to read options from FILE.\n";
114   }
115 
116 private:
117   const char *Usage;
118   const char *Description;
119 };
120 
121 // ObjdumpOptID is in ObjdumpOptID.h
122 namespace objdump_opt {
123 #define PREFIX(NAME, VALUE)                                                    \
124   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
125   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
126                                                 std::size(NAME##_init) - 1);
127 #include "ObjdumpOpts.inc"
128 #undef PREFIX
129 
130 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
131 #define OPTION(...)                                                            \
132   LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__),
133 #include "ObjdumpOpts.inc"
134 #undef OPTION
135 };
136 } // namespace objdump_opt
137 
138 class ObjdumpOptTable : public CommonOptTable {
139 public:
ObjdumpOptTable()140   ObjdumpOptTable()
141       : CommonOptTable(objdump_opt::ObjdumpInfoTable,
142                        " [options] <input object files>",
143                        "llvm object file dumper") {}
144 };
145 
146 enum OtoolOptID {
147   OTOOL_INVALID = 0, // This is not an option ID.
148 #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
149 #include "OtoolOpts.inc"
150 #undef OPTION
151 };
152 
153 namespace otool {
154 #define PREFIX(NAME, VALUE)                                                    \
155   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
156   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
157                                                 std::size(NAME##_init) - 1);
158 #include "OtoolOpts.inc"
159 #undef PREFIX
160 
161 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
162 #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
163 #include "OtoolOpts.inc"
164 #undef OPTION
165 };
166 } // namespace otool
167 
168 class OtoolOptTable : public CommonOptTable {
169 public:
OtoolOptTable()170   OtoolOptTable()
171       : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
172                        "Mach-O object file displaying tool") {}
173 };
174 
175 } // namespace
176 
177 #define DEBUG_TYPE "objdump"
178 
179 enum class ColorOutput {
180   Auto,
181   Enable,
182   Disable,
183   Invalid,
184 };
185 
186 static uint64_t AdjustVMA;
187 static bool AllHeaders;
188 static std::string ArchName;
189 bool objdump::ArchiveHeaders;
190 bool objdump::Demangle;
191 bool objdump::Disassemble;
192 bool objdump::DisassembleAll;
193 bool objdump::SymbolDescription;
194 bool objdump::TracebackTable;
195 static std::vector<std::string> DisassembleSymbols;
196 static bool DisassembleZeroes;
197 static std::vector<std::string> DisassemblerOptions;
198 static ColorOutput DisassemblyColor;
199 DIDumpType objdump::DwarfDumpType;
200 static bool DynamicRelocations;
201 static bool FaultMapSection;
202 static bool FileHeaders;
203 bool objdump::SectionContents;
204 static std::vector<std::string> InputFilenames;
205 bool objdump::PrintLines;
206 static bool MachOOpt;
207 std::string objdump::MCPU;
208 std::vector<std::string> objdump::MAttrs;
209 bool objdump::ShowRawInsn;
210 bool objdump::LeadingAddr;
211 static bool Offloading;
212 static bool RawClangAST;
213 bool objdump::Relocations;
214 bool objdump::PrintImmHex;
215 bool objdump::PrivateHeaders;
216 std::vector<std::string> objdump::FilterSections;
217 bool objdump::SectionHeaders;
218 static bool ShowAllSymbols;
219 static bool ShowLMA;
220 bool objdump::PrintSource;
221 
222 static uint64_t StartAddress;
223 static bool HasStartAddressFlag;
224 static uint64_t StopAddress = UINT64_MAX;
225 static bool HasStopAddressFlag;
226 
227 bool objdump::SymbolTable;
228 static bool SymbolizeOperands;
229 static bool DynamicSymbolTable;
230 std::string objdump::TripleName;
231 bool objdump::UnwindInfo;
232 static bool Wide;
233 std::string objdump::Prefix;
234 uint32_t objdump::PrefixStrip;
235 
236 DebugVarsFormat objdump::DbgVariables = DVDisabled;
237 
238 int objdump::DbgIndent = 52;
239 
240 static StringSet<> DisasmSymbolSet;
241 StringSet<> objdump::FoundSectionSet;
242 static StringRef ToolName;
243 
244 std::unique_ptr<BuildIDFetcher> BIDFetcher;
245 
Dumper(const object::ObjectFile & O)246 Dumper::Dumper(const object::ObjectFile &O) : O(O) {
247   WarningHandler = [this](const Twine &Msg) {
248     if (Warnings.insert(Msg.str()).second)
249       reportWarning(Msg, this->O.getFileName());
250     return Error::success();
251   };
252 }
253 
reportUniqueWarning(Error Err)254 void Dumper::reportUniqueWarning(Error Err) {
255   reportUniqueWarning(toString(std::move(Err)));
256 }
257 
reportUniqueWarning(const Twine & Msg)258 void Dumper::reportUniqueWarning(const Twine &Msg) {
259   cantFail(WarningHandler(Msg));
260 }
261 
createDumper(const ObjectFile & Obj)262 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) {
263   if (const auto *O = dyn_cast<COFFObjectFile>(&Obj))
264     return createCOFFDumper(*O);
265   if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj))
266     return createELFDumper(*O);
267   if (const auto *O = dyn_cast<MachOObjectFile>(&Obj))
268     return createMachODumper(*O);
269   if (const auto *O = dyn_cast<WasmObjectFile>(&Obj))
270     return createWasmDumper(*O);
271   if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj))
272     return createXCOFFDumper(*O);
273 
274   return createStringError(errc::invalid_argument,
275                            "unsupported object file format");
276 }
277 
278 namespace {
279 struct FilterResult {
280   // True if the section should not be skipped.
281   bool Keep;
282 
283   // True if the index counter should be incremented, even if the section should
284   // be skipped. For example, sections may be skipped if they are not included
285   // in the --section flag, but we still want those to count toward the section
286   // count.
287   bool IncrementIndex;
288 };
289 } // namespace
290 
checkSectionFilter(object::SectionRef S)291 static FilterResult checkSectionFilter(object::SectionRef S) {
292   if (FilterSections.empty())
293     return {/*Keep=*/true, /*IncrementIndex=*/true};
294 
295   Expected<StringRef> SecNameOrErr = S.getName();
296   if (!SecNameOrErr) {
297     consumeError(SecNameOrErr.takeError());
298     return {/*Keep=*/false, /*IncrementIndex=*/false};
299   }
300   StringRef SecName = *SecNameOrErr;
301 
302   // StringSet does not allow empty key so avoid adding sections with
303   // no name (such as the section with index 0) here.
304   if (!SecName.empty())
305     FoundSectionSet.insert(SecName);
306 
307   // Only show the section if it's in the FilterSections list, but always
308   // increment so the indexing is stable.
309   return {/*Keep=*/is_contained(FilterSections, SecName),
310           /*IncrementIndex=*/true};
311 }
312 
ToolSectionFilter(object::ObjectFile const & O,uint64_t * Idx)313 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
314                                          uint64_t *Idx) {
315   // Start at UINT64_MAX so that the first index returned after an increment is
316   // zero (after the unsigned wrap).
317   if (Idx)
318     *Idx = UINT64_MAX;
319   return SectionFilter(
320       [Idx](object::SectionRef S) {
321         FilterResult Result = checkSectionFilter(S);
322         if (Idx != nullptr && Result.IncrementIndex)
323           *Idx += 1;
324         return Result.Keep;
325       },
326       O);
327 }
328 
getFileNameForError(const object::Archive::Child & C,unsigned Index)329 std::string objdump::getFileNameForError(const object::Archive::Child &C,
330                                          unsigned Index) {
331   Expected<StringRef> NameOrErr = C.getName();
332   if (NameOrErr)
333     return std::string(NameOrErr.get());
334   // If we have an error getting the name then we print the index of the archive
335   // member. Since we are already in an error state, we just ignore this error.
336   consumeError(NameOrErr.takeError());
337   return "<file index: " + std::to_string(Index) + ">";
338 }
339 
reportWarning(const Twine & Message,StringRef File)340 void objdump::reportWarning(const Twine &Message, StringRef File) {
341   // Output order between errs() and outs() matters especially for archive
342   // files where the output is per member object.
343   outs().flush();
344   WithColor::warning(errs(), ToolName)
345       << "'" << File << "': " << Message << "\n";
346 }
347 
reportError(StringRef File,const Twine & Message)348 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
349   outs().flush();
350   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
351   exit(1);
352 }
353 
reportError(Error E,StringRef FileName,StringRef ArchiveName,StringRef ArchitectureName)354 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
355                                        StringRef ArchiveName,
356                                        StringRef ArchitectureName) {
357   assert(E);
358   outs().flush();
359   WithColor::error(errs(), ToolName);
360   if (ArchiveName != "")
361     errs() << ArchiveName << "(" << FileName << ")";
362   else
363     errs() << "'" << FileName << "'";
364   if (!ArchitectureName.empty())
365     errs() << " (for architecture " << ArchitectureName << ")";
366   errs() << ": ";
367   logAllUnhandledErrors(std::move(E), errs());
368   exit(1);
369 }
370 
reportCmdLineWarning(const Twine & Message)371 static void reportCmdLineWarning(const Twine &Message) {
372   WithColor::warning(errs(), ToolName) << Message << "\n";
373 }
374 
reportCmdLineError(const Twine & Message)375 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
376   WithColor::error(errs(), ToolName) << Message << "\n";
377   exit(1);
378 }
379 
warnOnNoMatchForSections()380 static void warnOnNoMatchForSections() {
381   SetVector<StringRef> MissingSections;
382   for (StringRef S : FilterSections) {
383     if (FoundSectionSet.count(S))
384       return;
385     // User may specify a unnamed section. Don't warn for it.
386     if (!S.empty())
387       MissingSections.insert(S);
388   }
389 
390   // Warn only if no section in FilterSections is matched.
391   for (StringRef S : MissingSections)
392     reportCmdLineWarning("section '" + S +
393                          "' mentioned in a -j/--section option, but not "
394                          "found in any input file");
395 }
396 
getTarget(const ObjectFile * Obj)397 static const Target *getTarget(const ObjectFile *Obj) {
398   // Figure out the target triple.
399   Triple TheTriple("unknown-unknown-unknown");
400   if (TripleName.empty()) {
401     TheTriple = Obj->makeTriple();
402   } else {
403     TheTriple.setTriple(Triple::normalize(TripleName));
404     auto Arch = Obj->getArch();
405     if (Arch == Triple::arm || Arch == Triple::armeb)
406       Obj->setARMSubArch(TheTriple);
407   }
408 
409   // Get the target specific parser.
410   std::string Error;
411   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
412                                                          Error);
413   if (!TheTarget)
414     reportError(Obj->getFileName(), "can't find target: " + Error);
415 
416   // Update the triple name and return the found target.
417   TripleName = TheTriple.getTriple();
418   return TheTarget;
419 }
420 
isRelocAddressLess(RelocationRef A,RelocationRef B)421 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
422   return A.getOffset() < B.getOffset();
423 }
424 
getRelocationValueString(const RelocationRef & Rel,bool SymbolDescription,SmallVectorImpl<char> & Result)425 static Error getRelocationValueString(const RelocationRef &Rel,
426                                       bool SymbolDescription,
427                                       SmallVectorImpl<char> &Result) {
428   const ObjectFile *Obj = Rel.getObject();
429   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
430     return getELFRelocationValueString(ELF, Rel, Result);
431   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
432     return getCOFFRelocationValueString(COFF, Rel, Result);
433   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
434     return getWasmRelocationValueString(Wasm, Rel, Result);
435   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
436     return getMachORelocationValueString(MachO, Rel, Result);
437   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
438     return getXCOFFRelocationValueString(*XCOFF, Rel, SymbolDescription,
439                                          Result);
440   llvm_unreachable("unknown object file format");
441 }
442 
443 /// Indicates whether this relocation should hidden when listing
444 /// relocations, usually because it is the trailing part of a multipart
445 /// relocation that will be printed as part of the leading relocation.
getHidden(RelocationRef RelRef)446 static bool getHidden(RelocationRef RelRef) {
447   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
448   if (!MachO)
449     return false;
450 
451   unsigned Arch = MachO->getArch();
452   DataRefImpl Rel = RelRef.getRawDataRefImpl();
453   uint64_t Type = MachO->getRelocationType(Rel);
454 
455   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
456   // is always hidden.
457   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
458     return Type == MachO::GENERIC_RELOC_PAIR;
459 
460   if (Arch == Triple::x86_64) {
461     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
462     // an X86_64_RELOC_SUBTRACTOR.
463     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
464       DataRefImpl RelPrev = Rel;
465       RelPrev.d.a--;
466       uint64_t PrevType = MachO->getRelocationType(RelPrev);
467       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
468         return true;
469     }
470   }
471 
472   return false;
473 }
474 
475 /// Get the column at which we want to start printing the instruction
476 /// disassembly, taking into account anything which appears to the left of it.
getInstStartColumn(const MCSubtargetInfo & STI)477 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
478   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
479 }
480 
AlignToInstStartColumn(size_t Start,const MCSubtargetInfo & STI,raw_ostream & OS)481 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
482                                    raw_ostream &OS) {
483   // The output of printInst starts with a tab. Print some spaces so that
484   // the tab has 1 column and advances to the target tab stop.
485   unsigned TabStop = getInstStartColumn(STI);
486   unsigned Column = OS.tell() - Start;
487   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
488 }
489 
printRawData(ArrayRef<uint8_t> Bytes,uint64_t Address,formatted_raw_ostream & OS,MCSubtargetInfo const & STI)490 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
491                            formatted_raw_ostream &OS,
492                            MCSubtargetInfo const &STI) {
493   size_t Start = OS.tell();
494   if (LeadingAddr)
495     OS << format("%8" PRIx64 ":", Address);
496   if (ShowRawInsn) {
497     OS << ' ';
498     dumpBytes(Bytes, OS);
499   }
500   AlignToInstStartColumn(Start, STI, OS);
501 }
502 
503 namespace {
504 
isAArch64Elf(const ObjectFile & Obj)505 static bool isAArch64Elf(const ObjectFile &Obj) {
506   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
507   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
508 }
509 
isArmElf(const ObjectFile & Obj)510 static bool isArmElf(const ObjectFile &Obj) {
511   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
512   return Elf && Elf->getEMachine() == ELF::EM_ARM;
513 }
514 
isCSKYElf(const ObjectFile & Obj)515 static bool isCSKYElf(const ObjectFile &Obj) {
516   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
517   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
518 }
519 
hasMappingSymbols(const ObjectFile & Obj)520 static bool hasMappingSymbols(const ObjectFile &Obj) {
521   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
522 }
523 
printRelocation(formatted_raw_ostream & OS,StringRef FileName,const RelocationRef & Rel,uint64_t Address,bool Is64Bits)524 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
525                             const RelocationRef &Rel, uint64_t Address,
526                             bool Is64Bits) {
527   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
528   SmallString<16> Name;
529   SmallString<32> Val;
530   Rel.getTypeName(Name);
531   if (Error E = getRelocationValueString(Rel, SymbolDescription, Val))
532     reportError(std::move(E), FileName);
533   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
534   if (LeadingAddr)
535     OS << format(Fmt.data(), Address);
536   OS << Name << "\t" << Val;
537 }
538 
printBTFRelocation(formatted_raw_ostream & FOS,llvm::BTFParser & BTF,object::SectionedAddress Address,LiveVariablePrinter & LVP)539 static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF,
540                                object::SectionedAddress Address,
541                                LiveVariablePrinter &LVP) {
542   const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address);
543   if (!Reloc)
544     return;
545 
546   SmallString<64> Val;
547   BTF.symbolize(Reloc, Val);
548   FOS << "\t\t";
549   if (LeadingAddr)
550     FOS << format("%016" PRIx64 ":  ", Address.Address + AdjustVMA);
551   FOS << "CO-RE " << Val;
552   LVP.printAfterOtherLine(FOS, true);
553 }
554 
555 class PrettyPrinter {
556 public:
557   virtual ~PrettyPrinter() = default;
558   virtual void
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)559   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
560             object::SectionedAddress Address, formatted_raw_ostream &OS,
561             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
562             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
563             LiveVariablePrinter &LVP) {
564     if (SP && (PrintSource || PrintLines))
565       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
566     LVP.printBetweenInsts(OS, false);
567 
568     printRawData(Bytes, Address.Address, OS, STI);
569 
570     if (MI) {
571       // See MCInstPrinter::printInst. On targets where a PC relative immediate
572       // is relative to the next instruction and the length of a MCInst is
573       // difficult to measure (x86), this is the address of the next
574       // instruction.
