1 /* Definitions of target machine for GNU compiler, for ROMP chip. 2 Copyright (C) 1989, 1991, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2002 3 Free Software Foundation, Inc. 4 Contributed by Richard Kenner (kenner@nyu.edu) 5 6 This file is part of GNU CC. 7 8 GNU CC is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2, or (at your option) 11 any later version. 12 13 GNU CC is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GNU CC; see the file COPYING. If not, write to 20 the Free Software Foundation, 59 Temple Place - Suite 330, 21 Boston, MA 02111-1307, USA. */ 22 23 24 /* Names to predefine in the preprocessor for this target machine. */ 25 26 #define CPP_PREDEFINES "-Dibm032 -Dunix -Asystem=unix -Asystem=bsd -Acpu=ibm032 -Amachine=ibm032" 27 28 /* Print subsidiary information on the compiler version in use. */ 29 #define TARGET_VERSION ; 30 31 /* Add -lfp_p when running with -p or -pg. */ 32 #define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}" 33 34 /* Run-time compilation parameters selecting different hardware subsets. */ 35 36 /* Flag to generate all multiplies as an in-line sequence of multiply-step 37 insns instead of calling a library routine. */ 38 #define TARGET_IN_LINE_MUL (target_flags & 1) 39 40 /* Flag to generate padded floating-point data blocks. Otherwise, we generate 41 them the minimum size. This trades off execution speed against size. */ 42 #define TARGET_FULL_FP_BLOCKS (target_flags & 2) 43 44 /* Flag to pass and return floating point values in floating point registers. 45 Since this violates the linkage convention, we feel free to destroy fr2 46 and fr3 on function calls. 47 fr1-fr3 are used to pass the arguments. */ 48 #define TARGET_FP_REGS (target_flags & 4) 49 50 /* Flag to return structures of more than one word in memory. This is for 51 compatibility with the MetaWare HighC (hc) compiler. */ 52 #define TARGET_HC_STRUCT_RETURN (target_flags & 010) 53 54 extern int target_flags; 55 56 /* Macro to define tables used to set the flags. 57 This is a list in braces of pairs in braces, 58 each pair being { "NAME", VALUE } 59 where VALUE is the bits to set or minus the bits to clear. 60 An empty string NAME is used to identify the default VALUE. */ 61 62 #define TARGET_SWITCHES \ 63 { {"in-line-mul", 1}, \ 64 {"call-lib-mul", -1}, \ 65 {"full-fp-blocks", 2}, \ 66 {"minimum-fp-blocks", -2}, \ 67 {"fp-arg-in-fpregs", 4}, \ 68 {"fp-arg-in-gregs", -4}, \ 69 {"hc-struct-return", 010}, \ 70 {"nohc-struct-return", - 010}, \ 71 { "", TARGET_DEFAULT}} 72 73 #define TARGET_DEFAULT 3 74 75 /* target machine storage layout */ 76 77 /* Define this if most significant bit is lowest numbered 78 in instructions that operate on numbered bit-fields. */ 79 /* That is true on ROMP. */ 80 #define BITS_BIG_ENDIAN 1 81 82 /* Define this if most significant byte of a word is the lowest numbered. */ 83 /* That is true on ROMP. */ 84 #define BYTES_BIG_ENDIAN 1 85 86 /* Define this if most significant word of a multiword number is lowest 87 numbered. 88 89 For ROMP we can decide arbitrarily since there are no machine instructions 90 for them. Might as well be consistent with bits and bytes. */ 91 #define WORDS_BIG_ENDIAN 1 92 93 /* Width of a word, in units (bytes). */ 94 #define UNITS_PER_WORD 4 95 96 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ 97 #define PARM_BOUNDARY 32 98 99 /* Boundary (in *bits*) on which stack pointer should be aligned. */ 100 #define STACK_BOUNDARY 32 101 102 /* Allocation boundary (in *bits*) for the code of a function. */ 103 #define FUNCTION_BOUNDARY 16 104 105 /* No data type wants to be aligned rounder than this. */ 106 #define BIGGEST_ALIGNMENT 32 107 108 /* Alignment of field after `int : 0' in a structure. */ 109 #define EMPTY_FIELD_BOUNDARY 32 110 111 /* Every structure's size must be a multiple of this. */ 112 #define STRUCTURE_SIZE_BOUNDARY 8 113 114 /* A bit-field declared as `int' forces `int' alignment for the struct. */ 115 #define PCC_BITFIELD_TYPE_MATTERS 1 116 117 /* Make strings word-aligned so strcpy from constants will be faster. */ 118 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ 119 (TREE_CODE (EXP) == STRING_CST \ 120 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) 121 122 /* Make arrays of chars word-aligned for the same reasons. */ 123 #define DATA_ALIGNMENT(TYPE, ALIGN) \ 124 (TREE_CODE (TYPE) == ARRAY_TYPE \ 125 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ 126 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) 127 128 /* Set this nonzero if move instructions will actually fail to work 129 when given unaligned data. */ 130 #define STRICT_ALIGNMENT 1 131 132 /* Standard register usage. */ 133 134 /* Number of actual hardware registers. 135 The hardware registers are assigned numbers for the compiler 136 from 0 to just below FIRST_PSEUDO_REGISTER. 137 All registers that the compiler knows about must be given numbers, 138 even those that are not normally considered general registers. 139 140 ROMP has 16 fullword registers and 8 floating point registers. 141 142 In addition, the difference between the frame and argument pointers is 143 a function of the number of registers saved, so we need to have a register 144 to use for AP that will later be eliminated in favor of sp or fp. This is 145 a normal register, but it is fixed. */ 146 147 #define FIRST_PSEUDO_REGISTER 25 148 149 /* 1 for registers that have pervasive standard uses 150 and are not available for the register allocator. 151 152 On ROMP, r1 is used for the stack and r14 is used for a 153 data area pointer. 154 155 HACK WARNING: On the RT, there is a bug in code generation for 156 the MC68881 when the first and third operands are the same floating-point 157 register. See the definition of the FINAL_PRESCAN_INSN macro for details. 158 Here we need to reserve fr0 for this purpose. */ 159 #define FIXED_REGISTERS \ 160 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 161 1, \ 162 1, 0, 0, 0, 0, 0, 0, 0} 163 164 /* 1 for registers not available across function calls. 165 These must include the FIXED_REGISTERS and also any 166 registers that can be used without being saved. 167 The latter must include the registers where values are returned 168 and the register where structure-value addresses are passed. 169 Aside from that, you can include as many other registers as you like. */ 170 #define CALL_USED_REGISTERS \ 171 {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 172 1, \ 173 1, 1, 0, 0, 0, 0, 0, 0} 174 175 /* List the order in which to allocate registers. Each register must be 176 listed once, even those in FIXED_REGISTERS. 177 178 We allocate in the following order: 179 fr0, fr1 (not saved) 180 fr2 ... fr6 181 fr7 (more expensive for some FPA's) 182 r0 (not saved and won't conflict with parameter register) 183 r4, r3, r2 (not saved, highest used first to make less conflict) 184 r5 (not saved, but forces r6 to be saved if DI/DFmode) 185 r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save) 186 r1, ap */ 187 188 #define REG_ALLOC_ORDER \ 189 {17, 18, \ 190 19, 20, 21, 22, 23, \ 191 24, \ 192 0, \ 193 4, 3, 2, \ 194 5, \ 195 15, 14, 13, 12, 11, 10, \ 196 9, 8, 7, 6, \ 197 1, 16} 198 199 /* True if register is floating-point. */ 200 #define FP_REGNO_P(N) ((N) >= 17) 201 202 /* Return number of consecutive hard regs needed starting at reg REGNO 203 to hold something of mode MODE. 204 This is ordinarily the length in words of a value of mode MODE 205 but can be less for certain modes in special long registers. 