1 //===- SyntheticSections.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "SyntheticSections.h"
10 #include "ConcatOutputSection.h"
11 #include "Config.h"
12 #include "ExportTrie.h"
13 #include "InputFiles.h"
14 #include "MachOStructs.h"
15 #include "OutputSegment.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18
19 #include "lld/Common/CommonLinkerContext.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/EndianStream.h"
23 #include "llvm/Support/FileSystem.h"
24 #include "llvm/Support/LEB128.h"
25 #include "llvm/Support/Parallel.h"
26 #include "llvm/Support/Path.h"
27 #include "llvm/Support/xxhash.h"
28
29 #if defined(__APPLE__)
30 #include <sys/mman.h>
31
32 #define COMMON_DIGEST_FOR_OPENSSL
33 #include <CommonCrypto/CommonDigest.h>
34 #else
35 #include "llvm/Support/SHA256.h"
36 #endif
37
38 #ifdef LLVM_HAVE_LIBXAR
39 #include <fcntl.h>
40 extern "C" {
41 #include <xar/xar.h>
42 }
43 #endif
44
45 using namespace llvm;
46 using namespace llvm::MachO;
47 using namespace llvm::support;
48 using namespace llvm::support::endian;
49 using namespace lld;
50 using namespace lld::macho;
51
52 // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`.
sha256(const uint8_t * data,size_t len,uint8_t * output)53 static void sha256(const uint8_t *data, size_t len, uint8_t *output) {
54 #if defined(__APPLE__)
55 // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121
56 // for some notes on this.
57 CC_SHA256(data, len, output);
58 #else
59 ArrayRef<uint8_t> block(data, len);
60 std::array<uint8_t, 32> hash = SHA256::hash(block);
61 static_assert(hash.size() == CodeSignatureSection::hashSize);
62 memcpy(output, hash.data(), hash.size());
63 #endif
64 }
65
66 InStruct macho::in;
67 std::vector<SyntheticSection *> macho::syntheticSections;
68
SyntheticSection(const char * segname,const char * name)69 SyntheticSection::SyntheticSection(const char *segname, const char *name)
70 : OutputSection(SyntheticKind, name) {
71 std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
72 isec = makeSyntheticInputSection(segname, name);
73 isec->parent = this;
74 syntheticSections.push_back(this);
75 }
76
77 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
78 // from the beginning of the file (i.e. the header).
MachHeaderSection()79 MachHeaderSection::MachHeaderSection()
80 : SyntheticSection(segment_names::text, section_names::header) {
81 // XXX: This is a hack. (See D97007)
82 // Setting the index to 1 to pretend that this section is the text
83 // section.
84 index = 1;
85 isec->isFinal = true;
86 }
87
addLoadCommand(LoadCommand * lc)88 void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
89 loadCommands.push_back(lc);
90 sizeOfCmds += lc->getSize();
91 }
92
getSize() const93 uint64_t MachHeaderSection::getSize() const {
94 uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
95 // If we are emitting an encryptable binary, our load commands must have a
96 // separate (non-encrypted) page to themselves.
97 if (config->emitEncryptionInfo)
98 size = alignTo(size, target->getPageSize());
99 return size;
100 }
101
cpuSubtype()102 static uint32_t cpuSubtype() {
103 uint32_t subtype = target->cpuSubtype;
104
105 if (config->outputType == MH_EXECUTE && !config->staticLink &&
106 target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
107 config->platform() == PLATFORM_MACOS &&
108 config->platformInfo.minimum >= VersionTuple(10, 5))
109 subtype |= CPU_SUBTYPE_LIB64;
110
111 return subtype;
112 }
113
hasWeakBinding()114 static bool hasWeakBinding() {
115 return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding()
116 : in.weakBinding->hasEntry();
117 }
118
hasNonWeakDefinition()119 static bool hasNonWeakDefinition() {
120 return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition()
121 : in.weakBinding->hasNonWeakDefinition();
122 }
123
writeTo(uint8_t * buf) const124 void MachHeaderSection::writeTo(uint8_t *buf) const {
125 auto *hdr = reinterpret_cast<mach_header *>(buf);
126 hdr->magic = target->magic;
127 hdr->cputype = target->cpuType;
128 hdr->cpusubtype = cpuSubtype();
129 hdr->filetype = config->outputType;
130 hdr->ncmds = loadCommands.size();
131 hdr->sizeofcmds = sizeOfCmds;
132 hdr->flags = MH_DYLDLINK;
133
134 if (config->namespaceKind == NamespaceKind::twolevel)
135 hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;
136
137 if (config->outputType == MH_DYLIB && !config->hasReexports)
138 hdr->flags |= MH_NO_REEXPORTED_DYLIBS;
139
140 if (config->markDeadStrippableDylib)
141 hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;
142
143 if (config->outputType == MH_EXECUTE && config->isPic)
144 hdr->flags |= MH_PIE;
145
146 if (config->outputType == MH_DYLIB && config->applicationExtension)
147 hdr->flags |= MH_APP_EXTENSION_SAFE;
148
149 if (in.exports->hasWeakSymbol || hasNonWeakDefinition())
150 hdr->flags |= MH_WEAK_DEFINES;
151
152 if (in.exports->hasWeakSymbol || hasWeakBinding())
153 hdr->flags |= MH_BINDS_TO_WEAK;
154
155 for (const OutputSegment *seg : outputSegments) {
156 for (const OutputSection *osec : seg->getSections()) {
157 if (isThreadLocalVariables(osec->flags)) {
158 hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
159 break;
160 }
161 }
162 }
163
164 uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
165 for (const LoadCommand *lc : loadCommands) {
166 lc->writeTo(p);
167 p += lc->getSize();
168 }
169 }
170
PageZeroSection()171 PageZeroSection::PageZeroSection()
172 : SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
173
RebaseSection()174 RebaseSection::RebaseSection()
175 : LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
176
177 namespace {
178 struct RebaseState {
179 uint64_t sequenceLength;
180 uint64_t skipLength;
181 };
182 } // namespace
183
emitIncrement(uint64_t incr,raw_svector_ostream & os)184 static void emitIncrement(uint64_t incr, raw_svector_ostream &os) {
185 assert(incr != 0);
186
187 if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK &&
188 (incr % target->wordSize) == 0) {
189 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED |
190 (incr >> target->p2WordSize));
191 } else {
192 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
193 encodeULEB128(incr, os);
194 }
195 }
196
flushRebase(const RebaseState & state,raw_svector_ostream & os)197 static void flushRebase(const RebaseState &state, raw_svector_ostream &os) {
198 assert(state.sequenceLength > 0);
199
200 if (state.skipLength == target->wordSize) {
201 if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) {
202 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
203 state.sequenceLength);
204 } else {
205 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
206 encodeULEB128(state.sequenceLength, os);
207 }
208 } else if (state.sequenceLength == 1) {
209 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
210 encodeULEB128(state.skipLength - target->wordSize, os);
211 } else {
212 os << static_cast<uint8_t>(
213 REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
214 encodeULEB128(state.sequenceLength, os);
215 encodeULEB128(state.skipLength - target->wordSize, os);
216 }
217 }
218
219 // Rebases are communicated to dyld using a bytecode, whose opcodes cause the
220 // memory location at a specific address to be rebased and/or the address to be
221 // incremented.
222 //
223 // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic
224 // one, encoding a series of evenly spaced addresses. This algorithm works by
225 // splitting up the sorted list of addresses into such chunks. If the locations
226 // are consecutive or the sequence consists of a single location, flushRebase
227 // will use a smaller, more specialized encoding.
encodeRebases(const OutputSegment * seg,MutableArrayRef<Location> locations,raw_svector_ostream & os)228 static void encodeRebases(const OutputSegment *seg,
229 MutableArrayRef<Location> locations,
230 raw_svector_ostream &os) {
231 // dyld operates on segments. Translate section offsets into segment offsets.
232 for (Location &loc : locations)
233 loc.offset =
234 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
235 // The algorithm assumes that locations are unique.
236 Location *end =
237 llvm::unique(locations, [](const Location &a, const Location &b) {
238 return a.offset == b.offset;
239 });
240 size_t count = end - locations.begin();
241
242 os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
243 seg->index);
244 assert(!locations.empty());
245 uint64_t offset = locations[0].offset;
246 encodeULEB128(offset, os);
247
248 RebaseState state{1, target->wordSize};
249
250 for (size_t i = 1; i < count; ++i) {
251 offset = locations[i].offset;
252
253 uint64_t skip = offset - locations[i - 1].offset;
254 assert(skip != 0 && "duplicate locations should have been weeded out");
255
256 if (skip == state.skipLength) {
257 ++state.sequenceLength;
258 } else if (state.sequenceLength == 1) {
259 ++state.sequenceLength;
260 state.skipLength = skip;
261 } else if (skip < state.skipLength) {
262 // The address is lower than what the rebase pointer would be if the last
263 // location would be part of a sequence. We start a new sequence from the
264 // previous location.
265 --state.sequenceLength;
266 flushRebase(state, os);
267
268 state.sequenceLength = 2;
269 state.skipLength = skip;
270 } else {
271 // The address is at some positive offset from the rebase pointer. We
272 // start a new sequence which begins with the current location.
273 flushRebase(state, os);
274 emitIncrement(skip - state.skipLength, os);
275 state.sequenceLength = 1;
276 state.skipLength = target->wordSize;
277 }
278 }
279 flushRebase(state, os);
280 }
281
finalizeContents()282 void RebaseSection::finalizeContents() {
283 if (locations.empty())
284 return;
285
286 raw_svector_ostream os{contents};
287 os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
288
289 llvm::sort(locations, [](const Location &a, const Location &b) {
290 return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
291 });
292
293 for (size_t i = 0, count = locations.size(); i < count;) {
294 const OutputSegment *seg = locations[i].isec->parent->parent;
295 size_t j = i + 1;
296 while (j < count && locations[j].isec->parent->parent == seg)
297 ++j;
298 encodeRebases(seg, {locations.data() + i, locations.data() + j}, os);
299 i = j;
300 }
301 os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
302 }
303
writeTo(uint8_t * buf) const304 void RebaseSection::writeTo(uint8_t *buf) const {
305 memcpy(buf, contents.data(), contents.size());
306 }
307
NonLazyPointerSectionBase(const char * segname,const char * name)308 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
309 const char *name)
310 : SyntheticSection(segname, name) {
311 align = target->wordSize;
312 }
313
addNonLazyBindingEntries(const Symbol * sym,const InputSection * isec,uint64_t offset,int64_t addend)314 void macho::addNonLazyBindingEntries(const Symbol *sym,
315 const InputSection *isec, uint64_t offset,
316 int64_t addend) {
317 if (config->emitChainedFixups) {
318 if (needsBinding(sym))
319 in.chainedFixups->addBinding(sym, isec, offset, addend);
320 else if (isa<Defined>(sym))
321 in.chainedFixups->addRebase(isec, offset);
322 else
323 llvm_unreachable("cannot bind to an undefined symbol");
324 return;
325 }
326
327 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
328 in.binding->addEntry(dysym, isec, offset, addend);
329 if (dysym->isWeakDef())
330 in.weakBinding->addEntry(sym, isec, offset, addend);
331 } else if (const auto *defined = dyn_cast<Defined>(sym)) {
332 in.rebase->addEntry(isec, offset);
333 if (defined->isExternalWeakDef())
334 in.weakBinding->addEntry(sym, isec, offset, addend);
335 else if (defined->interposable)
336 in.binding->addEntry(sym, isec, offset, addend);
337 } else {
338 // Undefined symbols are filtered out in scanRelocations(); we should never
339 // get here
340 llvm_unreachable("cannot bind to an undefined symbol");
341 }
342 }
343
addEntry(Symbol * sym)344 void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
345 if (entries.insert(sym)) {
346 assert(!sym->isInGot());
347 sym->gotIndex = entries.size() - 1;
348
349 addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
350 }
351 }
352
writeChainedRebase(uint8_t * buf,uint64_t targetVA)353 void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) {
354 assert(config->emitChainedFixups);
355 assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
356 auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf);
357 rebase->target = targetVA & 0xf'ffff'ffff;
358 rebase->high8 = (targetVA >> 56);
359 rebase->reserved = 0;
360 rebase->next = 0;
361 rebase->bind = 0;
362
363 // The fixup format places a 64 GiB limit on the output's size.