575       uint64_t Addr =
576           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
577       IP.printInst(MI, Addr, "", STI, OS);
578     } else
579       OS << "\t<unknown>";
580   }
581 };
582 PrettyPrinter PrettyPrinterInst;
583 
584 class HexagonPrettyPrinter : public PrettyPrinter {
585 public:
printLead(ArrayRef<uint8_t> Bytes,uint64_t Address,formatted_raw_ostream & OS)586   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
587                  formatted_raw_ostream &OS) {
588     uint32_t opcode =
589       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
590     if (LeadingAddr)
591       OS << format("%8" PRIx64 ":", Address);
592     if (ShowRawInsn) {
593       OS << "\t";
594       dumpBytes(Bytes.slice(0, 4), OS);
595       OS << format("\t%08" PRIx32, opcode);
596     }
597   }
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)598   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
599                  object::SectionedAddress Address, formatted_raw_ostream &OS,
600                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
601                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
602                  LiveVariablePrinter &LVP) override {
603     if (SP && (PrintSource || PrintLines))
604       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
605     if (!MI) {
606       printLead(Bytes, Address.Address, OS);
607       OS << " <unknown>";
608       return;
609     }
610     std::string Buffer;
611     {
612       raw_string_ostream TempStream(Buffer);
613       IP.printInst(MI, Address.Address, "", STI, TempStream);
614     }
615     StringRef Contents(Buffer);
616     // Split off bundle attributes
617     auto PacketBundle = Contents.rsplit('\n');
618     // Split off first instruction from the rest
619     auto HeadTail = PacketBundle.first.split('\n');
620     auto Preamble = " { ";
621     auto Separator = "";
622 
623     // Hexagon's packets require relocations to be inline rather than
624     // clustered at the end of the packet.
625     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
626     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
627     auto PrintReloc = [&]() -> void {
628       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
629         if (RelCur->getOffset() == Address.Address) {
630           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
631           return;
632         }
633         ++RelCur;
634       }
635     };
636 
637     while (!HeadTail.first.empty()) {
638       OS << Separator;
639       Separator = "\n";
640       if (SP && (PrintSource || PrintLines))
641         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
642       printLead(Bytes, Address.Address, OS);
643       OS << Preamble;
644       Preamble = "   ";
645       StringRef Inst;
646       auto Duplex = HeadTail.first.split('\v');
647       if (!Duplex.second.empty()) {
648         OS << Duplex.first;
649         OS << "; ";
650         Inst = Duplex.second;
651       }
652       else
653         Inst = HeadTail.first;
654       OS << Inst;
655       HeadTail = HeadTail.second.split('\n');
656       if (HeadTail.first.empty())
657         OS << " } " << PacketBundle.second;
658       PrintReloc();
659       Bytes = Bytes.slice(4);
660       Address.Address += 4;
661     }
662   }
663 };
664 HexagonPrettyPrinter HexagonPrettyPrinterInst;
665 
666 class AMDGCNPrettyPrinter : public PrettyPrinter {
667 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)668   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
669                  object::SectionedAddress Address, formatted_raw_ostream &OS,
670                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
671                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
672                  LiveVariablePrinter &LVP) override {
673     if (SP && (PrintSource || PrintLines))
674       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
675 
676     if (MI) {
677       SmallString<40> InstStr;
678       raw_svector_ostream IS(InstStr);
679 
680       IP.printInst(MI, Address.Address, "", STI, IS);
681 
682       OS << left_justify(IS.str(), 60);
683     } else {
684       // an unrecognized encoding - this is probably data so represent it
685       // using the .long directive, or .byte directive if fewer than 4 bytes
686       // remaining
687       if (Bytes.size() >= 4) {
688         OS << format(
689             "\t.long 0x%08" PRIx32 " ",
690             support::endian::read32<llvm::endianness::little>(Bytes.data()));
691         OS.indent(42);
692       } else {
693           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
694           for (unsigned int i = 1; i < Bytes.size(); i++)
695             OS << format(", 0x%02" PRIx8, Bytes[i]);
696           OS.indent(55 - (6 * Bytes.size()));
697       }
698     }
699 
700     OS << format("// %012" PRIX64 ":", Address.Address);
701     if (Bytes.size() >= 4) {
702       // D should be casted to uint32_t here as it is passed by format to
703       // snprintf as vararg.
704       for (uint32_t D :
705            ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
706                     Bytes.size() / 4))
707           OS << format(" %08" PRIX32, D);
708     } else {
709       for (unsigned char B : Bytes)
710         OS << format(" %02" PRIX8, B);
711     }
712 
713     if (!Annot.empty())
714       OS << " // " << Annot;
715   }
716 };
717 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
718 
719 class BPFPrettyPrinter : public PrettyPrinter {
720 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)721   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
722                  object::SectionedAddress Address, formatted_raw_ostream &OS,
723                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
724                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
725                  LiveVariablePrinter &LVP) override {
726     if (SP && (PrintSource || PrintLines))
727       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
728     if (LeadingAddr)
729       OS << format("%8" PRId64 ":", Address.Address / 8);
730     if (ShowRawInsn) {
731       OS << "\t";
732       dumpBytes(Bytes, OS);
733     }
734     if (MI)
735       IP.printInst(MI, Address.Address, "", STI, OS);
736     else
737       OS << "\t<unknown>";
738   }
739 };
740 BPFPrettyPrinter BPFPrettyPrinterInst;
741 
742 class ARMPrettyPrinter : public PrettyPrinter {
743 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)744   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
745                  object::SectionedAddress Address, formatted_raw_ostream &OS,
746                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
747                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
748                  LiveVariablePrinter &LVP) override {
749     if (SP && (PrintSource || PrintLines))
750       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
751     LVP.printBetweenInsts(OS, false);
752 
753     size_t Start = OS.tell();
754     if (LeadingAddr)
755       OS << format("%8" PRIx64 ":", Address.Address);
756     if (ShowRawInsn) {
757       size_t Pos = 0, End = Bytes.size();
758       if (STI.checkFeatures("+thumb-mode")) {
759         for (; Pos + 2 <= End; Pos += 2)
760           OS << ' '
761              << format_hex_no_prefix(
762                     llvm::support::endian::read<uint16_t>(
763                         Bytes.data() + Pos, InstructionEndianness),
764                     4);
765       } else {
766         for (; Pos + 4 <= End; Pos += 4)
767           OS << ' '
768              << format_hex_no_prefix(
769                     llvm::support::endian::read<uint32_t>(
770                         Bytes.data() + Pos, InstructionEndianness),
771                     8);
772       }
773       if (Pos < End) {
774         OS << ' ';
775         dumpBytes(Bytes.slice(Pos), OS);
776       }
777     }
778 
779     AlignToInstStartColumn(Start, STI, OS);
780 
781     if (MI) {
782       IP.printInst(MI, Address.Address, "", STI, OS);
783     } else
784       OS << "\t<unknown>";
785   }
786 
setInstructionEndianness(llvm::endianness Endianness)787   void setInstructionEndianness(llvm::endianness Endianness) {
788     InstructionEndianness = Endianness;
789   }
790 
791 private:
792   llvm::endianness InstructionEndianness = llvm::endianness::little;
793 };
794 ARMPrettyPrinter ARMPrettyPrinterInst;
795 
796 class AArch64PrettyPrinter : public PrettyPrinter {
797 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)798   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
799                  object::SectionedAddress Address, formatted_raw_ostream &OS,
800                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
801                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
802                  LiveVariablePrinter &LVP) override {
803     if (SP && (PrintSource || PrintLines))
804       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
805     LVP.printBetweenInsts(OS, false);
806 
807     size_t Start = OS.tell();
808     if (LeadingAddr)
809       OS << format("%8" PRIx64 ":", Address.Address);
810     if (ShowRawInsn) {
811       size_t Pos = 0, End = Bytes.size();
812       for (; Pos + 4 <= End; Pos += 4)
813         OS << ' '
814            << format_hex_no_prefix(
815                   llvm::support::endian::read<uint32_t>(
816                       Bytes.data() + Pos, llvm::endianness::little),
817                   8);
818       if (Pos < End) {
819         OS << ' ';
820         dumpBytes(Bytes.slice(Pos), OS);
821       }
822     }
823 
824     AlignToInstStartColumn(Start, STI, OS);
825 
826     if (MI) {
827       IP.printInst(MI, Address.Address, "", STI, OS);
828     } else
829       OS << "\t<unknown>";
830   }
831 };
832 AArch64PrettyPrinter AArch64PrettyPrinterInst;
833 
selectPrettyPrinter(Triple const & Triple)834 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
835   switch(Triple.getArch()) {
836   default:
837     return PrettyPrinterInst;
838   case Triple::hexagon:
839     return HexagonPrettyPrinterInst;
840   case Triple::amdgcn:
841     return AMDGCNPrettyPrinterInst;
842   case Triple::bpfel:
843   case Triple::bpfeb:
844     return BPFPrettyPrinterInst;
845   case Triple::arm:
846   case Triple::armeb:
847   case Triple::thumb:
848   case Triple::thumbeb:
849     return ARMPrettyPrinterInst;
850   case Triple::aarch64:
851   case Triple::aarch64_be:
852   case Triple::aarch64_32:
853     return AArch64PrettyPrinterInst;
854   }
855 }
856 
857 class DisassemblerTarget {
858 public:
859   const Target *TheTarget;
860   std::unique_ptr<const MCSubtargetInfo> SubtargetInfo;
861   std::shared_ptr<MCContext> Context;
862   std::unique_ptr<MCDisassembler> DisAsm;
863   std::shared_ptr<MCInstrAnalysis> InstrAnalysis;
864   std::shared_ptr<MCInstPrinter> InstPrinter;
865   PrettyPrinter *Printer;
866 
867   DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
868                      StringRef TripleName, StringRef MCPU,
869                      SubtargetFeatures &Features);
870   DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features);
871 
872 private:
873   MCTargetOptions Options;
874   std::shared_ptr<const MCRegisterInfo> RegisterInfo;
875   std::shared_ptr<const MCAsmInfo> AsmInfo;
876   std::shared_ptr<const MCInstrInfo> InstrInfo;
877   std::shared_ptr<MCObjectFileInfo> ObjectFileInfo;
878 };
879 
DisassemblerTarget(const Target * TheTarget,ObjectFile & Obj,StringRef TripleName,StringRef MCPU,SubtargetFeatures & Features)880 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
881                                        StringRef TripleName, StringRef MCPU,
882                                        SubtargetFeatures &Features)
883     : TheTarget(TheTarget),
884       Printer(&selectPrettyPrinter(Triple(TripleName))),
885       RegisterInfo(TheTarget->createMCRegInfo(TripleName)) {
886   if (!RegisterInfo)
887     reportError(Obj.getFileName(), "no register info for target " + TripleName);
888 
889   // Set up disassembler.
890   AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options));
891   if (!AsmInfo)
892     reportError(Obj.getFileName(), "no assembly info for target " + TripleName);
893 
894   SubtargetInfo.reset(
895       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
896   if (!SubtargetInfo)
897     reportError(Obj.getFileName(),
898                 "no subtarget info for target " + TripleName);
899   InstrInfo.reset(TheTarget->createMCInstrInfo());
900   if (!InstrInfo)
901     reportError(Obj.getFileName(),
902                 "no instruction info for target " + TripleName);
903   Context =
904       std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(),
905                                   RegisterInfo.get(), SubtargetInfo.get());
906 
907   // FIXME: for now initialize MCObjectFileInfo with default values
908   ObjectFileInfo.reset(
909       TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false));
910   Context->setObjectFileInfo(ObjectFileInfo.get());
911 
912   DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context));
913   if (!DisAsm)
914     reportError(Obj.getFileName(), "no disassembler for target " + TripleName);
915 
916   InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
917 
918   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
919   InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName),
920                                                    AsmPrinterVariant, *AsmInfo,
921                                                    *InstrInfo, *RegisterInfo));
922   if (!InstPrinter)
923     reportError(Obj.getFileName(),
924                 "no instruction printer for target " + TripleName);
925   InstPrinter->setPrintImmHex(PrintImmHex);
926   InstPrinter->setPrintBranchImmAsAddress(true);
927   InstPrinter->setSymbolizeOperands(SymbolizeOperands);
928   InstPrinter->setMCInstrAnalysis(InstrAnalysis.get());
929 
930   switch (DisassemblyColor) {
931   case ColorOutput::Enable:
932     InstPrinter->setUseColor(true);
933     break;
934   case ColorOutput::Auto:
935     InstPrinter->setUseColor(outs().has_colors());
936     break;
937   case ColorOutput::Disable:
938   case ColorOutput::Invalid:
939     InstPrinter->setUseColor(false);
940     break;
941   };
942 }
943 
DisassemblerTarget(DisassemblerTarget & Other,SubtargetFeatures & Features)944 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other,
945                                        SubtargetFeatures &Features)
946     : TheTarget(Other.TheTarget),
947       SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
948                                                      Features.getString())),
949       Context(Other.Context),
950       DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)),
951       InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter),
952       Printer(Other.Printer), RegisterInfo(Other.RegisterInfo),
953       AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo),
954       ObjectFileInfo(Other.ObjectFileInfo) {}
955 } // namespace
956 
getElfSymbolType(const ObjectFile & Obj,const SymbolRef & Sym)957 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
958   assert(Obj.isELF());
959   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
960     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
961                          Obj.getFileName())
962         ->getType();
963   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
964     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
965                          Obj.getFileName())
966         ->getType();
967   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
968     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
969                          Obj.getFileName())
970         ->getType();
971   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
972     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
973                          Obj.getFileName())
974         ->getType();
975   llvm_unreachable("Unsupported binary format");
976 }
977 
978 template <class ELFT>
979 static void
addDynamicElfSymbols(const ELFObjectFile<ELFT> & Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols)980 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
981                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
982   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
983     uint8_t SymbolType = Symbol.getELFType();
984     if (SymbolType == ELF::STT_SECTION)
985       continue;
986 
987     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
988     // ELFSymbolRef::getAddress() returns size instead of value for common
989     // symbols which is not desirable for disassembly output. Overriding.