206 207 On ROMP, ordinary registers hold 32 bits worth; 208 a single floating point register is always enough for 209 anything that can be stored in them at all. */ 210 #define HARD_REGNO_NREGS(REGNO, MODE) \ 211 (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \ 212 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) 213 214 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. 215 On ROMP, the cpu registers can hold any mode but the float registers 216 can hold only floating point. */ 217 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ 218 (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \ 219 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) 220 221 /* Value is 1 if it is a good idea to tie two pseudo registers 222 when one has mode MODE1 and one has mode MODE2. 223 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, 224 for any hard reg, then this must be 0 for correct output. */ 225 #define MODES_TIEABLE_P(MODE1, MODE2) \ 226 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \ 227 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \ 228 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \ 229 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)) 230 231 /* A C expression returning the cost of moving data from a register of class 232 CLASS1 to one of CLASS2. 233 234 On the ROMP, access to floating-point registers is expensive (even between 235 two FP regs.) */ 236 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \ 237 (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS)) 238 239 /* Specify the registers used for certain standard purposes. 240 The values of these macros are register numbers. */ 241 242 /* ROMP pc isn't overloaded on a register that the compiler knows about. */ 243 /* #define PC_REGNUM */ 244 245 /* Register to use for pushing function arguments. */ 246 #define STACK_POINTER_REGNUM 1 247 248 /* Base register for access to local variables of the function. */ 249 #define FRAME_POINTER_REGNUM 13 250 251 /* Value should be nonzero if functions must have frame pointers. 252 Zero means the frame pointer need not be set up (and parms 253 may be accessed via the stack pointer) in functions that seem suitable. 254 This is computed in `reload', in reload1.c. */ 255 #define FRAME_POINTER_REQUIRED 0 256 257 /* Base register for access to arguments of the function. */ 258 #define ARG_POINTER_REGNUM 16 259 260 /* Place to put static chain when calling a function that requires it. */ 261 #define STATIC_CHAIN \ 262 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -36)) 263 264 /* Place where static chain is found upon entry to routine. */ 265 #define STATIC_CHAIN_INCOMING \ 266 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -20)) 267 268 /* Place that structure value return address is placed. 269 270 On the ROMP, it is passed as an extra parameter. */ 271 #define STRUCT_VALUE 0 272 273 /* Define the classes of registers for register constraints in the 274 machine description. Also define ranges of constants. 275 276 One of the classes must always be named ALL_REGS and include all hard regs. 277 If there is more than one class, another class must be named NO_REGS 278 and contain no registers. 279 280 The name GENERAL_REGS must be the name of a class (or an alias for 281 another name such as ALL_REGS). This is the class of registers 282 that is allowed by "g" or "r" in a register constraint. 283 Also, registers outside this class are allocated only when 284 instructions express preferences for them. 285 286 The classes must be numbered in nondecreasing order; that is, 287 a larger-numbered class must never be contained completely 288 in a smaller-numbered class. 289 290 For any two classes, it is very desirable that there be another 291 class that represents their union. */ 292 293 /* The ROMP has two types of registers, general and floating-point. 294 295 However, r0 is special in that it cannot be used as a base register. 296 So make a class for registers valid as base registers. 297 298 For floating-point support, add classes that just consist of r0 and 299 r15, respectively. */ 300 301 enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS, 302 FP_REGS, ALL_REGS, LIM_REG_CLASSES }; 303 304 #define N_REG_CLASSES (int) LIM_REG_CLASSES 305 306 /* Give names of register classes as strings for dump file. */ 307 308 #define REG_CLASS_NAMES \ 309 {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \ 310 "FP_REGS", "ALL_REGS" } 311 312 /* Define which registers fit in which classes. 313 This is an initializer for a vector of HARD_REG_SET 314 of length N_REG_CLASSES. */ 315 316 #define REG_CLASS_CONTENTS {{0}, {0x00001}, {0x08000}, {0x1fffe}, {0x1ffff}, \ 317 {0x1fe0000}, {0x1ffffff} } 318 319 /* The same information, inverted: 320 Return the class number of the smallest class containing 321 reg number REGNO. This could be a conditional expression 322 or could index an array. */ 323 324 #define REGNO_REG_CLASS(REGNO) \ 325 ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS) 326 327 /* The class value for index registers, and the one for base regs. */ 328 #define INDEX_REG_CLASS BASE_REGS 329 #define BASE_REG_CLASS BASE_REGS 330 331 /* Get reg_class from a letter such as appears in the machine description. */ 332 333 #define REG_CLASS_FROM_LETTER(C) \ 334 ((C) == 'f' ? FP_REGS \ 335 : (C) == 'b' ? BASE_REGS \ 336 : (C) == 'z' ? R0_REGS \ 337 : (C) == 't' ? R15_REGS \ 338 : NO_REGS) 339 340 /* The letters I, J, K, L, M, N, and P in a register constraint string 341 can be used to stand for particular ranges of immediate operands. 342 This macro defines what the ranges are. 343 C is the letter, and VALUE is a constant value. 344 Return 1 if VALUE is in the range specified by C. 345 346 `I' is constants less than 16 347 `J' is negative constants greater than -16 348 `K' is the range for a normal D insn. 349 `L' is a constant with only the low-order 16 bits set 350 `M' is a constant with only the high-order 16 bits set 351 `N' is a single-bit constant 352 `O' is a constant with either the high-order or low-order 16 bits all ones 353 `P' is the complement of a single-bit constant 354 */ 355 356 #define CONST_OK_FOR_LETTER_P(VALUE, C) \ 357 ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \ 358 : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \ 359 : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \ 360 : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \ 361 : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \ 362 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \ 363 : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \ 364 || ((VALUE) & 0xffff0000) == 0xffff0000 \ 365 : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \ 366 : 0) 367 368 /* Similar, but for floating constants, and defining letters G and H. 369 Here VALUE is the CONST_DOUBLE rtx itself. 370 No floating-point constants on ROMP. */ 371 372 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0 373 374 /* Optional extra constraints for this machine. 375 376 For the ROMP, `Q' means that this is a memory operand but not a symbolic 377 memory operand. Note that an unassigned pseudo register is such a 378 memory operand. If register allocation has not been done, we reject 379 pseudos, since we assume (hope) that they will get hard registers. 380 381 `R' means that this is a constant pool reference to the current function. 