364 // Should we handle this gracefully?
365 uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56);
366 if (encodedVA != targetVA)
367 error("rebase target address 0x" + Twine::utohexstr(targetVA) +
368 " does not fit into chained fixup. Re-link with -no_fixup_chains");
369 }
370
writeChainedBind(uint8_t * buf,const Symbol * sym,int64_t addend)371 static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) {
372 assert(config->emitChainedFixups);
373 assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
374 auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf);
375 auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend);
376 bind->ordinal = ordinal;
377 bind->addend = inlineAddend;
378 bind->reserved = 0;
379 bind->next = 0;
380 bind->bind = 1;
381 }
382
writeChainedFixup(uint8_t * buf,const Symbol * sym,int64_t addend)383 void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) {
384 if (needsBinding(sym))
385 writeChainedBind(buf, sym, addend);
386 else
387 writeChainedRebase(buf, sym->getVA() + addend);
388 }
389
writeTo(uint8_t * buf) const390 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
391 if (config->emitChainedFixups) {
392 for (const auto &[i, entry] : llvm::enumerate(entries))
393 writeChainedFixup(&buf[i * target->wordSize], entry, 0);
394 } else {
395 for (const auto &[i, entry] : llvm::enumerate(entries))
396 if (auto *defined = dyn_cast<Defined>(entry))
397 write64le(&buf[i * target->wordSize], defined->getVA());
398 }
399 }
400
GotSection()401 GotSection::GotSection()
402 : NonLazyPointerSectionBase(segment_names::data, section_names::got) {
403 flags = S_NON_LAZY_SYMBOL_POINTERS;
404 }
405
TlvPointerSection()406 TlvPointerSection::TlvPointerSection()
407 : NonLazyPointerSectionBase(segment_names::data,
408 section_names::threadPtrs) {
409 flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
410 }
411
BindingSection()412 BindingSection::BindingSection()
413 : LinkEditSection(segment_names::linkEdit, section_names::binding) {}
414
415 namespace {
416 struct Binding {
417 OutputSegment *segment = nullptr;
418 uint64_t offset = 0;
419 int64_t addend = 0;
420 };
421 struct BindIR {
422 // Default value of 0xF0 is not valid opcode and should make the program
423 // scream instead of accidentally writing "valid" values.
424 uint8_t opcode = 0xF0;
425 uint64_t data = 0;
426 uint64_t consecutiveCount = 0;
427 };
428 } // namespace
429
430 // Encode a sequence of opcodes that tell dyld to write the address of symbol +
431 // addend at osec->addr + outSecOff.
432 //
433 // The bind opcode "interpreter" remembers the values of each binding field, so
434 // we only need to encode the differences between bindings. Hence the use of
435 // lastBinding.
encodeBinding(const OutputSection * osec,uint64_t outSecOff,int64_t addend,Binding & lastBinding,std::vector<BindIR> & opcodes)436 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
437 int64_t addend, Binding &lastBinding,
438 std::vector<BindIR> &opcodes) {
439 OutputSegment *seg = osec->parent;
440 uint64_t offset = osec->getSegmentOffset() + outSecOff;
441 if (lastBinding.segment != seg) {
442 opcodes.push_back(
443 {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
444 seg->index),
445 offset});
446 lastBinding.segment = seg;
447 lastBinding.offset = offset;
448 } else if (lastBinding.offset != offset) {
449 opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
450 lastBinding.offset = offset;
451 }
452
453 if (lastBinding.addend != addend) {
454 opcodes.push_back(
455 {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
456 lastBinding.addend = addend;
457 }
458
459 opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
460 // DO_BIND causes dyld to both perform the binding and increment the offset
461 lastBinding.offset += target->wordSize;
462 }
463
optimizeOpcodes(std::vector<BindIR> & opcodes)464 static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
465 // Pass 1: Combine bind/add pairs
466 size_t i;
467 int pWrite = 0;
468 for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
469 if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
470 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
471 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
472 opcodes[pWrite].data = opcodes[i].data;
473 ++i;
474 } else {
475 opcodes[pWrite] = opcodes[i - 1];
476 }
477 }
478 if (i == opcodes.size())
479 opcodes[pWrite] = opcodes[i - 1];
480 opcodes.resize(pWrite + 1);
481
482 // Pass 2: Compress two or more bind_add opcodes
483 pWrite = 0;
484 for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
485 if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
486 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
487 (opcodes[i].data == opcodes[i - 1].data)) {
488 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
489 opcodes[pWrite].consecutiveCount = 2;
490 opcodes[pWrite].data = opcodes[i].data;
491 ++i;
492 while (i < opcodes.size() &&
493 (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
494 (opcodes[i].data == opcodes[i - 1].data)) {
495 opcodes[pWrite].consecutiveCount++;
496 ++i;
497 }
498 } else {
499 opcodes[pWrite] = opcodes[i - 1];
500 }
501 }
502 if (i == opcodes.size())
503 opcodes[pWrite] = opcodes[i - 1];
504 opcodes.resize(pWrite + 1);
505
506 // Pass 3: Use immediate encodings
507 // Every binding is the size of one pointer. If the next binding is a
508 // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
509 // opcode can be scaled by wordSize into a single byte and dyld will
510 // expand it to the correct address.
511 for (auto &p : opcodes) {
512 // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
513 // but ld64 currently does this. This could be a potential bug, but
514 // for now, perform the same behavior to prevent mysterious bugs.
515 if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
516 ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
517 ((p.data % target->wordSize) == 0)) {
518 p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
519 p.data /= target->wordSize;
520 }
521 }
522 }
523
flushOpcodes(const BindIR & op,raw_svector_ostream & os)524 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
525 uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
526 switch (opcode) {
527 case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
528 case BIND_OPCODE_ADD_ADDR_ULEB:
529 case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
530 os << op.opcode;
531 encodeULEB128(op.data, os);
532 break;
533 case BIND_OPCODE_SET_ADDEND_SLEB:
534 os << op.opcode;
535 encodeSLEB128(static_cast<int64_t>(op.data), os);
536 break;
537 case BIND_OPCODE_DO_BIND:
538 os << op.opcode;
539 break;
540 case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
541 os << op.opcode;
542 encodeULEB128(op.consecutiveCount, os);
543 encodeULEB128(op.data, os);
544 break;
545 case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
546 os << static_cast<uint8_t>(op.opcode | op.data);
547 break;
548 default:
549 llvm_unreachable("cannot bind to an unrecognized symbol");
550 }
551 }
552
553 // Non-weak bindings need to have their dylib ordinal encoded as well.
ordinalForDylibSymbol(const DylibSymbol & dysym)554 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
555 if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
556 return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
557 assert(dysym.getFile()->isReferenced());
558 return dysym.getFile()->ordinal;
559 }
560
ordinalForSymbol(const Symbol & sym)561 static int16_t ordinalForSymbol(const Symbol &sym) {
562 if (const auto *dysym = dyn_cast<DylibSymbol>(&sym))
563 return ordinalForDylibSymbol(*dysym);
564 assert(cast<Defined>(&sym)->interposable);
565 return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
566 }
567
encodeDylibOrdinal(int16_t ordinal,raw_svector_ostream & os)568 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
569 if (ordinal <= 0) {
570 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
571 (ordinal & BIND_IMMEDIATE_MASK));
572 } else if (ordinal <= BIND_IMMEDIATE_MASK) {
573 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
574 } else {
575 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
576 encodeULEB128(ordinal, os);
577 }
578 }
579
encodeWeakOverride(const Defined * defined,raw_svector_ostream & os)580 static void encodeWeakOverride(const Defined *defined,
581 raw_svector_ostream &os) {
582 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
583 BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
584 << defined->getName() << '\0';
585 }
586
587 // Organize the bindings so we can encoded them with fewer opcodes.
588 //
589 // First, all bindings for a given symbol should be grouped together.
590 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
591 // has an associated symbol string), so we only want to emit it once per symbol.
592 //
593 // Within each group, we sort the bindings by address. Since bindings are
594 // delta-encoded, sorting them allows for a more compact result. Note that
595 // sorting by address alone ensures that bindings for the same segment / section
596 // are located together, minimizing the number of times we have to emit
597 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
598 //
599 // Finally, we sort the symbols by the address of their first binding, again
600 // to facilitate the delta-encoding process.