990     if (SymbolType == ELF::STT_COMMON)
991       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
992                               Obj.getFileName())
993                     ->st_value;
994 
995     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
996     if (Name.empty())
997       continue;
998 
999     section_iterator SecI =
1000         unwrapOrError(Symbol.getSection(), Obj.getFileName());
1001     if (SecI == Obj.section_end())
1002       continue;
1003 
1004     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1005   }
1006 }
1007 
1008 static void
addDynamicElfSymbols(const ELFObjectFileBase & Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols)1009 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
1010                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1011   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1012     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
1013   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1014     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
1015   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1016     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
1017   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1018     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
1019   else
1020     llvm_unreachable("Unsupported binary format");
1021 }
1022 
getWasmCodeSection(const WasmObjectFile & Obj)1023 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
1024   for (auto SecI : Obj.sections()) {
1025     const WasmSection &Section = Obj.getWasmSection(SecI);
1026     if (Section.Type == wasm::WASM_SEC_CODE)
1027       return SecI;
1028   }
1029   return std::nullopt;
1030 }
1031 
1032 static void
addMissingWasmCodeSymbols(const WasmObjectFile & Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols)1033 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
1034                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1035   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
1036   if (!Section)
1037     return;
1038   SectionSymbolsTy &Symbols = AllSymbols[*Section];
1039 
1040   std::set<uint64_t> SymbolAddresses;
1041   for (const auto &Sym : Symbols)
1042     SymbolAddresses.insert(Sym.Addr);
1043 
1044   for (const wasm::WasmFunction &Function : Obj.functions()) {
1045     uint64_t Address = Function.CodeSectionOffset;
1046     // Only add fallback symbols for functions not already present in the symbol
1047     // table.
1048     if (SymbolAddresses.count(Address))
1049       continue;
1050     // This function has no symbol, so it should have no SymbolName.
1051     assert(Function.SymbolName.empty());
1052     // We use DebugName for the name, though it may be empty if there is no
1053     // "name" custom section, or that section is missing a name for this
1054     // function.
1055     StringRef Name = Function.DebugName;
1056     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
1057   }
1058 }
1059 
addPltEntries(const ObjectFile & Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols,StringSaver & Saver)1060 static void addPltEntries(const ObjectFile &Obj,
1061                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1062                           StringSaver &Saver) {
1063   auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
1064   if (!ElfObj)
1065     return;
1066   DenseMap<StringRef, SectionRef> Sections;
1067   for (SectionRef Section : Obj.sections()) {
1068     Expected<StringRef> SecNameOrErr = Section.getName();
1069     if (!SecNameOrErr) {
1070       consumeError(SecNameOrErr.takeError());
1071       continue;
1072     }
1073     Sections[*SecNameOrErr] = Section;
1074   }
1075   for (auto Plt : ElfObj->getPltEntries()) {
1076     if (Plt.Symbol) {
1077       SymbolRef Symbol(*Plt.Symbol, ElfObj);
1078       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1079       if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1080         if (!NameOrErr->empty())
1081           AllSymbols[Sections[Plt.Section]].emplace_back(
1082               Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType);
1083         continue;
1084       } else {
1085         // The warning has been reported in disassembleObject().
1086         consumeError(NameOrErr.takeError());
1087       }
1088     }
1089     reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) +
1090                       " references an invalid symbol",
1091                   Obj.getFileName());
1092   }
1093 }
1094 
1095 // Normally the disassembly output will skip blocks of zeroes. This function
1096 // returns the number of zero bytes that can be skipped when dumping the
1097 // disassembly of the instructions in Buf.
countSkippableZeroBytes(ArrayRef<uint8_t> Buf)1098 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1099   // Find the number of leading zeroes.
1100   size_t N = 0;
1101   while (N < Buf.size() && !Buf[N])
1102     ++N;
1103 
1104   // We may want to skip blocks of zero bytes, but unless we see
1105   // at least 8 of them in a row.
1106   if (N < 8)
1107     return 0;
1108 
1109   // We skip zeroes in multiples of 4 because do not want to truncate an
1110   // instruction if it starts with a zero byte.
1111   return N & ~0x3;
1112 }
1113 
1114 // Returns a map from sections to their relocations.
1115 static std::map<SectionRef, std::vector<RelocationRef>>
getRelocsMap(object::ObjectFile const & Obj)1116 getRelocsMap(object::ObjectFile const &Obj) {
1117   std::map<SectionRef, std::vector<RelocationRef>> Ret;
1118   uint64_t I = (uint64_t)-1;
1119   for (SectionRef Sec : Obj.sections()) {
1120     ++I;
1121     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1122     if (!RelocatedOrErr)
1123       reportError(Obj.getFileName(),
1124                   "section (" + Twine(I) +
1125                       "): failed to get a relocated section: " +
1126                       toString(RelocatedOrErr.takeError()));
1127 
1128     section_iterator Relocated = *RelocatedOrErr;
1129     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1130       continue;
1131     std::vector<RelocationRef> &V = Ret[*Relocated];
1132     append_range(V, Sec.relocations());
1133     // Sort relocations by address.
1134     llvm::stable_sort(V, isRelocAddressLess);
1135   }
1136   return Ret;
1137 }
1138 
1139 // Used for --adjust-vma to check if address should be adjusted by the
1140 // specified value for a given section.
1141 // For ELF we do not adjust non-allocatable sections like debug ones,
1142 // because they are not loadable.
1143 // TODO: implement for other file formats.
shouldAdjustVA(const SectionRef & Section)1144 static bool shouldAdjustVA(const SectionRef &Section) {
1145   const ObjectFile *Obj = Section.getObject();
1146   if (Obj->isELF())
1147     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1148   return false;
1149 }
1150 
1151 
1152 typedef std::pair<uint64_t, char> MappingSymbolPair;
getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,uint64_t Address)1153 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1154                                  uint64_t Address) {
1155   auto It =
1156       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1157         return Val.first <= Address;
1158       });
1159   // Return zero for any address before the first mapping symbol; this means
1160   // we should use the default disassembly mode, depending on the target.
1161   if (It == MappingSymbols.begin())
1162     return '\x00';
1163   return (It - 1)->second;
1164 }
1165 
dumpARMELFData(uint64_t SectionAddr,uint64_t Index,uint64_t End,const ObjectFile & Obj,ArrayRef<uint8_t> Bytes,ArrayRef<MappingSymbolPair> MappingSymbols,const MCSubtargetInfo & STI,raw_ostream & OS)1166 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1167                                uint64_t End, const ObjectFile &Obj,
1168                                ArrayRef<uint8_t> Bytes,
1169                                ArrayRef<MappingSymbolPair> MappingSymbols,
1170                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1171   llvm::endianness Endian =
1172       Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big;
1173   size_t Start = OS.tell();
1174   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1175   if (Index + 4 <= End) {
1176     dumpBytes(Bytes.slice(Index, 4), OS);
1177     AlignToInstStartColumn(Start, STI, OS);
1178     OS << "\t.word\t"
1179            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1180                          10);
1181     return 4;
1182   }
1183   if (Index + 2 <= End) {
1184     dumpBytes(Bytes.slice(Index, 2), OS);
1185     AlignToInstStartColumn(Start, STI, OS);
1186     OS << "\t.short\t"
1187        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1188     return 2;
1189   }
1190   dumpBytes(Bytes.slice(Index, 1), OS);
1191   AlignToInstStartColumn(Start, STI, OS);
1192   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1193   return 1;
1194 }
1195 
dumpELFData(uint64_t SectionAddr,uint64_t Index,uint64_t End,ArrayRef<uint8_t> Bytes)1196 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1197                         ArrayRef<uint8_t> Bytes) {
1198   // print out data up to 8 bytes at a time in hex and ascii
1199   uint8_t AsciiData[9] = {'\0'};
1200   uint8_t Byte;
1201   int NumBytes = 0;
1202 
1203   for (; Index < End; ++Index) {
1204     if (NumBytes == 0)
1205       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1206     Byte = Bytes.slice(Index)[0];
1207     outs() << format(" %02x", Byte);
1208     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1209 
1210     uint8_t IndentOffset = 0;
1211     NumBytes++;
1212     if (Index == End - 1 || NumBytes > 8) {
1213       // Indent the space for less than 8 bytes data.
1214       // 2 spaces for byte and one for space between bytes
1215       IndentOffset = 3 * (8 - NumBytes);
1216       for (int Excess = NumBytes; Excess < 8; Excess++)
1217         AsciiData[Excess] = '\0';
1218       NumBytes = 8;
1219     }
1220     if (NumBytes == 8) {
1221       AsciiData[8] = '\0';
1222       outs() << std::string(IndentOffset, ' ') << "         ";
1223       outs() << reinterpret_cast<char *>(AsciiData);
1224       outs() << '\n';
1225       NumBytes = 0;
1226     }
1227   }
1228 }
1229 
createSymbolInfo(const ObjectFile & Obj,const SymbolRef & Symbol,bool IsMappingSymbol)1230 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1231                                        const SymbolRef &Symbol,
1232                                        bool IsMappingSymbol) {
1233   const StringRef FileName = Obj.getFileName();
1234   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1235   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1236 
1237   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
1238     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1239     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1240 
1241     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1242     std::optional<XCOFF::StorageMappingClass> Smc =
1243         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1244     return SymbolInfoTy(Smc, Addr, Name, SymbolIndex,
1245                         isLabel(XCOFFObj, Symbol));
1246   } else if (Obj.isXCOFF()) {
1247     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1248     return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false,
1249                         /*IsXCOFF=*/true);
1250   } else {
1251     uint8_t Type =
1252         Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE;
1253     return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol);
1254   }
1255 }
1256 
createDummySymbolInfo(const ObjectFile & Obj,const uint64_t Addr,StringRef & Name,uint8_t Type)1257 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1258                                           const uint64_t Addr, StringRef &Name,
1259                                           uint8_t Type) {
1260   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
1261     return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false);
1262   else
1263     return SymbolInfoTy(Addr, Name, Type);
1264 }
1265 
1266 struct BBAddrMapLabel {
1267   std::string BlockLabel;
1268   std::string PGOAnalysis;
1269 };
1270 
constructPGOLabelString(const PGOAnalysisMap & PGOMap,size_t BBEntryIndex)1271 static std::string constructPGOLabelString(const PGOAnalysisMap &PGOMap,
1272                                            size_t BBEntryIndex) {
1273   std::string PGOString;
1274   raw_string_ostream PGOSS(PGOString);
1275 
1276   PGOSS << " (";
1277   if (PGOMap.FeatEnable.FuncEntryCount && BBEntryIndex == 0) {
1278     PGOSS << "Entry count: " << Twine(PGOMap.FuncEntryCount);
1279     if (PGOMap.FeatEnable.BBFreq || PGOMap.FeatEnable.BrProb) {
1280       PGOSS << ", ";
1281     }
1282   }
1283 
1284   if (PGOMap.FeatEnable.BBFreq || PGOMap.FeatEnable.BrProb) {
1285     assert(BBEntryIndex < PGOMap.BBEntries.size() &&
1286            "Expected PGOAnalysisMap and BBAddrMap to have the same entires");
1287     const PGOAnalysisMap::PGOBBEntry &PGOBBEntry =
1288         PGOMap.BBEntries[BBEntryIndex];
1289 
1290     if (PGOMap.FeatEnable.BBFreq) {
1291       PGOSS << "Frequency: " << Twine(PGOBBEntry.BlockFreq.getFrequency());
1292       if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
1293         PGOSS << ", ";
1294       }
1295     }
1296     if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
1297       PGOSS << "Successors: ";
1298       interleaveComma(
1299           PGOBBEntry.Successors, PGOSS,
1300           [&PGOSS](const PGOAnalysisMap::PGOBBEntry::SuccessorEntry &SE) {
1301             PGOSS << "BB" << SE.ID << ":";
1302             PGOSS.write_hex(SE.Prob.getNumerator());
1303           });
1304     }
1305   }
1306   PGOSS << ")";
1307 
1308   return PGOString;
1309 }
1310 
collectBBAddrMapLabels(const std::unordered_map<uint64_t,BBAddrMap> & AddrToBBAddrMap,const std::unordered_map<uint64_t,PGOAnalysisMap> & AddrToPGOAnalysisMap,uint64_t SectionAddr,uint64_t Start,uint64_t End,std::unordered_map<uint64_t,std::vector<BBAddrMapLabel>> & Labels,const StringRef FileName)1311 static void collectBBAddrMapLabels(
1312     const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1313     const std::unordered_map<uint64_t, PGOAnalysisMap> &AddrToPGOAnalysisMap,
1314     uint64_t SectionAddr, uint64_t Start, uint64_t End,
1315     std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> &Labels,
1316     const StringRef FileName) {
1317   if (AddrToBBAddrMap.empty())
1318     return;
1319   Labels.clear();
1320   uint64_t StartAddress = SectionAddr + Start;
1321   uint64_t EndAddress = SectionAddr + End;
1322   auto Iter = AddrToBBAddrMap.find(StartAddress);
1323   if (Iter == AddrToBBAddrMap.end())
1324     return;
1325   auto PGOIter = AddrToPGOAnalysisMap.find(StartAddress);
1326 
1327   for (size_t I = 0; I < Iter->second.getBBEntries().size(); ++I) {
1328     const BBAddrMap::BBEntry &BBEntry = Iter->second.getBBEntries()[I];
1329     uint64_t BBAddress = BBEntry.Offset + Iter->second.getFunctionAddress();
1330     if (BBAddress >= EndAddress)
1331       continue;
1332 
1333     std::string LabelString = ("BB" + Twine(BBEntry.ID)).str();
1334     std::string PGOString;
1335 
1336     if (PGOIter != AddrToPGOAnalysisMap.end())
1337       PGOString = constructPGOLabelString(PGOIter->second, I);
1338 
1339     Labels[BBAddress].push_back({LabelString, PGOString});
1340   }
1341 }
1342 
1343 static void
collectLocalBranchTargets(ArrayRef<uint8_t> Bytes,MCInstrAnalysis * MIA,MCDisassembler * DisAsm,MCInstPrinter * IP,const MCSubtargetInfo * STI,uint64_t SectionAddr,uint64_t Start,uint64_t End,std::unordered_map<uint64_t,std::string> & Labels)1344 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA,
1345                           MCDisassembler *DisAsm, MCInstPrinter *IP,
1346                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
1347                           uint64_t Start, uint64_t End,
1348                           std::unordered_map<uint64_t, std::string> &Labels) {
1349   // So far only supports PowerPC and X86.
1350   const bool isPPC = STI->getTargetTriple().isPPC();
1351   if (!isPPC && !STI->getTargetTriple().isX86())
1352     return;
1353 
1354   if (MIA)
1355     MIA->resetState();
1356 
1357   Labels.clear();
1358   unsigned LabelCount = 0;
1359   Start += SectionAddr;
1360   End += SectionAddr;
1361   const bool isXCOFF = STI->getTargetTriple().isOSBinFormatXCOFF();
1362   for (uint64_t Index = Start; Index < End;) {
1363     // Disassemble a real instruction and record function-local branch labels.
1364     MCInst Inst;
1365     uint64_t Size;
1366     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1367     bool Disassembled =
1368         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1369     if (Size == 0)
1370       Size = std::min<uint64_t>(ThisBytes.size(),
1371                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1372 
1373     if (MIA) {
1374       if (Disassembled) {
1375         uint64_t Target;
1376         bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1377         if (TargetKnown && (Target >= Start && Target < End) &&
1378             !Labels.count(Target)) {
1379           // On PowerPC and AIX, a function call is encoded as a branch to 0.
1380           // On other PowerPC platforms (ELF), a function call is encoded as
1381           // a branch to self. Do not add a label for these cases.