382 This is just r14 and so can be treated as a register. We bother with this 383 just in move insns as that is the only place it is likely to occur. 384 385 `S' means that this is the address of a constant pool location. This is 386 equal to r14 plus a constant. We also only check for this in move insns. */ 387 388 #define EXTRA_CONSTRAINT(OP, C) \ 389 ((C) == 'Q' ? \ 390 ((GET_CODE (OP) == REG \ 391 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \ 392 && reg_renumber != 0 \ 393 && reg_renumber[REGNO (OP)] < 0) \ 394 || (GET_CODE (OP) == MEM \ 395 && ! symbolic_memory_operand (OP, VOIDmode))) \ 396 : (C) == 'R' ? current_function_operand (OP, VOIDmode) \ 397 : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \ 398 : 0) 399 400 /* Given an rtx X being reloaded into a reg required to be 401 in class CLASS, return the class of reg to actually use. 402 In general this is just CLASS; but on some machines 403 in some cases it is preferable to use a more restrictive class. 404 405 For the ROMP, if X is a memory reference that involves a symbol, 406 we must use a BASE_REGS register instead of GENERAL_REGS 407 to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF 408 to be valid, so we assume that this is the case. 409 410 Also, if X is an integer class, ensure that floating-point registers 411 aren't used. */ 412 413 #define PREFERRED_RELOAD_CLASS(X,CLASS) \ 414 ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \ 415 ? GENERAL_REGS : \ 416 (CLASS) != GENERAL_REGS ? (CLASS) : \ 417 GET_CODE (X) != MEM ? GENERAL_REGS : \ 418 GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \ 419 GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \ 420 GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \ 421 GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \ 422 GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \ 423 GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \ 424 GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \ 425 GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS) 426 427 /* Return the register class of a scratch register needed to store into 428 OUT from a register of class CLASS in MODE. 429 430 On the ROMP, we cannot store into a symbolic memory address from an 431 integer register; we need a BASE_REGS register as a scratch to do it. */ 432 433 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \ 434 (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \ 435 ? BASE_REGS : NO_REGS) 436 437 /* Return the maximum number of consecutive registers 438 needed to represent mode MODE in a register of class CLASS. 439 440 On ROMP, this is the size of MODE in words, 441 except in the FP regs, where a single reg is always enough. */ 442 #define CLASS_MAX_NREGS(CLASS, MODE) \ 443 ((CLASS) == FP_REGS ? 1 \ 444 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) 445 446 /* Stack layout; function entry, exit and calling. */ 447 448 /* Define this if pushing a word on the stack 449 makes the stack pointer a smaller address. */ 450 #define STACK_GROWS_DOWNWARD 451 452 /* Define this if the nominal address of the stack frame 453 is at the high-address end of the local variables; 454 that is, each additional local variable allocated 455 goes at a more negative offset in the frame. */ 456 #define FRAME_GROWS_DOWNWARD 457 458 /* Offset within stack frame to start allocating local variables at. 459 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the 460 first local allocated. Otherwise, it is the offset to the BEGINNING 461 of the first local allocated. 462 On the ROMP, if we set the frame pointer to 15 words below the highest 463 address of the highest local variable, the first 16 words will be 464 addressable via D-short insns. */ 465 #define STARTING_FRAME_OFFSET 64 466 467 /* If we generate an insn to push BYTES bytes, 468 this says how many the stack pointer really advances by. 469 On ROMP, don't define this because there are no push insns. */ 470 /* #define PUSH_ROUNDING(BYTES) */ 471 472 /* Offset of first parameter from the argument pointer register value. 473 On the ROMP, we define the argument pointer to the start of the argument 474 area. */ 475 #define FIRST_PARM_OFFSET(FNDECL) 0 476 477 /* Define this if stack space is still allocated for a parameter passed 478 in a register. The value is the number of bytes. */ 479 #define REG_PARM_STACK_SPACE(FNDECL) 16 480 481 /* This is the difference between the logical top of stack and the actual sp. 482 483 For the ROMP, sp points past the words allocated for the first four outgoing 484 arguments (they are part of the callee's frame). */ 485 #define STACK_POINTER_OFFSET -16 486 487 /* Define this if the maximum size of all the outgoing args is to be 488 accumulated and pushed during the prologue. The amount can be 489 found in the variable current_function_outgoing_args_size. */ 490 #define ACCUMULATE_OUTGOING_ARGS 1 491 492 /* Value is the number of bytes of arguments automatically 493 popped when returning from a subroutine call. 494 FUNDECL is the declaration node of the function (as a tree), 495 FUNTYPE is the data type of the function (as a tree), 496 or for a library call it is an identifier node for the subroutine name. 497 SIZE is the number of bytes of arguments passed on the stack. */ 498 499 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 500 501 /* Define how to find the value returned by a function. 502 VALTYPE is the data type of the value (as a tree). 503 If the precise function being called is known, FUNC is its FUNCTION_DECL; 504 otherwise, FUNC is 0. 505 506 On ROMP the value is found in r2, unless the machine specific option 507 fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */ 508 509 #define FUNCTION_VALUE(VALTYPE, FUNC) \ 510 gen_rtx_REG (TYPE_MODE (VALTYPE), \ 511 (TARGET_FP_REGS \ 512 && GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) \ 513 ? 18 : 2) 514 515 /* Define how to find the value returned by a library function 516 assuming the value has mode MODE. */ 517 518 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 2) 519 520 /* The definition of this macro implies that there are cases where 521 a scalar value cannot be returned in registers. 522 523 For the ROMP, if compatibility with HC is required, anything of 524 type DImode is returned in memory. */ 525 526 #define RETURN_IN_MEMORY(type) \ 527 (TYPE_MODE (type) == BLKmode \ 528 || (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode)) 529 530 /* 1 if N is a possible register number for a function value 531 as seen by the caller. 532 533 On ROMP, r2 is the only register thus used unless fp values are to be 534 returned in fp regs, in which case fr1 is also used. */ 535 536 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS)) 537 538 /* 1 if N is a possible register number for function argument passing. 539 On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */ 540 541 #define FUNCTION_ARG_REGNO_P(N) \ 542 (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21)) 543 544 /* Define a data type for recording info about an argument list 545 during the scan of that argument list. This data type should 546 hold all necessary information about the function itself 547 and about the args processed so far, enough to enable macros 548 such as FUNCTION_ARG to determine where the next arg should go. 549 550 On the ROMP, this is a structure. The first word is the number of 551 words of (integer only if -mfp-arg-in-fpregs is specified) arguments 552 scanned so far (including the invisible argument, if any, which holds 553 the structure-value-address). The second word hold the corresponding 554 value for floating-point arguments, except that both single and double 555 count as one register. */ 556 557 struct rt_cargs {int gregs, fregs; }; 558 #define CUMULATIVE_ARGS struct rt_cargs 559 560 #define USE_FP_REG(MODE,CUM) \ 561 (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \ 562 && (CUM).fregs < 3) 563 564 /* Define intermediate macro to compute the size (in registers) of an argument 565 for the ROMP. */ 566 567 #define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \ 568 (! (NAMED) ? 