xref: /openbsd/gnu/usr.bin/gcc/gcc/config/alpha/alpha.h (revision e97b50d0)
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002 Free Software Foundation, Inc.
4    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 
6 This file is part of GNU CC.
7 
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12 
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING.  If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.  */
22 
23 /* Target CPU builtins.  */
24 #define TARGET_CPU_CPP_BUILTINS()			\
25   do							\
26     {							\
27 	builtin_define ("__alpha");			\
28 	builtin_define ("__alpha__");			\
29 	builtin_assert ("cpu=alpha");			\
30 	builtin_assert ("machine=alpha");		\
31 	if (TARGET_CIX)					\
32 	  {						\
33 	    builtin_define ("__alpha_cix__");		\
34 	    builtin_assert ("cpu=cix");			\
35 	  }						\
36 	if (TARGET_FIX)					\
37 	  {						\
38 	    builtin_define ("__alpha_fix__");		\
39 	    builtin_assert ("cpu=fix");			\
40 	  }						\
41 	if (TARGET_BWX)					\
42 	  {						\
43 	    builtin_define ("__alpha_bwx__");		\
44 	    builtin_assert ("cpu=bwx");			\
45 	  }						\
46 	if (TARGET_MAX)					\
47 	  {						\
48 	    builtin_define ("__alpha_max__");		\
49 	    builtin_assert ("cpu=max");			\
50 	  }						\
51 	if (TARGET_CPU_EV6)				\
52 	  {						\
53 	    builtin_define ("__alpha_ev6__");		\
54 	    builtin_assert ("cpu=ev6");			\
55 	  }						\
56 	else if (TARGET_CPU_EV5)			\
57 	  {						\
58 	    builtin_define ("__alpha_ev5__");		\
59 	    builtin_assert ("cpu=ev5");			\
60 	  }						\
61 	else	/* Presumably ev4.  */			\
62 	  {						\
63 	    builtin_define ("__alpha_ev4__");		\
64 	    builtin_assert ("cpu=ev4");			\
65 	  }						\
66 	if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT)	\
67 	  builtin_define ("_IEEE_FP");			\
68 	if (TARGET_IEEE_WITH_INEXACT)			\
69 	  builtin_define ("_IEEE_FP_INEXACT");		\
70 	if (TARGET_LONG_DOUBLE_128)			\
71 	  builtin_define ("__LONG_DOUBLE_128__");	\
72 							\
73 	/* Macros dependent on the C dialect.  */	\
74 	SUBTARGET_LANGUAGE_CPP_BUILTINS();		\
75 } while (0)
76 
77 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78 #define SUBTARGET_LANGUAGE_CPP_BUILTINS()		\
79   do							\
80     {							\
81       if (preprocessing_asm_p ())			\
82 	builtin_define_std ("LANGUAGE_ASSEMBLY");	\
83       else if (c_language == clk_c)			\
84 	builtin_define_std ("LANGUAGE_C");		\
85       else if (c_language == clk_cplusplus)		\
86 	{						\
87 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS");	\
88 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS__");	\
89 	}						\
90       if (flag_objc)					\
91 	{						\
92 	  builtin_define ("__LANGUAGE_OBJECTIVE_C");	\
93 	  builtin_define ("__LANGUAGE_OBJECTIVE_C__");	\
94 	}						\
95     }							\
96   while (0)
97 #endif
98 
99 #define CPP_SPEC "%(cpp_subtarget)"
100 
101 #ifndef CPP_SUBTARGET_SPEC
102 #define CPP_SUBTARGET_SPEC ""
103 #endif
104 
105 #define WORD_SWITCH_TAKES_ARG(STR)		\
106  (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
107 
108 /* Print subsidiary information on the compiler version in use.  */
109 #define TARGET_VERSION
110 
111 /* Run-time compilation parameters selecting different hardware subsets.  */
112 
113 /* Which processor to schedule for. The cpu attribute defines a list that
114    mirrors this list, so changes to alpha.md must be made at the same time.  */
115 
116 enum processor_type
117  {PROCESSOR_EV4,			/* 2106[46]{a,} */
118   PROCESSOR_EV5,			/* 21164{a,pc,} */
119   PROCESSOR_EV6};			/* 21264 */
120 
121 extern enum processor_type alpha_cpu;
122 
123 enum alpha_trap_precision
124 {
125   ALPHA_TP_PROG,	/* No precision (default).  */
126   ALPHA_TP_FUNC,      	/* Trap contained within originating function.  */
127   ALPHA_TP_INSN		/* Instruction accuracy and code is resumption safe.  */
128 };
129 
130 enum alpha_fp_rounding_mode
131 {
132   ALPHA_FPRM_NORM,	/* Normal rounding mode.  */
133   ALPHA_FPRM_MINF,	/* Round towards minus-infinity.  */
134   ALPHA_FPRM_CHOP,	/* Chopped rounding mode (towards 0).  */
135   ALPHA_FPRM_DYN	/* Dynamic rounding mode.  */
136 };
137 
138 enum alpha_fp_trap_mode
139 {
140   ALPHA_FPTM_N,		/* Normal trap mode.  */
141   ALPHA_FPTM_U,		/* Underflow traps enabled.  */
142   ALPHA_FPTM_SU,	/* Software completion, w/underflow traps */
143   ALPHA_FPTM_SUI	/* Software completion, w/underflow & inexact traps */
144 };
145 
146 extern int target_flags;
147 
148 extern enum alpha_trap_precision alpha_tp;
149 extern enum alpha_fp_rounding_mode alpha_fprm;
150 extern enum alpha_fp_trap_mode alpha_fptm;
151 extern int alpha_tls_size;
152 
153 /* This means that floating-point support exists in the target implementation
154    of the Alpha architecture.  This is usually the default.  */
155 #define MASK_FP		(1 << 0)
156 #define TARGET_FP	(target_flags & MASK_FP)
157 
158 /* This means that floating-point registers are allowed to be used.  Note
159    that Alpha implementations without FP operations are required to
160    provide the FP registers.  */
161 
162 #define MASK_FPREGS	(1 << 1)
163 #define TARGET_FPREGS	(target_flags & MASK_FPREGS)
164 
165 /* This means that gas is used to process the assembler file.  */
166 
167 #define MASK_GAS	(1 << 2)
168 #define TARGET_GAS	(target_flags & MASK_GAS)
169 
170 /* This means that we should mark procedures as IEEE conformant.  */
171 
172 #define MASK_IEEE_CONFORMANT (1 << 3)
173 #define TARGET_IEEE_CONFORMANT	(target_flags & MASK_IEEE_CONFORMANT)
174 
175 /* This means we should be IEEE-compliant except for inexact.  */
176 
177 #define MASK_IEEE	(1 << 4)
178 #define TARGET_IEEE	(target_flags & MASK_IEEE)
179 
180 /* This means we should be fully IEEE-compliant.  */
181 
182 #define MASK_IEEE_WITH_INEXACT (1 << 5)
183 #define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
184 
185 /* This means we must construct all constants rather than emitting
186    them as literal data.  */
187 
188 #define MASK_BUILD_CONSTANTS (1 << 6)
189 #define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
190 
191 /* This means we handle floating points in VAX F- (float)
192    or G- (double) Format.  */
193 
194 #define MASK_FLOAT_VAX	(1 << 7)
195 #define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
196 
197 /* This means that the processor has byte and half word loads and stores
198    (the BWX extension).  */
199 
200 #define MASK_BWX	(1 << 8)
201 #define TARGET_BWX	(target_flags & MASK_BWX)
202 
203 /* This means that the processor has the MAX extension.  */
204 #define MASK_MAX	(1 << 9)
205 #define TARGET_MAX	(target_flags & MASK_MAX)
206 
207 /* This means that the processor has the FIX extension.  */
208 #define MASK_FIX	(1 << 10)
209 #define TARGET_FIX	(target_flags & MASK_FIX)
210 
211 /* This means that the processor has the CIX extension.  */
212 #define MASK_CIX	(1 << 11)
213 #define TARGET_CIX	(target_flags & MASK_CIX)
214 
215 /* This means use !literal style explicit relocations.  */
216 #define MASK_EXPLICIT_RELOCS (1 << 12)
217 #define TARGET_EXPLICIT_RELOCS (target_flags & MASK_EXPLICIT_RELOCS)
218 
219 /* This means use 16-bit relocations to .sdata/.sbss.  */
220 #define MASK_SMALL_DATA (1 << 13)
221 #define TARGET_SMALL_DATA (target_flags & MASK_SMALL_DATA)
222 
223 /* This means emit thread pointer loads for kernel not user.  */
224 #define MASK_TLS_KERNEL	(1 << 14)
225 #define TARGET_TLS_KERNEL (target_flags & MASK_TLS_KERNEL)
226 
227 /* This means use IEEE quad-format for long double.  Assumes the
228    presence of the GEM support library routines.  */
229 #define MASK_LONG_DOUBLE_128 (1 << 16)
230 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
231 
232 /* This means that the processor is an EV5, EV56, or PCA56.
233    Unlike alpha_cpu this is not affected by -mtune= setting.  */
234 #define MASK_CPU_EV5	(1 << 28)
235 #define TARGET_CPU_EV5	(target_flags & MASK_CPU_EV5)
236 
237 /* Likewise for EV6.  */
238 #define MASK_CPU_EV6	(1 << 29)
239 #define TARGET_CPU_EV6	(target_flags & MASK_CPU_EV6)
240 
241 /* This means we support the .arch directive in the assembler.  Only
242    defined in TARGET_CPU_DEFAULT.  */
243 #define MASK_SUPPORT_ARCH (1 << 30)
244 #define TARGET_SUPPORT_ARCH	(target_flags & MASK_SUPPORT_ARCH)
245 
246 /* These are for target os support and cannot be changed at runtime.  */
247 #define TARGET_ABI_WINDOWS_NT 0
248 #define TARGET_ABI_OPEN_VMS 0
249 #define TARGET_ABI_UNICOSMK 0
250 #define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT	\
251 			&& !TARGET_ABI_OPEN_VMS	\
252 			&& !TARGET_ABI_UNICOSMK)
253 
254 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
255 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
256 #endif
257 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
258 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
259 #endif
260 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
261 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
262 #endif
263 #ifndef TARGET_HAS_XFLOATING_LIBS
264 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
265 #endif
266 #ifndef TARGET_PROFILING_NEEDS_GP
267 #define TARGET_PROFILING_NEEDS_GP 0
268 #endif
269 #ifndef TARGET_LD_BUGGY_LDGP
270 #define TARGET_LD_BUGGY_LDGP 0
271 #endif
272 #ifndef TARGET_FIXUP_EV5_PREFETCH
273 #define TARGET_FIXUP_EV5_PREFETCH 0
274 #endif
275 #ifndef HAVE_AS_TLS
276 #define HAVE_AS_TLS 0
277 #endif
278 
279 /* Macro to define tables used to set the flags.
