xref: /openbsd/gnu/usr.bin/gcc/gcc/config/romp/romp.h (revision c87b03e5)
1 /* Definitions of target machine for GNU compiler, for ROMP chip.
2    Copyright (C) 1989, 1991, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2002
3    Free Software Foundation, Inc.
4    Contributed by Richard Kenner (kenner@nyu.edu)
5 
6 This file is part of GNU CC.
7 
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12 
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING.  If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.  */
22 
23 
24 /* Names to predefine in the preprocessor for this target machine.  */
25 
26 #define CPP_PREDEFINES "-Dibm032 -Dunix -Asystem=unix -Asystem=bsd  -Acpu=ibm032 -Amachine=ibm032"
27 
28 /* Print subsidiary information on the compiler version in use.  */
29 #define TARGET_VERSION ;
30 
31 /* Add -lfp_p when running with -p or -pg.  */
32 #define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
33 
34 /* Run-time compilation parameters selecting different hardware subsets.  */
35 
36 /* Flag to generate all multiplies as an in-line sequence of multiply-step
37    insns instead of calling a library routine.  */
38 #define TARGET_IN_LINE_MUL (target_flags & 1)
39 
40 /* Flag to generate padded floating-point data blocks.  Otherwise, we generate
41    them the minimum size.  This trades off execution speed against size.  */
42 #define TARGET_FULL_FP_BLOCKS (target_flags & 2)
43 
44 /* Flag to pass and return floating point values in floating point registers.
45    Since this violates the linkage convention, we feel free to destroy fr2
46    and fr3 on function calls.
47    fr1-fr3 are used to pass the arguments.  */
48 #define TARGET_FP_REGS (target_flags & 4)
49 
50 /* Flag to return structures of more than one word in memory.  This is for
51    compatibility with the MetaWare HighC (hc) compiler.  */
52 #define TARGET_HC_STRUCT_RETURN (target_flags & 010)
53 
54 extern int target_flags;
55 
56 /* Macro to define tables used to set the flags.
57    This is a list in braces of pairs in braces,
58    each pair being { "NAME", VALUE }
59    where VALUE is the bits to set or minus the bits to clear.
60    An empty string NAME is used to identify the default VALUE.  */
61 
62 #define TARGET_SWITCHES		\
63   { {"in-line-mul", 1},		\
64     {"call-lib-mul", -1},	\
65     {"full-fp-blocks", 2},	\
66     {"minimum-fp-blocks", -2},	\
67     {"fp-arg-in-fpregs", 4},	\
68     {"fp-arg-in-gregs", -4},	\
69     {"hc-struct-return", 010},  \
70     {"nohc-struct-return", - 010}, \
71     { "", TARGET_DEFAULT}}
72 
73 #define TARGET_DEFAULT 3
74 
75 /* target machine storage layout */
76 
77 /* Define this if most significant bit is lowest numbered
78    in instructions that operate on numbered bit-fields.  */
79 /* That is true on ROMP.  */
80 #define BITS_BIG_ENDIAN 1
81 
82 /* Define this if most significant byte of a word is the lowest numbered.  */
83 /* That is true on ROMP.  */
84 #define BYTES_BIG_ENDIAN 1
85 
86 /* Define this if most significant word of a multiword number is lowest
87    numbered.