0 \ 569 : (MODE) != BLKmode \ 570 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \ 571 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) 572 573 /* Initialize a variable CUM of type CUMULATIVE_ARGS 574 for a call to a function whose data type is FNTYPE. 575 For a library call, FNTYPE is 0. 576 577 On ROMP, the offset normally starts at 0, but starts at 4 bytes 578 when the function gets a structure-value-address as an 579 invisible first argument. */ 580 581 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ 582 (CUM).gregs = 0, \ 583 (CUM).fregs = 0 584 585 /* Update the data in CUM to advance over an argument 586 of mode MODE and data type TYPE. 587 (TYPE is null for libcalls where that information may not be available.) */ 588 589 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ 590 { if (NAMED) \ 591 { \ 592 if (USE_FP_REG(MODE, CUM)) \ 593 (CUM).fregs++; \ 594 else \ 595 (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \ 596 } \ 597 } 598 599 /* Determine where to put an argument to a function. 600 Value is zero to push the argument on the stack, 601 or a hard register in which to store the argument. 602 603 MODE is the argument's machine mode. 604 TYPE is the data type of the argument (as a tree). 605 This is null for libcalls where that information may 606 not be available. 607 CUM is a variable of type CUMULATIVE_ARGS which gives info about 608 the preceding args and about the function being called. 609 NAMED is nonzero if this argument is a named parameter 610 (otherwise it is an extra parameter matching an ellipsis). 611 612 On ROMP the first four words of args are normally in registers 613 and the rest are pushed. */ 614 615 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ 616 (! (NAMED) ? 0 \ 617 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \ 618 : USE_FP_REG(MODE,CUM) ? gen_rtx_REG ((MODE), (CUM).fregs + 17) \ 619 : (CUM).gregs < 4 ? gen_rtx_REG ((MODE), 2 + (CUM).gregs) : 0) 620 621 /* For an arg passed partly in registers and partly in memory, 622 this is the number of registers used. 623 For args passed entirely in registers or entirely in memory, zero. */ 624 625 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ 626 (! (NAMED) ? 0 \ 627 : USE_FP_REG(MODE,CUM) ? 0 \ 628 : (((CUM).gregs < 4 \ 629 && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \ 630 ? 4 - (CUM).gregs : 0)) 631 632 /* Perform any needed actions needed for a function that is receiving a 633 variable number of arguments. 634 635 CUM is as above. 636 637 MODE and TYPE are the mode and type of the current parameter. 638 639 PRETEND_SIZE is a variable that should be set to the amount of stack 640 that must be pushed by the prolog to pretend that our caller pushed 641 it. 642 643 Normally, this macro will push all remaining incoming registers on the 644 stack and set PRETEND_SIZE to the length of the registers pushed. */ 645 646 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \ 647 { if (TARGET_FP_REGS) \ 648 error ("can't have varargs with -mfp-arg-in-fp-regs"); \ 649 else if ((CUM).gregs < 4) \ 650 { \ 651 int first_reg_offset = (CUM).gregs; \ 652 \ 653 if (MUST_PASS_IN_STACK (MODE, TYPE)) \ 654 first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \ 655 \ 656 if (first_reg_offset > 4) \ 657 first_reg_offset = 4; \ 658 \ 659 if (! NO_RTL && first_reg_offset != 4) \ 660 move_block_from_reg \ 661 (2 + first_reg_offset, \ 662 gen_rtx_MEM (BLKmode, \ 663 plus_constant (virtual_incoming_args_rtx, \ 664 first_reg_offset * 4)), \ 665 4 - first_reg_offset, (4 - first_reg_offset) * UNITS_PER_WORD); \ 666 PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \ 667 } \ 668 } 669 670 /* This macro produces the initial definition of a function name. 671 On the ROMP, we need to place an extra '.' in the function name. */ 672 673 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \ 674 { if (TREE_PUBLIC(DECL)) \ 675 fprintf (FILE, "\t.globl _.%s\n", NAME); \ 676 fprintf (FILE, "_.%s:\n", NAME); \ 677 } 678 679 /* This macro is used to output the start of the data area. 680 681 On the ROMP, the _name is a pointer to the data area. At that 682 location is the address of _.name, which is really the name of 683 the function. We need to set all this up here. 684 685 The global declaration of the data area, if needed, is done in 686 `assemble_function', where it thinks it is globalizing the function 687 itself. */ 688 689 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \ 690 { extern int data_offset; \ 691 data_section (); \ 692 fprintf (FILE, "\t.align 2\n"); \ 693 ASM_OUTPUT_LABEL (FILE, NAME); \ 694 fprintf (FILE, "\t.long _.%s, 0, ", NAME); \ 695 if (current_function_calls_alloca) \ 696 fprintf (FILE, "0x%x\n", \ 697 0xf6900000 + current_function_outgoing_args_size); \ 698 else \ 699 fprintf (FILE, "0\n"); \ 700 data_offset = ((SIZE) + 12 + 3) / 4; \ 701 } 702 703 /* Output assembler code to FILE to increment profiler label # LABELNO 704 for profiling a function entry. */ 705 706 #define FUNCTION_PROFILER(FILE, LABELNO) \ 707 fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n"); 708 709 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, 710 the stack pointer does not matter. The value is tested only in 711 functions that have frame pointers. 712 No definition is equivalent to always zero. */ 713 /* #define EXIT_IGNORE_STACK 1 */ 714 715 /* Output assembler code for a block containing the constant parts 716 of a trampoline, leaving space for the variable parts. 717 718 The trampoline should set the static chain pointer to value placed 719 into the trampoline and should branch to the specified routine. 720 721 On the ROMP, we have a problem. There are no free registers to use 722 to construct the static chain and function addresses. Hence we use 723 the following kludge: r15 (the return address) is first saved in mq. 724 Then we use r15 to form the function address. We then branch to the 725 function and restore r15 in the delay slot. This makes it appear that 726 the function was called directly from the caller. 727 728 (Note that the function address built is actually that of the data block. 729 This is passed in r0 and the actual routine address is loaded into r15.) 730 731 In addition, note that the address of the "called function", in this case 732 the trampoline, is actually the address of the data area. So we need to 733 make a fake data area that will contain the address of the trampoline. 734 Note that this must be defined as two half-words, since the trampoline 735 template (as opposed to the trampoline on the stack) is only half-word 736 aligned. */ 737 738 #define TRAMPOLINE_TEMPLATE(FILE) \ 739 { \ 740 fprintf (FILE, "\t.short 0,0\n"); \ 741 fprintf (FILE, "\tcau r0,0(r0)\n"); \ 742 fprintf (FILE, "\toil r0,r0,0\n"); \ 743 fprintf (FILE, "\tmts r10,r15\n"); \ 744 fprintf (FILE, "\tst r0,-36(r1)\n"); \ 745 fprintf (FILE, "\tcau r15,0(r0)\n"); \ 746 fprintf (FILE, "\toil r15,r15,0\n"); \ 747 fprintf (FILE, "\tcas r0,r15,r0\n"); \ 748 fprintf (FILE, "\tls r15,0(r15)\n"); \ 749 fprintf (FILE, "\tbrx r15\n"); \ 750 fprintf (FILE, "\tmfs r10,r15\n"); \ 751 } 752 753 /* Length in units of the trampoline for entering a nested function. */ 754 755 #define TRAMPOLINE_SIZE 36 756 757 /* Emit RTL insns to initialize the variable parts of a trampoline. 