280    This is a list in braces of pairs in braces,
281    each pair being { "NAME", VALUE }
282    where VALUE is the bits to set or minus the bits to clear.
283    An empty string NAME is used to identify the default VALUE.  */
284 
285 #define TARGET_SWITCHES							\
286   { {"no-soft-float", MASK_FP, N_("Use hardware fp")},			\
287     {"soft-float", - MASK_FP, N_("Do not use hardware fp")},		\
288     {"fp-regs", MASK_FPREGS, N_("Use fp registers")},			\
289     {"no-fp-regs", - (MASK_FP|MASK_FPREGS),				\
290      N_("Do not use fp registers")},					\
291     {"alpha-as", -MASK_GAS, N_("Do not assume GAS")},			\
292     {"gas", MASK_GAS, N_("Assume GAS")},				\
293     {"ieee-conformant", MASK_IEEE_CONFORMANT,				\
294      N_("Request IEEE-conformant math library routines (OSF/1)")},	\
295     {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT,				\
296      N_("Emit IEEE-conformant code, without inexact exceptions")},	\
297     {"no-ieee", - (MASK_IEEE|MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT), \
298      N_("Emit non-IEEE-conformant code")},				\
299     {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT,	\
300      N_("Emit IEEE-conformant code, with inexact exceptions")},		\
301     {"build-constants", MASK_BUILD_CONSTANTS,				\
302      N_("Do not emit complex integer constants to read-only memory")},	\
303     {"float-vax", MASK_FLOAT_VAX, N_("Use VAX fp")},			\
304     {"float-ieee", -MASK_FLOAT_VAX, N_("Do not use VAX fp")},		\
305     {"bwx", MASK_BWX, N_("Emit code for the byte/word ISA extension")},	\
306     {"no-bwx", -MASK_BWX, ""},						\
307     {"max", MASK_MAX,							\
308      N_("Emit code for the motion video ISA extension")},		\
309     {"no-max", -MASK_MAX, ""},						\
310     {"fix", MASK_FIX,							\
311      N_("Emit code for the fp move and sqrt ISA extension")}, 		\
312     {"no-fix", -MASK_FIX, ""},						\
313     {"cix", MASK_CIX, N_("Emit code for the counting ISA extension")},	\
314     {"no-cix", -MASK_CIX, ""},						\
315     {"explicit-relocs", MASK_EXPLICIT_RELOCS,				\
316      N_("Emit code using explicit relocation directives")},		\
317     {"no-explicit-relocs", -MASK_EXPLICIT_RELOCS, ""},			\
318     {"small-data", MASK_SMALL_DATA,					\
319      N_("Emit 16-bit relocations to the small data areas")},		\
320     {"large-data", -MASK_SMALL_DATA,					\
321      N_("Emit 32-bit relocations to the small data areas")},		\
322     {"tls-kernel", MASK_TLS_KERNEL,					\
323      N_("Emit rdval instead of rduniq for thread pointer")},		\
324     {"long-double-128", MASK_LONG_DOUBLE_128,				\
325      N_("Use 128-bit long double")},					\
326     {"long-double-64", -MASK_LONG_DOUBLE_128,				\
327      N_("Use 64-bit long double")},					\
328     {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT				\
329 	 | TARGET_DEFAULT_EXPLICIT_RELOCS, ""} }
330 
331 #define TARGET_DEFAULT MASK_FP|MASK_FPREGS
332 
333 #ifndef TARGET_CPU_DEFAULT
334 #define TARGET_CPU_DEFAULT 0
335 #endif
336 
337 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
338 #ifdef HAVE_AS_EXPLICIT_RELOCS
339 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
340 #else
341 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
342 #endif
343 #endif
344 
345 extern const char *alpha_cpu_string;	/* For -mcpu= */
346 extern const char *alpha_tune_string;	/* For -mtune= */
347 extern const char *alpha_fprm_string;	/* For -mfp-rounding-mode=[n|m|c|d] */
348 extern const char *alpha_fptm_string;	/* For -mfp-trap-mode=[n|u|su|sui]  */
349 extern const char *alpha_tp_string;	/* For -mtrap-precision=[p|f|i] */
350 extern const char *alpha_mlat_string;	/* For -mmemory-latency= */
351 extern const char *alpha_tls_size_string; /* For -mtls-size= */
352 
353 #define TARGET_OPTIONS					\
354 {							\
355   {"cpu=",		&alpha_cpu_string,		\
356    N_("Use features of and schedule given CPU")},	\
357   {"tune=",		&alpha_tune_string,		\
358    N_("Schedule given CPU")},				\
359   {"fp-rounding-mode=",	&alpha_fprm_string,		\
360    N_("Control the generated fp rounding mode")},	\
361   {"fp-trap-mode=",	&alpha_fptm_string,		\
362    N_("Control the IEEE trap mode")},			\
363   {"trap-precision=",	&alpha_tp_string,		\
364    N_("Control the precision given to fp exceptions")},	\
365   {"memory-latency=",	&alpha_mlat_string,		\
366    N_("Tune expected memory latency")},			\
367   {"tls-size=",		&alpha_tls_size_string,		\
368    N_("Specify bit size of immediate TLS offsets")},	\
369 }
370 
371 /* This macro defines names of additional specifications to put in the
372    specs that can be used in various specifications like CC1_SPEC.  Its
373    definition is an initializer with a subgrouping for each command option.
374 
375    Each subgrouping contains a string constant, that defines the
376    specification name, and a string constant that used by the GNU CC driver
377    program.
378 
379    Do not define this macro if it does not need to do anything.  */
380 
381 #ifndef SUBTARGET_EXTRA_SPECS
382 #define SUBTARGET_EXTRA_SPECS
383 #endif
384 
385 #define EXTRA_SPECS				\
386   { "cpp_subtarget", CPP_SUBTARGET_SPEC },	\
387   SUBTARGET_EXTRA_SPECS
388 
389 
390 /* Sometimes certain combinations of command options do not make sense
391    on a particular target machine.  You can define a macro
392    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
393    defined, is executed once just after all the command options have
394    been parsed.
395 
396    On the Alpha, it is used to translate target-option strings into
397    numeric values.  */
398 
399 #define OVERRIDE_OPTIONS override_options ()
400 
401 
402 /* Define this macro to change register usage conditional on target flags.
403 
404    On the Alpha, we use this to disable the floating-point registers when
405    they don't exist.  */
406 
407 #define CONDITIONAL_REGISTER_USAGE		\
408 {						\
409   int i;					\
410   if (! TARGET_FPREGS)				\
411     for (i = 32; i < 63; i++)			\
412       fixed_regs[i] = call_used_regs[i] = 1;	\
413 }
414 
415 
416 /* Show we can debug even without a frame pointer.  */
417 #define CAN_DEBUG_WITHOUT_FP
418 
419 /* target machine storage layout */
420 
421 /* Define the size of `int'.  The default is the same as the word size.  */
422 #define INT_TYPE_SIZE 32
423 
424 /* Define the size of `long long'.  The default is the twice the word size.  */
425 #define LONG_LONG_TYPE_SIZE 64
426 
427 /* We're IEEE unless someone says to use VAX.  */
428 #define TARGET_FLOAT_FORMAT \
429   (TARGET_FLOAT_VAX ? VAX_FLOAT_FORMAT : IEEE_FLOAT_FORMAT)
430 
431 /* The two floating-point formats we support are S-floating, which is
432    4 bytes, and T-floating, which is 8 bytes.  `float' is S and `double'
433    and `long double' are T.  */
434 
435 #define FLOAT_TYPE_SIZE 32
436 #define DOUBLE_TYPE_SIZE 64
437 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
438 
439 /* Define this to set long double type size to use in libgcc2.c, which can
440    not depend on target_flags.  */
441 #ifdef __LONG_DOUBLE_128__
442 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
443 #else
444 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
445 #endif
446 
447 /* Work around target_flags dependency in ada/targtyps.c.  */
448 #define WIDEST_HARDWARE_FP_SIZE 64
449 
450 #define	WCHAR_TYPE "unsigned int"
451 #define	WCHAR_TYPE_SIZE 32
452 
453 /* Define this macro if it is advisable to hold scalars in registers
454    in a wider mode than that declared by the program.  In such cases,
455    the value is constrained to be within the bounds of the declared
456    type, but kept valid in the wider mode.  The signedness of the
457    extension may differ from that of the type.
458 
459    For Alpha, we always store objects in a full register.  32-bit objects
460    are always sign-extended, but smaller objects retain their signedness.  */
461 
462 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
463   if (GET_MODE_CLASS (MODE) == MODE_INT		\
464       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
465     {						\
466       if ((MODE) == SImode)			\
467 	(UNSIGNEDP) = 0;			\
468       (MODE) = DImode;				\
469     }
470 
471 /* Define this if function arguments should also be promoted using the above
472    procedure.  */
473 
474 #define PROMOTE_FUNCTION_ARGS
475 
476 /* Likewise, if the function return value is promoted.  */
477 
478 #define PROMOTE_FUNCTION_RETURN
479 
480 /* Define this if most significant bit is lowest numbered
481    in instructions that operate on numbered bit-fields.
482 
483    There are no such instructions on the Alpha, but the documentation
484    is little endian.  */
485 #define BITS_BIG_ENDIAN 0
486 
487 /* Define this if most significant byte of a word is the lowest numbered.
488    This is false on the Alpha.  */
489 #define BYTES_BIG_ENDIAN 0
490 
491 /* Define this if most significant word of a multiword number is lowest
492    numbered.
493 
494    For Alpha we can decide arbitrarily since there are no machine instructions
495    for them.  Might as well be consistent with bytes.  */
496 #define WORDS_BIG_ENDIAN 0
497 
498 /* Width of a word, in units (bytes).  */
499 #define UNITS_PER_WORD 8
500 
501 /* Width in bits of a pointer.
502    See also the macro `Pmode' defined below.  */
503 #define POINTER_SIZE 64
504 
505 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
506 #define PARM_BOUNDARY 64
507 
508 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
509 #define STACK_BOUNDARY 128
510 
511 /* Allocation boundary (in *bits*) for the code of a function.  */
512 #define FUNCTION_BOUNDARY 32
513 
514 /* Alignment of field after `int : 0' in a structure.  */
515 #define EMPTY_FIELD_BOUNDARY 64
516 
517 /* Every structure's size must be a multiple of this.  */
518 #define STRUCTURE_SIZE_BOUNDARY 8
519 
520 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
521 #define PCC_BITFIELD_TYPE_MATTERS 1
522 
523 /* No data type wants to be aligned rounder than this.  */
524 #define BIGGEST_ALIGNMENT 128
525 
526 /* For atomic access to objects, must have at least 32-bit alignment
527    unless the machine has byte operations.  */
528 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
529 
530 /* Align all constants and variables to at least a word boundary so
531    we can pick up pieces of them faster.  */
532 /* ??? Only if block-move stuff knows about different source/destination
533    alignment.  */
534 #if 0
535 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
536 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
537 #endif
538 
539 /* Set this nonzero if move instructions will actually fail to work
540    when given unaligned data.