601 template <class Sym>
602 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
sortBindings(const BindingsMap<const Sym * > & bindingsMap)603 sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
604 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
605 bindingsMap.begin(), bindingsMap.end());
606 for (auto &p : bindingsVec) {
607 std::vector<BindingEntry> &bindings = p.second;
608 llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
609 return a.target.getVA() < b.target.getVA();
610 });
611 }
612 llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
613 return a.second[0].target.getVA() < b.second[0].target.getVA();
614 });
615 return bindingsVec;
616 }
617
618 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
619 // interprets to update a record with the following fields:
620 // * segment index (of the segment to write the symbol addresses to, typically
621 // the __DATA_CONST segment which contains the GOT)
622 // * offset within the segment, indicating the next location to write a binding
623 // * symbol type
624 // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
625 // * symbol name
626 // * addend
627 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
628 // a symbol in the GOT, and increments the segment offset to point to the next
629 // entry. It does *not* clear the record state after doing the bind, so
630 // subsequent opcodes only need to encode the differences between bindings.
finalizeContents()631 void BindingSection::finalizeContents() {
632 raw_svector_ostream os{contents};
633 Binding lastBinding;
634 int16_t lastOrdinal = 0;
635
636 for (auto &p : sortBindings(bindingsMap)) {
637 const Symbol *sym = p.first;
638 std::vector<BindingEntry> &bindings = p.second;
639 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
640 if (sym->isWeakRef())
641 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
642 os << flags << sym->getName() << '\0'
643 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
644 int16_t ordinal = ordinalForSymbol(*sym);
645 if (ordinal != lastOrdinal) {
646 encodeDylibOrdinal(ordinal, os);
647 lastOrdinal = ordinal;
648 }
649 std::vector<BindIR> opcodes;
650 for (const BindingEntry &b : bindings)
651 encodeBinding(b.target.isec->parent,
652 b.target.isec->getOffset(b.target.offset), b.addend,
653 lastBinding, opcodes);
654 if (config->optimize > 1)
655 optimizeOpcodes(opcodes);
656 for (const auto &op : opcodes)
657 flushOpcodes(op, os);
658 }
659 if (!bindingsMap.empty())
660 os << static_cast<uint8_t>(BIND_OPCODE_DONE);
661 }
662
writeTo(uint8_t * buf) const663 void BindingSection::writeTo(uint8_t *buf) const {
664 memcpy(buf, contents.data(), contents.size());
665 }
666
WeakBindingSection()667 WeakBindingSection::WeakBindingSection()
668 : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
669
finalizeContents()670 void WeakBindingSection::finalizeContents() {
671 raw_svector_ostream os{contents};
672 Binding lastBinding;
673
674 for (const Defined *defined : definitions)
675 encodeWeakOverride(defined, os);
676
677 for (auto &p : sortBindings(bindingsMap)) {
678 const Symbol *sym = p.first;
679 std::vector<BindingEntry> &bindings = p.second;
680 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
681 << sym->getName() << '\0'
682 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
683 std::vector<BindIR> opcodes;
684 for (const BindingEntry &b : bindings)
685 encodeBinding(b.target.isec->parent,
686 b.target.isec->getOffset(b.target.offset), b.addend,
687 lastBinding, opcodes);
688 if (config->optimize > 1)
689 optimizeOpcodes(opcodes);
690 for (const auto &op : opcodes)
691 flushOpcodes(op, os);
692 }
693 if (!bindingsMap.empty() || !definitions.empty())
694 os << static_cast<uint8_t>(BIND_OPCODE_DONE);
695 }
696
writeTo(uint8_t * buf) const697 void WeakBindingSection::writeTo(uint8_t *buf) const {
698 memcpy(buf, contents.data(), contents.size());
699 }
700
StubsSection()701 StubsSection::StubsSection()
702 : SyntheticSection(segment_names::text, section_names::stubs) {
703 flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
704 // The stubs section comprises machine instructions, which are aligned to
705 // 4 bytes on the archs we care about.
706 align = 4;
707 reserved2 = target->stubSize;
708 }
709
getSize() const710 uint64_t StubsSection::getSize() const {
711 return entries.size() * target->stubSize;
712 }
713
writeTo(uint8_t * buf) const714 void StubsSection::writeTo(uint8_t *buf) const {
715 size_t off = 0;
716 for (const Symbol *sym : entries) {
717 uint64_t pointerVA =
718 config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA();
719 target->writeStub(buf + off, *sym, pointerVA);
720 off += target->stubSize;
721 }
722 }
723
finalize()724 void StubsSection::finalize() { isFinal = true; }
725
addBindingsForStub(Symbol * sym)726 static void addBindingsForStub(Symbol *sym) {
727 assert(!config->emitChainedFixups);
728 if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
729 if (sym->isWeakDef()) {
730 in.binding->addEntry(dysym, in.lazyPointers->isec,
731 sym->stubsIndex * target->wordSize);
732 in.weakBinding->addEntry(sym, in.lazyPointers->isec,
733 sym->stubsIndex * target->wordSize);
734 } else {
735 in.lazyBinding->addEntry(dysym);
736 }
737 } else if (auto *defined = dyn_cast<Defined>(sym)) {
738 if (defined->isExternalWeakDef()) {
739 in.rebase->addEntry(in.lazyPointers->isec,
740 sym->stubsIndex * target->wordSize);
741 in.weakBinding->addEntry(sym, in.lazyPointers->isec,
742 sym->stubsIndex * target->wordSize);
743 } else if (defined->interposable) {
744 in.lazyBinding->addEntry(sym);
745 } else {
746 llvm_unreachable("invalid stub target");
747 }
748 } else {
749 llvm_unreachable("invalid stub target symbol type");
750 }
751 }
752
addEntry(Symbol * sym)753 void StubsSection::addEntry(Symbol *sym) {
754 bool inserted = entries.insert(sym);
755 if (inserted) {
756 sym->stubsIndex = entries.size() - 1;
757
758 if (config->emitChainedFixups)
759 in.got->addEntry(sym);
760 else
761 addBindingsForStub(sym);
762 }
763 }
764
StubHelperSection()765 StubHelperSection::StubHelperSection()
766 : SyntheticSection(segment_names::text, section_names::stubHelper) {
767 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
768 align = 4; // This section comprises machine instructions
769 }
770
getSize() const771 uint64_t StubHelperSection::getSize() const {
772 return target->stubHelperHeaderSize +
773 in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
774 }
775
isNeeded() const776 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
777
writeTo(uint8_t * buf) const778 void StubHelperSection::writeTo(uint8_t *buf) const {
779 target->writeStubHelperHeader(buf);
780 size_t off = target->stubHelperHeaderSize;
781 for (const Symbol *sym : in.lazyBinding->getEntries()) {
782 target->writeStubHelperEntry(buf + off, *sym, addr + off);
783 off += target->stubHelperEntrySize;
784 }
785 }
786
setUp()787 void StubHelperSection::setUp() {
788 Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
789 /*isWeakRef=*/false);
790 if (auto *undefined = dyn_cast<Undefined>(binder))
791 treatUndefinedSymbol(*undefined,
792 "lazy binding (normally in libSystem.dylib)");
793
794 // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
795 stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
796 if (stubBinder == nullptr)
797 return;
798
799 in.got->addEntry(stubBinder);
800
801 in.imageLoaderCache->parent =
802 ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
803 inputSections.push_back(in.imageLoaderCache);
804 // Since this isn't in the symbol table or in any input file, the noDeadStrip
805 // argument doesn't matter.
806 dyldPrivate =
807 make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
808 /*isWeakDef=*/false,
809 /*isExternal=*/false, /*isPrivateExtern=*/false,
810 /*includeInSymtab=*/true,
811 /*isThumb=*/false, /*isReferencedDynamically=*/false,
812 /*noDeadStrip=*/false);
813 dyldPrivate->used = true;
814 }
815
ObjCStubsSection()816 ObjCStubsSection::ObjCStubsSection()
817 : SyntheticSection(segment_names::text, section_names::objcStubs) {
818 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
819 align = target->objcStubsAlignment;
820 }
821
addEntry(Symbol * sym)822 void ObjCStubsSection::addEntry(Symbol *sym) {
823 assert(sym->getName().startswith(symbolPrefix) && "not an objc stub");
824 StringRef methname = sym->getName().drop_front(symbolPrefix.size());
825 offsets.push_back(
826 in.objcMethnameSection->getStringOffset(methname).outSecOff);
827 Defined *newSym = replaceSymbol<Defined>(
828 sym, sym->getName(), nullptr, isec,
829 /*value=*/symbols.size() * target->objcStubsFastSize,
830 /*size=*/target->objcStubsFastSize,
831 /*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true,
832 /*includeInSymtab=*/true, /*isThumb=*/false,
833 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false);
834 symbols.push_back(newSym);
835 }
836
setUp()837 void ObjCStubsSection::setUp() {
838 Symbol *objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr,
839 /*isWeakRef=*/false);
840 objcMsgSend->used = true;
841 in.got->addEntry(objcMsgSend);
842 assert(objcMsgSend->isInGot());
843 objcMsgSendGotIndex = objcMsgSend->gotIndex;
844
845 size_t size = offsets.size() * target->wordSize;
846 uint8_t *selrefsData = bAlloc().Allocate<uint8_t>(size);
847 for (size_t i = 0, n = offsets.size(); i < n; ++i)
848 write64le(&selrefsData[i * target->wordSize], offsets[i]);
849
850 in.objcSelrefs =
851 makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs,
852 S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP,
853 ArrayRef<uint8_t>{selrefsData, size},
854 /*align=*/target->wordSize);
855 in.objcSelrefs->live = true;
856
857 for (size_t i = 0, n = offsets.size(); i < n; ++i) {
858 in.objcSelrefs->relocs.push_back(
859 {/*type=*/target->unsignedRelocType,
860 /*pcrel=*/false, /*length=*/3,
861 /*offset=*/static_cast<uint32_t>(i * target->wordSize),
862 /*addend=*/offsets[i] * in.objcMethnameSection->align,
863 /*referent=*/in.objcMethnameSection->isec});
864 }
865
866 in.objcSelrefs->parent =
867 ConcatOutputSection::getOrCreateForInput(in.objcSelrefs);
868 inputSections.push_back(in.objcSelrefs);
869 in.objcSelrefs->isFinal = true;
870 }
871
getSize() const872 uint64_t ObjCStubsSection::getSize() const {
873 return target->objcStubsFastSize * symbols.size();
874 }
875
writeTo(uint8_t * buf) const876 void ObjCStubsSection::writeTo(uint8_t *buf) const {
877 assert(in.objcSelrefs->live);
878 assert(in.objcSelrefs->isFinal);
879
880 uint64_t stubOffset = 0;
881 for (size_t i = 0, n = symbols.size(); i < n; ++i) {
882 Defined *sym = symbols[i];
883 target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr,
884 stubOffset, in.objcSelrefs->getVA(), i,
885 in.got->addr, objcMsgSendGotIndex);
886 stubOffset += target->objcStubsFastSize;
887 }
888 }
889
LazyPointerSection()890 LazyPointerSection::LazyPointerSection()
891 : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
892 align = target->wordSize;
893 flags = S_LAZY_SYMBOL_POINTERS;
894 }
895
getSize() const896 uint64_t LazyPointerSection::getSize() const {
897 return in.stubs->getEntries().size() * target->wordSize;
898 }
899
isNeeded() const900 bool LazyPointerSection::isNeeded() const {
901 return !in.stubs->getEntries().empty();
902 }
903
writeTo(uint8_t * buf) const904 void LazyPointerSection::writeTo(uint8_t *buf) const {
905 size_t off = 0;
906 for (const Symbol *sym : in.stubs->getEntries()) {
907 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
908 if (dysym->hasStubsHelper()) {
909 uint64_t stubHelperOffset =
910 target->stubHelperHeaderSize +
911 dysym->stubsHelperIndex * target->stubHelperEntrySize;
912 write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
913 }
914 } else {
915 write64le(buf + off, sym->getVA());
916 }
917 off += target->wordSize;
918 }
919 }
920
LazyBindingSection()921 LazyBindingSection::LazyBindingSection()
922 : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
923
finalizeContents()924 void LazyBindingSection::finalizeContents() {
925 // TODO: Just precompute output size here instead of writing to a temporary
926 // buffer
927 for (Symbol *sym : entries)
928 sym->lazyBindOffset = encode(*sym);
929 }
930
writeTo(uint8_t * buf) const931 void LazyBindingSection::writeTo(uint8_t *buf) const {
932 memcpy(buf, contents.data(), contents.size());
933 }
934
addEntry(Symbol * sym)935 void LazyBindingSection::addEntry(Symbol *sym) {
936 assert(!config->emitChainedFixups && "Chained fixups always bind eagerly");
937 if (entries.insert(sym)) {
938 sym->stubsHelperIndex = entries.size() - 1;
939 in.rebase->addEntry(in.lazyPointers->isec,
940 sym->stubsIndex * target->wordSize);
941 }
942 }
943
944 // Unlike the non-lazy binding section, the bind opcodes in this section aren't
945 // interpreted all at once. Rather, dyld will start interpreting opcodes at a
946 // given offset, typically only binding a single symbol before it finds a
947 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
948 // we cannot encode just the differences between symbols; we have to emit the
949 // complete bind information for each symbol.