758 FNADDR is an RTX for the address of the function's pure code. 759 CXT is an RTX for the static chain value for the function. 760 761 On the RT, the static chain and function addresses are written in 762 two 16-bit sections. 763 764 We also need to write the address of the first instruction in 765 the trampoline into the first word of the trampoline to simulate a 766 data area. */ 767 768 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \ 769 romp_initialize_trampoline (ADDR, FNADDR, CXT) 770 771 /* Definitions for register eliminations. 772 773 We have two registers that can be eliminated on the ROMP. First, the 774 frame pointer register can often be eliminated in favor of the stack 775 pointer register. Secondly, the argument pointer register can always be 776 eliminated; it is replaced with either the stack or frame pointer. 777 778 In addition, we use the elimination mechanism to see if r14 is needed. 779 Initially we assume that it isn't. If it is, we spill it. This is done 780 by making it an eliminable register. It doesn't matter what we replace 781 it with, since it will never occur in the rtl at this point. */ 782 783 /* This is an array of structures. Each structure initializes one pair 784 of eliminable registers. The "from" register number is given first, 785 followed by "to". Eliminations of the same "from" register are listed 786 in order of preference. */ 787 #define ELIMINABLE_REGS \ 788 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 789 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 790 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ 791 { 14, 0}} 792 793 /* Given FROM and TO register numbers, say whether this elimination is allowed. 794 Frame pointer elimination is automatically handled. 795 796 For the ROMP, if frame pointer elimination is being done, we would like to 797 convert ap into fp, not sp. 798 799 We need r14 if various conditions (tested in romp_using_r14) are true. 800 801 All other eliminations are valid. */ 802 #define CAN_ELIMINATE(FROM, TO) \ 803 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \ 804 ? ! frame_pointer_needed \ 805 : (FROM) == 14 ? ! romp_using_r14 () \ 806 : 1) 807 808 /* Define the offset between two registers, one to be eliminated, and the other 809 its replacement, at the start of a routine. */ 810 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 811 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ 812 { \ 813 if (romp_pushes_stack ()) \ 814 (OFFSET) = ((get_frame_size () - 64) \ 815 + current_function_outgoing_args_size); \ 816 else \ 817 (OFFSET) = - (romp_sa_size () + 64); \ 818 } \ 819 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \ 820 (OFFSET) = romp_sa_size () - 16 + 64; \ 821 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ 822 { \ 823 if (romp_pushes_stack ()) \ 824 (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \ 825 + current_function_outgoing_args_size); \ 826 else \ 827 (OFFSET) = -16; \ 828 } \ 829 else if ((FROM) == 14) \ 830 (OFFSET) = 0; \ 831 else \ 832 abort (); \ 833 } 834 835 /* Addressing modes, and classification of registers for them. */ 836 837 /* #define HAVE_POST_INCREMENT 0 */ 838 /* #define HAVE_POST_DECREMENT 0 */ 839 840 /* #define HAVE_PRE_DECREMENT 0 */ 841 /* #define HAVE_PRE_INCREMENT 0 */ 842 843 /* Macros to check register numbers against specific register classes. */ 844 845 /* These assume that REGNO is a hard or pseudo reg number. 846 They give nonzero only if REGNO is a hard reg of the suitable class 847 or a pseudo reg currently allocated to a suitable hard reg. 848 Since they use reg_renumber, they are safe only once reg_renumber 849 has been allocated, which happens in local-alloc.c. */ 850 851 #define REGNO_OK_FOR_INDEX_P(REGNO) 0 852 #define REGNO_OK_FOR_BASE_P(REGNO) \ 853 ((REGNO) < FIRST_PSEUDO_REGISTER \ 854 ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \ 855 : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \ 856 && reg_renumber[REGNO] != 16)) 857 858 /* Maximum number of registers that can appear in a valid memory address. */ 859 860 #define MAX_REGS_PER_ADDRESS 1 861 862 /* Recognize any constant value that is a valid address. */ 863 864 #define CONSTANT_ADDRESS_P(X) \ 865 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ 866 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ 867 || GET_CODE (X) == HIGH) 868 869 /* Nonzero if the constant value X is a legitimate general operand. 870 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. 871 872 On the ROMP, there is a bit of a hack here. Basically, we wish to 873 only issue instructions that are not `as' macros. However, in the 874 case of `get', `load', and `store', if the operand is a relocatable 875 symbol (possibly +/- an integer), there is no way to express the 876 resulting split-relocation except with the macro. Therefore, allow 877 either a constant valid in a normal (sign-extended) D-format insn or 878 a relocatable expression. 879 880 Also, for DFmode and DImode, we must ensure that both words are 881 addressable. 882 883 We define two macros: The first is given an offset (0 or 4) and indicates 884 that the operand is a CONST_INT that is valid for that offset. The second 885 indicates a valid non-CONST_INT constant. */ 886 887 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \ 888 (GET_CODE (X) == CONST_INT \ 889 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000) 890 891 #define LEGITIMATE_ADDRESS_CONSTANT_P(X) \ 892 (GET_CODE (X) == SYMBOL_REF \ 893 || GET_CODE (X) == LABEL_REF \ 894 || (GET_CODE (X) == CONST \ 895 && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \ 896 || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \ 897 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT)) 898 899 /* Include all constant integers and constant double, but exclude 900 SYMBOL_REFs that are to be obtained from the data area (see below). */ 901 #define LEGITIMATE_CONSTANT_P(X) \ 902 ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \ 903 || GET_CODE (X) == CONST_INT \ 904 || GET_CODE (X) == CONST_DOUBLE) \ 905 && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X))) 906 907 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx 908 and check its validity for a certain class. 909 We have two alternate definitions for each of them. 910 The usual definition accepts all pseudo regs; the other rejects 911 them unless they have been allocated suitable hard regs. 912 The symbol REG_OK_STRICT causes the latter definition to be used. 913 914 Most source files want to accept pseudo regs in the hope that 915 they will get allocated to the class that the insn wants them to be in. 916 Source files for reload pass need to be strict. 