1382           if (!(isPPC &&
1383                 ((Target == 0 && isXCOFF) || (Target == Index && !isXCOFF))))
1384             Labels[Target] = ("L" + Twine(LabelCount++)).str();
1385         }
1386         MIA->updateState(Inst, Index);
1387       } else
1388         MIA->resetState();
1389     }
1390     Index += Size;
1391   }
1392 }
1393 
1394 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1395 // This is currently only used on AMDGPU, and assumes the format of the
1396 // void * argument passed to AMDGPU's createMCSymbolizer.
addSymbolizer(MCContext & Ctx,const Target * Target,StringRef TripleName,MCDisassembler * DisAsm,uint64_t SectionAddr,ArrayRef<uint8_t> Bytes,SectionSymbolsTy & Symbols,std::vector<std::unique_ptr<std::string>> & SynthesizedLabelNames)1397 static void addSymbolizer(
1398     MCContext &Ctx, const Target *Target, StringRef TripleName,
1399     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1400     SectionSymbolsTy &Symbols,
1401     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1402 
1403   std::unique_ptr<MCRelocationInfo> RelInfo(
1404       Target->createMCRelocationInfo(TripleName, Ctx));
1405   if (!RelInfo)
1406     return;
1407   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1408       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1409   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1410   DisAsm->setSymbolizer(std::move(Symbolizer));
1411 
1412   if (!SymbolizeOperands)
1413     return;
1414 
1415   // Synthesize labels referenced by branch instructions by
1416   // disassembling, discarding the output, and collecting the referenced
1417   // addresses from the symbolizer.
1418   for (size_t Index = 0; Index != Bytes.size();) {
1419     MCInst Inst;
1420     uint64_t Size;
1421     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1422     const uint64_t ThisAddr = SectionAddr + Index;
1423     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1424     if (Size == 0)
1425       Size = std::min<uint64_t>(ThisBytes.size(),
1426                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1427     Index += Size;
1428   }
1429   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1430   // Copy and sort to remove duplicates.
1431   std::vector<uint64_t> LabelAddrs;
1432   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1433                     LabelAddrsRef.end());
1434   llvm::sort(LabelAddrs);
1435   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1436                     LabelAddrs.begin());
1437   // Add the labels.
1438   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1439     auto Name = std::make_unique<std::string>();
1440     *Name = (Twine("L") + Twine(LabelNum)).str();
1441     SynthesizedLabelNames.push_back(std::move(Name));
1442     Symbols.push_back(SymbolInfoTy(
1443         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1444   }
1445   llvm::stable_sort(Symbols);
1446   // Recreate the symbolizer with the new symbols list.
1447   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1448   Symbolizer.reset(Target->createMCSymbolizer(
1449       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1450   DisAsm->setSymbolizer(std::move(Symbolizer));
1451 }
1452 
getSegmentName(const MachOObjectFile * MachO,const SectionRef & Section)1453 static StringRef getSegmentName(const MachOObjectFile *MachO,
1454                                 const SectionRef &Section) {
1455   if (MachO) {
1456     DataRefImpl DR = Section.getRawDataRefImpl();
1457     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1458     return SegmentName;
1459   }
1460   return "";
1461 }
1462 
emitPostInstructionInfo(formatted_raw_ostream & FOS,const MCAsmInfo & MAI,const MCSubtargetInfo & STI,StringRef Comments,LiveVariablePrinter & LVP)1463 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1464                                     const MCAsmInfo &MAI,
1465                                     const MCSubtargetInfo &STI,
1466                                     StringRef Comments,
1467                                     LiveVariablePrinter &LVP) {
1468   do {
1469     if (!Comments.empty()) {
1470       // Emit a line of comments.
1471       StringRef Comment;
1472       std::tie(Comment, Comments) = Comments.split('\n');
1473       // MAI.getCommentColumn() assumes that instructions are printed at the
1474       // position of 8, while getInstStartColumn() returns the actual position.
1475       unsigned CommentColumn =
1476           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1477       FOS.PadToColumn(CommentColumn);
1478       FOS << MAI.getCommentString() << ' ' << Comment;
1479     }
1480     LVP.printAfterInst(FOS);
1481     FOS << '\n';
1482   } while (!Comments.empty());
1483   FOS.flush();
1484 }
1485 
createFakeELFSections(ObjectFile & Obj)1486 static void createFakeELFSections(ObjectFile &Obj) {
1487   assert(Obj.isELF());
1488   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1489     Elf32LEObj->createFakeSections();
1490   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1491     Elf64LEObj->createFakeSections();
1492   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1493     Elf32BEObj->createFakeSections();
1494   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1495     Elf64BEObj->createFakeSections();
1496   else
1497     llvm_unreachable("Unsupported binary format");
1498 }
1499 
1500 // Tries to fetch a more complete version of the given object file using its
1501 // Build ID. Returns std::nullopt if nothing was found.
1502 static std::optional<OwningBinary<Binary>>
fetchBinaryByBuildID(const ObjectFile & Obj)1503 fetchBinaryByBuildID(const ObjectFile &Obj) {
1504   object::BuildIDRef BuildID = getBuildID(&Obj);
1505   if (BuildID.empty())
1506     return std::nullopt;
1507   std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1508   if (!Path)
1509     return std::nullopt;
1510   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1511   if (!DebugBinary) {
1512     reportWarning(toString(DebugBinary.takeError()), *Path);
1513     return std::nullopt;
1514   }
1515   return std::move(*DebugBinary);
1516 }
1517 
1518 static void
disassembleObject(ObjectFile & Obj,const ObjectFile & DbgObj,DisassemblerTarget & PrimaryTarget,std::optional<DisassemblerTarget> & SecondaryTarget,SourcePrinter & SP,bool InlineRelocs)1519 disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj,
1520                   DisassemblerTarget &PrimaryTarget,
1521                   std::optional<DisassemblerTarget> &SecondaryTarget,
1522                   SourcePrinter &SP, bool InlineRelocs) {
1523   DisassemblerTarget *DT = &PrimaryTarget;
1524   bool PrimaryIsThumb = false;
1525   SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap;
1526 
1527   if (SecondaryTarget) {
1528     if (isArmElf(Obj)) {
1529       PrimaryIsThumb =
1530           PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode");
1531     } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1532       const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
1533       if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
1534         uintptr_t CodeMapInt;
1535         cantFail(COFFObj->getRvaPtr(CHPEMetadata->CodeMap, CodeMapInt));
1536         auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt);
1537 
1538         for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) {
1539           if (CodeMap[i].getType() == chpe_range_type::Amd64 &&
1540               CodeMap[i].Length) {
1541             // Store x86_64 CHPE code ranges.
1542             uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase();
1543             CHPECodeMap.emplace_back(Start, Start + CodeMap[i].Length);
1544           }
1545         }
1546         llvm::sort(CHPECodeMap);
1547       }
1548     }
1549   }
1550 
1551   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1552   if (InlineRelocs || Obj.isXCOFF())
1553     RelocMap = getRelocsMap(Obj);
1554   bool Is64Bits = Obj.getBytesInAddress() > 4;
1555 
1556   // Create a mapping from virtual address to symbol name.  This is used to
1557   // pretty print the symbols while disassembling.
1558   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1559   std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols;
1560   SectionSymbolsTy AbsoluteSymbols;
1561   const StringRef FileName = Obj.getFileName();
1562   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1563   for (const SymbolRef &Symbol : Obj.symbols()) {
1564     Expected<StringRef> NameOrErr = Symbol.getName();
1565     if (!NameOrErr) {
1566       reportWarning(toString(NameOrErr.takeError()), FileName);
1567       continue;
1568     }
1569     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1570       continue;
1571 
1572     if (Obj.isELF() &&
1573         (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) {
1574       // Symbol is intended not to be displayed by default (STT_FILE,
1575       // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will
1576       // synthesize a section symbol if no symbol is defined at offset 0.
1577       //
1578       // For a mapping symbol, store it within both AllSymbols and
1579       // AllMappingSymbols. If --show-all-symbols is unspecified, its label will
1580       // not be printed in disassembly listing.
1581       if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION &&
1582           hasMappingSymbols(Obj)) {
1583         section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1584         if (SecI != Obj.section_end()) {
1585           uint64_t SectionAddr = SecI->getAddress();
1586           uint64_t Address = cantFail(Symbol.getAddress());
1587           StringRef Name = *NameOrErr;
1588           if (Name.consume_front("$") && Name.size() &&
1589               strchr("adtx", Name[0])) {
1590             AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr,
1591                                                   Name[0]);
1592             AllSymbols[*SecI].push_back(
1593                 createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true));
1594           }
1595         }
1596       }
1597       continue;
1598     }
1599 
1600     if (MachO) {
1601       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1602       // symbols that support MachO header introspection. They do not bind to
1603       // code locations and are irrelevant for disassembly.
1604       if (NameOrErr->starts_with("__mh_") && NameOrErr->ends_with("_header"))
1605         continue;
1606       // Don't ask a Mach-O STAB symbol for its section unless you know that
1607       // STAB symbol's section field refers to a valid section index. Otherwise
1608       // the symbol may error trying to load a section that does not exist.
1609       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1610       uint8_t NType = (MachO->is64Bit() ?
1611                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1612                        MachO->getSymbolTableEntry(SymDRI).n_type);
1613       if (NType & MachO::N_STAB)
1614         continue;
1615     }
1616 
1617     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1618     if (SecI != Obj.section_end())
1619       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1620     else
1621       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1622   }
1623 
1624   if (AllSymbols.empty() && Obj.isELF())
1625     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1626 
1627   if (Obj.isWasm())
1628     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1629 
1630   if (Obj.isELF() && Obj.sections().empty())
1631     createFakeELFSections(Obj);
1632 
1633   BumpPtrAllocator A;
1634   StringSaver Saver(A);
1635   addPltEntries(Obj, AllSymbols, Saver);
1636 
1637   // Create a mapping from virtual address to section. An empty section can
1638   // cause more than one section at the same address. Sort such sections to be
1639   // before same-addressed non-empty sections so that symbol lookups prefer the
1640   // non-empty section.
1641   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1642   for (SectionRef Sec : Obj.sections())
1643     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1644   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1645     if (LHS.first != RHS.first)
1646       return LHS.first < RHS.first;
1647     return LHS.second.getSize() < RHS.second.getSize();
1648   });
1649 
1650   // Linked executables (.exe and .dll files) typically don't include a real
1651   // symbol table but they might contain an export table.
1652   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1653     for (const auto &ExportEntry : COFFObj->export_directories()) {
1654       StringRef Name;
1655       if (Error E = ExportEntry.getSymbolName(Name))
1656         reportError(std::move(E), Obj.getFileName());
1657       if (Name.empty())
1658         continue;
1659 
1660       uint32_t RVA;
1661       if (Error E = ExportEntry.getExportRVA(RVA))
1662         reportError(std::move(E), Obj.getFileName());
1663 
1664       uint64_t VA = COFFObj->getImageBase() + RVA;
1665       auto Sec = partition_point(
1666           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1667             return O.first <= VA;
1668           });
1669       if (Sec != SectionAddresses.begin()) {
1670         --Sec;
1671         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1672       } else
1673         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1674     }
1675   }
1676 
1677   // Sort all the symbols, this allows us to use a simple binary search to find
1678   // Multiple symbols can have the same address. Use a stable sort to stabilize
1679   // the output.
1680   StringSet<> FoundDisasmSymbolSet;
1681   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1682     llvm::stable_sort(SecSyms.second);
1683   llvm::stable_sort(AbsoluteSymbols);
1684 
1685   std::unique_ptr<DWARFContext> DICtx;
1686   LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo);
1687 
1688   if (DbgVariables != DVDisabled) {
1689     DICtx = DWARFContext::create(DbgObj);
1690     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1691       LVP.addCompileUnit(CU->getUnitDIE(false));
1692   }
1693 
1694   LLVM_DEBUG(LVP.dump());
1695 
1696   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1697   std::unordered_map<uint64_t, PGOAnalysisMap> AddrToPGOAnalysisMap;
1698   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1699                                std::nullopt) {
1700     AddrToBBAddrMap.clear();
1701     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1702       std::vector<PGOAnalysisMap> PGOAnalyses;
1703       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex, &PGOAnalyses);
1704       if (!BBAddrMapsOrErr) {
1705         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1706         return;
1707       }
1708       for (const auto &[FunctionBBAddrMap, FunctionPGOAnalysis] :
1709            zip_equal(*std::move(BBAddrMapsOrErr), std::move(PGOAnalyses))) {
1710         uint64_t Addr = FunctionBBAddrMap.Addr;
1711         AddrToBBAddrMap.emplace(Addr, std::move(FunctionBBAddrMap));
1712         if (FunctionPGOAnalysis.FeatEnable.anyEnabled())
1713           AddrToPGOAnalysisMap.emplace(Addr, std::move(FunctionPGOAnalysis));
1714       }
1715     }
1716   };
1717 
1718   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1719   // single mapping, since they don't have any conflicts.
1720   if (SymbolizeOperands && !Obj.isRelocatableObject())
1721     ReadBBAddrMap();
1722 
1723   std::optional<llvm::BTFParser> BTF;
1724   if (InlineRelocs && BTFParser::hasBTFSections(Obj)) {
1725     BTF.emplace();
1726     BTFParser::ParseOptions Opts = {};
1727     Opts.LoadTypes = true;
1728     Opts.LoadRelocs = true;
1729     if (Error E = BTF->parse(Obj, Opts))
1730       WithColor::defaultErrorHandler(std::move(E));
1731   }
1732 
1733   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1734     if (FilterSections.empty() && !DisassembleAll &&
1735         (!Section.isText() || Section.isVirtual()))
1736       continue;
1737 
1738     uint64_t SectionAddr = Section.getAddress();
1739     uint64_t SectSize = Section.getSize();
1740     if (!SectSize)
1741       continue;
1742 
1743     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1744     // corresponding to this section, if present.
1745     if (SymbolizeOperands && Obj.isRelocatableObject())
1746       ReadBBAddrMap(Section.getIndex());
1747 
1748     // Get the list of all the symbols in this section.
1749     SectionSymbolsTy &Symbols = AllSymbols[Section];
1750     auto &MappingSymbols = AllMappingSymbols[Section];
1751     llvm::sort(MappingSymbols);
1752 
1753     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1754         unwrapOrError(Section.getContents(), Obj.getFileName()));
1755 
1756     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1757     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1758       // AMDGPU disassembler uses symbolizer for printing labels
1759       addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(),
1760                     SectionAddr, Bytes, Symbols, SynthesizedLabelNames);
1761     }
1762 
1763     StringRef SegmentName = getSegmentName(MachO, Section);
1764     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1765     // If the section has no symbol at the start, just insert a dummy one.
1766     // Without --show-all-symbols, also insert one if all symbols at the start
1767     // are mapping symbols.
1768     bool CreateDummy = Symbols.empty();
1769     if (!CreateDummy) {
1770       CreateDummy = true;
1771       for (auto &Sym : Symbols) {
1772         if (Sym.Addr != SectionAddr)
1773           break;
1774         if (!Sym.IsMappingSymbol || ShowAllSymbols)
1775           CreateDummy = false;
1776       }
1777     }
1778     if (CreateDummy) {
1779       SymbolInfoTy Sym = createDummySymbolInfo(
1780           Obj, SectionAddr, SectionName,
1781           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT);
1782       if (Obj.isXCOFF())
1783         Symbols.insert(Symbols.begin(), Sym);
1784       else
1785         Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym);
1786     }
1787 
1788     SmallString<40> Comments;
1789     raw_svector_ostream CommentStream(Comments);
1790 
1791     uint64_t VMAAdjustment = 0;
1792     if (shouldAdjustVA(Section))
1793       VMAAdjustment = AdjustVMA;
1794 
1795     // In executable and shared objects, r_offset holds a virtual address.
1796     // Subtract SectionAddr from the r_offset field of a relocation to get
1797     // the section offset.
1798     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1799     uint64_t Size;
1800     uint64_t Index;
1801     bool PrintedSection = false;
1802     std::vector<RelocationRef> Rels = RelocMap[Section];
1803     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1804     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1805 
1806     // Loop over each chunk of code between two points where at least
1807     // one symbol is defined.
1808     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1809       // Advance SI past all the symbols starting at the same address,
1810       // and make an ArrayRef of them.