encode(const Symbol & sym)950 uint32_t LazyBindingSection::encode(const Symbol &sym) {
951 uint32_t opstreamOffset = contents.size();
952 OutputSegment *dataSeg = in.lazyPointers->parent;
953 os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
954 dataSeg->index);
955 uint64_t offset =
956 in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize;
957 encodeULEB128(offset, os);
958 encodeDylibOrdinal(ordinalForSymbol(sym), os);
959
960 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
961 if (sym.isWeakRef())
962 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
963
964 os << flags << sym.getName() << '\0'
965 << static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
966 << static_cast<uint8_t>(BIND_OPCODE_DONE);
967 return opstreamOffset;
968 }
969
ExportSection()970 ExportSection::ExportSection()
971 : LinkEditSection(segment_names::linkEdit, section_names::export_) {}
972
finalizeContents()973 void ExportSection::finalizeContents() {
974 trieBuilder.setImageBase(in.header->addr);
975 for (const Symbol *sym : symtab->getSymbols()) {
976 if (const auto *defined = dyn_cast<Defined>(sym)) {
977 if (defined->privateExtern || !defined->isLive())
978 continue;
979 trieBuilder.addSymbol(*defined);
980 hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
981 }
982 }
983 size = trieBuilder.build();
984 }
985
writeTo(uint8_t * buf) const986 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
987
DataInCodeSection()988 DataInCodeSection::DataInCodeSection()
989 : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}
990
991 template <class LP>
collectDataInCodeEntries()992 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
993 std::vector<MachO::data_in_code_entry> dataInCodeEntries;
994 for (const InputFile *inputFile : inputFiles) {
995 if (!isa<ObjFile>(inputFile))
996 continue;
997 const ObjFile *objFile = cast<ObjFile>(inputFile);
998 ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode();
999 if (entries.empty())
1000 continue;
1001
1002 assert(is_sorted(entries, [](const data_in_code_entry &lhs,
1003 const data_in_code_entry &rhs) {
1004 return lhs.offset < rhs.offset;
1005 }));
1006 // For each code subsection find 'data in code' entries residing in it.
1007 // Compute the new offset values as
1008 // <offset within subsection> + <subsection address> - <__TEXT address>.
1009 for (const Section *section : objFile->sections) {
1010 for (const Subsection &subsec : section->subsections) {
1011 const InputSection *isec = subsec.isec;
1012 if (!isCodeSection(isec))
1013 continue;
1014 if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
1015 continue;
1016 const uint64_t beginAddr = section->addr + subsec.offset;
1017 auto it = llvm::lower_bound(
1018 entries, beginAddr,
1019 [](const MachO::data_in_code_entry &entry, uint64_t addr) {
1020 return entry.offset < addr;
1021 });
1022 const uint64_t endAddr = beginAddr + isec->getSize();
1023 for (const auto end = entries.end();
1024 it != end && it->offset + it->length <= endAddr; ++it)
1025 dataInCodeEntries.push_back(
1026 {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
1027 in.header->addr),
1028 it->length, it->kind});
1029 }
1030 }
1031 }
1032
1033 // ld64 emits the table in sorted order too.
1034 llvm::sort(dataInCodeEntries,
1035 [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) {
1036 return lhs.offset < rhs.offset;
1037 });
1038 return dataInCodeEntries;
1039 }
1040
finalizeContents()1041 void DataInCodeSection::finalizeContents() {
1042 entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
1043 : collectDataInCodeEntries<ILP32>();
1044 }
1045
writeTo(uint8_t * buf) const1046 void DataInCodeSection::writeTo(uint8_t *buf) const {
1047 if (!entries.empty())
1048 memcpy(buf, entries.data(), getRawSize());
1049 }
1050
FunctionStartsSection()1051 FunctionStartsSection::FunctionStartsSection()
1052 : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}
1053
finalizeContents()1054 void FunctionStartsSection::finalizeContents() {
1055 raw_svector_ostream os{contents};
1056 std::vector<uint64_t> addrs;
1057 for (const InputFile *file : inputFiles) {
1058 if (auto *objFile = dyn_cast<ObjFile>(file)) {
1059 for (const Symbol *sym : objFile->symbols) {
1060 if (const auto *defined = dyn_cast_or_null<Defined>(sym)) {
1061 if (!defined->isec || !isCodeSection(defined->isec) ||
1062 !defined->isLive())
1063 continue;
1064 // TODO: Add support for thumbs, in that case
1065 // the lowest bit of nextAddr needs to be set to 1.
1066 addrs.push_back(defined->getVA());
1067 }
1068 }
1069 }
1070 }
1071 llvm::sort(addrs);
1072 uint64_t addr = in.header->addr;
1073 for (uint64_t nextAddr : addrs) {
1074 uint64_t delta = nextAddr - addr;
1075 if (delta == 0)
1076 continue;
1077 encodeULEB128(delta, os);
1078 addr = nextAddr;
1079 }
1080 os << '\0';
1081 }
1082
writeTo(uint8_t * buf) const1083 void FunctionStartsSection::writeTo(uint8_t *buf) const {
1084 memcpy(buf, contents.data(), contents.size());
1085 }
1086
SymtabSection(StringTableSection & stringTableSection)1087 SymtabSection::SymtabSection(StringTableSection &stringTableSection)
1088 : LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
1089 stringTableSection(stringTableSection) {}
1090
emitBeginSourceStab(StringRef sourceFile)1091 void SymtabSection::emitBeginSourceStab(StringRef sourceFile) {
1092 StabsEntry stab(N_SO);
1093 stab.strx = stringTableSection.addString(saver().save(sourceFile));
1094 stabs.emplace_back(std::move(stab));
1095 }
1096
emitEndSourceStab()1097 void SymtabSection::emitEndSourceStab() {
1098 StabsEntry stab(N_SO);
1099 stab.sect = 1;
1100 stabs.emplace_back(std::move(stab));
1101 }
1102
emitObjectFileStab(ObjFile * file)1103 void SymtabSection::emitObjectFileStab(ObjFile *file) {
1104 StabsEntry stab(N_OSO);
1105 stab.sect = target->cpuSubtype;
1106 SmallString<261> path(!file->archiveName.empty() ? file->archiveName
1107 : file->getName());
1108 std::error_code ec = sys::fs::make_absolute(path);
1109 if (ec)
1110 fatal("failed to get absolute path for " + path);
1111
1112 if (!file->archiveName.empty())
1113 path.append({"(", file->getName(), ")"});
1114
1115 StringRef adjustedPath = saver().save(path.str());
1116 adjustedPath.consume_front(config->osoPrefix);
1117
1118 stab.strx = stringTableSection.addString(adjustedPath);
1119 stab.desc = 1;
1120 stab.value = file->modTime;
1121 stabs.emplace_back(std::move(stab));
1122 }
1123
emitEndFunStab(Defined * defined)1124 void SymtabSection::emitEndFunStab(Defined *defined) {
1125 StabsEntry stab(N_FUN);
1126 stab.value = defined->size;
1127 stabs.emplace_back(std::move(stab));
1128 }
1129
emitStabs()1130 void SymtabSection::emitStabs() {
1131 if (config->omitDebugInfo)
1132 return;
1133
1134 for (const std::string &s : config->astPaths) {
1135 StabsEntry astStab(N_AST);
1136 astStab.strx = stringTableSection.addString(s);
1137 stabs.emplace_back(std::move(astStab));
1138 }
1139
1140 // Cache the file ID for each symbol in an std::pair for faster sorting.
1141 using SortingPair = std::pair<Defined *, int>;
1142 std::vector<SortingPair> symbolsNeedingStabs;
1143 for (const SymtabEntry &entry :
1144 concat<SymtabEntry>(localSymbols, externalSymbols)) {
1145 Symbol *sym = entry.sym;
1146 assert(sym->isLive() &&
1147 "dead symbols should not be in localSymbols, externalSymbols");
1148 if (auto *defined = dyn_cast<Defined>(sym)) {
1149 // Excluded symbols should have been filtered out in finalizeContents().
1150 assert(defined->includeInSymtab);
1151
1152 if (defined->isAbsolute())
1153 continue;
1154
1155 // Constant-folded symbols go in the executable's symbol table, but don't
1156 // get a stabs entry.
1157 if (defined->wasIdenticalCodeFolded)
1158 continue;
1159
1160 ObjFile *file = defined->getObjectFile();
1161 if (!file || !file->compileUnit)
1162 continue;
1163
1164 symbolsNeedingStabs.emplace_back(defined, defined->isec->getFile()->id);
1165 }
1166 }
1167
1168 llvm::stable_sort(symbolsNeedingStabs,
1169 [&](const SortingPair &a, const SortingPair &b) {
1170 return a.second < b.second;
1171 });
1172
1173 // Emit STABS symbols so that dsymutil and/or the debugger can map address
1174 // regions in the final binary to the source and object files from which they
1175 // originated.