917 After reload, it makes no difference, since pseudo regs have 918 been eliminated by then. */ 919 920 #ifndef REG_OK_STRICT 921 922 /* Nonzero if X is a hard reg that can be used as an index 923 or if it is a pseudo reg. */ 924 #define REG_OK_FOR_INDEX_P(X) 0 925 /* Nonzero if X is a hard reg that can be used as a base reg 926 or if it is a pseudo reg. */ 927 #define REG_OK_FOR_BASE_P(X) \ 928 (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) 929 930 #else 931 932 /* Nonzero if X is a hard reg that can be used as an index. */ 933 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) 934 /* Nonzero if X is a hard reg that can be used as a base reg. */ 935 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) 936 937 #endif 938 939 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression 940 that is a valid memory address for an instruction. 941 The MODE argument is the machine mode for the MEM expression 942 that wants to use this address. 943 944 On the ROMP, a legitimate address is either a legitimate constant, 945 a register plus a legitimate constant, or a register. See the 946 discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */ 947 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ 948 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ 949 goto ADDR; \ 950 if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \ 951 goto ADDR; \ 952 if (GET_CODE (X) == PLUS \ 953 && GET_CODE (XEXP (X, 0)) == REG \ 954 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ 955 && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \ 956 goto ADDR; \ 957 if (GET_CODE (X) == PLUS \ 958 && GET_CODE (XEXP (X, 0)) == REG \ 959 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ 960 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \ 961 && (((MODE) != DFmode && (MODE) != DImode) \ 962 || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \ 963 goto ADDR; \ 964 } 965 966 /* Try machine-dependent ways of modifying an illegitimate address 967 to be legitimate. If we find one, return the new, valid address. 968 This macro is used in only one place: `memory_address' in explow.c. 969 970 OLDX is the address as it was before break_out_memory_refs was called. 971 In some cases it is useful to look at this to decide what needs to be done. 972 973 MODE and WIN are passed so that this macro can use 974 GO_IF_LEGITIMATE_ADDRESS. 975 976 It is always safe for this macro to do nothing. It exists to recognize 977 opportunities to optimize the output. 978 979 On ROMP, check for the sum of a register with a constant 980 integer that is out of range. If so, generate code to add the 981 constant with the low-order 16 bits masked to the register and force 982 this result into another register (this can be done with `cau'). 983 Then generate an address of REG+(CONST&0xffff), allowing for the 984 possibility of bit 16 being a one. 985 986 If the register is not OK for a base register, abort. */ 987 988 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ 989 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ 990 && GET_CODE (XEXP (X, 1)) == CONST_INT \ 991 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \ 992 { int high_int, low_int; \ 993 if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \ 994 abort (); \ 995 high_int = INTVAL (XEXP (X, 1)) >> 16; \ 996 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \ 997 if (low_int & 0x8000) \ 998 high_int += 1, low_int |= 0xffff0000; \ 999 (X) = gen_rtx_PLUS (SImode, \ 1000 force_operand (plus_constant (XEXP (X, 0), \ 1001 high_int << 16), 0), \ 1002 GEN_INT (low_int)); \ 1003 } \ 1004 } 1005 1006 /* Go to LABEL if ADDR (a legitimate address expression) 1007 has an effect that depends on the machine mode it is used for. 1008 1009 On the ROMP this is true only if the address is valid with a zero offset 1010 but not with an offset of four (this means it cannot be used as an 1011 address for DImode or DFmode). Since we know it is valid, we just check 1012 for an address that is not valid with an offset of four. */ 1013 1014 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ 1015 { if (GET_CODE (ADDR) == PLUS \ 1016 && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \ 1017 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \ 1018 goto LABEL; \ 1019 } 1020 1021 /* Define this if some processing needs to be done immediately before 1022 emitting code for an insn. 1023 1024 This is used on the ROMP, to compensate for a bug in the floating-point 1025 code. When a floating-point operation is done with the first and third 1026 operands both the same floating-point register, it will generate bad code 1027 for the MC68881. So we must detect this. If it occurs, we patch the 1028 first operand to be fr0 and insert a move insn to move it to the desired 1029 destination. */ 1030 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \ 1031 { rtx op0, op1, op2, operation, tem; \ 1032 if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \ 1033 { \ 1034 op0 = OPERANDS[0]; \ 1035 operation = OPERANDS[1]; \ 1036 if (float_conversion (operation, VOIDmode)) \ 1037 operation = XEXP (operation, 0); \ 1038 if (float_binary (operation, VOIDmode)) \ 1039 { \ 1040 op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \ 1041 if (float_conversion (op1, VOIDmode)) \ 1042 op1 = XEXP (op1, 0); \ 1043 if (float_conversion (op2, VOIDmode)) \ 1044 op2 = XEXP (op2, 0); \ 1045 if (rtx_equal_p (op0, op2) \ 1046 && (GET_CODE (operation) == PLUS \ 1047 || GET_CODE (operation) == MULT)) \ 1048 tem = op1, op1 = op2, op2 = tem; \ 1049 if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \ 1050 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \ 1051 && REGNO (op0) == REGNO (op2)) \ 1052 { \ 1053 tem = gen_rtx_REG (GET_MODE (op0), 17); \ 1054 emit_insn_after (gen_move_insn (op0, tem), INSN); \ 1055 SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \ 1056 OPERANDS[0] = tem; \ 1057 } \ 1058 } \ 1059 } \ 1060 } 1061 1062 /* Specify the machine mode that this machine uses 1063 for the index in the tablejump instruction. */ 1064 #define CASE_VECTOR_MODE SImode 1065 1066 /* Define as C expression which evaluates to nonzero if the tablejump 1067 instruction expects the table to contain offsets from the address of the 1068 table. 1069 Do not define this if the table should contain absolute addresses. */ 1070 /* #define CASE_VECTOR_PC_RELATIVE 1 */ 1071 1072 /* Define this as 1 if `char' should by default be signed; else as 0. */ 1073 #define DEFAULT_SIGNED_CHAR 0 1074 1075 /* This flag, if defined, says the same insns that convert to a signed fixnum 1076 also convert validly to an unsigned one. 1077 1078 We actually lie a bit here as overflow conditions are different. But 1079 they aren't being checked anyway. */ 1080 1081 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC 1082 1083 /* Max number of bytes we can move from memory to memory 1084 in one reasonably fast instruction. */ 1085 #define MOVE_MAX 4 1086 1087 /* Nonzero if access to memory by bytes is no faster than for words. 1088 Also nonzero if doing byte operations (specifically shifts) in registers 1089 is undesirable. */ 1090 #define SLOW_BYTE_ACCESS 1 1091 1092 /* Define if operations between registers always perform the operation 1093 on the full register even if a narrower mode is specified. */ 1094 #define WORD_REGISTER_OPERATIONS 1095 1096 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD 1097 will either zero-extend or sign-extend. The value of this macro should 1098 be the code that says which one of the two operations is implicitly 1099 done, NIL if none. */ 1100 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND 1101 1102 /* This is BSD, so it wants DBX format. */ 1103 #define DBX_DEBUGGING_INFO 1 1104 1105 /* Define the letter code used in a stabs entry for parameters passed 1106 with the register attribute. 