88 
89    For ROMP we can decide arbitrarily since there are no machine instructions
90    for them.  Might as well be consistent with bits and bytes.  */
91 #define WORDS_BIG_ENDIAN 1
92 
93 /* Width of a word, in units (bytes).  */
94 #define UNITS_PER_WORD 4
95 
96 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
97 #define PARM_BOUNDARY 32
98 
99 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
100 #define STACK_BOUNDARY 32
101 
102 /* Allocation boundary (in *bits*) for the code of a function.  */
103 #define FUNCTION_BOUNDARY 16
104 
105 /* No data type wants to be aligned rounder than this.  */
106 #define BIGGEST_ALIGNMENT 32
107 
108 /* Alignment of field after `int : 0' in a structure.  */
109 #define EMPTY_FIELD_BOUNDARY 32
110 
111 /* Every structure's size must be a multiple of this.  */
112 #define STRUCTURE_SIZE_BOUNDARY 8
113 
114 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
115 #define PCC_BITFIELD_TYPE_MATTERS 1
116 
117 /* Make strings word-aligned so strcpy from constants will be faster.  */
118 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
119   (TREE_CODE (EXP) == STRING_CST	\
120    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
121 
122 /* Make arrays of chars word-aligned for the same reasons.  */
123 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
124   (TREE_CODE (TYPE) == ARRAY_TYPE		\
125    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
126    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
127 
128 /* Set this nonzero if move instructions will actually fail to work
129    when given unaligned data.  */
130 #define STRICT_ALIGNMENT 1
131 
132 /* Standard register usage.  */
133 
134 /* Number of actual hardware registers.
135    The hardware registers are assigned numbers for the compiler
136    from 0 to just below FIRST_PSEUDO_REGISTER.
137    All registers that the compiler knows about must be given numbers,
138    even those that are not normally considered general registers.
139 
140    ROMP has 16 fullword registers and 8 floating point registers.
141 
142    In addition, the difference between the frame and argument pointers is
143    a function of the number of registers saved, so we need to have a register
144    to use for AP that will later be eliminated in favor of sp or fp.  This is
145    a normal register, but it is fixed.  */
146 
147 #define FIRST_PSEUDO_REGISTER 25
148 
149 /* 1 for registers that have pervasive standard uses
150    and are not available for the register allocator.
151 
152    On ROMP, r1 is used for the stack and r14 is used for a
153    data area pointer.
154 
155    HACK WARNING:  On the RT, there is a bug in code generation for
156    the MC68881 when the first and third operands are the same floating-point
157    register.  See the definition of the FINAL_PRESCAN_INSN macro for details.
158    Here we need to reserve fr0 for this purpose.  */
159 #define FIXED_REGISTERS  \
160  {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
161   1,							\
162   1, 0, 0, 0, 0, 0, 0, 0}
163 
164 /* 1 for registers not available across function calls.
165    These must include the FIXED_REGISTERS and also any
166    registers that can be used without being saved.
167    The latter must include the registers where values are returned
168    and the register where structure-value addresses are passed.
169    Aside from that, you can include as many other registers as you like.  */
170 #define CALL_USED_REGISTERS				\
171  {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
172   1,							\
173   1, 1, 0, 0, 0, 0, 0, 0}
174 
175 /* List the order in which to allocate registers.  Each register must be
176    listed once, even those in FIXED_REGISTERS.
177 
178    We allocate in the following order:
179 	fr0, fr1	(not saved)
180 	fr2 ... fr6
181 	fr7		(more expensive for some FPA's)
182 	r0		(not saved and won't conflict with parameter register)
183 	r4, r3, r2	(not saved, highest used first to make less conflict)
184 	r5		(not saved, but forces r6 to be saved if DI/DFmode)
185 	r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save)
186 	r1, ap 			*/
187 
188 #define REG_ALLOC_ORDER		\
189   {17, 18,			\
190    19, 20, 21, 22, 23,		\
191    24,				\
192    0,				\
193    4, 3, 2,			\
194    5,				\
195    15, 14, 13, 12, 11, 10,	\
196    9, 8, 7, 6, 			\
197    1, 16}
198 
199 /* True if register is floating-point.  */
200 #define FP_REGNO_P(N) ((N) >= 17)
201 
202 /* Return number of consecutive hard regs needed starting at reg REGNO
203    to hold something of mode MODE.
204    This is ordinarily the length in words of a value of mode MODE
205    but can be less for certain modes in special long registers.