1176 InputFile *lastFile = nullptr;
1177 for (SortingPair &pair : symbolsNeedingStabs) {
1178 Defined *defined = pair.first;
1179 InputSection *isec = defined->isec;
1180 ObjFile *file = cast<ObjFile>(isec->getFile());
1181
1182 if (lastFile == nullptr || lastFile != file) {
1183 if (lastFile != nullptr)
1184 emitEndSourceStab();
1185 lastFile = file;
1186
1187 emitBeginSourceStab(file->sourceFile());
1188 emitObjectFileStab(file);
1189 }
1190
1191 StabsEntry symStab;
1192 symStab.sect = defined->isec->parent->index;
1193 symStab.strx = stringTableSection.addString(defined->getName());
1194 symStab.value = defined->getVA();
1195
1196 if (isCodeSection(isec)) {
1197 symStab.type = N_FUN;
1198 stabs.emplace_back(std::move(symStab));
1199 emitEndFunStab(defined);
1200 } else {
1201 symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
1202 stabs.emplace_back(std::move(symStab));
1203 }
1204 }
1205
1206 if (!stabs.empty())
1207 emitEndSourceStab();
1208 }
1209
finalizeContents()1210 void SymtabSection::finalizeContents() {
1211 auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
1212 uint32_t strx = stringTableSection.addString(sym->getName());
1213 symbols.push_back({sym, strx});
1214 };
1215
1216 std::function<void(Symbol *)> localSymbolsHandler;
1217 switch (config->localSymbolsPresence) {
1218 case SymtabPresence::All:
1219 localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); };
1220 break;
1221 case SymtabPresence::None:
1222 localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ };
1223 break;
1224 case SymtabPresence::SelectivelyIncluded:
1225 localSymbolsHandler = [&](Symbol *sym) {
1226 if (config->localSymbolPatterns.match(sym->getName()))
1227 addSymbol(localSymbols, sym);
1228 };
1229 break;
1230 case SymtabPresence::SelectivelyExcluded:
1231 localSymbolsHandler = [&](Symbol *sym) {
1232 if (!config->localSymbolPatterns.match(sym->getName()))
1233 addSymbol(localSymbols, sym);
1234 };
1235 break;
1236 }
1237
1238 // Local symbols aren't in the SymbolTable, so we walk the list of object
1239 // files to gather them.
1240 // But if `-x` is set, then we don't need to. localSymbolsHandler() will do
1241 // the right thing regardless, but this check is a perf optimization because
1242 // iterating through all the input files and their symbols is expensive.
1243 if (config->localSymbolsPresence != SymtabPresence::None) {
1244 for (const InputFile *file : inputFiles) {
1245 if (auto *objFile = dyn_cast<ObjFile>(file)) {
1246 for (Symbol *sym : objFile->symbols) {
1247 if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
1248 if (defined->isExternal() || !defined->isLive() ||
1249 !defined->includeInSymtab)
1250 continue;
1251 localSymbolsHandler(sym);
1252 }
1253 }
1254 }
1255 }
1256 }
1257
1258 // __dyld_private is a local symbol too. It's linker-created and doesn't
1259 // exist in any object file.
1260 if (in.stubHelper && in.stubHelper->dyldPrivate)
1261 localSymbolsHandler(in.stubHelper->dyldPrivate);
1262
1263 for (Symbol *sym : symtab->getSymbols()) {
1264 if (!sym->isLive())
1265 continue;
1266 if (auto *defined = dyn_cast<Defined>(sym)) {
1267 if (!defined->includeInSymtab)
1268 continue;
1269 assert(defined->isExternal());
1270 if (defined->privateExtern)
1271 localSymbolsHandler(defined);
1272 else
1273 addSymbol(externalSymbols, defined);
1274 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
1275 if (dysym->isReferenced())
1276 addSymbol(undefinedSymbols, sym);
1277 }
1278 }
1279
1280 emitStabs();
1281 uint32_t symtabIndex = stabs.size();
1282 for (const SymtabEntry &entry :
1283 concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
1284 entry.sym->symtabIndex = symtabIndex++;
1285 }
1286 }
1287
getNumSymbols() const1288 uint32_t SymtabSection::getNumSymbols() const {
1289 return stabs.size() + localSymbols.size() + externalSymbols.size() +
1290 undefinedSymbols.size();
1291 }
1292
1293 // This serves to hide (type-erase) the template parameter from SymtabSection.
1294 template <class LP> class SymtabSectionImpl final : public SymtabSection {
1295 public:
SymtabSectionImpl(StringTableSection & stringTableSection)1296 SymtabSectionImpl(StringTableSection &stringTableSection)
1297 : SymtabSection(stringTableSection) {}
1298 uint64_t getRawSize() const override;
1299 void writeTo(uint8_t *buf) const override;
1300 };
1301
getRawSize() const1302 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
1303 return getNumSymbols() * sizeof(typename LP::nlist);
1304 }
1305
writeTo(uint8_t * buf) const1306 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
1307 auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
1308 // Emit the stabs entries before the "real" symbols. We cannot emit them
1309 // after as that would render Symbol::symtabIndex inaccurate.
1310 for (const StabsEntry &entry : stabs) {
1311 nList->n_strx = entry.strx;
1312 nList->n_type = entry.type;
1313 nList->n_sect = entry.sect;
1314 nList->n_desc = entry.desc;
1315 nList->n_value = entry.value;
1316 ++nList;
1317 }
1318
1319 for (const SymtabEntry &entry : concat<const SymtabEntry>(
1320 localSymbols, externalSymbols, undefinedSymbols)) {
1321 nList->n_strx = entry.strx;
1322 // TODO populate n_desc with more flags
1323 if (auto *defined = dyn_cast<Defined>(entry.sym)) {
1324 uint8_t scope = 0;
1325 if (defined->privateExtern) {
1326 // Private external -- dylib scoped symbol.
1327 // Promote to non-external at link time.
1328 scope = N_PEXT;
1329 } else if (defined->isExternal()) {
1330 // Normal global symbol.
1331 scope = N_EXT;
1332 } else {
1333 // TU-local symbol from localSymbols.
1334 scope = 0;
1335 }
1336
1337 if (defined->isAbsolute()) {
1338 nList->n_type = scope | N_ABS;
1339 nList->n_sect = NO_SECT;
1340 nList->n_value = defined->value;
1341 } else {
1342 nList->n_type = scope | N_SECT;
1343 nList->n_sect = defined->isec->parent->index;
1344 // For the N_SECT symbol type, n_value is the address of the symbol
1345 nList->n_value = defined->getVA();
1346 }
1347 nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0;
1348 nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
1349 nList->n_desc |=
1350 defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
1351 } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
1352 uint16_t n_desc = nList->n_desc;
1353 int16_t ordinal = ordinalForDylibSymbol(*dysym);
1354 if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
1355 SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
1356 else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
1357 SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
1358 else {
1359 assert(ordinal > 0);
1360 SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
1361 }
1362
1363 nList->n_type = N_EXT;
1364 n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
1365 n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
1366 nList->n_desc = n_desc;
1367 }
1368 ++nList;
1369 }
1370 }
1371
1372 template <class LP>
1373 SymtabSection *
makeSymtabSection(StringTableSection & stringTableSection)1374 macho::makeSymtabSection(StringTableSection &stringTableSection) {
1375 return make<SymtabSectionImpl<LP>>(stringTableSection);
1376 }
1377
IndirectSymtabSection()1378 IndirectSymtabSection::IndirectSymtabSection()
1379 : LinkEditSection(segment_names::linkEdit,
1380 section_names::indirectSymbolTable) {}
1381
getNumSymbols() const1382 uint32_t IndirectSymtabSection::getNumSymbols() const {
1383 uint32_t size = in.got->getEntries().size() +
1384 in.tlvPointers->getEntries().size() +
1385 in.stubs->getEntries().size();
1386 if (!config->emitChainedFixups)
1387 size += in.stubs->getEntries().size();
1388 return size;
1389 }
1390
isNeeded() const1391 bool IndirectSymtabSection::isNeeded() const {
1392 return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
1393 in.stubs->isNeeded();
1394 }
1395
finalizeContents()1396 void IndirectSymtabSection::finalizeContents() {
1397 uint32_t off = 0;
1398 in.got->reserved1 = off;
1399 off += in.got->getEntries().size();
1400 in.tlvPointers->reserved1 = off;
1401 off += in.tlvPointers->getEntries().size();
1402 in.stubs->reserved1 = off;
1403 if (in.lazyPointers) {
1404 off += in.stubs->getEntries().size();
1405 in.lazyPointers->reserved1 = off;
1406 }
1407 }
1408
indirectValue(const Symbol * sym)1409 static uint32_t indirectValue(const Symbol *sym) {
1410 if (sym->symtabIndex == UINT32_MAX)
1411 return INDIRECT_SYMBOL_LOCAL;
1412 if (auto *defined = dyn_cast<Defined>(sym))
1413 if (defined->privateExtern)
1414 return INDIRECT_SYMBOL_LOCAL;
1415 return sym->symtabIndex;
1416 }
1417
writeTo(uint8_t * buf) const1418 void IndirectSymtabSection::writeTo(uint8_t *buf) const {
1419 uint32_t off = 0;
1420 for (const Symbol *sym : in.got->getEntries()) {
1421 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1422 ++off;
1423 }
1424 for (const Symbol *sym : in.tlvPointers->getEntries()) {
1425 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1426 ++off;
1427 }
1428 for (const Symbol *sym : in.stubs->getEntries()) {
1429 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1430 ++off;
1431 }
1432
1433 if (in.lazyPointers) {
1434 // There is a 1:1 correspondence between stubs and LazyPointerSection
1435 // entries. But giving __stubs and __la_symbol_ptr the same reserved1
1436 // (the offset into the indirect symbol table) so that they both refer
1437 // to the same range of offsets confuses `strip`, so write the stubs
1438 // symbol table offsets a second time.
1439 for (const Symbol *sym : in.stubs->getEntries()) {
1440 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1441 ++off;
1442 }
1443 }
1444 }
1445
StringTableSection()1446 StringTableSection::StringTableSection()
1447 : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
1448
addString(StringRef str)1449 uint32_t StringTableSection::addString(StringRef str) {
1450 uint32_t strx = size;
1451 strings.push_back(str); // TODO: consider deduplicating strings
1452 size += str.size() + 1; // account for null terminator
1453 return strx;
1454 }
1455
writeTo(uint8_t * buf) const1456 void StringTableSection::writeTo(uint8_t *buf) const {
1457 uint32_t off = 0;
1458 for (StringRef str : strings) {
1459 memcpy(buf + off, str.data(), str.size());
1460 off += str.size() + 1; // account for null terminator
1461 }
1462 }
1463
1464 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0);
1465 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0);
1466
CodeSignatureSection()1467 CodeSignatureSection::CodeSignatureSection()
1468 : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
1469 align = 16; // required by libstuff
1470 // FIXME: Consider using finalOutput instead of outputFile.
1471 fileName = config->outputFile;
1472 size_t slashIndex = fileName.rfind("/");
1473 if (slashIndex != std::string::npos)
1474 fileName = fileName.drop_front(slashIndex + 1);
1475
1476 // NOTE: Any changes to these calculations should be repeated
1477 // in llvm-objcopy's MachOLayoutBuilder::layoutTail.