541 
542    Since we get an error message when we do one, call them invalid.  */
543 
544 #define STRICT_ALIGNMENT 1
545 
546 /* Set this nonzero if unaligned move instructions are extremely slow.
547 
548    On the Alpha, they trap.  */
549 
550 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
551 
552 /* Standard register usage.  */
553 
554 /* Number of actual hardware registers.
555    The hardware registers are assigned numbers for the compiler
556    from 0 to just below FIRST_PSEUDO_REGISTER.
557    All registers that the compiler knows about must be given numbers,
558    even those that are not normally considered general registers.
559 
560    We define all 32 integer registers, even though $31 is always zero,
561    and all 32 floating-point registers, even though $f31 is also
562    always zero.  We do not bother defining the FP status register and
563    there are no other registers.
564 
565    Since $31 is always zero, we will use register number 31 as the
566    argument pointer.  It will never appear in the generated code
567    because we will always be eliminating it in favor of the stack
568    pointer or hardware frame pointer.
569 
570    Likewise, we use $f31 for the frame pointer, which will always
571    be eliminated in favor of the hardware frame pointer or the
572    stack pointer.  */
573 
574 #define FIRST_PSEUDO_REGISTER 64
575 
576 /* 1 for registers that have pervasive standard uses
577    and are not available for the register allocator.  */
578 
579 #define FIXED_REGISTERS  \
580  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
581   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
582   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
583   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
584 
585 /* 1 for registers not available across function calls.
586    These must include the FIXED_REGISTERS and also any
587    registers that can be used without being saved.
588    The latter must include the registers where values are returned
589    and the register where structure-value addresses are passed.
590    Aside from that, you can include as many other registers as you like.  */
591 #define CALL_USED_REGISTERS  \
592  {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
593   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
594   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
595   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
596 
597 /* List the order in which to allocate registers.  Each register must be
598    listed once, even those in FIXED_REGISTERS.
599 
600    We allocate in the following order:
601    $f10-$f15		(nonsaved floating-point register)
602    $f22-$f30		(likewise)
603    $f21-$f16		(likewise, but input args)
604    $f0			(nonsaved, but return value)
605    $f1			(nonsaved, but immediate before saved)
606    $f2-$f9		(saved floating-point registers)
607    $1-$8		(nonsaved integer registers)
608    $22-$25		(likewise)
609    $28			(likewise)
610    $0			(likewise, but return value)
611    $21-$16		(likewise, but input args)
612    $27			(procedure value in OSF, nonsaved in NT)
613    $9-$14		(saved integer registers)
614    $26			(return PC)
615    $15			(frame pointer)
616    $29			(global pointer)
617    $30, $31, $f31	(stack pointer and always zero/ap & fp)  */
618 
619 #define REG_ALLOC_ORDER		\
620   {42, 43, 44, 45, 46, 47,		\
621    54, 55, 56, 57, 58, 59, 60, 61, 62,	\
622    53, 52, 51, 50, 49, 48,		\
623    32, 33,				\
624    34, 35, 36, 37, 38, 39, 40, 41,	\
625    1, 2, 3, 4, 5, 6, 7, 8,		\
626    22, 23, 24, 25,			\
627    28,					\
628    0,					\
629    21, 20, 19, 18, 17, 16,		\
630    27,					\
631    9, 10, 11, 12, 13, 14,		\
632    26,					\
633    15,					\
634    29,					\
635    30, 31, 63 }
636 
637 /* Return number of consecutive hard regs needed starting at reg REGNO
638    to hold something of mode MODE.
639    This is ordinarily the length in words of a value of mode MODE
640    but can be less for certain modes in special long registers.  */
641 
642 #define HARD_REGNO_NREGS(REGNO, MODE)   \
643   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
644 
645 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
646    On Alpha, the integer registers can hold any mode.  The floating-point
647    registers can hold 64-bit integers as well, but not smaller values.  */
648 
649 #define HARD_REGNO_MODE_OK(REGNO, MODE) 				\
650   ((REGNO) >= 32 && (REGNO) <= 62 					\
651    ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode		\
652      || (MODE) == SCmode || (MODE) == DCmode				\
653    : 1)
654 
655 /* Value is 1 if MODE is a supported vector mode.  */
656 
657 #define VECTOR_MODE_SUPPORTED_P(MODE) \
658   (TARGET_MAX \
659    && ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode))
660 
661 /* A C expression that is nonzero if a value of mode
662    MODE1 is accessible in mode MODE2 without copying.
663 
664    This asymmetric test is true when MODE1 could be put
665    in an FP register but MODE2 could not.  */
666 
667 #define MODES_TIEABLE_P(MODE1, MODE2) 				\
668   (HARD_REGNO_MODE_OK (32, (MODE1))				\
669    ? HARD_REGNO_MODE_OK (32, (MODE2))				\
670    : 1)
671 
672 /* Specify the registers used for certain standard purposes.
673    The values of these macros are register numbers.  */
674 
675 /* Alpha pc isn't overloaded on a register that the compiler knows about.  */
676 /* #define PC_REGNUM  */
677 
678 /* Register to use for pushing function arguments.  */
679 #define STACK_POINTER_REGNUM 30
680 
681 /* Base register for access to local variables of the function.  */
682 #define HARD_FRAME_POINTER_REGNUM 15
683 
684 /* Value should be nonzero if functions must have frame pointers.
685    Zero means the frame pointer need not be set up (and parms
686    may be accessed via the stack pointer) in functions that seem suitable.
687    This is computed in `reload', in reload1.c.  */
688 #define FRAME_POINTER_REQUIRED 0
689 
690 /* Base register for access to arguments of the function.  */
691 #define ARG_POINTER_REGNUM 31
692 
693 /* Base register for access to local variables of function.  */
694 #define FRAME_POINTER_REGNUM 63
695 
696 /* Register in which static-chain is passed to a function.
697 
698    For the Alpha, this is based on an example; the calling sequence
699    doesn't seem to specify this.  */
700 #define STATIC_CHAIN_REGNUM 1
701 
702 /* The register number of the register used to address a table of
703    static data addresses in memory.  */
704 #define PIC_OFFSET_TABLE_REGNUM 29
705 
706 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
707    is clobbered by calls.  */
708 /* ??? It is and it isn't.  It's required to be valid for a given
709    function when the function returns.  It isn't clobbered by
710    current_file functions.  Moreover, we do not expose the ldgp
711    until after reload, so we're probably safe.  */
712 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
713 
714 /* Register in which address to store a structure value
715    arrives in the function.  On the Alpha, the address is passed
716    as a hidden argument.  */
717 #define STRUCT_VALUE 0
718 
719 /* Define the classes of registers for register constraints in the
720    machine description.  Also define ranges of constants.
721 
722    One of the classes must always be named ALL_REGS and include all hard regs.
723    If there is more than one class, another class must be named NO_REGS
724    and contain no registers.
725 
726    The name GENERAL_REGS must be the name of a class (or an alias for
727    another name such as ALL_REGS).  This is the class of registers
728    that is allowed by "g" or "r" in a register constraint.
729    Also, registers outside this class are allocated only when
730    instructions express preferences for them.
731 
732    The classes must be numbered in nondecreasing order; that is,
733    a larger-numbered class must never be contained completely
734    in a smaller-numbered class.
735 
736    For any two classes, it is very desirable that there be another
737    class that represents their union.  */
738 
739 enum reg_class {
740   NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
741   GENERAL_REGS, FLOAT_REGS, ALL_REGS,
742   LIM_REG_CLASSES
743 };
744 
745 #define N_REG_CLASSES (int) LIM_REG_CLASSES
746 
747 /* Give names of register classes as strings for dump file.  */
748 
749 #define REG_CLASS_NAMES					\
750  {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG",	\
751   "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
752 
753 /* Define which registers fit in which classes.
754    This is an initializer for a vector of HARD_REG_SET
755    of length N_REG_CLASSES.  */
756 
757 #define REG_CLASS_CONTENTS				\
758 { {0x00000000, 0x00000000},	/* NO_REGS */		\
759   {0x00000001, 0x00000000},	/* R0_REG */		\
760   {0x01000000, 0x00000000},	/* R24_REG */		\
761   {0x02000000, 0x00000000},	/* R25_REG */		\
762   {0x08000000, 0x00000000},	/* R27_REG */		\
763   {0xffffffff, 0x80000000},	/* GENERAL_REGS */	\
764   {0x00000000, 0x7fffffff},	/* FLOAT_REGS */	\
765   {0xffffffff, 0xffffffff} }
766 
767 /* The same information, inverted:
768    Return the class number of the smallest class containing
769    reg number REGNO.  This could be a conditional expression
770    or could index an array.  */
771 
772 #define REGNO_REG_CLASS(REGNO)			\
773  ((REGNO) == 0 ? R0_REG				\
774   : (REGNO) == 24 ? R24_REG			\
775   : (REGNO) == 25 ? R25_REG			\
776   : (REGNO) == 27 ? R27_REG			\
777   : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS	\
778   : GENERAL_REGS)
779 
780 /* The class value for index registers, and the one for base regs.  */
781 #define INDEX_REG_CLASS NO_REGS
782 #define BASE_REG_CLASS GENERAL_REGS
783 
784 /* Get reg_class from a letter such as appears in the machine description.  */
785 
786 #define REG_CLASS_FROM_LETTER(C)	\
787  ((C) == 'a' ? R24_REG			\
788   : (C) == 'b' ? R25_REG		\
789   : (C) == 'c' ? R27_REG		\
790   : (C) == 'f' ? FLOAT_REGS		\
791   : (C) == 'v' ? R0_REG			\
792   : NO_REGS)
793 
794 /* Define this macro to change register usage conditional on target flags.  */
795 /* #define CONDITIONAL_REGISTER_USAGE  */
796 
797 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
798    can be used to stand for particular ranges of immediate operands.
799    This macro defines what the ranges are.
800    C is the letter, and VALUE is a constant value.
801    Return 1 if VALUE is in the range specified by C.
802 
803    For Alpha:
804    `I' is used for the range of constants most insns can contain.
805    `J' is the constant zero.
806    `K' is used for the constant in an LDA insn.