206 
207    On ROMP, ordinary registers hold 32 bits worth;
208    a single floating point register is always enough for
209    anything that can be stored in them at all.  */
210 #define HARD_REGNO_NREGS(REGNO, MODE)   \
211   (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE)	\
212    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
213 
214 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
215    On ROMP, the cpu registers can hold any mode but the float registers
216    can hold only floating point.  */
217 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
218   (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT	\
219    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
220 
221 /* Value is 1 if it is a good idea to tie two pseudo registers
222    when one has mode MODE1 and one has mode MODE2.
223    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
224    for any hard reg, then this must be 0 for correct output.  */
225 #define MODES_TIEABLE_P(MODE1, MODE2) \
226   ((GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
227     || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)	\
228    == (GET_MODE_CLASS (MODE2) == MODE_FLOAT		\
229        || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
230 
231 /* A C expression returning the cost of moving data from a register of class
232    CLASS1 to one of CLASS2.
233 
234    On the ROMP, access to floating-point registers is expensive (even between
235    two FP regs.)  */
236 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)	\
237   (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS))
238 
239 /* Specify the registers used for certain standard purposes.
240    The values of these macros are register numbers.  */
241 
242 /* ROMP pc isn't overloaded on a register that the compiler knows about.  */
243 /* #define PC_REGNUM  */
244 
245 /* Register to use for pushing function arguments.  */
246 #define STACK_POINTER_REGNUM 1
247 
248 /* Base register for access to local variables of the function.  */
249 #define FRAME_POINTER_REGNUM 13
250 
251 /* Value should be nonzero if functions must have frame pointers.
252    Zero means the frame pointer need not be set up (and parms
253    may be accessed via the stack pointer) in functions that seem suitable.
254    This is computed in `reload', in reload1.c.  */
255 #define FRAME_POINTER_REQUIRED 0
256 
257 /* Base register for access to arguments of the function.  */
258 #define ARG_POINTER_REGNUM 16
259 
260 /* Place to put static chain when calling a function that requires it.  */
261 #define STATIC_CHAIN							\
262   gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -36))
263 
264 /* Place where static chain is found upon entry to routine.  */
265 #define STATIC_CHAIN_INCOMING						\
266   gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -20))
267 
268 /* Place that structure value return address is placed.
269 
270    On the ROMP, it is passed as an extra parameter.  */
271 #define STRUCT_VALUE	0
272 
273 /* Define the classes of registers for register constraints in the
274    machine description.  Also define ranges of constants.
275 
276    One of the classes must always be named ALL_REGS and include all hard regs.
277    If there is more than one class, another class must be named NO_REGS
278    and contain no registers.
279 
280    The name GENERAL_REGS must be the name of a class (or an alias for
281    another name such as ALL_REGS).  This is the class of registers
282    that is allowed by "g" or "r" in a register constraint.
283    Also, registers outside this class are allocated only when
284    instructions express preferences for them.
285 
286    The classes must be numbered in nondecreasing order; that is,
287    a larger-numbered class must never be contained completely
288    in a smaller-numbered class.
289 
290    For any two classes, it is very desirable that there be another
291    class that represents their union.  */
292 
293 /* The ROMP has two types of registers, general and floating-point.
294 
295    However, r0 is special in that it cannot be used as a base register.
296    So make a class for registers valid as base registers.
297 
298    For floating-point support, add classes that just consist of r0 and
299    r15, respectively.  */
300 
301 enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS,
302 		 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
303 
304 #define N_REG_CLASSES (int) LIM_REG_CLASSES
305 
306 /* Give names of register classes as strings for dump file.   */
307 
308 #define REG_CLASS_NAMES \
309  {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \
310   "FP_REGS", "ALL_REGS" }
311 
312 /* Define which registers fit in which classes.