1811       unsigned FirstSI = SI;
1812       uint64_t Start = Symbols[SI].Addr;
1813       ArrayRef<SymbolInfoTy> SymbolsHere;
1814       while (SI != SE && Symbols[SI].Addr == Start)
1815         ++SI;
1816       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1817 
1818       // Get the demangled names of all those symbols. We end up with a vector
1819       // of StringRef that holds the names we're going to use, and a vector of
1820       // std::string that stores the new strings returned by demangle(), if
1821       // any. If we don't call demangle() then that vector can stay empty.
1822       std::vector<StringRef> SymNamesHere;
1823       std::vector<std::string> DemangledSymNamesHere;
1824       if (Demangle) {
1825         // Fetch the demangled names and store them locally.
1826         for (const SymbolInfoTy &Symbol : SymbolsHere)
1827           DemangledSymNamesHere.push_back(demangle(Symbol.Name));
1828         // Now we've finished modifying that vector, it's safe to make
1829         // a vector of StringRefs pointing into it.
1830         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1831                             DemangledSymNamesHere.end());
1832       } else {
1833         for (const SymbolInfoTy &Symbol : SymbolsHere)
1834           SymNamesHere.push_back(Symbol.Name);
1835       }
1836 
1837       // Distinguish ELF data from code symbols, which will be used later on to
1838       // decide whether to 'disassemble' this chunk as a data declaration via
1839       // dumpELFData(), or whether to treat it as code.
1840       //
1841       // If data _and_ code symbols are defined at the same address, the code
1842       // takes priority, on the grounds that disassembling code is our main
1843       // purpose here, and it would be a worse failure to _not_ interpret
1844       // something that _was_ meaningful as code than vice versa.
1845       //
1846       // Any ELF symbol type that is not clearly data will be regarded as code.
1847       // In particular, one of the uses of STT_NOTYPE is for branch targets
1848       // inside functions, for which STT_FUNC would be inaccurate.
1849       //
1850       // So here, we spot whether there's any non-data symbol present at all,
1851       // and only set the DisassembleAsELFData flag if there isn't. Also, we use
1852       // this distinction to inform the decision of which symbol to print at
1853       // the head of the section, so that if we're printing code, we print a
1854       // code-related symbol name to go with it.
1855       bool DisassembleAsELFData = false;
1856       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1857       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1858         DisassembleAsELFData = true; // unless we find a code symbol below
1859 
1860         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1861           uint8_t SymTy = SymbolsHere[i].Type;
1862           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1863             DisassembleAsELFData = false;
1864             DisplaySymIndex = i;
1865           }
1866         }
1867       }
1868 
1869       // Decide which symbol(s) from this collection we're going to print.
1870       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1871       // If the user has given the --disassemble-symbols option, then we must
1872       // display every symbol in that set, and no others.
1873       if (!DisasmSymbolSet.empty()) {
1874         bool FoundAny = false;
1875         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1876           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1877             SymsToPrint[i] = true;
1878             FoundAny = true;
1879           }
1880         }
1881 
1882         // And if none of the symbols here is one that the user asked for, skip
1883         // disassembling this entire chunk of code.
1884         if (!FoundAny)
1885           continue;
1886       } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) {
1887         // Otherwise, print whichever symbol at this location is last in the
1888         // Symbols array, because that array is pre-sorted in a way intended to
1889         // correlate with priority of which symbol to display.
1890         SymsToPrint[DisplaySymIndex] = true;
1891       }
1892 
1893       // Now that we know we're disassembling this section, override the choice
1894       // of which symbols to display by printing _all_ of them at this address
1895       // if the user asked for all symbols.
1896       //
1897       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1898       // only the chunk of code headed by 'foo', but also show any other
1899       // symbols defined at that address, such as aliases for 'foo', or the ARM
1900       // mapping symbol preceding its code.
1901       if (ShowAllSymbols) {
1902         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1903           SymsToPrint[i] = true;
1904       }
1905 
1906       if (Start < SectionAddr || StopAddress <= Start)
1907         continue;
1908 
1909       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1910         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1911 
1912       // The end is the section end, the beginning of the next symbol, or
1913       // --stop-address.
1914       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1915       if (SI < SE)
1916         End = std::min(End, Symbols[SI].Addr);
1917       if (Start >= End || End <= StartAddress)
1918         continue;
1919       Start -= SectionAddr;
1920       End -= SectionAddr;
1921 
1922       if (!PrintedSection) {
1923         PrintedSection = true;
1924         outs() << "\nDisassembly of section ";
1925         if (!SegmentName.empty())
1926           outs() << SegmentName << ",";
1927         outs() << SectionName << ":\n";
1928       }
1929 
1930       bool PrintedLabel = false;
1931       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1932         if (!SymsToPrint[i])
1933           continue;
1934 
1935         const SymbolInfoTy &Symbol = SymbolsHere[i];
1936         const StringRef SymbolName = SymNamesHere[i];
1937 
1938         if (!PrintedLabel) {
1939           outs() << '\n';
1940           PrintedLabel = true;
1941         }
1942         if (LeadingAddr)
1943           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1944                            SectionAddr + Start + VMAAdjustment);
1945         if (Obj.isXCOFF() && SymbolDescription) {
1946           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1947         } else
1948           outs() << '<' << SymbolName << ">:\n";
1949       }
1950 
1951       // Don't print raw contents of a virtual section. A virtual section
1952       // doesn't have any contents in the file.
1953       if (Section.isVirtual()) {
1954         outs() << "...\n";
1955         continue;
1956       }
1957 
1958       // See if any of the symbols defined at this location triggers target-
1959       // specific disassembly behavior, e.g. of special descriptors or function
1960       // prelude information.
1961       //
1962       // We stop this loop at the first symbol that triggers some kind of
1963       // interesting behavior (if any), on the assumption that if two symbols
1964       // defined at the same address trigger two conflicting symbol handlers,
1965       // the object file is probably confused anyway, and it would make even
1966       // less sense to present the output of _both_ handlers, because that
1967       // would describe the same data twice.
1968       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1969         SymbolInfoTy Symbol = SymbolsHere[SHI];
1970 
1971         auto Status = DT->DisAsm->onSymbolStart(
1972             Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start,
1973             CommentStream);
1974 
1975         if (!Status) {
1976           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1977           // any interesting handling for this symbol. Try the other symbols
1978           // defined at this address.
1979           continue;
1980         }
1981 
1982         if (*Status == MCDisassembler::Fail) {
1983           // If onSymbolStart returns Fail, that means it identified some kind
1984           // of special data at this address, but wasn't able to disassemble it
1985           // meaningfully. So we fall back to disassembling the failed region
1986           // as bytes, assuming that the target detected the failure before
1987           // printing anything.
1988           //
1989           // Return values Success or SoftFail (i.e no 'real' failure) are
1990           // expected to mean that the target has emitted its own output.
1991           //
1992           // Either way, 'Size' will have been set to the amount of data
1993           // covered by whatever prologue the target identified. So we advance
1994           // our own position to beyond that. Sometimes that will be the entire
1995           // distance to the next symbol, and sometimes it will be just a
1996           // prologue and we should start disassembling instructions from where
1997           // it left off.
1998           outs() << DT->Context->getAsmInfo()->getCommentString()
1999                  << " error in decoding " << SymNamesHere[SHI]
2000                  << " : decoding failed region as bytes.\n";
2001           for (uint64_t I = 0; I < Size; ++I) {
2002             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
2003                    << "\n";
2004           }
2005         }
2006         Start += Size;
2007         break;
2008       }
2009 
2010       Index = Start;
2011       if (SectionAddr < StartAddress)
2012         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
2013 
2014       if (DisassembleAsELFData) {
2015         dumpELFData(SectionAddr, Index, End, Bytes);
2016         Index = End;
2017         continue;
2018       }
2019 
2020       // Skip relocations from symbols that are not dumped.
2021       for (; RelCur != RelEnd; ++RelCur) {
2022         uint64_t Offset = RelCur->getOffset() - RelAdjustment;
2023         if (Index <= Offset)
2024           break;
2025       }
2026 
2027       bool DumpARMELFData = false;
2028       bool DumpTracebackTableForXCOFFFunction =
2029           Obj.isXCOFF() && Section.isText() && TracebackTable &&
2030           Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
2031           (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
2032 
2033       formatted_raw_ostream FOS(outs());
2034 
2035       std::unordered_map<uint64_t, std::string> AllLabels;
2036       std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> BBAddrMapLabels;
2037       if (SymbolizeOperands) {
2038         collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(),
2039                                   DT->DisAsm.get(), DT->InstPrinter.get(),
2040                                   PrimaryTarget.SubtargetInfo.get(),
2041                                   SectionAddr, Index, End, AllLabels);
2042         collectBBAddrMapLabels(AddrToBBAddrMap, AddrToPGOAnalysisMap,
2043                                SectionAddr, Index, End, BBAddrMapLabels,
2044                                FileName);
2045       }
2046 
2047       if (DT->InstrAnalysis)
2048         DT->InstrAnalysis->resetState();
2049 
2050       while (Index < End) {
2051         uint64_t RelOffset;
2052 
2053         // ARM and AArch64 ELF binaries can interleave data and text in the
2054         // same section. We rely on the markers introduced to understand what
2055         // we need to dump. If the data marker is within a function, it is
2056         // denoted as a word/short etc.
2057         if (!MappingSymbols.empty()) {
2058           char Kind = getMappingSymbolKind(MappingSymbols, Index);
2059           DumpARMELFData = Kind == 'd';
2060           if (SecondaryTarget) {
2061             if (Kind == 'a') {
2062               DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget;
2063             } else if (Kind == 't') {
2064               DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget;
2065             }
2066           }
2067         } else if (!CHPECodeMap.empty()) {
2068           uint64_t Address = SectionAddr + Index;
2069           auto It = partition_point(
2070               CHPECodeMap,
2071               [Address](const std::pair<uint64_t, uint64_t> &Entry) {
2072                 return Entry.first <= Address;
2073               });
2074           if (It != CHPECodeMap.begin() && Address < (It - 1)->second) {
2075             DT = &*SecondaryTarget;
2076           } else {
2077             DT = &PrimaryTarget;
2078             // X64 disassembler range may have left Index unaligned, so
2079             // make sure that it's aligned when we switch back to ARM64
2080             // code.
2081             Index = llvm::alignTo(Index, 4);
2082             if (Index >= End)
2083               break;
2084           }
2085         }
2086 
2087         auto findRel = [&]() {
2088           while (RelCur != RelEnd) {
2089             RelOffset = RelCur->getOffset() - RelAdjustment;
2090             // If this relocation is hidden, skip it.
2091             if (getHidden(*RelCur) || SectionAddr + RelOffset < StartAddress) {
2092               ++RelCur;
2093               continue;
2094             }
2095 
2096             // Stop when RelCur's offset is past the disassembled
2097             // instruction/data.
2098             if (RelOffset >= Index + Size)
2099               return false;
2100             if (RelOffset >= Index)
2101               return true;
2102             ++RelCur;
2103           }
2104           return false;
2105         };
2106 
2107         if (DumpARMELFData) {
2108           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
2109                                 MappingSymbols, *DT->SubtargetInfo, FOS);
2110         } else {
2111           // When -z or --disassemble-zeroes are given we always dissasemble
2112           // them. Otherwise we might want to skip zero bytes we see.
2113           if (!DisassembleZeroes) {
2114             uint64_t MaxOffset = End - Index;
2115             // For --reloc: print zero blocks patched by relocations, so that
2116             // relocations can be shown in the dump.
2117             if (InlineRelocs && RelCur != RelEnd)
2118               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
2119                                    MaxOffset);
2120 
2121             if (size_t N =
2122                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
2123               FOS << "\t\t..." << '\n';
2124               Index += N;
2125               continue;
2126             }
2127           }
2128 
2129           if (DumpTracebackTableForXCOFFFunction &&
2130               doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) {
2131             dumpTracebackTable(Bytes.slice(Index),
2132                                SectionAddr + Index + VMAAdjustment, FOS,
2133                                SectionAddr + End + VMAAdjustment,
2134                                *DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj));
2135             Index = End;
2136             continue;
2137           }
2138 
2139           // Print local label if there's any.
2140           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
2141           if (Iter1 != BBAddrMapLabels.end()) {
2142             for (const auto &BBLabel : Iter1->second)
2143               FOS << "<" << BBLabel.BlockLabel << ">" << BBLabel.PGOAnalysis
2144                   << ":\n";
2145           } else {
2146             auto Iter2 = AllLabels.find(SectionAddr + Index);
2147             if (Iter2 != AllLabels.end())
2148               FOS << "<" << Iter2->second << ">:\n";
2149           }
2150 
2151           // Disassemble a real instruction or a data when disassemble all is
2152           // provided
2153           MCInst Inst;
2154           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
2155           uint64_t ThisAddr = SectionAddr + Index;
2156           bool Disassembled = DT->DisAsm->getInstruction(
2157               Inst, Size, ThisBytes, ThisAddr, CommentStream);
2158           if (Size == 0)
2159             Size = std::min<uint64_t>(
2160                 ThisBytes.size(),
2161                 DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
2162 
2163           LVP.update({Index, Section.getIndex()},
2164                      {Index + Size, Section.getIndex()}, Index + Size != End);
2165 
2166           DT->InstPrinter->setCommentStream(CommentStream);
2167 
2168           DT->Printer->printInst(
2169               *DT->InstPrinter, Disassembled ? &Inst : nullptr,
2170               Bytes.slice(Index, Size),
2171               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
2172               "", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP);
2173 
2174           DT->InstPrinter->setCommentStream(llvm::nulls());
2175 
2176           // If disassembly succeeds, we try to resolve the target address
2177           // (jump target or memory operand address) and print it to the
2178           // right of the instruction.
2179           //
2180           // Otherwise, we don't print anything else so that we avoid
2181           // analyzing invalid or incomplete instruction information.
2182           if (Disassembled && DT->InstrAnalysis) {
2183             llvm::raw_ostream *TargetOS = &FOS;
2184             uint64_t Target;
2185             bool PrintTarget = DT->InstrAnalysis->evaluateBranch(
2186                 Inst, SectionAddr + Index, Size, Target);
2187 
2188             if (!PrintTarget) {
2189               if (std::optional<uint64_t> MaybeTarget =
2190                       DT->InstrAnalysis->evaluateMemoryOperandAddress(
2191                           Inst, DT->SubtargetInfo.get(), SectionAddr + Index,
2192                           Size)) {
2193                 Target = *MaybeTarget;
2194                 PrintTarget = true;
2195                 // Do not print real address when symbolizing.
2196                 if (!SymbolizeOperands) {
2197                   // Memory operand addresses are printed as comments.
2198                   TargetOS = &CommentStream;
2199                   *TargetOS << "0x" << Twine::utohexstr(Target);
2200                 }
2201               }
2202             }
2203 
2204             if (PrintTarget) {
2205               // In a relocatable object, the target's section must reside in
2206               // the same section as the call instruction or it is accessed
2207               // through a relocation.
2208               //
2209               // In a non-relocatable object, the target may be in any section.
2210               // In that case, locate the section(s) containing the target
2211               // address and find the symbol in one of those, if possible.
2212               //
2213               // N.B. Except for XCOFF, we don't walk the relocations in the
2214               // relocatable case yet.