807    `L' is used for the constant in a LDAH insn.
808    `M' is used for the constants that can be AND'ed with using a ZAP insn.
809    `N' is used for complemented 8-bit constants.
810    `O' is used for negated 8-bit constants.
811    `P' is used for the constants 1, 2 and 3.  */
812 
813 #define CONST_OK_FOR_LETTER_P   alpha_const_ok_for_letter_p
814 
815 /* Similar, but for floating or large integer constants, and defining letters
816    G and H.   Here VALUE is the CONST_DOUBLE rtx itself.
817 
818    For Alpha, `G' is the floating-point constant zero.  `H' is a CONST_DOUBLE
819    that is the operand of a ZAP insn.  */
820 
821 #define CONST_DOUBLE_OK_FOR_LETTER_P  alpha_const_double_ok_for_letter_p
822 
823 /* Optional extra constraints for this machine.
824 
825    For the Alpha, `Q' means that this is a memory operand but not a
826    reference to an unaligned location.
827 
828    `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
829    function.
830 
831    'S' is a 6-bit constant (valid for a shift insn).
832 
833    'T' is a HIGH.
834 
835    'U' is a symbolic operand.
836 
837    'W' is a vector zero.   */
838 
839 #define EXTRA_CONSTRAINT  alpha_extra_constraint
840 
841 /* Given an rtx X being reloaded into a reg required to be
842    in class CLASS, return the class of reg to actually use.
843    In general this is just CLASS; but on some machines
844    in some cases it is preferable to use a more restrictive class.  */
845 
846 #define PREFERRED_RELOAD_CLASS  alpha_preferred_reload_class
847 
848 /* Loading and storing HImode or QImode values to and from memory
849    usually requires a scratch register.  The exceptions are loading
850    QImode and HImode from an aligned address to a general register
851    unless byte instructions are permitted.
852    We also cannot load an unaligned address or a paradoxical SUBREG into an
853    FP register.  */
854 
855 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
856   secondary_reload_class((CLASS), (MODE), (IN), 1)
857 
858 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
859   secondary_reload_class((CLASS), (MODE), (OUT), 0)
860 
861 /* If we are copying between general and FP registers, we need a memory
862    location unless the FIX extension is available.  */
863 
864 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
865  (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
866                    || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
867 
868 /* Specify the mode to be used for memory when a secondary memory
869    location is needed.  If MODE is floating-point, use it.  Otherwise,
870    widen to a word like the default.  This is needed because we always
871    store integers in FP registers in quadword format.  This whole
872    area is very tricky! */
873 #define SECONDARY_MEMORY_NEEDED_MODE(MODE)		\
874   (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE)		\
875    : GET_MODE_SIZE (MODE) >= 4 ? (MODE)			\
876    : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
877 
878 /* Return the maximum number of consecutive registers
879    needed to represent mode MODE in a register of class CLASS.  */
880 
881 #define CLASS_MAX_NREGS(CLASS, MODE)				\
882  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
883 
884 /* Return the class of registers that cannot change mode from FROM to TO.  */
885 
886 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
887   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)			\
888    ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
889 
890 /* Define the cost of moving between registers of various classes.  Moving
891    between FLOAT_REGS and anything else except float regs is expensive.
892    In fact, we make it quite expensive because we really don't want to
893    do these moves unless it is clearly worth it.  Optimizations may
894    reduce the impact of not being able to allocate a pseudo to a
895    hard register.  */
896 
897 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)	\
898   (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS)	\
899    ? 2							\
900    : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
901 
902 /* A C expressions returning the cost of moving data of MODE from a register to
903    or from memory.
904 
905    On the Alpha, bump this up a bit.  */
906 
907 extern int alpha_memory_latency;
908 #define MEMORY_MOVE_COST(MODE,CLASS,IN)  (2*alpha_memory_latency)
909 
910 /* Provide the cost of a branch.  Exact meaning under development.  */
911 #define BRANCH_COST 5
912 
913 /* Stack layout; function entry, exit and calling.  */
914 
915 /* Define this if pushing a word on the stack
916    makes the stack pointer a smaller address.  */
917 #define STACK_GROWS_DOWNWARD
918 
919 /* Define this if the nominal address of the stack frame
920    is at the high-address end of the local variables;
921    that is, each additional local variable allocated
922    goes at a more negative offset in the frame.  */
923 /* #define FRAME_GROWS_DOWNWARD */
924 
925 /* Offset within stack frame to start allocating local variables at.
926    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
927    first local allocated.  Otherwise, it is the offset to the BEGINNING
928    of the first local allocated.  */
929 
930 #define STARTING_FRAME_OFFSET 0
931 
932 /* If we generate an insn to push BYTES bytes,
933    this says how many the stack pointer really advances by.
934    On Alpha, don't define this because there are no push insns.  */
935 /*  #define PUSH_ROUNDING(BYTES) */
936 
937 /* Define this to be nonzero if stack checking is built into the ABI.  */
938 #define STACK_CHECK_BUILTIN 1
939 
940 /* Define this if the maximum size of all the outgoing args is to be
941    accumulated and pushed during the prologue.  The amount can be
942    found in the variable current_function_outgoing_args_size.  */
943 #define ACCUMULATE_OUTGOING_ARGS 1
944 
945 /* Offset of first parameter from the argument pointer register value.  */
946 
947 #define FIRST_PARM_OFFSET(FNDECL) 0
948 
949 /* Definitions for register eliminations.
950 
951    We have two registers that can be eliminated on the Alpha.  First, the
952    frame pointer register can often be eliminated in favor of the stack
953    pointer register.  Secondly, the argument pointer register can always be
954    eliminated; it is replaced with either the stack or frame pointer.  */
955 
956 /* This is an array of structures.  Each structure initializes one pair
957    of eliminable registers.  The "from" register number is given first,
958    followed by "to".  Eliminations of the same "from" register are listed
959    in order of preference.  */
960 
961 #define ELIMINABLE_REGS				     \
962 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
963  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
964  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
965  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
966 
967 /* Given FROM and TO register numbers, say whether this elimination is allowed.
968    Frame pointer elimination is automatically handled.
969 
970    All eliminations are valid since the cases where FP can't be
971    eliminated are already handled.  */
972 
973 #define CAN_ELIMINATE(FROM, TO) 1
974 
975 /* Round up to a multiple of 16 bytes.  */
976 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
977 
978 /* Define the offset between two registers, one to be eliminated, and the other
979    its replacement, at the start of a routine.  */
980 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
981 { if ((FROM) == FRAME_POINTER_REGNUM)					\
982     (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size)	\
983 		+ alpha_sa_size ());					\
984   else if ((FROM) == ARG_POINTER_REGNUM)				\
985     (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size)	\
986 		+ alpha_sa_size ()					\
987 		+ (ALPHA_ROUND (get_frame_size ()			\
988 			       + current_function_pretend_args_size)	\
989 		   - current_function_pretend_args_size));		\
990   else									\
991     abort ();								\
992 }
993 
994 /* Define this if stack space is still allocated for a parameter passed
995    in a register.  */
996 /* #define REG_PARM_STACK_SPACE */
997 
998 /* Value is the number of bytes of arguments automatically
999    popped when returning from a subroutine call.
1000    FUNDECL is the declaration node of the function (as a tree),
1001    FUNTYPE is the data type of the function (as a tree),
1002    or for a library call it is an identifier node for the subroutine name.
1003    SIZE is the number of bytes of arguments passed on the stack.  */
1004 
1005 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1006 
1007 /* Define how to find the value returned by a function.
1008    VALTYPE is the data type of the value (as a tree).
1009    If the precise function being called is known, FUNC is its FUNCTION_DECL;
1010    otherwise, FUNC is 0.
1011 
1012    On Alpha the value is found in $0 for integer functions and
1013    $f0 for floating-point functions.  */
1014 
1015 #define FUNCTION_VALUE(VALTYPE, FUNC)	\
1016   gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE)			\
1017 		 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD)	\
1018 		|| POINTER_TYPE_P (VALTYPE))			\
1019 	       ? word_mode : TYPE_MODE (VALTYPE),		\
1020 	       ((TARGET_FPREGS					\
1021 		 && (TREE_CODE (VALTYPE) == REAL_TYPE		\
1022 		     || TREE_CODE (VALTYPE) == COMPLEX_TYPE))	\
1023 		? 32 : 0))
1024 
1025 /* Define how to find the value returned by a library function
1026    assuming the value has mode MODE.  */
1027 
1028 #define LIBCALL_VALUE(MODE)	\
1029    gen_rtx_REG (MODE,						\
1030 		(TARGET_FPREGS					\
1031 		 && (GET_MODE_CLASS (MODE) == MODE_FLOAT	\
1032 		     || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1033 		 ? 32 : 0))
1034 
1035 /* The definition of this macro implies that there are cases where
1036    a scalar value cannot be returned in registers.
1037 
1038    For the Alpha, any structure or union type is returned in memory, as
1039    are integers whose size is larger than 64 bits.  */
1040 
1041 #define RETURN_IN_MEMORY(TYPE) \
1042   (TYPE_MODE (TYPE) == BLKmode \
1043    || TYPE_MODE (TYPE) == TFmode \
1044    || TYPE_MODE (TYPE) == TCmode \
1045    || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1046 
1047 /* 1 if N is a possible register number for a function value
1048    as seen by the caller.  */
1049 
1050 #define FUNCTION_VALUE_REGNO_P(N)  \
1051   ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1052 
1053 /* 1 if N is a possible register number for function argument passing.
1054    On Alpha, these are $16-$21 and $f16-$f21.  */
1055 
1056 #define FUNCTION_ARG_REGNO_P(N) \
1057   (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1058 
1059 /* Define a data type for recording info about an argument list
1060    during the scan of that argument list.  This data type should
1061    hold all necessary information about the function itself
1062    and about the args processed so far, enough to enable macros
1063    such as FUNCTION_ARG to determine where the next arg should go.
1064 
1065    On Alpha, this is a single integer, which is a number of words
1066    of arguments scanned so far.
1067    Thus 6 or more means all following args should go on the stack.  */
1068 
1069 #define CUMULATIVE_ARGS int
1070 
1071 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1072    for a call to a function whose data type is FNTYPE.
1073    For a library call, FNTYPE is 0.  */
1074 
1075 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)  (CUM) = 0
1076 
1077 /* Define intermediate macro to compute the size (in registers) of an argument
1078    for the Alpha.  */
1079 
1080 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED)				\
1081   ((MODE) == TFmode || (MODE) == TCmode ? 1				\
1082    : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1083       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1084 
1085 /* Update the data in CUM to advance over an argument
1086    of mode MODE and data type TYPE.