1478 allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
1479 fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
1480 }
1481
getBlockCount() const1482 uint32_t CodeSignatureSection::getBlockCount() const {
1483 return (fileOff + blockSize - 1) / blockSize;
1484 }
1485
getRawSize() const1486 uint64_t CodeSignatureSection::getRawSize() const {
1487 return allHeadersSize + getBlockCount() * hashSize;
1488 }
1489
writeHashes(uint8_t * buf) const1490 void CodeSignatureSection::writeHashes(uint8_t *buf) const {
1491 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
1492 // MachOWriter::writeSignatureData.
1493 uint8_t *hashes = buf + fileOff + allHeadersSize;
1494 parallelFor(0, getBlockCount(), [&](size_t i) {
1495 sha256(buf + i * blockSize,
1496 std::min(static_cast<size_t>(fileOff - i * blockSize), blockSize),
1497 hashes + i * hashSize);
1498 });
1499 #if defined(__APPLE__)
1500 // This is macOS-specific work-around and makes no sense for any
1501 // other host OS. See https://openradar.appspot.com/FB8914231
1502 //
1503 // The macOS kernel maintains a signature-verification cache to
1504 // quickly validate applications at time of execve(2). The trouble
1505 // is that for the kernel creates the cache entry at the time of the
1506 // mmap(2) call, before we have a chance to write either the code to
1507 // sign or the signature header+hashes. The fix is to invalidate
1508 // all cached data associated with the output file, thus discarding
1509 // the bogus prematurely-cached signature.
1510 msync(buf, fileOff + getSize(), MS_INVALIDATE);
1511 #endif
1512 }
1513
writeTo(uint8_t * buf) const1514 void CodeSignatureSection::writeTo(uint8_t *buf) const {
1515 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
1516 // MachOWriter::writeSignatureData.
1517 uint32_t signatureSize = static_cast<uint32_t>(getSize());
1518 auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
1519 write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
1520 write32be(&superBlob->length, signatureSize);
1521 write32be(&superBlob->count, 1);
1522 auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
1523 write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
1524 write32be(&blobIndex->offset, blobHeadersSize);
1525 auto *codeDirectory =
1526 reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
1527 write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
1528 write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
1529 write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
1530 write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
1531 write32be(&codeDirectory->hashOffset,
1532 sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
1533 write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
1534 codeDirectory->nSpecialSlots = 0;
1535 write32be(&codeDirectory->nCodeSlots, getBlockCount());
1536 write32be(&codeDirectory->codeLimit, fileOff);
1537 codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
1538 codeDirectory->hashType = kSecCodeSignatureHashSHA256;
1539 codeDirectory->platform = 0;
1540 codeDirectory->pageSize = blockSizeShift;
1541 codeDirectory->spare2 = 0;
1542 codeDirectory->scatterOffset = 0;
1543 codeDirectory->teamOffset = 0;
1544 codeDirectory->spare3 = 0;
1545 codeDirectory->codeLimit64 = 0;
1546 OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
1547 write64be(&codeDirectory->execSegBase, textSeg->fileOff);
1548 write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
1549 write64be(&codeDirectory->execSegFlags,
1550 config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
1551 auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
1552 memcpy(id, fileName.begin(), fileName.size());
1553 memset(id + fileName.size(), 0, fileNamePad);
1554 }
1555
BitcodeBundleSection()1556 BitcodeBundleSection::BitcodeBundleSection()
1557 : SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {}
1558
1559 class ErrorCodeWrapper {
1560 public:
ErrorCodeWrapper(std::error_code ec)1561 explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {}
ErrorCodeWrapper(int ec)1562 explicit ErrorCodeWrapper(int ec) : errorCode(ec) {}
operator int() const1563 operator int() const { return errorCode; }
1564
1565 private:
1566 int errorCode;
1567 };
1568
1569 #define CHECK_EC(exp) \
1570 do { \
1571 ErrorCodeWrapper ec(exp); \
1572 if (ec) \
1573 fatal(Twine("operation failed with error code ") + Twine(ec) + ": " + \
1574 #exp); \
1575 } while (0);
1576
finalize()1577 void BitcodeBundleSection::finalize() {
1578 #ifdef LLVM_HAVE_LIBXAR
1579 using namespace llvm::sys::fs;
1580 CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath));
1581
1582 #pragma clang diagnostic push
1583 #pragma clang diagnostic ignored "-Wdeprecated-declarations"
1584 xar_t xar(xar_open(xarPath.data(), O_RDWR));
1585 #pragma clang diagnostic pop
1586 if (!xar)
1587 fatal("failed to open XAR temporary file at " + xarPath);
1588 CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE));
1589 // FIXME: add more data to XAR
1590 CHECK_EC(xar_close(xar));
1591
1592 file_size(xarPath, xarSize);
1593 #endif // defined(LLVM_HAVE_LIBXAR)
1594 }
1595
writeTo(uint8_t * buf) const1596 void BitcodeBundleSection::writeTo(uint8_t *buf) const {
1597 using namespace llvm::sys::fs;
1598 file_t handle =
1599 CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None),
1600 "failed to open XAR file");
1601 std::error_code ec;
1602 mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly,
1603 xarSize, 0, ec);
1604 if (ec)
1605 fatal("failed to map XAR file");
1606 memcpy(buf, xarMap.const_data(), xarSize);
1607
1608 closeFile(handle);
1609 remove(xarPath);
1610 }
1611
CStringSection(const char * name)1612 CStringSection::CStringSection(const char *name)
1613 : SyntheticSection(segment_names::text, name) {
1614 flags = S_CSTRING_LITERALS;
1615 }
1616
addInput(CStringInputSection * isec)1617 void CStringSection::addInput(CStringInputSection *isec) {
1618 isec->parent = this;
1619 inputs.push_back(isec);
1620 if (isec->align > align)
1621 align = isec->align;
1622 }
1623
writeTo(uint8_t * buf) const1624 void CStringSection::writeTo(uint8_t *buf) const {
1625 for (const CStringInputSection *isec : inputs) {
1626 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1627 if (!piece.live)
1628 continue;
1629 StringRef string = isec->getStringRef(i);
1630 memcpy(buf + piece.outSecOff, string.data(), string.size());
1631 }
1632 }
1633 }
1634
finalizeContents()1635 void CStringSection::finalizeContents() {
1636 uint64_t offset = 0;
1637 for (CStringInputSection *isec : inputs) {
1638 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1639 if (!piece.live)
1640 continue;
1641 // See comment above DeduplicatedCStringSection for how alignment is
1642 // handled.
1643 uint32_t pieceAlign = 1
1644 << countTrailingZeros(isec->align | piece.inSecOff);
1645 offset = alignTo(offset, pieceAlign);
1646 piece.outSecOff = offset;
1647 isec->isFinal = true;
1648 StringRef string = isec->getStringRef(i);
1649 offset += string.size() + 1; // account for null terminator
1650 }
1651 }
1652 size = offset;
1653 }
1654
1655 // Mergeable cstring literals are found under the __TEXT,__cstring section. In
1656 // contrast to ELF, which puts strings that need different alignments into
1657 // different sections, clang's Mach-O backend puts them all in one section.
1658 // Strings that need to be aligned have the .p2align directive emitted before
1659 // them, which simply translates into zero padding in the object file. In other
1660 // words, we have to infer the desired alignment of these cstrings from their
1661 // addresses.
1662 //
1663 // We differ slightly from ld64 in how we've chosen to align these cstrings.
1664 // Both LLD and ld64 preserve the number of trailing zeros in each cstring's
1665 // address in the input object files. When deduplicating identical cstrings,
1666 // both linkers pick the cstring whose address has more trailing zeros, and
1667 // preserve the alignment of that address in the final binary. However, ld64
1668 // goes a step further and also preserves the offset of the cstring from the
1669 // last section-aligned address. I.e. if a cstring is at offset 18 in the
1670 // input, with a section alignment of 16, then both LLD and ld64 will ensure the
1671 // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also
1672 // ensure that the final address is of the form 16 * k + 2 for some k.
1673 //
1674 // Note that ld64's heuristic means that a dedup'ed cstring's final address is
1675 // dependent on the order of the input object files. E.g. if in addition to the
1676 // cstring at offset 18 above, we have a duplicate one in another file with a
1677 // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
1678 // the cstring from the object file earlier on the command line (since both have
1679 // the same number of trailing zeros in their address). So the final cstring may
1680 // either be at some address `16 * k + 2` or at some address `2 * k`.
1681 //
1682 // I've opted not to follow this behavior primarily for implementation
1683 // simplicity, and secondarily to save a few more bytes. It's not clear to me
1684 // that preserving the section alignment + offset is ever necessary, and there
1685 // are many cases that are clearly redundant. In particular, if an x86_64 object
1686 // file contains some strings that are accessed via SIMD instructions, then the
1687 // .cstring section in the object file will be 16-byte-aligned (since SIMD
1688 // requires its operand addresses to be 16-byte aligned). However, there will
1689 // typically also be other cstrings in the same file that aren't used via SIMD
1690 // and don't need this alignment. They will be emitted at some arbitrary address
1691 // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16
1692 // % A`.
finalizeContents()1693 void DeduplicatedCStringSection::finalizeContents() {
1694 // Find the largest alignment required for each string.
1695 for (const CStringInputSection *isec : inputs) {
1696 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1697 if (!piece.live)
1698 continue;
1699 auto s = isec->getCachedHashStringRef(i);
1700 assert(isec->align != 0);
1701 uint8_t trailingZeros = countTrailingZeros(isec->align | piece.inSecOff);
1702 auto it = stringOffsetMap.insert(
1703 std::make_pair(s, StringOffset(trailingZeros)));
1704 if (!it.second && it.first->second.trailingZeros < trailingZeros)
1705 it.first->second.trailingZeros = trailingZeros;
1706 }
1707 }
1708
1709 // Assign an offset for each string and save it to the corresponding
1710 // StringPieces for easy access.