2215               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
2216               if (!Obj.isRelocatableObject()) {
2217                 auto It = llvm::partition_point(
2218                     SectionAddresses,
2219                     [=](const std::pair<uint64_t, SectionRef> &O) {
2220                       return O.first <= Target;
2221                     });
2222                 uint64_t TargetSecAddr = 0;
2223                 while (It != SectionAddresses.begin()) {
2224                   --It;
2225                   if (TargetSecAddr == 0)
2226                     TargetSecAddr = It->first;
2227                   if (It->first != TargetSecAddr)
2228                     break;
2229                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
2230                 }
2231               } else {
2232                 TargetSectionSymbols.push_back(&Symbols);
2233               }
2234               TargetSectionSymbols.push_back(&AbsoluteSymbols);
2235 
2236               // Find the last symbol in the first candidate section whose
2237               // offset is less than or equal to the target. If there are no
2238               // such symbols, try in the next section and so on, before finally
2239               // using the nearest preceding absolute symbol (if any), if there
2240               // are no other valid symbols.
2241               const SymbolInfoTy *TargetSym = nullptr;
2242               for (const SectionSymbolsTy *TargetSymbols :
2243                    TargetSectionSymbols) {
2244                 auto It = llvm::partition_point(
2245                     *TargetSymbols,
2246                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2247                 while (It != TargetSymbols->begin()) {
2248                   --It;
2249                   // Skip mapping symbols to avoid possible ambiguity as they
2250                   // do not allow uniquely identifying the target address.
2251                   if (!It->IsMappingSymbol) {
2252                     TargetSym = &*It;
2253                     break;
2254                   }
2255                 }
2256                 if (TargetSym)
2257                   break;
2258               }
2259 
2260               // Branch targets are printed just after the instructions.
2261               // Print the labels corresponding to the target if there's any.
2262               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
2263               bool LabelAvailable = AllLabels.count(Target);
2264 
2265               if (TargetSym != nullptr) {
2266                 uint64_t TargetAddress = TargetSym->Addr;
2267                 uint64_t Disp = Target - TargetAddress;
2268                 std::string TargetName = Demangle ? demangle(TargetSym->Name)
2269                                                   : TargetSym->Name.str();
2270                 bool RelFixedUp = false;
2271                 SmallString<32> Val;
2272 
2273                 *TargetOS << " <";
2274                 // On XCOFF, we use relocations, even without -r, so we
2275                 // can print the correct name for an extern function call.
2276                 if (Obj.isXCOFF() && findRel()) {
2277                   // Check for possible branch relocations and
2278                   // branches to fixup code.
2279                   bool BranchRelocationType = true;
2280                   XCOFF::RelocationType RelocType;
2281                   if (Obj.is64Bit()) {
2282                     const XCOFFRelocation64 *Reloc =
2283                         reinterpret_cast<XCOFFRelocation64 *>(
2284                             RelCur->getRawDataRefImpl().p);
2285                     RelFixedUp = Reloc->isFixupIndicated();
2286                     RelocType = Reloc->Type;
2287                   } else {
2288                     const XCOFFRelocation32 *Reloc =
2289                         reinterpret_cast<XCOFFRelocation32 *>(
2290                             RelCur->getRawDataRefImpl().p);
2291                     RelFixedUp = Reloc->isFixupIndicated();
2292                     RelocType = Reloc->Type;
2293                   }
2294                   BranchRelocationType =
2295                       RelocType == XCOFF::R_BA || RelocType == XCOFF::R_BR ||
2296                       RelocType == XCOFF::R_RBA || RelocType == XCOFF::R_RBR;
2297 
2298                   // If we have a valid relocation, try to print its
2299                   // corresponding symbol name. Multiple relocations on the
2300                   // same instruction are not handled.
2301                   // Branches to fixup code will have the RelFixedUp flag set in
2302                   // the RLD. For these instructions, we print the correct
2303                   // branch target, but print the referenced symbol as a
2304                   // comment.
2305                   if (Error E = getRelocationValueString(*RelCur, false, Val)) {
2306                     // If -r was used, this error will be printed later.
2307                     // Otherwise, we ignore the error and print what
2308                     // would have been printed without using relocations.
2309                     consumeError(std::move(E));
2310                     *TargetOS << TargetName;
2311                     RelFixedUp = false; // Suppress comment for RLD sym name
2312                   } else if (BranchRelocationType && !RelFixedUp)
2313                     *TargetOS << Val;
2314                   else
2315                     *TargetOS << TargetName;
2316                   if (Disp)
2317                     *TargetOS << "+0x" << Twine::utohexstr(Disp);
2318                 } else if (!Disp) {
2319                   *TargetOS << TargetName;
2320                 } else if (BBAddrMapLabelAvailable) {
2321                   *TargetOS << BBAddrMapLabels[Target].front().BlockLabel;
2322                 } else if (LabelAvailable) {
2323                   *TargetOS << AllLabels[Target];
2324                 } else {
2325                   // Always Print the binary symbol plus an offset if there's no
2326                   // local label corresponding to the target address.
2327                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
2328                 }
2329                 *TargetOS << ">";
2330                 if (RelFixedUp && !InlineRelocs) {
2331                   // We have fixup code for a relocation. We print the
2332                   // referenced symbol as a comment.
2333                   *TargetOS << "\t# " << Val;
2334                 }
2335 
2336               } else if (BBAddrMapLabelAvailable) {
2337                 *TargetOS << " <" << BBAddrMapLabels[Target].front().BlockLabel
2338                           << ">";
2339               } else if (LabelAvailable) {
2340                 *TargetOS << " <" << AllLabels[Target] << ">";
2341               }
2342               // By convention, each record in the comment stream should be
2343               // terminated.
2344               if (TargetOS == &CommentStream)
2345                 *TargetOS << "\n";
2346             }
2347 
2348             DT->InstrAnalysis->updateState(Inst, SectionAddr + Index);
2349           } else if (!Disassembled && DT->InstrAnalysis) {
2350             DT->InstrAnalysis->resetState();
2351           }
2352         }
2353 
2354         assert(DT->Context->getAsmInfo());
2355         emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(),
2356                                 *DT->SubtargetInfo, CommentStream.str(), LVP);
2357         Comments.clear();
2358 
2359         if (BTF)
2360           printBTFRelocation(FOS, *BTF, {Index, Section.getIndex()}, LVP);
2361 
2362         // Hexagon handles relocs in pretty printer
2363         if (InlineRelocs && Obj.getArch() != Triple::hexagon) {
2364           while (findRel()) {
2365             // When --adjust-vma is used, update the address printed.
2366             if (RelCur->getSymbol() != Obj.symbol_end()) {
2367               Expected<section_iterator> SymSI =
2368                   RelCur->getSymbol()->getSection();
2369               if (SymSI && *SymSI != Obj.section_end() &&
2370                   shouldAdjustVA(**SymSI))
2371                 RelOffset += AdjustVMA;
2372             }
2373 
2374             printRelocation(FOS, Obj.getFileName(), *RelCur,
2375                             SectionAddr + RelOffset, Is64Bits);
2376             LVP.printAfterOtherLine(FOS, true);
2377             ++RelCur;
2378           }
2379         }
2380 
2381         Index += Size;
2382       }
2383     }
2384   }
2385   StringSet<> MissingDisasmSymbolSet =
2386       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2387   for (StringRef Sym : MissingDisasmSymbolSet.keys())
2388     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2389 }
2390 
disassembleObject(ObjectFile * Obj,bool InlineRelocs)2391 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
2392   // If information useful for showing the disassembly is missing, try to find a
2393   // more complete binary and disassemble that instead.
2394   OwningBinary<Binary> FetchedBinary;
2395   if (Obj->symbols().empty()) {
2396     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2397             fetchBinaryByBuildID(*Obj)) {
2398       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
2399         if (!O->symbols().empty() ||
2400             (!O->sections().empty() && Obj->sections().empty())) {
2401           FetchedBinary = std::move(*FetchedBinaryOpt);
2402           Obj = O;
2403         }
2404       }
2405     }
2406   }
2407 
2408   const Target *TheTarget = getTarget(Obj);
2409 
2410   // Package up features to be passed to target/subtarget
2411   Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2412   if (!FeaturesValue)
2413     reportError(FeaturesValue.takeError(), Obj->getFileName());
2414   SubtargetFeatures Features = *FeaturesValue;
2415   if (!MAttrs.empty()) {
2416     for (unsigned I = 0; I != MAttrs.size(); ++I)
2417       Features.AddFeature(MAttrs[I]);
2418   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2419     Features.AddFeature("+all");
2420   }
2421 
2422   if (MCPU.empty())
2423     MCPU = Obj->tryGetCPUName().value_or("").str();
2424 
2425   if (isArmElf(*Obj)) {
2426     // When disassembling big-endian Arm ELF, the instruction endianness is
2427     // determined in a complex way. In relocatable objects, AAELF32 mandates
2428     // that instruction endianness matches the ELF file endianness; in
2429     // executable images, that's true unless the file header has the EF_ARM_BE8
2430     // flag, in which case instructions are little-endian regardless of data
2431     // endianness.
2432     //
2433     // We must set the big-endian-instructions SubtargetFeature to make the
2434     // disassembler read the instructions the right way round, and also tell
2435     // our own prettyprinter to retrieve the encodings the same way to print in
2436     // hex.
2437     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2438 
2439     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2440                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2441       Features.AddFeature("+big-endian-instructions");
2442       ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big);
2443     } else {
2444       ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little);
2445     }
2446   }
2447 
2448   DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features);
2449 
2450   // If we have an ARM object file, we need a second disassembler, because
2451   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2452   // We use mapping symbols to switch between the two assemblers, where
2453   // appropriate.
2454   std::optional<DisassemblerTarget> SecondaryTarget;
2455 
2456   if (isArmElf(*Obj)) {
2457     if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) {
2458       if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"))
2459         Features.AddFeature("-thumb-mode");
2460       else
2461         Features.AddFeature("+thumb-mode");
2462       SecondaryTarget.emplace(PrimaryTarget, Features);
2463     }
2464   } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
2465     const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
2466     if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
2467       // Set up x86_64 disassembler for ARM64EC binaries.
2468       Triple X64Triple(TripleName);
2469       X64Triple.setArch(Triple::ArchType::x86_64);
2470 
2471       std::string Error;
2472       const Target *X64Target =
2473           TargetRegistry::lookupTarget("", X64Triple, Error);
2474       if (X64Target) {
2475         SubtargetFeatures X64Features;
2476         SecondaryTarget.emplace(X64Target, *Obj, X64Triple.getTriple(), "",
2477                                 X64Features);
2478       } else {
2479         reportWarning(Error, Obj->getFileName());
2480       }
2481     }
2482   }
2483 
2484   const ObjectFile *DbgObj = Obj;
2485   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2486     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2487             fetchBinaryByBuildID(*Obj)) {
2488       if (auto *FetchedObj =
2489               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2490         if (FetchedObj->hasDebugInfo()) {
2491           FetchedBinary = std::move(*DebugBinaryOpt);
2492           DbgObj = FetchedObj;
2493         }
2494       }
2495     }
2496   }
2497 
2498   std::unique_ptr<object::Binary> DSYMBinary;
2499   std::unique_ptr<MemoryBuffer> DSYMBuf;
2500   if (!DbgObj->hasDebugInfo()) {
2501     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2502       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2503                                            DSYMBinary, DSYMBuf);
2504       if (!DbgObj)
2505         return;
2506     }
2507   }
2508 
2509   SourcePrinter SP(DbgObj, TheTarget->getName());
2510 
2511   for (StringRef Opt : DisassemblerOptions)
2512     if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt))
2513       reportError(Obj->getFileName(),
2514                   "Unrecognized disassembler option: " + Opt);
2515 
2516   disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP,
2517                     InlineRelocs);
2518 }
2519 
printRelocations()2520 void Dumper::printRelocations() {
2521   StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2522 
2523   // Build a mapping from relocation target to a vector of relocation
2524   // sections. Usually, there is an only one relocation section for
2525   // each relocated section.
2526   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2527   uint64_t Ndx;
2528   for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) {
2529     if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2530       continue;
2531     if (Section.relocation_begin() == Section.relocation_end())
2532       continue;
2533     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2534     if (!SecOrErr)
2535       reportError(O.getFileName(),
2536                   "section (" + Twine(Ndx) +
2537                       "): unable to get a relocation target: " +
2538                       toString(SecOrErr.takeError()));
2539     SecToRelSec[**SecOrErr].push_back(Section);
2540   }
2541 
2542   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2543     StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName());
2544     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2545     uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8);
2546     uint32_t TypePadding = 24;
2547     outs() << left_justify("OFFSET", OffsetPadding) << " "
2548            << left_justify("TYPE", TypePadding) << " "
2549            << "VALUE\n";
2550 
2551     for (SectionRef Section : P.second) {
2552       for (const RelocationRef &Reloc : Section.relocations()) {
2553         uint64_t Address = Reloc.getOffset();
2554         SmallString<32> RelocName;
2555         SmallString<32> ValueStr;
2556         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2557           continue;
2558         Reloc.getTypeName(RelocName);
2559         if (Error E =
2560                 getRelocationValueString(Reloc, SymbolDescription, ValueStr))
2561           reportUniqueWarning(std::move(E));
2562 
2563         outs() << format(Fmt.data(), Address) << " "
2564                << left_justify(RelocName, TypePadding) << " " << ValueStr
2565                << "\n";
2566       }
2567     }
2568   }
2569 }
2570 
2571 // Returns true if we need to show LMA column when dumping section headers. We
2572 // show it only when the platform is ELF and either we have at least one section
2573 // whose VMA and LMA are different and/or when --show-lma flag is used.
shouldDisplayLMA(const ObjectFile & Obj)2574 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2575   if (!Obj.isELF())
2576     return false;
2577   for (const SectionRef &S : ToolSectionFilter(Obj))
2578     if (S.getAddress() != getELFSectionLMA(S))
2579       return true;
2580   return ShowLMA;
2581 }
2582 
getMaxSectionNameWidth(const ObjectFile & Obj)2583 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2584   // Default column width for names is 13 even if no names are that long.
2585   size_t MaxWidth = 13;
2586   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2587     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2588     MaxWidth = std::max(MaxWidth, Name.size());
2589   }
2590   return MaxWidth;
2591 }
2592 
printSectionHeaders(ObjectFile & Obj)2593 void objdump::printSectionHeaders(ObjectFile &Obj) {
2594   if (Obj.isELF() && Obj.sections().empty())
2595     createFakeELFSections(Obj);
2596 
2597   size_t NameWidth = getMaxSectionNameWidth(Obj);
2598   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2599   bool HasLMAColumn = shouldDisplayLMA(Obj);
2600   outs() << "\nSections:\n";
2601   if (HasLMAColumn)
2602     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2603            << left_justify("VMA", AddressWidth) << " "
2604            << left_justify("LMA", AddressWidth) << " Type\n";
2605   else
2606     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2607            << left_justify("VMA", AddressWidth) << " Type\n";
2608 
2609   uint64_t Idx;
2610   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2611     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2612     uint64_t VMA = Section.getAddress();
2613     if (shouldAdjustVA(Section))
2614       VMA += AdjustVMA;
2615 
2616     uint64_t Size = Section.getSize();
2617 
2618     std::string Type = Section.isText() ? "TEXT" : "";
2619     if (Section.isData())
2620       Type += Type.empty() ? "DATA" : ", DATA";
2621     if (Section.isBSS())
2622       Type += Type.empty() ? "BSS" : ", BSS";
2623     if (Section.isDebugSection())
2624       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2625 
2626     if (HasLMAColumn)
2627       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2628                        Name.str().c_str(), Size)
2629              << format_hex_no_prefix(VMA, AddressWidth) << " "
2630              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2631              << " " << Type << "\n";
2632     else
2633       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2634                        Name.str().c_str(), Size)
2635              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2636   }
2637 }
2638 
printSectionContents(const ObjectFile * Obj)2639 void objdump::printSectionContents(const ObjectFile *Obj) {
2640   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2641 
2642   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2643     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2644     uint64_t BaseAddr = Section.getAddress();
2645     uint64_t Size = Section.getSize();
2646     if (!Size)
2647       continue;
2648 
2649     outs() << "Contents of section ";
2650     StringRef SegmentName = getSegmentName(MachO, Section);
2651     if (!SegmentName.empty())
2652       outs() << SegmentName << ",";
2653     outs() << Name << ":\n";
2654     if (Section.isBSS()) {
2655       outs() << format("<skipping contents of bss section at [%04" PRIx64
2656                        ", %04" PRIx64 ")>\n",
2657                        BaseAddr, BaseAddr + Size);
2658       continue;
2659     }
2660 
2661     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2662 
2663     // Dump out the content as hex and printable ascii characters.