1087    (TYPE is null for libcalls where that information may not be available.)  */
1088 
1089 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
1090   if (MUST_PASS_IN_STACK (MODE, TYPE))					\
1091     (CUM) = 6;								\
1092   else									\
1093     (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1094 
1095 /* Determine where to put an argument to a function.
1096    Value is zero to push the argument on the stack,
1097    or a hard register in which to store the argument.
1098 
1099    MODE is the argument's machine mode.
1100    TYPE is the data type of the argument (as a tree).
1101     This is null for libcalls where that information may
1102     not be available.
1103    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1104     the preceding args and about the function being called.
1105    NAMED is nonzero if this argument is a named parameter
1106     (otherwise it is an extra parameter matching an ellipsis).
1107 
1108    On Alpha the first 6 words of args are normally in registers
1109    and the rest are pushed.  */
1110 
1111 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)	\
1112   function_arg((CUM), (MODE), (TYPE), (NAMED))
1113 
1114 /* A C expression that indicates when an argument must be passed by
1115    reference.  If nonzero for an argument, a copy of that argument is
1116    made in memory and a pointer to the argument is passed instead of
1117    the argument itself.  The pointer is passed in whatever way is
1118    appropriate for passing a pointer to that type.  */
1119 
1120 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1121   ((MODE) == TFmode || (MODE) == TCmode)
1122 
1123 /* Specify the padding direction of arguments.
1124 
1125    On the Alpha, we must pad upwards in order to be able to pass args in
1126    registers.  */
1127 
1128 #define FUNCTION_ARG_PADDING(MODE, TYPE)	upward
1129 
1130 /* For an arg passed partly in registers and partly in memory,
1131    this is the number of registers used.
1132    For args passed entirely in registers or entirely in memory, zero.  */
1133 
1134 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED)	\
1135 ((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED)	\
1136  ? 6 - (CUM) : 0)
1137 
1138 /* Perform any needed actions needed for a function that is receiving a
1139    variable number of arguments.
1140 
1141    CUM is as above.
1142 
1143    MODE and TYPE are the mode and type of the current parameter.
1144 
1145    PRETEND_SIZE is a variable that should be set to the amount of stack
1146    that must be pushed by the prolog to pretend that our caller pushed
1147    it.
1148 
1149    Normally, this macro will push all remaining incoming registers on the
1150    stack and set PRETEND_SIZE to the length of the registers pushed.
1151 
1152    On the Alpha, we allocate space for all 12 arg registers, but only
1153    push those that are remaining.
1154 
1155    However, if NO registers need to be saved, don't allocate any space.
1156    This is not only because we won't need the space, but because AP includes
1157    the current_pretend_args_size and we don't want to mess up any
1158    ap-relative addresses already made.
1159 
1160    If we are not to use the floating-point registers, save the integer
1161    registers where we would put the floating-point registers.  This is
1162    not the most efficient way to implement varargs with just one register
1163    class, but it isn't worth doing anything more efficient in this rare
1164    case.  */
1165 
1166 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL)	\
1167 { if ((CUM) < 6)							\
1168     {									\
1169       if (! (NO_RTL))							\
1170 	{								\
1171 	  rtx tmp; int set = get_varargs_alias_set ();			\
1172 	  tmp = gen_rtx_MEM (BLKmode,					\
1173 		             plus_constant (virtual_incoming_args_rtx,	\
1174 				            ((CUM) + 6)* UNITS_PER_WORD)); \
1175 	  set_mem_alias_set (tmp, set);					\
1176 	  move_block_from_reg						\
1177 	    (16 + CUM, tmp,						\
1178 	     6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD);			\
1179 									\
1180 	  tmp = gen_rtx_MEM (BLKmode,					\
1181 		             plus_constant (virtual_incoming_args_rtx,	\
1182 				            (CUM) * UNITS_PER_WORD));	\
1183 	  set_mem_alias_set (tmp, set);					\
1184 	  move_block_from_reg						\
1185 	    (16 + (TARGET_FPREGS ? 32 : 0) + CUM, tmp,			\
1186 	     6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD);			\
1187 	 }								\
1188       PRETEND_SIZE = 12 * UNITS_PER_WORD;				\
1189     }									\
1190 }
1191 
1192 /* We do not allow indirect calls to be optimized into sibling calls, nor
1193    can we allow a call to a function in a different compilation unit to
1194    be optimized into a sibcall.  */
1195 #define FUNCTION_OK_FOR_SIBCALL(DECL)			\
1196   (DECL							\
1197    && (! TREE_PUBLIC (DECL)				\
1198        || (TREE_ASM_WRITTEN (DECL) && (*targetm.binds_local_p) (DECL))))
1199 
1200 /* Try to output insns to set TARGET equal to the constant C if it can be
1201    done in less than N insns.  Do all computations in MODE.  Returns the place
1202    where the output has been placed if it can be done and the insns have been
1203    emitted.  If it would take more than N insns, zero is returned and no
1204    insns and emitted.  */
1205 
1206 /* Define the information needed to generate branch and scc insns.  This is
1207    stored from the compare operation.  Note that we can't use "rtx" here
1208    since it hasn't been defined!  */
1209 
1210 struct alpha_compare
1211 {
1212   struct rtx_def *op0, *op1;
1213   int fp_p;
1214 };
1215 
1216 extern struct alpha_compare alpha_compare;
1217 
1218 /* Make (or fake) .linkage entry for function call.
1219    IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.  */
1220 
1221 /* This macro defines the start of an assembly comment.  */
1222 
1223 #define ASM_COMMENT_START " #"
1224 
1225 /* This macro produces the initial definition of a function.  */
1226 
1227 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1228   alpha_start_function(FILE,NAME,DECL);
1229 
1230 /* This macro closes up a function definition for the assembler.  */
1231 
1232 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1233   alpha_end_function(FILE,NAME,DECL)
1234 
1235 /* Output any profiling code before the prologue.  */
1236 
1237 #define PROFILE_BEFORE_PROLOGUE 1
1238 
1239 /* Output assembler code to FILE to increment profiler label # LABELNO
1240    for profiling a function entry.  Under OSF/1, profiling is enabled
1241    by simply passing -pg to the assembler and linker.  */
1242 
1243 #define FUNCTION_PROFILER(FILE, LABELNO)
1244 
1245 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1246    the stack pointer does not matter.  The value is tested only in
1247    functions that have frame pointers.
1248    No definition is equivalent to always zero.  */
1249 
1250 #define EXIT_IGNORE_STACK 1
1251 
1252 /* Define registers used by the epilogue and return instruction.  */
1253 
1254 #define EPILOGUE_USES(REGNO)	((REGNO) == 26)
1255 
1256 /* Output assembler code for a block containing the constant parts
1257    of a trampoline, leaving space for the variable parts.
1258 
1259    The trampoline should set the static chain pointer to value placed
1260    into the trampoline and should branch to the specified routine.
1261    Note that $27 has been set to the address of the trampoline, so we can
1262    use it for addressability of the two data items.  */
1263 
1264 #define TRAMPOLINE_TEMPLATE(FILE)		\
1265 do {						\
1266   fprintf (FILE, "\tldq $1,24($27)\n");		\
1267   fprintf (FILE, "\tldq $27,16($27)\n");	\
1268   fprintf (FILE, "\tjmp $31,($27),0\n");	\
1269   fprintf (FILE, "\tnop\n");			\
1270   fprintf (FILE, "\t.quad 0,0\n");		\
1271 } while (0)
1272 
1273 /* Section in which to place the trampoline.  On Alpha, instructions
1274    may only be placed in a text segment.  */
1275 
1276 #define TRAMPOLINE_SECTION text_section
1277 
1278 /* Length in units of the trampoline for entering a nested function.  */
1279 
1280 #define TRAMPOLINE_SIZE    32
1281 
1282 /* The alignment of a trampoline, in bits.  */
1283 
1284 #define TRAMPOLINE_ALIGNMENT  64
1285 
1286 /* Emit RTL insns to initialize the variable parts of a trampoline.
1287    FNADDR is an RTX for the address of the function's pure code.
1288    CXT is an RTX for the static chain value for the function.  */
1289 
1290 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1291   alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
1292 
1293 /* A C expression whose value is RTL representing the value of the return
1294    address for the frame COUNT steps up from the current frame.
1295    FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1296    the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.  */
1297 
1298 #define RETURN_ADDR_RTX  alpha_return_addr
1299 
1300 /* Before the prologue, RA lives in $26.  */
1301 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 26)
1302 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
1303 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
1304 #define DWARF_ZERO_REG 31
1305 
1306 /* Describe how we implement __builtin_eh_return.  */
1307 #define EH_RETURN_DATA_REGNO(N)	((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1308 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 28)
1309 #define EH_RETURN_HANDLER_RTX \
1310   gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1311 				     current_function_outgoing_args_size))
1312 
1313 /* Addressing modes, and classification of registers for them.  */
1314 
1315 /* #define HAVE_POST_INCREMENT 0 */
1316 /* #define HAVE_POST_DECREMENT 0 */
1317 
1318 /* #define HAVE_PRE_DECREMENT 0 */
1319 /* #define HAVE_PRE_INCREMENT 0 */
1320 
1321 /* Macros to check register numbers against specific register classes.  */
1322 
1323 /* These assume that REGNO is a hard or pseudo reg number.
1324    They give nonzero only if REGNO is a hard reg of the suitable class
1325    or a pseudo reg currently allocated to a suitable hard reg.
1326    Since they use reg_renumber, they are safe only once reg_renumber
1327    has been allocated, which happens in local-alloc.c.  */
1328 
1329 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1330 #define REGNO_OK_FOR_BASE_P(REGNO) \
1331 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32  \
1332  || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1333 
1334 /* Maximum number of registers that can appear in a valid memory address.  */
1335 #define MAX_REGS_PER_ADDRESS 1
1336 
1337 /* Recognize any constant value that is a valid address.  For the Alpha,
1338    there are only constants none since we want to use LDA to load any
1339    symbolic addresses into registers.  */
1340 
1341 #define CONSTANT_ADDRESS_P(X)   \
1342   (GET_CODE (X) == CONST_INT	\
1343    && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1344 
1345 /* Include all constant integers and constant doubles, but not
1346    floating-point, except for floating-point zero.  */
1347 
1348 #define LEGITIMATE_CONSTANT_P(X)  		\
1349   (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT	\
1350    || (X) == CONST0_RTX (GET_MODE (X)))
1351 
1352 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1353    and check its validity for a certain class.
1354    We have two alternate definitions for each of them.
1355    The usual definition accepts all pseudo regs; the other rejects
1356    them unless they have been allocated suitable hard regs.
1357    The symbol REG_OK_STRICT causes the latter definition to be used.
1358 
1359    Most source files want to accept pseudo regs in the hope that
1360    they will get allocated to the class that the insn wants them to be in.