1711 for (CStringInputSection *isec : inputs) {
1712 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1713 if (!piece.live)
1714 continue;
1715 auto s = isec->getCachedHashStringRef(i);
1716 auto it = stringOffsetMap.find(s);
1717 assert(it != stringOffsetMap.end());
1718 StringOffset &offsetInfo = it->second;
1719 if (offsetInfo.outSecOff == UINT64_MAX) {
1720 offsetInfo.outSecOff = alignTo(size, 1ULL << offsetInfo.trailingZeros);
1721 size =
1722 offsetInfo.outSecOff + s.size() + 1; // account for null terminator
1723 }
1724 piece.outSecOff = offsetInfo.outSecOff;
1725 }
1726 isec->isFinal = true;
1727 }
1728 }
1729
writeTo(uint8_t * buf) const1730 void DeduplicatedCStringSection::writeTo(uint8_t *buf) const {
1731 for (const auto &p : stringOffsetMap) {
1732 StringRef data = p.first.val();
1733 uint64_t off = p.second.outSecOff;
1734 if (!data.empty())
1735 memcpy(buf + off, data.data(), data.size());
1736 }
1737 }
1738
1739 DeduplicatedCStringSection::StringOffset
getStringOffset(StringRef str) const1740 DeduplicatedCStringSection::getStringOffset(StringRef str) const {
1741 // StringPiece uses 31 bits to store the hashes, so we replicate that
1742 uint32_t hash = xxHash64(str) & 0x7fffffff;
1743 auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash));
1744 assert(offset != stringOffsetMap.end() &&
1745 "Looked-up strings should always exist in section");
1746 return offset->second;
1747 }
1748
1749 // This section is actually emitted as __TEXT,__const by ld64, but clang may
1750 // emit input sections of that name, and LLD doesn't currently support mixing
1751 // synthetic and concat-type OutputSections. To work around this, I've given
1752 // our merged-literals section a different name.
WordLiteralSection()1753 WordLiteralSection::WordLiteralSection()
1754 : SyntheticSection(segment_names::text, section_names::literals) {
1755 align = 16;
1756 }
1757
addInput(WordLiteralInputSection * isec)1758 void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
1759 isec->parent = this;
1760 inputs.push_back(isec);
1761 }
1762
finalizeContents()1763 void WordLiteralSection::finalizeContents() {
1764 for (WordLiteralInputSection *isec : inputs) {
1765 // We do all processing of the InputSection here, so it will be effectively
1766 // finalized.
1767 isec->isFinal = true;
1768 const uint8_t *buf = isec->data.data();
1769 switch (sectionType(isec->getFlags())) {
1770 case S_4BYTE_LITERALS: {
1771 for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
1772 if (!isec->isLive(off))
1773 continue;
1774 uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
1775 literal4Map.emplace(value, literal4Map.size());
1776 }
1777 break;
1778 }
1779 case S_8BYTE_LITERALS: {
1780 for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
1781 if (!isec->isLive(off))
1782 continue;
1783 uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
1784 literal8Map.emplace(value, literal8Map.size());
1785 }
1786 break;
1787 }
1788 case S_16BYTE_LITERALS: {
1789 for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
1790 if (!isec->isLive(off))
1791 continue;
1792 UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
1793 literal16Map.emplace(value, literal16Map.size());
1794 }
1795 break;
1796 }
1797 default:
1798 llvm_unreachable("invalid literal section type");
1799 }
1800 }
1801 }
1802
writeTo(uint8_t * buf) const1803 void WordLiteralSection::writeTo(uint8_t *buf) const {
1804 // Note that we don't attempt to do any endianness conversion in addInput(),
1805 // so we don't do it here either -- just write out the original value,
1806 // byte-for-byte.
1807 for (const auto &p : literal16Map)
1808 memcpy(buf + p.second * 16, &p.first, 16);
1809 buf += literal16Map.size() * 16;
1810
1811 for (const auto &p : literal8Map)
1812 memcpy(buf + p.second * 8, &p.first, 8);
1813 buf += literal8Map.size() * 8;
1814
1815 for (const auto &p : literal4Map)
1816 memcpy(buf + p.second * 4, &p.first, 4);
1817 }
1818
ObjCImageInfoSection()1819 ObjCImageInfoSection::ObjCImageInfoSection()
1820 : SyntheticSection(segment_names::data, section_names::objCImageInfo) {}
1821
1822 ObjCImageInfoSection::ImageInfo
parseImageInfo(const InputFile * file)1823 ObjCImageInfoSection::parseImageInfo(const InputFile *file) {
1824 ImageInfo info;
1825 ArrayRef<uint8_t> data = file->objCImageInfo;
1826 // The image info struct has the following layout:
1827 // struct {
1828 // uint32_t version;
1829 // uint32_t flags;
1830 // };
1831 if (data.size() < 8) {
1832 warn(toString(file) + ": invalid __objc_imageinfo size");
1833 return info;
1834 }
1835
1836 auto *buf = reinterpret_cast<const uint32_t *>(data.data());
1837 if (read32le(buf) != 0) {
1838 warn(toString(file) + ": invalid __objc_imageinfo version");
1839 return info;
1840 }
1841
1842 uint32_t flags = read32le(buf + 1);
1843 info.swiftVersion = (flags >> 8) & 0xff;
1844 info.hasCategoryClassProperties = flags & 0x40;
1845 return info;
1846 }
1847
swiftVersionString(uint8_t version)1848 static std::string swiftVersionString(uint8_t version) {
1849 switch (version) {
1850 case 1:
1851 return "1.0";
1852 case 2:
1853 return "1.1";
1854 case 3:
1855 return "2.0";
1856 case 4:
1857 return "3.0";
1858 case 5:
1859 return "4.0";
1860 default:
1861 return ("0x" + Twine::utohexstr(version)).str();
1862 }
1863 }
1864
1865 // Validate each object file's __objc_imageinfo and use them to generate the
1866 // image info for the output binary. Only two pieces of info are relevant:
1867 // 1. The Swift version (should be identical across inputs)
1868 // 2. `bool hasCategoryClassProperties` (true only if true for all inputs)
finalizeContents()1869 void ObjCImageInfoSection::finalizeContents() {
1870 assert(files.size() != 0); // should have already been checked via isNeeded()
1871
1872 info.hasCategoryClassProperties = true;
1873 const InputFile *firstFile;
1874 for (auto file : files) {
1875 ImageInfo inputInfo = parseImageInfo(file);
1876 info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties;
1877
1878 // swiftVersion 0 means no Swift is present, so no version checking required
1879 if (inputInfo.swiftVersion == 0)
1880 continue;
1881
1882 if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) {
1883 error("Swift version mismatch: " + toString(firstFile) + " has version " +
1884 swiftVersionString(info.swiftVersion) + " but " + toString(file) +
1885 " has version " + swiftVersionString(inputInfo.swiftVersion));
1886 } else {
1887 info.swiftVersion = inputInfo.swiftVersion;
1888 firstFile = file;
1889 }
1890 }
1891 }
1892
writeTo(uint8_t * buf) const1893 void ObjCImageInfoSection::writeTo(uint8_t *buf) const {
1894 uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0;
1895 flags |= info.swiftVersion << 8;
1896 write32le(buf + 4, flags);
1897 }
1898
InitOffsetsSection()1899 InitOffsetsSection::InitOffsetsSection()
1900 : SyntheticSection(segment_names::text, section_names::initOffsets) {
1901 flags = S_INIT_FUNC_OFFSETS;
1902 align = 4; // This section contains 32-bit integers.
1903 }
1904
getSize() const1905 uint64_t InitOffsetsSection::getSize() const {
1906 size_t count = 0;
1907 for (const ConcatInputSection *isec : sections)
1908 count += isec->relocs.size();
1909 return count * sizeof(uint32_t);
1910 }
1911
writeTo(uint8_t * buf) const1912 void InitOffsetsSection::writeTo(uint8_t *buf) const {
1913 // FIXME: Add function specified by -init when that argument is implemented.
1914 for (ConcatInputSection *isec : sections) {
1915 for (const Reloc &rel : isec->relocs) {
1916 const Symbol *referent = rel.referent.dyn_cast<Symbol *>();
1917 assert(referent && "section relocation should have been rejected");
1918 uint64_t offset = referent->getVA() - in.header->addr;
1919 // FIXME: Can we handle this gracefully?
1920 if (offset > UINT32_MAX)
1921 fatal(isec->getLocation(rel.offset) + ": offset to initializer " +
1922 referent->getName() + " (" + utohexstr(offset) +
1923 ") does not fit in 32 bits");
1924
1925 // Entries need to be added in the order they appear in the section, but
1926 // relocations aren't guaranteed to be sorted.
1927 size_t index = rel.offset >> target->p2WordSize;
1928 write32le(&buf[index * sizeof(uint32_t)], offset);
1929 }
1930 buf += isec->relocs.size() * sizeof(uint32_t);
1931 }
1932 }
1933
1934 // The inputs are __mod_init_func sections, which contain pointers to
1935 // initializer functions, therefore all relocations should be of the UNSIGNED
1936 // type. InitOffsetsSection stores offsets, so if the initializer's address is
1937 // not known at link time, stub-indirection has to be used.
setUp()1938 void InitOffsetsSection::setUp() {
1939 for (const ConcatInputSection *isec : sections) {
1940 for (const Reloc &rel : isec->relocs) {
1941 RelocAttrs attrs = target->getRelocAttrs(rel.type);
1942 if (!attrs.hasAttr(RelocAttrBits::UNSIGNED))
1943 error(isec->getLocation(rel.offset) +
1944 ": unsupported relocation type: " + attrs.name);
1945 if (rel.addend != 0)
1946 error(isec->getLocation(rel.offset) +
1947 ": relocation addend is not representable in __init_offsets");
1948 if (rel.referent.is<InputSection *>())
1949 error(isec->getLocation(rel.offset) +
1950 ": unexpected section relocation");
1951
1952 Symbol *sym = rel.referent.dyn_cast<Symbol *>();
1953 if (auto *undefined = dyn_cast<Undefined>(sym))
1954 treatUndefinedSymbol(*undefined, isec, rel.offset);
1955 if (needsBinding(sym))
1956 in.stubs->addEntry(sym);
1957 }
1958 }
1959 }
1960
createSyntheticSymbols()1961 void macho::createSyntheticSymbols() {
1962 auto addHeaderSymbol = [](const char *name) {
1963 symtab->addSynthetic(name, in.header->isec, /*value=*/0,
1964 /*isPrivateExtern=*/true, /*includeInSymtab=*/false,
1965 /*referencedDynamically=*/false);
1966 };
1967
1968 switch (config->outputType) {
1969 // FIXME: Assign the right address value for these symbols
1970 // (rather than 0). But we need to do that after assignAddresses().
1971 case MH_EXECUTE:
1972 // If linking PIE, __mh_execute_header is a defined symbol in
1973 // __TEXT, __text)
1974 // Otherwise, it's an absolute symbol.
1975 if (config->isPic)
1976 symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
1977 /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
1978 /*referencedDynamically=*/true);
1979 else
1980 symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
1981 /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
1982 /*referencedDynamically=*/true);
1983 break;
1984
1985 // The following symbols are N_SECT symbols, even though the header is not
1986 // part of any section and that they are private to the bundle/dylib/object
1987 // they are part of.