2664     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2665       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2666       // Dump line of hex.
2667       for (std::size_t I = 0; I < 16; ++I) {
2668         if (I != 0 && I % 4 == 0)
2669           outs() << ' ';
2670         if (Addr + I < End)
2671           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2672                  << hexdigit(Contents[Addr + I] & 0xF, true);
2673         else
2674           outs() << "  ";
2675       }
2676       // Print ascii.
2677       outs() << "  ";
2678       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2679         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2680           outs() << Contents[Addr + I];
2681         else
2682           outs() << ".";
2683       }
2684       outs() << "\n";
2685     }
2686   }
2687 }
2688 
printSymbolTable(StringRef ArchiveName,StringRef ArchitectureName,bool DumpDynamic)2689 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName,
2690                               bool DumpDynamic) {
2691   if (O.isCOFF() && !DumpDynamic) {
2692     outs() << "\nSYMBOL TABLE:\n";
2693     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2694     return;
2695   }
2696 
2697   const StringRef FileName = O.getFileName();
2698 
2699   if (!DumpDynamic) {
2700     outs() << "\nSYMBOL TABLE:\n";
2701     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2702       printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2703     return;
2704   }
2705 
2706   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2707   if (!O.isELF()) {
2708     reportWarning(
2709         "this operation is not currently supported for this file format",
2710         FileName);
2711     return;
2712   }
2713 
2714   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2715   auto Symbols = ELF->getDynamicSymbolIterators();
2716   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2717       ELF->readDynsymVersions();
2718   if (!SymbolVersionsOrErr) {
2719     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2720     SymbolVersionsOrErr = std::vector<VersionEntry>();
2721     (void)!SymbolVersionsOrErr;
2722   }
2723   for (auto &Sym : Symbols)
2724     printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2725                 ArchitectureName, DumpDynamic);
2726 }
2727 
printSymbol(const SymbolRef & Symbol,ArrayRef<VersionEntry> SymbolVersions,StringRef FileName,StringRef ArchiveName,StringRef ArchitectureName,bool DumpDynamic)2728 void Dumper::printSymbol(const SymbolRef &Symbol,
2729                          ArrayRef<VersionEntry> SymbolVersions,
2730                          StringRef FileName, StringRef ArchiveName,
2731                          StringRef ArchitectureName, bool DumpDynamic) {
2732   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2733   Expected<uint64_t> AddrOrErr = Symbol.getAddress();
2734   if (!AddrOrErr) {
2735     reportUniqueWarning(AddrOrErr.takeError());
2736     return;
2737   }
2738   uint64_t Address = *AddrOrErr;
2739   section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
2740   if (SecI != O.section_end() && shouldAdjustVA(*SecI))
2741     Address += AdjustVMA;
2742   if ((Address < StartAddress) || (Address > StopAddress))
2743     return;
2744   SymbolRef::Type Type =
2745       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2746   uint32_t Flags =
2747       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2748 
2749   // Don't ask a Mach-O STAB symbol for its section unless you know that
2750   // STAB symbol's section field refers to a valid section index. Otherwise
2751   // the symbol may error trying to load a section that does not exist.
2752   bool IsSTAB = false;
2753   if (MachO) {
2754     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2755     uint8_t NType =
2756         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2757                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2758     if (NType & MachO::N_STAB)
2759       IsSTAB = true;
2760   }
2761   section_iterator Section = IsSTAB
2762                                  ? O.section_end()
2763                                  : unwrapOrError(Symbol.getSection(), FileName,
2764                                                  ArchiveName, ArchitectureName);
2765 
2766   StringRef Name;
2767   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2768     if (Expected<StringRef> NameOrErr = Section->getName())
2769       Name = *NameOrErr;
2770     else
2771       consumeError(NameOrErr.takeError());
2772 
2773   } else {
2774     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2775                          ArchitectureName);
2776   }
2777 
2778   bool Global = Flags & SymbolRef::SF_Global;
2779   bool Weak = Flags & SymbolRef::SF_Weak;
2780   bool Absolute = Flags & SymbolRef::SF_Absolute;
2781   bool Common = Flags & SymbolRef::SF_Common;
2782   bool Hidden = Flags & SymbolRef::SF_Hidden;
2783 
2784   char GlobLoc = ' ';
2785   if ((Section != O.section_end() || Absolute) && !Weak)
2786     GlobLoc = Global ? 'g' : 'l';
2787   char IFunc = ' ';
2788   if (O.isELF()) {
2789     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2790       IFunc = 'i';
2791     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2792       GlobLoc = 'u';
2793   }
2794 
2795   char Debug = ' ';
2796   if (DumpDynamic)
2797     Debug = 'D';
2798   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2799     Debug = 'd';
2800 
2801   char FileFunc = ' ';
2802   if (Type == SymbolRef::ST_File)
2803     FileFunc = 'f';
2804   else if (Type == SymbolRef::ST_Function)
2805     FileFunc = 'F';
2806   else if (Type == SymbolRef::ST_Data)
2807     FileFunc = 'O';
2808 
2809   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2810 
2811   outs() << format(Fmt, Address) << " "
2812          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2813          << (Weak ? 'w' : ' ') // Weak?
2814          << ' '                // Constructor. Not supported yet.
2815          << ' '                // Warning. Not supported yet.
2816          << IFunc              // Indirect reference to another symbol.
2817          << Debug              // Debugging (d) or dynamic (D) symbol.
2818          << FileFunc           // Name of function (F), file (f) or object (O).
2819          << ' ';
2820   if (Absolute) {
2821     outs() << "*ABS*";
2822   } else if (Common) {
2823     outs() << "*COM*";
2824   } else if (Section == O.section_end()) {
2825     if (O.isXCOFF()) {
2826       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2827           Symbol.getRawDataRefImpl());
2828       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2829         outs() << "*DEBUG*";
2830       else
2831         outs() << "*UND*";
2832     } else
2833       outs() << "*UND*";
2834   } else {
2835     StringRef SegmentName = getSegmentName(MachO, *Section);
2836     if (!SegmentName.empty())
2837       outs() << SegmentName << ",";
2838     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2839     outs() << SectionName;
2840     if (O.isXCOFF()) {
2841       std::optional<SymbolRef> SymRef =
2842           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2843       if (SymRef) {
2844 
2845         Expected<StringRef> NameOrErr = SymRef->getName();
2846 
2847         if (NameOrErr) {
2848           outs() << " (csect:";
2849           std::string SymName =
2850               Demangle ? demangle(*NameOrErr) : NameOrErr->str();
2851 
2852           if (SymbolDescription)
2853             SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
2854                                                 SymName);
2855 
2856           outs() << ' ' << SymName;
2857           outs() << ") ";
2858         } else
2859           reportWarning(toString(NameOrErr.takeError()), FileName);
2860       }
2861     }
2862   }
2863 
2864   if (Common)
2865     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2866   else if (O.isXCOFF())
2867     outs() << '\t'
2868            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2869                               Symbol.getRawDataRefImpl()));
2870   else if (O.isELF())
2871     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2872 
2873   if (O.isELF()) {
2874     if (!SymbolVersions.empty()) {
2875       const VersionEntry &Ver =
2876           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2877       std::string Str;
2878       if (!Ver.Name.empty())
2879         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2880       outs() << ' ' << left_justify(Str, 12);
2881     }
2882 
2883     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2884     switch (Other) {
2885     case ELF::STV_DEFAULT:
2886       break;
2887     case ELF::STV_INTERNAL:
2888       outs() << " .internal";
2889       break;
2890     case ELF::STV_HIDDEN:
2891       outs() << " .hidden";
2892       break;
2893     case ELF::STV_PROTECTED:
2894       outs() << " .protected";
2895       break;
2896     default:
2897       outs() << format(" 0x%02x", Other);
2898       break;
2899     }
2900   } else if (Hidden) {
2901     outs() << " .hidden";
2902   }
2903 
2904   std::string SymName = Demangle ? demangle(Name) : Name.str();
2905   if (O.isXCOFF() && SymbolDescription)
2906     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2907 
2908   outs() << ' ' << SymName << '\n';
2909 }
2910 
printUnwindInfo(const ObjectFile * O)2911 static void printUnwindInfo(const ObjectFile *O) {
2912   outs() << "Unwind info:\n\n";
2913 
2914   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2915     printCOFFUnwindInfo(Coff);
2916   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2917     printMachOUnwindInfo(MachO);
2918   else
2919     // TODO: Extract DWARF dump tool to objdump.
2920     WithColor::error(errs(), ToolName)
2921         << "This operation is only currently supported "
2922            "for COFF and MachO object files.\n";
2923 }
2924 
2925 /// Dump the raw contents of the __clangast section so the output can be piped
2926 /// into llvm-bcanalyzer.
printRawClangAST(const ObjectFile * Obj)2927 static void printRawClangAST(const ObjectFile *Obj) {
2928   if (outs().is_displayed()) {
2929     WithColor::error(errs(), ToolName)
2930         << "The -raw-clang-ast option will dump the raw binary contents of "
2931            "the clang ast section.\n"
2932            "Please redirect the output to a file or another program such as "
2933            "llvm-bcanalyzer.\n";
2934     return;
2935   }
2936 
2937   StringRef ClangASTSectionName("__clangast");
2938   if (Obj->isCOFF()) {
2939     ClangASTSectionName = "clangast";
2940   }
2941 
2942   std::optional<object::SectionRef> ClangASTSection;
2943   for (auto Sec : ToolSectionFilter(*Obj)) {
2944     StringRef Name;
2945     if (Expected<StringRef> NameOrErr = Sec.getName())
2946       Name = *NameOrErr;
2947     else
2948       consumeError(NameOrErr.takeError());
2949 
2950     if (Name == ClangASTSectionName) {
2951       ClangASTSection = Sec;
2952       break;
2953     }
2954   }
2955   if (!ClangASTSection)
2956     return;
2957 
2958   StringRef ClangASTContents =
2959       unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
2960   outs().write(ClangASTContents.data(), ClangASTContents.size());
2961 }
2962 
printFaultMaps(const ObjectFile * Obj)2963 static void printFaultMaps(const ObjectFile *Obj) {
2964   StringRef FaultMapSectionName;
2965 
2966   if (Obj->isELF()) {
2967     FaultMapSectionName = ".llvm_faultmaps";
2968   } else if (Obj->isMachO()) {
2969     FaultMapSectionName = "__llvm_faultmaps";
2970   } else {
2971     WithColor::error(errs(), ToolName)
2972         << "This operation is only currently supported "
2973            "for ELF and Mach-O executable files.\n";
2974     return;
2975   }
2976 
2977   std::optional<object::SectionRef> FaultMapSection;
2978 
2979   for (auto Sec : ToolSectionFilter(*Obj)) {
2980     StringRef Name;
2981     if (Expected<StringRef> NameOrErr = Sec.getName())
2982       Name = *NameOrErr;
2983     else
2984       consumeError(NameOrErr.takeError());
2985 
2986     if (Name == FaultMapSectionName) {
2987       FaultMapSection = Sec;
2988       break;
2989     }
2990   }
2991 
2992   outs() << "FaultMap table:\n";
2993 
2994   if (!FaultMapSection) {
2995     outs() << "<not found>\n";
2996     return;
2997   }
2998 
2999   StringRef FaultMapContents =
3000       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
3001   FaultMapParser FMP(FaultMapContents.bytes_begin(),
3002                      FaultMapContents.bytes_end());
3003 
3004   outs() << FMP;
3005 }
3006 
printPrivateHeaders()3007 void Dumper::printPrivateHeaders() {
3008   reportError(O.getFileName(), "Invalid/Unsupported object file format");
3009 }
3010 
printFileHeaders(const ObjectFile * O)3011 static void printFileHeaders(const ObjectFile *O) {
3012   if (!O->isELF() && !O->isCOFF())
3013     reportError(O->getFileName(), "Invalid/Unsupported object file format");
3014 
3015   Triple::ArchType AT = O->getArch();
3016   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
3017   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
3018 
3019   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
3020   outs() << "start address: "
3021          << "0x" << format(Fmt.data(), Address) << "\n";
3022 }
3023 
printArchiveChild(StringRef Filename,const Archive::Child & C)3024 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
3025   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
3026   if (!ModeOrErr) {
3027     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
3028     consumeError(ModeOrErr.takeError());
3029     return;
3030   }
3031   sys::fs::perms Mode = ModeOrErr.get();
3032   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
3033   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
3034   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
3035   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
3036   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
3037   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
3038   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
3039   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
3040   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
3041 
3042   outs() << " ";
3043 
3044   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
3045                    unwrapOrError(C.getGID(), Filename),
3046                    unwrapOrError(C.getRawSize(), Filename));
3047 
3048   StringRef RawLastModified = C.getRawLastModified();
3049   unsigned Seconds;
3050   if (RawLastModified.getAsInteger(10, Seconds))
3051     outs() << "(date: \"" << RawLastModified
3052            << "\" contains non-decimal chars) ";
3053   else {
3054     // Since ctime(3) returns a 26 character string of the form:
3055     // "Sun Sep 16 01:03:52 1973\n\0"
3056     // just print 24 characters.
3057     time_t t = Seconds;
3058     outs() << format("%.24s ", ctime(&t));
3059   }
3060 
3061   StringRef Name = "";
3062   Expected<StringRef> NameOrErr = C.getName();
3063   if (!NameOrErr) {
3064     consumeError(NameOrErr.takeError());
3065     Name = unwrapOrError(C.getRawName(), Filename);
3066   } else {
3067     Name = NameOrErr.get();
3068   }
3069   outs() << Name << "\n";
3070 }
3071 
3072 // For ELF only now.
shouldWarnForInvalidStartStopAddress(ObjectFile * Obj)3073 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
3074   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
3075     if (Elf->getEType() != ELF::ET_REL)
3076       return true;
3077   }
3078   return false;
3079 }
3080 
checkForInvalidStartStopAddress(ObjectFile * Obj,uint64_t Start,uint64_t Stop)3081 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
3082                                             uint64_t Start, uint64_t Stop) {
3083   if (!shouldWarnForInvalidStartStopAddress(Obj))
3084     return;
3085 
3086   for (const SectionRef &Section : Obj->sections())
3087     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
3088       uint64_t BaseAddr = Section.getAddress();
3089       uint64_t Size = Section.getSize();
3090       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
3091         return;
3092     }
3093 
3094   if (!HasStartAddressFlag)
3095     reportWarning("no section has address less than 0x" +
3096                       Twine::utohexstr(Stop) + " specified by --stop-address",
3097                   Obj->getFileName());
3098   else if (!HasStopAddressFlag)
3099     reportWarning("no section has address greater than or equal to 0x" +
3100                       Twine::utohexstr(Start) + " specified by --start-address",
3101                   Obj->getFileName());
3102   else
3103     reportWarning("no section overlaps the range [0x" +
3104                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
3105                       ") specified by --start-address/--stop-address",
3106                   Obj->getFileName());
3107 }
3108 
dumpObject(ObjectFile * O,const Archive * A=nullptr,const Archive::Child * C=nullptr)3109 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
3110                        const Archive::Child *C = nullptr) {
3111   Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O);
3112   if (!DumperOrErr) {
3113     reportError(DumperOrErr.takeError(), O->getFileName(),
3114                 A ? A->getFileName() : "");
3115     return;
3116   }
3117   Dumper &D = **DumperOrErr;
3118 
3119   // Avoid other output when using a raw option.