1361    Source files for reload pass need to be strict.
1362    After reload, it makes no difference, since pseudo regs have
1363    been eliminated by then.  */
1364 
1365 /* Nonzero if X is a hard reg that can be used as an index
1366    or if it is a pseudo reg.  */
1367 #define REG_OK_FOR_INDEX_P(X) 0
1368 
1369 /* Nonzero if X is a hard reg that can be used as a base reg
1370    or if it is a pseudo reg.  */
1371 #define NONSTRICT_REG_OK_FOR_BASE_P(X)  \
1372   (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1373 
1374 /* ??? Nonzero if X is the frame pointer, or some virtual register
1375    that may eliminate to the frame pointer.  These will be allowed to
1376    have offsets greater than 32K.  This is done because register
1377    elimination offsets will change the hi/lo split, and if we split
1378    before reload, we will require additional instructions.  */
1379 #define NONSTRICT_REG_OK_FP_BASE_P(X)		\
1380   (REGNO (X) == 31 || REGNO (X) == 63		\
1381    || (REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1382        && REGNO (X) < LAST_VIRTUAL_REGISTER))
1383 
1384 /* Nonzero if X is a hard reg that can be used as a base reg.  */
1385 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1386 
1387 #ifdef REG_OK_STRICT
1388 #define REG_OK_FOR_BASE_P(X)	STRICT_REG_OK_FOR_BASE_P (X)
1389 #else
1390 #define REG_OK_FOR_BASE_P(X)	NONSTRICT_REG_OK_FOR_BASE_P (X)
1391 #endif
1392 
1393 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1394    valid memory address for an instruction.  */
1395 
1396 #ifdef REG_OK_STRICT
1397 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)	\
1398 do {						\
1399   if (alpha_legitimate_address_p (MODE, X, 1))	\
1400     goto WIN;					\
1401 } while (0)
1402 #else
1403 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)	\
1404 do {						\
1405   if (alpha_legitimate_address_p (MODE, X, 0))	\
1406     goto WIN;					\
1407 } while (0)
1408 #endif
1409 
1410 /* Try machine-dependent ways of modifying an illegitimate address
1411    to be legitimate.  If we find one, return the new, valid address.
1412    This macro is used in only one place: `memory_address' in explow.c.  */
1413 
1414 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
1415 do {								\
1416   rtx new_x = alpha_legitimize_address (X, NULL_RTX, MODE);	\
1417   if (new_x)							\
1418     {								\
1419       X = new_x;						\
1420       goto WIN;							\
1421     }								\
1422 } while (0)
1423 
1424 /* Try a machine-dependent way of reloading an illegitimate address
1425    operand.  If we find one, push the reload and jump to WIN.  This
1426    macro is used in only one place: `find_reloads_address' in reload.c.  */
1427 
1428 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)		     \
1429 do {									     \
1430   rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
1431   if (new_x)								     \
1432     {									     \
1433       X = new_x;							     \
1434       goto WIN;								     \
1435     }									     \
1436 } while (0)
1437 
1438 /* Go to LABEL if ADDR (a legitimate address expression)
1439    has an effect that depends on the machine mode it is used for.
1440    On the Alpha this is true only for the unaligned modes.   We can
1441    simplify this test since we know that the address must be valid.  */
1442 
1443 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
1444 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1445 
1446 /* Compute the cost of an address.  For the Alpha, all valid addresses are
1447    the same cost.  */
1448 
1449 #define ADDRESS_COST(X)  0
1450 
1451 /* Machine-dependent reorg pass.  */
1452 #define MACHINE_DEPENDENT_REORG(X)	alpha_reorg(X)
1453 
1454 /* Specify the machine mode that this machine uses
1455    for the index in the tablejump instruction.  */
1456 #define CASE_VECTOR_MODE SImode
1457 
1458 /* Define as C expression which evaluates to nonzero if the tablejump
1459    instruction expects the table to contain offsets from the address of the
1460    table.
1461 
1462    Do not define this if the table should contain absolute addresses.
1463    On the Alpha, the table is really GP-relative, not relative to the PC
1464    of the table, but we pretend that it is PC-relative; this should be OK,
1465    but we should try to find some better way sometime.  */
1466 #define CASE_VECTOR_PC_RELATIVE 1
1467 
1468 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1469 #define DEFAULT_SIGNED_CHAR 1
1470 
1471 /* This flag, if defined, says the same insns that convert to a signed fixnum
1472    also convert validly to an unsigned one.
1473 
1474    We actually lie a bit here as overflow conditions are different.  But
1475    they aren't being checked anyway.  */
1476 
1477 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1478 
1479 /* Max number of bytes we can move to or from memory
1480    in one reasonably fast instruction.  */
1481 
1482 #define MOVE_MAX 8
1483 
1484 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1485    move-instruction pairs, we will do a movstr or libcall instead.
1486 
1487    Without byte/word accesses, we want no more than four instructions;
1488    with, several single byte accesses are better.  */
1489 
1490 #define MOVE_RATIO  (TARGET_BWX ? 7 : 2)
1491 
1492 /* Largest number of bytes of an object that can be placed in a register.
1493    On the Alpha we have plenty of registers, so use TImode.  */
1494 #define MAX_FIXED_MODE_SIZE	GET_MODE_BITSIZE (TImode)
1495 
1496 /* Nonzero if access to memory by bytes is no faster than for words.
1497    Also nonzero if doing byte operations (specifically shifts) in registers
1498    is undesirable.
1499 
1500    On the Alpha, we want to not use the byte operation and instead use
1501    masking operations to access fields; these will save instructions.  */
1502 
1503 #define SLOW_BYTE_ACCESS	1
1504 
1505 /* Define if operations between registers always perform the operation
1506    on the full register even if a narrower mode is specified.  */
1507 #define WORD_REGISTER_OPERATIONS
1508 
1509 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1510    will either zero-extend or sign-extend.  The value of this macro should
1511    be the code that says which one of the two operations is implicitly
1512    done, NIL if none.  */
1513 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1514 
1515 /* Define if loading short immediate values into registers sign extends.  */
1516 #define SHORT_IMMEDIATES_SIGN_EXTEND
1517 
1518 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1519    is done just by pretending it is already truncated.  */
1520 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1521 
1522 /* We assume that the store-condition-codes instructions store 0 for false
1523    and some other value for true.  This is the value stored for true.  */
1524 
1525 #define STORE_FLAG_VALUE 1
1526 
1527 /* Define the value returned by a floating-point comparison instruction.  */
1528 
1529 #define FLOAT_STORE_FLAG_VALUE(MODE) \
1530   REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1531 
1532 /* Canonicalize a comparison from one we don't have to one we do have.  */
1533 
1534 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1535   do {									\
1536     if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1537 	&& (GET_CODE (OP1) == REG || (OP1) == const0_rtx))		\
1538       {									\
1539 	rtx tem = (OP0);						\
1540 	(OP0) = (OP1);							\
1541 	(OP1) = tem;							\
1542 	(CODE) = swap_condition (CODE);					\
1543       }									\
1544     if (((CODE) == LT || (CODE) == LTU)					\
1545 	&& GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256)		\
1546       {									\
1547 	(CODE) = (CODE) == LT ? LE : LEU;				\
1548 	(OP1) = GEN_INT (255);						\
1549       }									\
1550   } while (0)
1551 
1552 /* Specify the machine mode that pointers have.
1553    After generation of rtl, the compiler makes no further distinction
1554    between pointers and any other objects of this machine mode.  */
1555 #define Pmode DImode
1556 
1557 /* Mode of a function address in a call instruction (for indexing purposes).  */
1558 
1559 #define FUNCTION_MODE Pmode
1560 
1561 /* Define this if addresses of constant functions
1562    shouldn't be put through pseudo regs where they can be cse'd.
1563    Desirable on machines where ordinary constants are expensive
1564    but a CALL with constant address is cheap.
1565 
1566    We define this on the Alpha so that gen_call and gen_call_value
1567    get to see the SYMBOL_REF (for the hint field of the jsr).  It will
1568    then copy it into a register, thus actually letting the address be
1569    cse'ed.  */
1570 
1571 #define NO_FUNCTION_CSE
1572 
1573 /* Define this to be nonzero if shift instructions ignore all but the low-order
1574    few bits.  */
1575 #define SHIFT_COUNT_TRUNCATED 1
1576 
1577 /* Compute the cost of computing a constant rtl expression RTX
1578    whose rtx-code is CODE.  The body of this macro is a portion
1579    of a switch statement.  If the code is computed here,
1580    return it with a return statement.  Otherwise, break from the switch.
1581 
1582    If this is an 8-bit constant, return zero since it can be used
1583    nearly anywhere with no cost.  If it is a valid operand for an
1584    ADD or AND, likewise return 0 if we know it will be used in that
1585    context.  Otherwise, return 2 since it might be used there later.