313    This is an initializer for a vector of HARD_REG_SET
314    of length N_REG_CLASSES.  */
315 
316 #define REG_CLASS_CONTENTS {{0}, {0x00001}, {0x08000}, {0x1fffe}, {0x1ffff},  \
317 			    {0x1fe0000}, {0x1ffffff} }
318 
319 /* The same information, inverted:
320    Return the class number of the smallest class containing
321    reg number REGNO.  This could be a conditional expression
322    or could index an array.  */
323 
324 #define REGNO_REG_CLASS(REGNO) \
325  ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS)
326 
327 /* The class value for index registers, and the one for base regs.  */
328 #define INDEX_REG_CLASS BASE_REGS
329 #define BASE_REG_CLASS BASE_REGS
330 
331 /* Get reg_class from a letter such as appears in the machine description.  */
332 
333 #define REG_CLASS_FROM_LETTER(C) \
334   ((C) == 'f' ? FP_REGS		\
335    : (C) == 'b' ? BASE_REGS	\
336    : (C) == 'z' ? R0_REGS	\
337    : (C) == 't' ? R15_REGS	\
338    : NO_REGS)
339 
340 /* The letters I, J, K, L, M, N, and P in a register constraint string
341    can be used to stand for particular ranges of immediate operands.
342    This macro defines what the ranges are.
343    C is the letter, and VALUE is a constant value.
344    Return 1 if VALUE is in the range specified by C.
345 
346    `I' is constants less than 16
347    `J' is negative constants greater than -16
348    `K' is the range for a normal D insn.
349    `L' is a constant with only the low-order 16 bits set
350    `M' is a constant with only the high-order 16 bits set
351    `N' is a single-bit constant
352    `O' is a constant with either the high-order or low-order 16 bits all ones
353    `P' is the complement of a single-bit constant
354   */
355 
356 #define CONST_OK_FOR_LETTER_P(VALUE, C)  		   \
357    ( (C) == 'I' ? (unsigned) (VALUE) < 0x10		   \
358    : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16		   \
359    : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000  \
360    : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0		   \
361    : (C) == 'M' ? ((VALUE) & 0xffff) == 0		   \
362    : (C) == 'N' ? exact_log2 (VALUE) >= 0		   \
363    : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff		   \
364 		  || ((VALUE) & 0xffff0000) == 0xffff0000  \
365    : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0		   \
366    : 0)
367 
368 /* Similar, but for floating constants, and defining letters G and H.
369    Here VALUE is the CONST_DOUBLE rtx itself.
370    No floating-point constants on ROMP.  */
371 
372 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  0
373 
374 /* Optional extra constraints for this machine.
375 
376    For the ROMP, `Q' means that this is a memory operand but not a symbolic
377    memory operand.  Note that an unassigned pseudo register is such a
378    memory operand.  If register allocation has not been done, we reject
379    pseudos, since we assume (hope) that they will get hard registers.
380 
381    `R' means that this is a constant pool reference to the current function.
382    This is just r14 and so can be treated as a register.  We bother with this
383    just in move insns as that is the only place it is likely to occur.
384 
385    `S' means that this is the address of a constant pool location.  This is
386    equal to r14 plus a constant.  We also only check for this in move insns.  */
387 
388 #define EXTRA_CONSTRAINT(OP, C)				\
389   ((C) == 'Q' ?						\
390    ((GET_CODE (OP) == REG				\
391      && REGNO (OP) >= FIRST_PSEUDO_REGISTER		\
392      && reg_renumber != 0				\
393      && reg_renumber[REGNO (OP)] < 0)			\
394     || (GET_CODE (OP) == MEM				\
395         && ! symbolic_memory_operand (OP, VOIDmode)))	\
396    : (C) == 'R' ? current_function_operand (OP, VOIDmode) \
397    : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \
398    : 0)
399 
400 /* Given an rtx X being reloaded into a reg required to be
401    in class CLASS, return the class of reg to actually use.
402    In general this is just CLASS; but on some machines
403    in some cases it is preferable to use a more restrictive class.