1107 1108 GCC's default value, 'P', is used by dbx to refers to an external 1109 procedure. The section 5 manual page for dbx implies that 'R' would be the 1110 right letter, but dbx 1.5 has a bug in it that precludes its use. 1111 Probably that is why neither hc or pcc use this. pcc puts in two 1112 stabs entries: one for the parameter location and one for the register 1113 location. The letter `r' (register) 1114 would be okay, but it loses parameter attribute of the stabs entry. */ 1115 #define DBX_REGPARM_STABS_LETTER 'R' 1116 1117 /* A C expression for the integer offset value of an automatic variable 1118 (N_LSYM) having address X (an RTX). This gets used in .stabs entries 1119 for the local variables. Compare with the default definition. */ 1120 #define DEBUGGER_AUTO_OFFSET(X) \ 1121 (GET_CODE (X) == PLUS \ 1122 ? romp_debugger_auto_correction (INTVAL (XEXP (X, 1)) ) \ 1123 : 0 ) 1124 1125 /* A C expression for the integer offset value of an argument (N_PSYM) 1126 having address X (an RTX). The nominal offset is OFFSET. */ 1127 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \ 1128 romp_debugger_arg_correction (OFFSET); 1129 1130 /* We don't have GAS for the RT yet, so don't write out special 1131 .stabs in cc1plus. */ 1132 1133 #define FASCIST_ASSEMBLER 1134 1135 /* Do not break .stabs pseudos into continuations. */ 1136 #define DBX_CONTIN_LENGTH 0 1137 1138 /* Don't try to use the `x' type-cross-reference character in DBX data. 1139 Also has the consequence of putting each struct, union or enum 1140 into a separate .stabs, containing only cross-refs to the others. */ 1141 #define DBX_NO_XREFS 1142 1143 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits 1144 is done just by pretending it is already truncated. */ 1145 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 1146 1147 /* Specify the machine mode that pointers have. 1148 After generation of rtl, the compiler makes no further distinction 1149 between pointers and any other objects of this machine mode. */ 1150 #define Pmode SImode 1151 1152 /* Mode of a function address in a call instruction (for indexing purposes). 1153 1154 Doesn't matter on ROMP. */ 1155 #define FUNCTION_MODE SImode 1156 1157 /* Define this if addresses of constant functions 1158 shouldn't be put through pseudo regs where they can be cse'd. 1159 Desirable on machines where ordinary constants are expensive 1160 but a CALL with constant address is cheap. */ 1161 #define NO_FUNCTION_CSE 1162 1163 /* Define this if shift instructions ignore all but the low-order 1164 few bits. 1165 1166 This is not true on the RT since it uses the low-order 6, not 5, bits. 1167 At some point, this should be extended to see how to express that. */ 1168 1169 /* #define SHIFT_COUNT_TRUNCATED */ 1170 1171 /* Compute the cost of computing a constant rtl expression RTX whose 1172 rtx-code is CODE, contained within an expression of code OUTER_CODE. 1173 The body of this macro is a portion of a switch statement. If the 1174 code is computed here, return it with a return statement. Otherwise, 1175 break from the switch. */ 1176 1177 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ 1178 case CONST_INT: \ 1179 if (((OUTER_CODE) == IOR && exact_log2 (INTVAL (RTX)) >= 0) \ 1180 || ((OUTER_CODE) == AND && exact_log2 (~INTVAL (RTX)) >= 0) \ 1181 || (((OUTER_CODE) == PLUS || (OUTER_CODE) == MINUS) \ 1182 && (unsigned int) (INTVAL (RTX) + 15) < 31) \ 1183 || ((OUTER_CODE) == SET && (unsigned int) INTVAL (RTX) < 16))\ 1184 return 0; \ 1185 return ((unsigned int) (INTVAL(RTX) + 0x8000) < 0x10000 \ 1186 || (INTVAL (RTX) & 0xffff0000) == 0) ? 0 : COSTS_N_INSNS (2);\ 1187 case CONST: \ 1188 case LABEL_REF: \ 1189 case SYMBOL_REF: \ 1190 if (current_function_operand (RTX, Pmode)) return 0; \ 1191 return COSTS_N_INSNS (2); \ 1192 case CONST_DOUBLE: \ 1193 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) return 2; \ 1194 return ((GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \ 1195 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (4)); 1196 1197 /* Provide the costs of a rtl expression. This is in the body of a 1198 switch on CODE. 1199 1200 References to our own data area are really references to r14, so they 1201 are very cheap. Multiples and divides are very expensive. */ 1202 1203 #define RTX_COSTS(X,CODE,OUTER_CODE) \ 1204 case MEM: \ 1205 return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \ 1206 case MULT: \ 1207 return (TARGET_IN_LINE_MUL && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)\ 1208 ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \ 1209 case DIV: \ 1210 case UDIV: \ 1211 case MOD: \ 1212 case UMOD: \ 1213 return COSTS_N_INSNS (45); 1214 1215 /* Compute the cost of an address. This is meant to approximate the size 1216 and/or execution delay of an insn using that address. If the cost is 1217 approximated by the RTL complexity, including CONST_COSTS above, as 1218 is usually the case for CISC machines, this macro should not be defined. 1219 For aggressively RISCy machines, only one insn format is allowed, so 1220 this macro should be a constant. The value of this macro only matters 1221 for valid addresses. 1222 1223 For the ROMP, everything is cost 0 except for addresses involving 1224 symbolic constants, which are cost 1. */ 1225 1226 #define ADDRESS_COST(RTX) \ 1227 ((GET_CODE (RTX) == SYMBOL_REF \ 1228 && ! CONSTANT_POOL_ADDRESS_P (RTX)) \ 1229 || GET_CODE (RTX) == LABEL_REF \ 1230 || (GET_CODE (RTX) == CONST \ 1231 && ! constant_pool_address_operand (RTX, Pmode)) \ 1232 || (GET_CODE (RTX) == PLUS \ 1233 && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \ 1234 && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \ 1235 || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \ 1236 || GET_CODE (XEXP (RTX, 1)) == CONST))) 1237 1238 /* Adjust the length of an INSN. LENGTH is the currently-computed length and 1239 should be adjusted to reflect any required changes. This macro is used when 1240 there is some systematic length adjustment required that would be difficult 1241 to express in the length attribute. 1242 1243 On the ROMP, there are two adjustments: First, a 2-byte insn in the delay 1244 slot of a CALL (including floating-point operations) actually takes four 1245 bytes. Second, we have to make the worst-case alignment assumption for 1246 address vectors. */ 1247 1248 #define ADJUST_INSN_LENGTH(X,LENGTH) \ 1249 if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \ 1250 && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \ 1251 && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \ 1252 (LENGTH) += 2; \ 1253 else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \ 1254 (LENGTH) += 2; 1255 1256 /* Tell final.c how to eliminate redundant test instructions. */ 1257 1258 /* Here we define machine-dependent flags and fields in cc_status 1259 (see `conditions.h'). */ 1260 1261 /* Set if condition code (really not-Z) is stored in `test bit'. */ 1262 #define CC_IN_TB 01000 1263 1264 /* Set if condition code is set by an unsigned compare. */ 1265 #define CC_UNSIGNED 02000 1266 1267 /* Store in cc_status the expressions 1268 that the condition codes will describe 1269 after execution of an instruction whose pattern is EXP. 1270 Do not alter them if the instruction would not alter the cc's. */ 1271 1272 #define NOTICE_UPDATE_CC(BODY,INSN) \ 1273 update_cc (BODY, INSN) 1274 1275 /* Control the assembler format that we output. */ 1276 1277 /* Output at beginning of assembler file. */ 1278 1279 #define ASM_FILE_START(FILE) \ 1280 { const char *p; \ 1281 \ 1282 fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \ 1283 fprintf (FILE, "\t.globl .oVgcc"); \ 1284 for (p = version_string; *p != ' ' && *p != 0; p++) \ 1285 fprintf (FILE, "%c", *p); \ 1286 fprintf (FILE, "\n\t.set .oVgcc"); \ 1287 for (p = version_string; *p != ' ' && *p != 0; p++) \ 1288 fprintf (FILE, "%c", *p); \ 1289 fprintf (FILE, ",0\n"); \ 1290 } 1291 1292 /* Output to assembler file text saying following lines 1293 may contain character constants, extra white space, comments, etc. */ 1294 1295 #define ASM_APP_ON "" 1296 1297 /* Output to assembler file text saying following lines 1298 no longer contain unusual constructs. */ 1299 1300 #define ASM_APP_OFF "" 1301 1302 /* Output before instructions and read-only data. */ 1303 1304 #define TEXT_SECTION_ASM_OP "\t.text" 1305 1306 /* Output before writable data. */ 1307 1308 #define DATA_SECTION_ASM_OP "\t.data" 1309 1310 /* How to refer to registers in assembler output. 