1586    All other constants take at least two insns.  */
1587 
1588 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1589   case CONST_INT:						\
1590     if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256)		\
1591       return 0;							\
1592   case CONST_DOUBLE:						\
1593     if ((RTX) == CONST0_RTX (GET_MODE (RTX)))			\
1594       return 0;							\
1595     else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1596 	|| ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1597       return 0;							\
1598     else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1599       return 2;							\
1600     else							\
1601       return COSTS_N_INSNS (2);					\
1602   case CONST:							\
1603   case SYMBOL_REF:						\
1604   case LABEL_REF:						\
1605   switch (alpha_cpu)						\
1606     {								\
1607     case PROCESSOR_EV4:						\
1608       return COSTS_N_INSNS (3);					\
1609     case PROCESSOR_EV5:						\
1610     case PROCESSOR_EV6:						\
1611       return COSTS_N_INSNS (2);					\
1612     default: abort();						\
1613     }
1614 
1615 /* Provide the costs of a rtl expression.  This is in the body of a
1616    switch on CODE.  */
1617 
1618 #define RTX_COSTS(X,CODE,OUTER_CODE)			\
1619   case PLUS:  case MINUS:				\
1620     if (FLOAT_MODE_P (GET_MODE (X)))			\
1621       switch (alpha_cpu)				\
1622         {						\
1623         case PROCESSOR_EV4:				\
1624           return COSTS_N_INSNS (6);			\
1625         case PROCESSOR_EV5:				\
1626         case PROCESSOR_EV6:				\
1627           return COSTS_N_INSNS (4); 			\
1628 	default: abort();				\
1629 	}						\
1630     else if (GET_CODE (XEXP (X, 0)) == MULT		\
1631 	     && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
1632       return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE)	\
1633 	      + rtx_cost (XEXP (X, 1), OUTER_CODE));	\
1634     break;						\
1635   case MULT:						\
1636     switch (alpha_cpu)					\
1637       {							\
1638       case PROCESSOR_EV4:				\
1639         if (FLOAT_MODE_P (GET_MODE (X)))		\
1640           return COSTS_N_INSNS (6);			\
1641         return COSTS_N_INSNS (23);			\
1642       case PROCESSOR_EV5:				\
1643         if (FLOAT_MODE_P (GET_MODE (X)))		\
1644           return COSTS_N_INSNS (4);			\
1645         else if (GET_MODE (X) == DImode)		\
1646           return COSTS_N_INSNS (12);			\
1647         else						\
1648           return COSTS_N_INSNS (8);			\
1649       case PROCESSOR_EV6:				\
1650 	if (FLOAT_MODE_P (GET_MODE (X)))		\
1651 	  return COSTS_N_INSNS (4);			\
1652 	else 						\
1653 	  return COSTS_N_INSNS (7);			\
1654       default: abort();					\
1655       }							\
1656   case ASHIFT:						\
1657     if (GET_CODE (XEXP (X, 1)) == CONST_INT		\
1658 	&& INTVAL (XEXP (X, 1)) <= 3)			\
1659       break;						\
1660     /* ... fall through ...  */				\
1661   case ASHIFTRT:  case LSHIFTRT:			\
1662     switch (alpha_cpu)					\
1663       {							\
1664       case PROCESSOR_EV4:				\
1665         return COSTS_N_INSNS (2);			\
1666       case PROCESSOR_EV5:				\
1667       case PROCESSOR_EV6:				\
1668         return COSTS_N_INSNS (1); 			\
1669       default: abort();					\
1670       }							\
1671   case IF_THEN_ELSE:					\
1672     switch (alpha_cpu)					\
1673       {							\
1674       case PROCESSOR_EV4:				\
1675       case PROCESSOR_EV6:				\
1676         return COSTS_N_INSNS (2);			\
1677       case PROCESSOR_EV5:				\
1678         return COSTS_N_INSNS (1); 			\
1679       default: abort();					\
1680       }							\
1681   case DIV:  case UDIV:  case MOD:  case UMOD:		\
1682     switch (alpha_cpu)					\
1683       {							\
1684       case PROCESSOR_EV4:				\
1685         if (GET_MODE (X) == SFmode)			\
1686           return COSTS_N_INSNS (34);			\
1687         else if (GET_MODE (X) == DFmode)		\
1688           return COSTS_N_INSNS (63);			\
1689         else						\
1690           return COSTS_N_INSNS (70);			\
1691       case PROCESSOR_EV5:				\
1692         if (GET_MODE (X) == SFmode)			\
1693           return COSTS_N_INSNS (15);			\
1694         else if (GET_MODE (X) == DFmode)		\
1695           return COSTS_N_INSNS (22);			\
1696         else						\
1697           return COSTS_N_INSNS (70);	/* ??? */	\
1698       case PROCESSOR_EV6:				\
1699 	if (GET_MODE (X) == SFmode)			\
1700 	  return COSTS_N_INSNS (12);			\
1701         else if (GET_MODE (X) == DFmode)		\
1702           return COSTS_N_INSNS (15);			\
1703         else						\
1704           return COSTS_N_INSNS (70);	/* ??? */	\
1705       default: abort();					\
1706       }							\
1707   case MEM:						\
1708     switch (alpha_cpu)					\
1709       {							\
1710       case PROCESSOR_EV4:				\
1711       case PROCESSOR_EV6:				\
1712         return COSTS_N_INSNS (3);			\
1713       case PROCESSOR_EV5:				\
1714         return COSTS_N_INSNS (2); 			\
1715       default: abort();					\
1716       }							\
1717   case NEG:  case ABS:					\
1718     if (! FLOAT_MODE_P (GET_MODE (X)))			\
1719       break;						\
1720     /* ... fall through ...  */				\
1721   case FLOAT:  case UNSIGNED_FLOAT:  case FIX:  case UNSIGNED_FIX: \
1722   case FLOAT_EXTEND:  case FLOAT_TRUNCATE:		\
1723     switch (alpha_cpu)					\
1724       {							\
1725       case PROCESSOR_EV4:				\
1726         return COSTS_N_INSNS (6);			\
1727       case PROCESSOR_EV5:				\
1728       case PROCESSOR_EV6:				\
1729         return COSTS_N_INSNS (4); 			\
1730       default: abort();					\
1731       }
1732 
1733 /* Control the assembler format that we output.  */
1734 
1735 /* Output to assembler file text saying following lines
1736    may contain character constants, extra white space, comments, etc.  */
1737 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1738 
1739 /* Output to assembler file text saying following lines
1740    no longer contain unusual constructs.  */
1741 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1742 
1743 #define TEXT_SECTION_ASM_OP "\t.text"
1744 
1745 /* Output before read-only data.  */
1746 
1747 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1748 
1749 /* Output before writable data.  */
1750 
1751 #define DATA_SECTION_ASM_OP "\t.data"
1752 
1753 /* How to refer to registers in assembler output.
1754    This sequence is indexed by compiler's hard-register-number (see above).  */
1755 
1756 #define REGISTER_NAMES						\
1757 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8",		\
1758  "$9", "$10", "$11", "$12", "$13", "$14", "$15",		\
1759  "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",	\
1760  "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP",		\
1761  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8",	\
1762  "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",		\
1763  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1764  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1765 
1766 /* Strip name encoding when emitting labels.  */
1767 
1768 #define ASM_OUTPUT_LABELREF(STREAM, NAME)	\
1769 do {						\
1770   const char *name_ = NAME;			\
1771   if (*name_ == '@' || *name_ == '%')		\
1772     name_ += 2;					\
1773   if (*name_ == '*')				\
1774     name_++;					\
1775   else						\
1776     fputs (user_label_prefix, STREAM);		\
1777   fputs (name_, STREAM);			\
1778 } while (0)
1779 
1780 /* Globalizing directive for a label.  */
1781 #define GLOBAL_ASM_OP "\t.globl "
1782 
1783 /* The prefix to add to user-visible assembler symbols.  */
1784 
1785 #define USER_LABEL_PREFIX ""
1786 
1787 /* This is how to output an internal numbered label where
1788    PREFIX is the class of label and NUM is the number within the class.  */
1789 
1790 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
1791   fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1792 
1793 /* This is how to output a label for a jump table.  Arguments are the same as
1794    for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1795    passed.  */
1796 
1797 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN)	\
1798 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1799 
1800 /* This is how to store into the string LABEL
1801    the symbol_ref name of an internal numbered label where
1802    PREFIX is the class of label and NUM is the number within the class.
1803    This is suitable for output with `assemble_name'.  */
1804 
1805 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1806   sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1807 
1808 /* We use the default ASCII-output routine, except that we don't write more
1809    than 50 characters since the assembler doesn't support very long lines.  */
1810 
1811 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1812   do {									      \
1813     FILE *_hide_asm_out_file = (MYFILE);				      \
1814     const unsigned char *_hide_p = (const unsigned char *) (MYSTRING);	      \
1815     int _hide_thissize = (MYLENGTH);					      \
1816     int _size_so_far = 0;						      \
1817     {									      \
1818       FILE *asm_out_file = _hide_asm_out_file;				      \
1819       const unsigned char *p = _hide_p;					      \
1820       int thissize = _hide_thissize;					      \
1821       int i;								      \
1822       fprintf (asm_out_file, "\t.ascii \"");				      \
1823 									      \
1824       for (i = 0; i < thissize; i++)					      \
1825 	{								      \
1826 	  register int c = p[i];					      \
1827 									      \
1828 	  if (_size_so_far ++ > 50 && i < thissize - 4)			      \
1829 	    _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");      \
1830 									      \
1831 	  if (c == '\"' || c == '\\')					      \
1832 	    putc ('\\', asm_out_file);					      \
1833 	  if (c >= ' ' && c < 0177)					      \
1834 	    putc (c, asm_out_file);					      \
1835 	  else								      \
1836 	    {								      \
1837 	      fprintf (asm_out_file, "\\%o", c);			      \
1838 	      /* After an octal-escape, if a digit follows,		      \
1839 		 terminate one string constant and start another.	      \
1840 		 The VAX assembler fails to stop reading the escape	      \
1841 		 after three digits, so this is the only way we		      \
1842 		 can get it to parse the data properly.  */		      \
1843 	      if (i < thissize - 1 && ISDIGIT (p[i + 1]))		      \
1844 		_size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");  \
1845 	  }								      \
1846 	}								      \
1847       fprintf (asm_out_file, "\"\n");					      \
1848     }									      \
1849   }									      \
1850   while (0)
1851 
1852 /* This is how to output an insn to push a register on the stack.
1853    It need not be very fast code.  */
1854 
1855 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)					\
1856  fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n",		\
1857 	  (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "",		\
1858 	  (REGNO) & 31);
1859 
1860 /* This is how to output an insn to pop a register from the stack.
1861    It need not be very fast code.  */
1862 
1863 #define ASM_OUTPUT_REG_POP(FILE,REGNO)					\
1864   fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n",		\
1865 	  (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "",		\
1866 	  (REGNO) & 31);
1867 
1868 /* This is how to output an element of a case-vector that is absolute.
1869    (Alpha does not use such vectors, but we must define this macro anyway.)  */
1870 
1871 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1872 
1873 /* This is how to output an element of a case-vector that is relative.  */
1874 
1875 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1876   fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1877 	   (VALUE))
1878 
1879 /* This is how to output an assembler line
1880    that says to advance the location counter
1881    to a multiple of 2**LOG bytes.  */
1882 
1883 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1884   if ((LOG) != 0)			\
1885     fprintf (FILE, "\t.align %d\n", LOG);
1886 
1887 /* This is how to advance the location counter by SIZE bytes.  */
1888 
1889 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1890   fprintf (FILE, "\t.space %d\n", (SIZE))
1891 
1892 /* This says how to output an assembler line
1893    to define a global common symbol.  */
1894 
1895 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1896 ( fputs ("\t.comm ", (FILE)),			\
1897   assemble_name ((FILE), (NAME)),		\
1898   fprintf ((FILE), ",%d\n", (SIZE)))
1899 
1900 /* This says how to output an assembler line
1901    to define a local common symbol.  */
1902 
1903 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED)	\
1904 ( fputs ("\t.lcomm ", (FILE)),				\
1905   assemble_name ((FILE), (NAME)),			\
1906   fprintf ((FILE), ",%d\n", (SIZE)))
1907 
1908 /* Store in OUTPUT a string (made with alloca) containing
1909    an assembler-name for a local static variable named NAME.
1910    LABELNO is an integer which is different for each call.  */
1911 
1912 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
1913 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
1914   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1915 
1916 
1917 /* Print operand X (an rtx) in assembler syntax to file FILE.