3120   if (!RawClangAST) {
3121     outs() << '\n';
3122     if (A)
3123       outs() << A->getFileName() << "(" << O->getFileName() << ")";
3124     else
3125       outs() << O->getFileName();
3126     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
3127   }
3128 
3129   if (HasStartAddressFlag || HasStopAddressFlag)
3130     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
3131 
3132   // TODO: Change print* free functions to Dumper member functions to utilitize
3133   // stateful functions like reportUniqueWarning.
3134 
3135   // Note: the order here matches GNU objdump for compatability.
3136   StringRef ArchiveName = A ? A->getFileName() : "";
3137   if (ArchiveHeaders && !MachOOpt && C)
3138     printArchiveChild(ArchiveName, *C);
3139   if (FileHeaders)
3140     printFileHeaders(O);
3141   if (PrivateHeaders || FirstPrivateHeader)
3142     D.printPrivateHeaders();
3143   if (SectionHeaders)
3144     printSectionHeaders(*O);
3145   if (SymbolTable)
3146     D.printSymbolTable(ArchiveName);
3147   if (DynamicSymbolTable)
3148     D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"",
3149                        /*DumpDynamic=*/true);
3150   if (DwarfDumpType != DIDT_Null) {
3151     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
3152     // Dump the complete DWARF structure.
3153     DIDumpOptions DumpOpts;
3154     DumpOpts.DumpType = DwarfDumpType;
3155     DICtx->dump(outs(), DumpOpts);
3156   }
3157   if (Relocations && !Disassemble)
3158     D.printRelocations();
3159   if (DynamicRelocations)
3160     D.printDynamicRelocations();
3161   if (SectionContents)
3162     printSectionContents(O);
3163   if (Disassemble)
3164     disassembleObject(O, Relocations);
3165   if (UnwindInfo)
3166     printUnwindInfo(O);
3167 
3168   // Mach-O specific options:
3169   if (ExportsTrie)
3170     printExportsTrie(O);
3171   if (Rebase)
3172     printRebaseTable(O);
3173   if (Bind)
3174     printBindTable(O);
3175   if (LazyBind)
3176     printLazyBindTable(O);
3177   if (WeakBind)
3178     printWeakBindTable(O);
3179 
3180   // Other special sections:
3181   if (RawClangAST)
3182     printRawClangAST(O);
3183   if (FaultMapSection)
3184     printFaultMaps(O);
3185   if (Offloading)
3186     dumpOffloadBinary(*O);
3187 }
3188 
dumpObject(const COFFImportFile * I,const Archive * A,const Archive::Child * C=nullptr)3189 static void dumpObject(const COFFImportFile *I, const Archive *A,
3190                        const Archive::Child *C = nullptr) {
3191   StringRef ArchiveName = A ? A->getFileName() : "";
3192 
3193   // Avoid other output when using a raw option.
3194   if (!RawClangAST)
3195     outs() << '\n'
3196            << ArchiveName << "(" << I->getFileName() << ")"
3197            << ":\tfile format COFF-import-file"
3198            << "\n\n";
3199 
3200   if (ArchiveHeaders && !MachOOpt && C)
3201     printArchiveChild(ArchiveName, *C);
3202   if (SymbolTable)
3203     printCOFFSymbolTable(*I);
3204 }
3205 
3206 /// Dump each object file in \a a;
dumpArchive(const Archive * A)3207 static void dumpArchive(const Archive *A) {
3208   Error Err = Error::success();
3209   unsigned I = -1;
3210   for (auto &C : A->children(Err)) {
3211     ++I;
3212     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
3213     if (!ChildOrErr) {
3214       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
3215         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
3216       continue;
3217     }
3218     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
3219       dumpObject(O, A, &C);
3220     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
3221       dumpObject(I, A, &C);
3222     else
3223       reportError(errorCodeToError(object_error::invalid_file_type),
3224                   A->getFileName());
3225   }
3226   if (Err)
3227     reportError(std::move(Err), A->getFileName());
3228 }
3229 
3230 /// Open file and figure out how to dump it.
dumpInput(StringRef file)3231 static void dumpInput(StringRef file) {
3232   // If we are using the Mach-O specific object file parser, then let it parse
3233   // the file and process the command line options.  So the -arch flags can
3234   // be used to select specific slices, etc.
3235   if (MachOOpt) {
3236     parseInputMachO(file);
3237     return;
3238   }
3239 
3240   // Attempt to open the binary.
3241   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
3242   Binary &Binary = *OBinary.getBinary();
3243 
3244   if (Archive *A = dyn_cast<Archive>(&Binary))
3245     dumpArchive(A);
3246   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
3247     dumpObject(O);
3248   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
3249     parseInputMachO(UB);
3250   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
3251     dumpOffloadSections(*OB);
3252   else
3253     reportError(errorCodeToError(object_error::invalid_file_type), file);
3254 }
3255 
3256 template <typename T>
parseIntArg(const llvm::opt::InputArgList & InputArgs,int ID,T & Value)3257 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
3258                         T &Value) {
3259   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
3260     StringRef V(A->getValue());
3261     if (!llvm::to_integer(V, Value, 0)) {
3262       reportCmdLineError(A->getSpelling() +
3263                          ": expected a non-negative integer, but got '" + V +
3264                          "'");
3265     }
3266   }
3267 }
3268 
parseBuildIDArg(const opt::Arg * A)3269 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
3270   StringRef V(A->getValue());
3271   object::BuildID BID = parseBuildID(V);
3272   if (BID.empty())
3273     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
3274                        V + "'");
3275   return BID;
3276 }
3277 
invalidArgValue(const opt::Arg * A)3278 void objdump::invalidArgValue(const opt::Arg *A) {
3279   reportCmdLineError("'" + StringRef(A->getValue()) +
3280                      "' is not a valid value for '" + A->getSpelling() + "'");
3281 }
3282 
3283 static std::vector<std::string>
commaSeparatedValues(const llvm::opt::InputArgList & InputArgs,int ID)3284 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
3285   std::vector<std::string> Values;
3286   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
3287     llvm::SmallVector<StringRef, 2> SplitValues;
3288     llvm::SplitString(Value, SplitValues, ",");
3289     for (StringRef SplitValue : SplitValues)
3290       Values.push_back(SplitValue.str());
3291   }
3292   return Values;
3293 }
3294 
parseOtoolOptions(const llvm::opt::InputArgList & InputArgs)3295 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
3296   MachOOpt = true;
3297   FullLeadingAddr = true;
3298   PrintImmHex = true;
3299 
3300   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
3301   LinkOptHints = InputArgs.hasArg(OTOOL_C);
3302   if (InputArgs.hasArg(OTOOL_d))
3303     FilterSections.push_back("__DATA,__data");
3304   DylibId = InputArgs.hasArg(OTOOL_D);
3305   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
3306   DataInCode = InputArgs.hasArg(OTOOL_G);
3307   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
3308   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
3309   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
3310   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
3311   DylibsUsed = InputArgs.hasArg(OTOOL_L);
3312   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
3313   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
3314   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
3315   InfoPlist = InputArgs.hasArg(OTOOL_P);
3316   Relocations = InputArgs.hasArg(OTOOL_r);
3317   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
3318     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
3319     FilterSections.push_back(Filter);
3320   }
3321   if (InputArgs.hasArg(OTOOL_t))
3322     FilterSections.push_back("__TEXT,__text");
3323   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3324             InputArgs.hasArg(OTOOL_o);
3325   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3326   if (InputArgs.hasArg(OTOOL_x))
3327     FilterSections.push_back(",__text");
3328   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3329 
3330   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3331   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3332 
3333   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3334   if (InputFilenames.empty())
3335     reportCmdLineError("no input file");
3336 
3337   for (const Arg *A : InputArgs) {
3338     const Option &O = A->getOption();
3339     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3340       reportCmdLineWarning(O.getPrefixedName() +
3341                            " is obsolete and not implemented");
3342     }
3343   }
3344 }
3345 
parseObjdumpOptions(const llvm::opt::InputArgList & InputArgs)3346 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3347   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3348   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3349   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3350   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3351   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3352   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3353   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3354   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3355   TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
3356   DisassembleSymbols =
3357       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3358   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3359   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3360     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3361                         .Case("frames", DIDT_DebugFrame)
3362                         .Default(DIDT_Null);
3363     if (DwarfDumpType == DIDT_Null)
3364       invalidArgValue(A);
3365   }
3366   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3367   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3368   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3369   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3370   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3371   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3372   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3373   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3374   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3375   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3376   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3377   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3378   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3379   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3380   PrintImmHex =
3381       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3382   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3383   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3384   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3385   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3386   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3387   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3388   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3389   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3390   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3391   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3392   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3393   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3394   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3395   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3396   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3397   Wide = InputArgs.hasArg(OBJDUMP_wide);
3398   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3399   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3400   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3401     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3402                        .Case("ascii", DVASCII)
3403                        .Case("unicode", DVUnicode)
3404                        .Default(DVInvalid);
3405     if (DbgVariables == DVInvalid)
3406       invalidArgValue(A);
3407   }
3408   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_disassembler_color_EQ)) {
3409     DisassemblyColor = StringSwitch<ColorOutput>(A->getValue())
3410                            .Case("on", ColorOutput::Enable)
3411                            .Case("off", ColorOutput::Disable)
3412                            .Case("terminal", ColorOutput::Auto)
3413                            .Default(ColorOutput::Invalid);
3414     if (DisassemblyColor == ColorOutput::Invalid)
3415       invalidArgValue(A);
3416   }
3417 
3418   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3419 
3420   parseMachOOptions(InputArgs);
3421 
3422   // Parse -M (--disassembler-options) and deprecated
3423   // --x86-asm-syntax={att,intel}.
3424   //
3425   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3426   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3427   // called too late. For now we have to use the internal cl::opt option.
3428   const char *AsmSyntax = nullptr;
3429   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3430                                           OBJDUMP_x86_asm_syntax_att,
3431                                           OBJDUMP_x86_asm_syntax_intel)) {
3432     switch (A->getOption().getID()) {
3433     case OBJDUMP_x86_asm_syntax_att:
3434       AsmSyntax = "--x86-asm-syntax=att";
3435       continue;
3436     case OBJDUMP_x86_asm_syntax_intel:
3437       AsmSyntax = "--x86-asm-syntax=intel";
3438       continue;
3439     }
3440 
3441     SmallVector<StringRef, 2> Values;
3442     llvm::SplitString(A->getValue(), Values, ",");
3443     for (StringRef V : Values) {
3444       if (V == "att")
3445         AsmSyntax = "--x86-asm-syntax=att";
3446       else if (V == "intel")
3447         AsmSyntax = "--x86-asm-syntax=intel";
3448       else
3449         DisassemblerOptions.push_back(V.str());
3450     }
3451   }
3452   SmallVector<const char *> Args = {"llvm-objdump"};
3453   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_mllvm))
3454     Args.push_back(A->getValue());
3455   if (AsmSyntax)
3456     Args.push_back(AsmSyntax);
3457   if (Args.size() > 1)
3458     llvm::cl::ParseCommandLineOptions(Args.size(), Args.data());
3459 
3460   // Look up any provided build IDs, then append them to the input filenames.
3461   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3462     object::BuildID BuildID = parseBuildIDArg(A);
3463     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3464     if (!Path) {
3465       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3466                          A->getValue() + "'");
3467     }
3468     InputFilenames.push_back(std::move(*Path));
3469   }
3470 
3471   // objdump defaults to a.out if no filenames specified.
3472   if (InputFilenames.empty())
3473     InputFilenames.push_back("a.out");
3474 }
3475 
llvm_objdump_main(int argc,char ** argv,const llvm::ToolContext &)3476 int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) {
3477   using namespace llvm;
3478 
3479   ToolName = argv[0];
3480   std::unique_ptr<CommonOptTable> T;
3481   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3482 
3483   StringRef Stem = sys::path::stem(ToolName);
3484   auto Is = [=](StringRef Tool) {
3485     // We need to recognize the following filenames:
3486     //
3487     // llvm-objdump -> objdump
3488     // llvm-otool-10.exe -> otool
3489     // powerpc64-unknown-freebsd13-objdump -> objdump
3490     auto I = Stem.rfind_insensitive(Tool);
3491     return I != StringRef::npos &&
3492            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3493   };
3494   if (Is("otool")) {
3495     T = std::make_unique<OtoolOptTable>();
3496     Unknown = OTOOL_UNKNOWN;
3497     HelpFlag = OTOOL_help;
3498     HelpHiddenFlag = OTOOL_help_hidden;
3499     VersionFlag = OTOOL_version;
3500   } else {
3501     T = std::make_unique<ObjdumpOptTable>();
3502     Unknown = OBJDUMP_UNKNOWN;
3503     HelpFlag = OBJDUMP_help;
3504     HelpHiddenFlag = OBJDUMP_help_hidden;
3505     VersionFlag = OBJDUMP_version;
3506   }
3507 
3508   BumpPtrAllocator A;
3509   StringSaver Saver(A);
3510   opt::InputArgList InputArgs =
3511       T->parseArgs(argc, argv, Unknown, Saver,
3512                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3513 
3514   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3515     T->printHelp(ToolName);
3516     return 0;
3517   }
3518   if (InputArgs.hasArg(HelpHiddenFlag)) {
3519     T->printHelp(ToolName, /*ShowHidden=*/true);
3520     return 0;
3521   }
3522 
3523   // Initialize targets and assembly printers/parsers.
3524   InitializeAllTargetInfos();
3525   InitializeAllTargetMCs();
3526   InitializeAllDisassemblers();
3527 
3528   if (InputArgs.hasArg(VersionFlag)) {
3529     cl::PrintVersionMessage();
3530     if (!Is("otool")) {
3531       outs() << '\n';
3532       TargetRegistry::printRegisteredTargetsForVersion(outs());
3533     }
3534     return 0;
3535   }
3536 
3537   // Initialize debuginfod.
3538   const bool ShouldUseDebuginfodByDefault =
3539       InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3540   std::vector<std::string> DebugFileDirectories =
3541       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3542   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3543                         ShouldUseDebuginfodByDefault)) {
3544     HTTPClient::initialize();
3545     BIDFetcher =
3546         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3547   } else {
3548     BIDFetcher =
3549         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3550   }
3551 
3552   if (Is("otool"))
3553     parseOtoolOptions(InputArgs);
3554   else
3555     parseObjdumpOptions(InputArgs);
3556 
3557   if (StartAddress >= StopAddress)
3558     reportCmdLineError("start address should be less than stop address");
3559 
3560   // Removes trailing separators from prefix.
3561   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3562     Prefix.pop_back();
3563 
3564   if (AllHeaders)
3565     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3566         SectionHeaders = SymbolTable = true;
3567 
3568   if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
3569       !DisassembleSymbols.empty())
3570     Disassemble = true;
3571 
3572   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3573       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3574       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3575       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3576       !(MachOOpt &&
3577         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3578          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3579          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3580          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3581          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3582     T->printHelp(ToolName);
3583     return 2;
3584   }
3585 
3586   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3587 
3588   llvm::for_each(InputFilenames, dumpInput);
3589 
3590   warnOnNoMatchForSections();
3591 
3592   return EXIT_SUCCESS;
3593 }
3594