1311 This sequence is indexed by compiler's hard-register-number (see above). */ 1312 1313 #define REGISTER_NAMES \ 1314 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \ 1315 "r10", "r11", "r12", "r13", "r14", "r15", "ap", \ 1316 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" } 1317 1318 /* Globalizing directive for a label. */ 1319 #define GLOBAL_ASM_OP "\t.globl " 1320 1321 /* The prefix to add to user-visible assembler symbols. */ 1322 1323 #define USER_LABEL_PREFIX "_" 1324 1325 /* This is how to output an internal numbered label where 1326 PREFIX is the class of label and NUM is the number within the class. */ 1327 1328 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ 1329 fprintf (FILE, "%s%d:\n", PREFIX, NUM) 1330 1331 /* This is how to output a label for a jump table. Arguments are the same as 1332 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is 1333 passed. */ 1334 1335 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \ 1336 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); } 1337 1338 /* This is how to store into the string LABEL 1339 the symbol_ref name of an internal numbered label where 1340 PREFIX is the class of label and NUM is the number within the class. 1341 This is suitable for output with `assemble_name'. */ 1342 1343 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ 1344 sprintf (LABEL, "*%s%d", PREFIX, NUM) 1345 1346 /* This is how to output code to push a register on the stack. 1347 It need not be very fast code. */ 1348 1349 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ 1350 fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO]) 1351 1352 /* This is how to output an insn to pop a register from the stack. 1353 It need not be very fast code. */ 1354 1355 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ 1356 fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO]) 1357 1358 /* This is how to output an element of a case-vector that is absolute. */ 1359 1360 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ 1361 fprintf (FILE, "\t.long L%d\n", VALUE) 1362 1363 /* This is how to output an element of a case-vector that is relative. 1364 Don't define this if it is not supported. */ 1365 1366 /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */ 1367 1368 /* This is how to output an assembler line 1369 that says to advance the location counter 1370 to a multiple of 2**LOG bytes. */ 1371 1372 #define ASM_OUTPUT_ALIGN(FILE,LOG) \ 1373 if ((LOG) != 0) \ 1374 fprintf (FILE, "\t.align %d\n", (LOG)) 1375 1376 #define ASM_OUTPUT_SKIP(FILE,SIZE) \ 1377 fprintf (FILE, "\t.space %d\n", (SIZE)) 1378 1379 /* This says how to output an assembler line 1380 to define a global common symbol. */ 1381 1382 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ 1383 ( fputs (".comm ", (FILE)), \ 1384 assemble_name ((FILE), (NAME)), \ 1385 fprintf ((FILE), ",%d\n", (SIZE))) 1386 1387 /* This says how to output an assembler line 1388 to define a local common symbol. */ 1389 1390 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \ 1391 ( fputs (".lcomm ", (FILE)), \ 1392 assemble_name ((FILE), (NAME)), \ 1393 fprintf ((FILE), ",%d\n", (SIZE))) 1394 1395 /* Store in OUTPUT a string (made with alloca) containing 1396 an assembler-name for a local static variable named NAME. 1397 LABELNO is an integer which is different for each call. */ 1398 1399 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ 1400 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ 1401 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) 1402 1403 /* Print operand X (an rtx) in assembler syntax to file FILE. 1404 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. 1405 For `%' followed by punctuation, CODE is the punctuation and X is null. */ 1406 1407 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) 1408 1409 /* Define which CODE values are valid. */ 1410 1411 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ 1412 ((CODE) == '.' || (CODE) == '#') 1413 1414 /* Print a memory address as an operand to reference that memory location. */ 1415 1416 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ 1417 { register rtx addr = ADDR; \ 1418 register rtx base = 0, offset = addr; \ 1419 if (GET_CODE (addr) == REG) \ 1420 base = addr, offset = const0_rtx; \ 1421 else if (GET_CODE (addr) == PLUS \ 1422 && GET_CODE (XEXP (addr, 0)) == REG) \ 1423 base = XEXP (addr, 0), offset = XEXP (addr, 1); \ 1424 else if (GET_CODE (addr) == SYMBOL_REF \ 1425 && CONSTANT_POOL_ADDRESS_P (addr)) \ 1426 { \ 1427 offset = GEN_INT (get_pool_offset (addr) + 12); \ 1428 base = gen_rtx_REG (SImode, 14); \ 1429 } \ 1430 else if (GET_CODE (addr) == CONST \ 1431 && GET_CODE (XEXP (addr, 0)) == PLUS \ 1432 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \ 1433 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \ 1434 && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \ 1435 { \ 1436 offset = plus_constant (XEXP (XEXP (addr, 0), 1), \ 1437 (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \ 1438 + 12)); \ 1439 base = gen_rtx_REG (SImode, 14); \ 1440 } \ 1441 output_addr_const (FILE, offset); \ 1442 if (base) \ 1443 fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \ 1444 } 1445 1446 /* Define the codes that are matched by predicates in aux-output.c. */ 1447 1448 #define PREDICATE_CODES \ 1449 {"zero_memory_operand", {SUBREG, MEM}}, \ 1450 {"short_memory_operand", {SUBREG, MEM}}, \ 1451 {"symbolic_memory_operand", {SUBREG, MEM}}, \ 1452 {"current_function_operand", {MEM}}, \ 1453 {"constant_pool_address_operand", {SUBREG, CONST}}, \ 1454 {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \ 1455 {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \ 1456 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \ 1457 {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \ 1458 {"short_cint_operand", {CONST_INT}}, \ 1459 {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \ 1460 {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \ 1461 PLUS, CONST, CONST_INT}}, \ 1462 {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \ 1463 {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \ 1464 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \ 1465 {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \ 1466 SYMBOL_REF, CONST_DOUBLE}}, \ 1467 {"reg_0_operand", {REG}}, \ 1468 {"reg_15_operand", {REG}}, \ 1469 {"float_binary", {PLUS, MINUS, MULT, DIV}}, \ 1470 {"float_unary", {NEG, ABS}}, \ 1471 {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}}, 1472 1473