1918    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1919    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1920 
1921 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
1922 
1923 /* Determine which codes are valid without a following integer.  These must
1924    not be alphabetic.
1925 
1926    ~    Generates the name of the current function.
1927 
1928    /	Generates the instruction suffix.  The TRAP_SUFFIX and ROUND_SUFFIX
1929 	attributes are examined to determine what is appropriate.
1930 
1931    ,    Generates single precision suffix for floating point
1932 	instructions (s for IEEE, f for VAX)
1933 
1934    -	Generates double precision suffix for floating point
1935 	instructions (t for IEEE, g for VAX)
1936    */
1937 
1938 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1939   ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1940    || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1941 
1942 /* Print a memory address as an operand to reference that memory location.  */
1943 
1944 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1945   print_operand_address((FILE), (ADDR))
1946 
1947 /* Define the codes that are matched by predicates in alpha.c.  */
1948 
1949 #define PREDICATE_CODES 						\
1950   {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE,		\
1951 			CONST_VECTOR}},					\
1952   {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}},			\
1953   {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}},			\
1954   {"reg_or_const_int_operand", {SUBREG, REG, CONST_INT}},		\
1955   {"cint8_operand", {CONST_INT}},					\
1956   {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}},			\
1957   {"add_operand", {SUBREG, REG, CONST_INT}},				\
1958   {"sext_add_operand", {SUBREG, REG, CONST_INT}},			\
1959   {"const48_operand", {CONST_INT}},					\
1960   {"and_operand", {SUBREG, REG, CONST_INT}},				\
1961   {"or_operand", {SUBREG, REG, CONST_INT}},				\
1962   {"mode_mask_operand", {CONST_INT}},					\
1963   {"mul8_operand", {CONST_INT}},					\
1964   {"mode_width_operand", {CONST_INT}},					\
1965   {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}},		\
1966   {"alpha_zero_comparison_operator", {EQ, NE, LE, LT, LEU, LTU}},	\
1967   {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}},	\
1968   {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}},		\
1969   {"alpha_fp_comparison_operator", {EQ, LE, LT, UNORDERED}},		\
1970   {"divmod_operator", {DIV, MOD, UDIV, UMOD}},				\
1971   {"const0_operand", {CONST_INT, CONST_DOUBLE, CONST_VECTOR}},		\
1972   {"current_file_function_operand", {SYMBOL_REF}},			\
1973   {"direct_call_operand", {SYMBOL_REF}},				\
1974   {"local_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}},		\
1975   {"small_symbolic_operand", {SYMBOL_REF, CONST}},			\
1976   {"global_symbolic_operand", {SYMBOL_REF, CONST}},			\
1977   {"dtp16_symbolic_operand", {CONST}},					\
1978   {"dtp32_symbolic_operand", {CONST}},					\
1979   {"gotdtp_symbolic_operand", {CONST}},					\
1980   {"tp16_symbolic_operand", {CONST}},					\
1981   {"tp32_symbolic_operand", {CONST}},					\
1982   {"gottp_symbolic_operand", {CONST}},					\
1983   {"call_operand", {REG, SYMBOL_REF}},					\
1984   {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE,		\
1985 		     CONST_VECTOR, SYMBOL_REF, CONST, LABEL_REF, HIGH}},\
1986   {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE,		\
1987 		    CONST_VECTOR, SYMBOL_REF, CONST, LABEL_REF, HIGH}},	\
1988   {"some_ni_operand", {SUBREG, REG, MEM}},				\
1989   {"aligned_memory_operand", {MEM}},					\
1990   {"unaligned_memory_operand", {MEM}},					\
1991   {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}},			\
1992   {"any_memory_operand", {MEM}},					\
1993   {"hard_fp_register_operand", {SUBREG, REG}},				\
1994   {"hard_int_register_operand", {SUBREG, REG}},				\
1995   {"reg_not_elim_operand", {SUBREG, REG}},				\
1996   {"reg_no_subreg_operand", {REG}},					\
1997   {"addition_operation", {PLUS}},					\
1998   {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
1999   {"some_small_symbolic_operand", {SET, PARALLEL, PREFETCH, UNSPEC,	\
2000 				   UNSPEC_VOLATILE}},
2001 
2002 /* Define the `__builtin_va_list' type for the ABI.  */
2003 #define BUILD_VA_LIST_TYPE(VALIST) \
2004   (VALIST) = alpha_build_va_list ()
2005 
2006 /* Implement `va_start' for varargs and stdarg.  */
2007 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2008   alpha_va_start (valist, nextarg)
2009 
2010 /* Implement `va_arg'.  */
2011 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2012   alpha_va_arg (valist, type)
2013 
2014 /* Tell collect that the object format is ECOFF.  */
2015 #define OBJECT_FORMAT_COFF
2016 #define EXTENDED_COFF
2017 
2018 /* If we use NM, pass -g to it so it only lists globals.  */
2019 #define NM_FLAGS "-pg"
2020 
2021 /* Definitions for debugging.  */
2022 
2023 #define SDB_DEBUGGING_INFO 1		/* generate info for mips-tfile */
2024 #define DBX_DEBUGGING_INFO 1		/* generate embedded stabs */
2025 #define MIPS_DEBUGGING_INFO 1		/* MIPS specific debugging info */
2026 
2027 #ifndef PREFERRED_DEBUGGING_TYPE	/* assume SDB_DEBUGGING_INFO */
2028 #define PREFERRED_DEBUGGING_TYPE  SDB_DEBUG
2029 #endif
2030 
2031 
2032 /* Correct the offset of automatic variables and arguments.  Note that
2033    the Alpha debug format wants all automatic variables and arguments
2034    to be in terms of two different offsets from the virtual frame pointer,
2035    which is the stack pointer before any adjustment in the function.
2036    The offset for the argument pointer is fixed for the native compiler,
2037    it is either zero (for the no arguments case) or large enough to hold
2038    all argument registers.
2039    The offset for the auto pointer is the fourth argument to the .frame
2040    directive (local_offset).
2041    To stay compatible with the native tools we use the same offsets
2042    from the virtual frame pointer and adjust the debugger arg/auto offsets
2043    accordingly. These debugger offsets are set up in output_prolog.  */
2044 
2045 extern long alpha_arg_offset;
2046 extern long alpha_auto_offset;
2047 #define DEBUGGER_AUTO_OFFSET(X) \
2048   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2049 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2050 
2051 
2052 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE)				\
2053   alpha_output_lineno (STREAM, LINE)
2054 
2055 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
2056   alpha_output_filename (STREAM, NAME)
2057 
2058 /* mips-tfile.c limits us to strings of one page.  We must underestimate this
2059    number, because the real length runs past this up to the next
2060    continuation point.  This is really a dbxout.c bug.  */
2061 #define DBX_CONTIN_LENGTH 3000
2062 
2063 /* By default, turn on GDB extensions.  */
2064 #define DEFAULT_GDB_EXTENSIONS 1
2065 
2066 /* Stabs-in-ECOFF can't handle dbxout_function_end().  */
2067 #define NO_DBX_FUNCTION_END 1
2068 
2069 /* If we are smuggling stabs through the ALPHA ECOFF object
2070    format, put a comment in front of the .stab<x> operation so
2071    that the ALPHA assembler does not choke.  The mips-tfile program
2072    will correctly put the stab into the object file.  */
2073 
2074 #define ASM_STABS_OP	((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
2075 #define ASM_STABN_OP	((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
2076 #define ASM_STABD_OP	((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
2077 
2078 /* Forward references to tags are allowed.  */
2079 #define SDB_ALLOW_FORWARD_REFERENCES
2080 
2081 /* Unknown tags are also allowed.  */
2082 #define SDB_ALLOW_UNKNOWN_REFERENCES
2083 
2084 #define PUT_SDB_DEF(a)					\
2085 do {							\
2086   fprintf (asm_out_file, "\t%s.def\t",			\
2087 	   (TARGET_GAS) ? "" : "#");			\
2088   ASM_OUTPUT_LABELREF (asm_out_file, a); 		\
2089   fputc (';', asm_out_file);				\
2090 } while (0)
2091 
2092 #define PUT_SDB_PLAIN_DEF(a)				\
2093 do {							\
2094   fprintf (asm_out_file, "\t%s.def\t.%s;",		\
2095 	   (TARGET_GAS) ? "" : "#", (a));		\
2096 } while (0)
2097 
2098 #define PUT_SDB_TYPE(a)					\
2099 do {							\
2100   fprintf (asm_out_file, "\t.type\t0x%x;", (a));	\
2101 } while (0)
2102 
2103 /* For block start and end, we create labels, so that
2104    later we can figure out where the correct offset is.
2105    The normal .ent/.end serve well enough for functions,
2106    so those are just commented out.  */
2107 
2108 extern int sdb_label_count;		/* block start/end next label # */
2109 
2110 #define PUT_SDB_BLOCK_START(LINE)			\
2111 do {							\
2112   fprintf (asm_out_file,				\
2113 	   "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n",		\
2114 	   sdb_label_count,				\
2115 	   (TARGET_GAS) ? "" : "#",			\
2116 	   sdb_label_count,				\
2117 	   (LINE));					\
2118   sdb_label_count++;					\
2119 } while (0)
2120 
2121 #define PUT_SDB_BLOCK_END(LINE)				\
2122 do {							\
2123   fprintf (asm_out_file,				\
2124 	   "$Le%d:\n\t%s.bend\t$Le%d\t%d\n",		\
2125 	   sdb_label_count,				\
2126 	   (TARGET_GAS) ? "" : "#",			\
2127 	   sdb_label_count,				\
2128 	   (LINE));					\
2129   sdb_label_count++;					\
2130 } while (0)
2131 
2132 #define PUT_SDB_FUNCTION_START(LINE)
2133 
2134 #define PUT_SDB_FUNCTION_END(LINE)
2135 
2136 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
2137 
2138 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2139    mips-tdump.c to print them out.
2140 
2141    These must match the corresponding definitions in gdb/mipsread.c.
2142    Unfortunately, gcc and gdb do not currently share any directories.  */
2143 
2144 #define CODE_MASK 0x8F300
2145 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2146 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2147 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2148 
2149 /* Override some mips-tfile definitions.  */
2150 
2151 #define SHASH_SIZE 511
2152 #define THASH_SIZE 55
2153 
2154 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints.  */
2155 
2156 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2157 
2158 /* The system headers under Alpha systems are generally C++-aware.  */
2159 #define NO_IMPLICIT_EXTERN_C
2160 
2161 /* Generate calls to memcpy, etc., not bcopy, etc.  */
2162 #define TARGET_MEM_FUNCTIONS 1
2163