1988 case MH_BUNDLE:
1989 addHeaderSymbol("__mh_bundle_header");
1990 break;
1991 case MH_DYLIB:
1992 addHeaderSymbol("__mh_dylib_header");
1993 break;
1994 case MH_DYLINKER:
1995 addHeaderSymbol("__mh_dylinker_header");
1996 break;
1997 case MH_OBJECT:
1998 addHeaderSymbol("__mh_object_header");
1999 break;
2000 default:
2001 llvm_unreachable("unexpected outputType");
2002 break;
2003 }
2004
2005 // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
2006 // which does e.g. cleanup of static global variables. The ABI document
2007 // says that the pointer can point to any address in one of the dylib's
2008 // segments, but in practice ld64 seems to set it to point to the header,
2009 // so that's what's implemented here.
2010 addHeaderSymbol("___dso_handle");
2011 }
2012
ChainedFixupsSection()2013 ChainedFixupsSection::ChainedFixupsSection()
2014 : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {}
2015
isNeeded() const2016 bool ChainedFixupsSection::isNeeded() const {
2017 assert(config->emitChainedFixups);
2018 // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid
2019 // dyld_chained_fixups_header, so we create this section even if there aren't
2020 // any fixups.
2021 return true;
2022 }
2023
needsWeakBind(const Symbol & sym)2024 static bool needsWeakBind(const Symbol &sym) {
2025 if (auto *dysym = dyn_cast<DylibSymbol>(&sym))
2026 return dysym->isWeakDef();
2027 if (auto *defined = dyn_cast<Defined>(&sym))
2028 return defined->isExternalWeakDef();
2029 return false;
2030 }
2031
addBinding(const Symbol * sym,const InputSection * isec,uint64_t offset,int64_t addend)2032 void ChainedFixupsSection::addBinding(const Symbol *sym,
2033 const InputSection *isec, uint64_t offset,
2034 int64_t addend) {
2035 locations.emplace_back(isec, offset);
2036 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
2037 auto [it, inserted] = bindings.insert(
2038 {{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())});
2039
2040 if (inserted) {
2041 symtabSize += sym->getName().size() + 1;
2042 hasWeakBind = hasWeakBind || needsWeakBind(*sym);
2043 if (!isInt<23>(outlineAddend))
2044 needsLargeAddend = true;
2045 else if (outlineAddend != 0)
2046 needsAddend = true;
2047 }
2048 }
2049
2050 std::pair<uint32_t, uint8_t>
getBinding(const Symbol * sym,int64_t addend) const2051 ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const {
2052 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
2053 auto it = bindings.find({sym, outlineAddend});
2054 assert(it != bindings.end() && "binding not found in the imports table");
2055 if (outlineAddend == 0)
2056 return {it->second, addend};
2057 return {it->second, 0};
2058 }
2059
writeImport(uint8_t * buf,int format,uint32_t libOrdinal,bool weakRef,uint32_t nameOffset,int64_t addend)2060 static size_t writeImport(uint8_t *buf, int format, uint32_t libOrdinal,
2061 bool weakRef, uint32_t nameOffset, int64_t addend) {
2062 switch (format) {
2063 case DYLD_CHAINED_IMPORT: {
2064 auto *import = reinterpret_cast<dyld_chained_import *>(buf);
2065 import->lib_ordinal = libOrdinal;
2066 import->weak_import = weakRef;
2067 import->name_offset = nameOffset;
2068 return sizeof(dyld_chained_import);
2069 }
2070 case DYLD_CHAINED_IMPORT_ADDEND: {
2071 auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf);
2072 import->lib_ordinal = libOrdinal;
2073 import->weak_import = weakRef;
2074 import->name_offset = nameOffset;
2075 import->addend = addend;
2076 return sizeof(dyld_chained_import_addend);
2077 }
2078 case DYLD_CHAINED_IMPORT_ADDEND64: {
2079 auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf);
2080 import->lib_ordinal = libOrdinal;
2081 import->weak_import = weakRef;
2082 import->name_offset = nameOffset;
2083 import->addend = addend;
2084 return sizeof(dyld_chained_import_addend64);
2085 }
2086 default:
2087 llvm_unreachable("Unknown import format");
2088 }
2089 }
2090
getSize() const2091 size_t ChainedFixupsSection::SegmentInfo::getSize() const {
2092 assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?");
2093 return alignTo<8>(sizeof(dyld_chained_starts_in_segment) +
2094 pageStarts.back().first * sizeof(uint16_t));
2095 }
2096
writeTo(uint8_t * buf) const2097 size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const {
2098 auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf);
2099 segInfo->size = getSize();
2100 segInfo->page_size = target->getPageSize();
2101 // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions.
2102 segInfo->pointer_format = DYLD_CHAINED_PTR_64;
2103 segInfo->segment_offset = oseg->addr - in.header->addr;
2104 segInfo->max_valid_pointer = 0; // not used on 64-bit
2105 segInfo->page_count = pageStarts.back().first + 1;
2106
2107 uint16_t *starts = segInfo->page_start;
2108 for (size_t i = 0; i < segInfo->page_count; ++i)
2109 starts[i] = DYLD_CHAINED_PTR_START_NONE;
2110
2111 for (auto [pageIdx, startAddr] : pageStarts)
2112 starts[pageIdx] = startAddr;
2113 return segInfo->size;
2114 }
2115
importEntrySize(int format)2116 static size_t importEntrySize(int format) {
2117 switch (format) {
2118 case DYLD_CHAINED_IMPORT:
2119 return sizeof(dyld_chained_import);
2120 case DYLD_CHAINED_IMPORT_ADDEND:
2121 return sizeof(dyld_chained_import_addend);
2122 case DYLD_CHAINED_IMPORT_ADDEND64:
2123 return sizeof(dyld_chained_import_addend64);
2124 default:
2125 llvm_unreachable("Unknown import format");
2126 }
2127 }
2128
2129 // This is step 3 of the algorithm described in the class comment of
2130 // ChainedFixupsSection.
2131 //
2132 // LC_DYLD_CHAINED_FIXUPS data consists of (in this order):
2133 // * A dyld_chained_fixups_header
2134 // * A dyld_chained_starts_in_image
2135 // * One dyld_chained_starts_in_segment per segment
2136 // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or
2137 // dyld_chained_import_addend64)
2138 // * Names of imported symbols
writeTo(uint8_t * buf) const2139 void ChainedFixupsSection::writeTo(uint8_t *buf) const {
2140 auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf);
2141 header->fixups_version = 0;
2142 header->imports_count = bindings.size();
2143 header->imports_format = importFormat;
2144 header->symbols_format = 0;
2145
2146 buf += alignTo<8>(sizeof(*header));
2147
2148 auto curOffset = [&buf, &header]() -> uint32_t {
2149 return buf - reinterpret_cast<uint8_t *>(header);
2150 };
2151
2152 header->starts_offset = curOffset();
2153
2154 auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf);
2155 imageInfo->seg_count = outputSegments.size();
2156 uint32_t *segStarts = imageInfo->seg_info_offset;
2157
2158 // dyld_chained_starts_in_image ends in a flexible array member containing an
2159 // uint32_t for each segment. Leave room for it, and fill it via segStarts.
2160 buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
2161 outputSegments.size() * sizeof(uint32_t));
2162
2163 // Initialize all offsets to 0, which indicates that the segment does not have
2164 // fixups. Those that do have them will be filled in below.
2165 for (size_t i = 0; i < outputSegments.size(); ++i)
2166 segStarts[i] = 0;
2167
2168 for (const SegmentInfo &seg : fixupSegments) {
2169 segStarts[seg.oseg->index] = curOffset() - header->starts_offset;
2170 buf += seg.writeTo(buf);
2171 }
2172
2173 // Write imports table.
2174 header->imports_offset = curOffset();
2175 uint64_t nameOffset = 0;
2176 for (auto [import, idx] : bindings) {
2177 const Symbol &sym = *import.first;
2178 int16_t libOrdinal = needsWeakBind(sym)
2179 ? (int64_t)BIND_SPECIAL_DYLIB_WEAK_LOOKUP
2180 : ordinalForSymbol(sym);
2181 buf += writeImport(buf, importFormat, libOrdinal, sym.isWeakRef(),
2182 nameOffset, import.second);
2183 nameOffset += sym.getName().size() + 1;
2184 }
2185
2186 // Write imported symbol names.
2187 header->symbols_offset = curOffset();
2188 for (auto [import, idx] : bindings) {
2189 StringRef name = import.first->getName();
2190 memcpy(buf, name.data(), name.size());
2191 buf += name.size() + 1; // account for null terminator
2192 }
2193
2194 assert(curOffset() == getRawSize());
2195 }
2196
2197 // This is step 2 of the algorithm described in the class comment of
2198 // ChainedFixupsSection.
finalizeContents()2199 void ChainedFixupsSection::finalizeContents() {
2200 assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
2201 assert(config->emitChainedFixups);
2202
2203 if (!isUInt<32>(symtabSize))
2204 error("cannot encode chained fixups: imported symbols table size " +
2205 Twine(symtabSize) + " exceeds 4 GiB");
2206
2207 if (needsLargeAddend || !isUInt<23>(symtabSize))
2208 importFormat = DYLD_CHAINED_IMPORT_ADDEND64;
2209 else if (needsAddend)
2210 importFormat = DYLD_CHAINED_IMPORT_ADDEND;
2211 else
2212 importFormat = DYLD_CHAINED_IMPORT;
2213
2214 for (Location &loc : locations)
2215 loc.offset =
2216 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
2217
2218 llvm::sort(locations, [](const Location &a, const Location &b) {
2219 const OutputSegment *segA = a.isec->parent->parent;
2220 const OutputSegment *segB = b.isec->parent->parent;
2221 if (segA == segB)
2222 return a.offset < b.offset;
2223 return segA->addr < segB->addr;
2224 });
2225
2226 auto sameSegment = [](const Location &a, const Location &b) {
2227 return a.isec->parent->parent == b.isec->parent->parent;
2228 };
2229
2230 const uint64_t pageSize = target->getPageSize();
2231 for (size_t i = 0, count = locations.size(); i < count;) {
2232 const Location &firstLoc = locations[i];
2233 fixupSegments.emplace_back(firstLoc.isec->parent->parent);
2234 while (i < count && sameSegment(locations[i], firstLoc)) {
2235 uint32_t pageIdx = locations[i].offset / pageSize;
2236 fixupSegments.back().pageStarts.emplace_back(
2237 pageIdx, locations[i].offset % pageSize);
2238 ++i;
2239 while (i < count && sameSegment(locations[i], firstLoc) &&
2240 locations[i].offset / pageSize == pageIdx)
2241 ++i;
2242 }
2243 }
2244
2245 // Compute expected encoded size.
2246 size = alignTo<8>(sizeof(dyld_chained_fixups_header));
2247 size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
2248 outputSegments.size() * sizeof(uint32_t));
2249 for (const SegmentInfo &seg : fixupSegments)
2250 size += seg.getSize();
2251 size += importEntrySize(importFormat) * bindings.size();
2252 size += symtabSize;
2253 }
2254
2255 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
2256 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);
2257