404 
405    For the ROMP, if X is a memory reference that involves a symbol,
406    we must use a BASE_REGS register instead of GENERAL_REGS
407    to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF
408    to be valid, so we assume that this is the case.
409 
410    Also, if X is an integer class, ensure that floating-point registers
411    aren't used.  */
412 
413 #define PREFERRED_RELOAD_CLASS(X,CLASS)					\
414   ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT	\
415    ? GENERAL_REGS :							\
416    (CLASS) != GENERAL_REGS ? (CLASS) :					\
417    GET_CODE (X) != MEM ? GENERAL_REGS :					\
418    GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS :			\
419    GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS :			\
420    GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS :			\
421    GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS :			\
422    GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS :			\
423    GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS :		\
424    GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS :		\
425    GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS)
426 
427 /* Return the register class of a scratch register needed to store into
428    OUT from a register of class CLASS in MODE.
429 
430    On the ROMP, we cannot store into a symbolic memory address from an
431    integer register; we need a BASE_REGS register as a scratch to do it.  */
432 
433 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
434   (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \
435    ? BASE_REGS : NO_REGS)
436 
437 /* Return the maximum number of consecutive registers
438    needed to represent mode MODE in a register of class CLASS.
439 
440    On ROMP, this is the size of MODE in words,
441    except in the FP regs, where a single reg is always enough.  */
442 #define CLASS_MAX_NREGS(CLASS, MODE)	\
443  ((CLASS) == FP_REGS ? 1			\
444   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
445 
446 /* Stack layout; function entry, exit and calling.  */
447 
448 /* Define this if pushing a word on the stack
449    makes the stack pointer a smaller address.  */
450 #define STACK_GROWS_DOWNWARD
451 
452 /* Define this if the nominal address of the stack frame
453    is at the high-address end of the local variables;
454    that is, each additional local variable allocated
455    goes at a more negative offset in the frame.  */
456 #define FRAME_GROWS_DOWNWARD
457 
458 /* Offset within stack frame to start allocating local variables at.
459    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
460    first local allocated.  Otherwise, it is the offset to the BEGINNING
461    of the first local allocated.
462    On the ROMP, if we set the frame pointer to 15 words below the highest
463    address of the highest local variable, the first 16 words will be
464    addressable via D-short insns.  */
465 #define STARTING_FRAME_OFFSET 64
466 
467 /* If we generate an insn to push BYTES bytes,
468    this says how many the stack pointer really advances by.
469    On ROMP, don't define this because there are no push insns.  */
470 /*  #define PUSH_ROUNDING(BYTES) */
471 
472 /* Offset of first parameter from the argument pointer register value.
473    On the ROMP, we define the argument pointer to the start of the argument
474    area.  */
475 #define FIRST_PARM_OFFSET(FNDECL) 0
476 
477 /* Define this if stack space is still allocated for a parameter passed
478    in a register.  The value is the number of bytes.  */
479 #define REG_PARM_STACK_SPACE(FNDECL) 16
480 
481 /* This is the difference between the logical top of stack and the actual sp.
482 
483    For the ROMP, sp points past the words allocated for the first four outgoing
484    arguments (they are part of the callee's frame).  */
485 #define STACK_POINTER_OFFSET -16
486 
487 /* Define this if the maximum size of all the outgoing args is to be
488    accumulated and pushed during the prologue.  The amount can be
489    found in the variable current_function_outgoing_args_size.  */
490 #define ACCUMULATE_OUTGOING_ARGS 1
491 
492 /* Value is the number of bytes of arguments automatically
493    popped when returning from a subroutine call.
494    FUNDECL is the declaration node of the function (as a tree),
495    FUNTYPE is the data type of the function (as a tree),
496    or for a library call it is an identifier node for the subroutine name.
497    SIZE is the number of bytes of arguments passed on the stack.  */
498 
499 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
500 
501 /* Define how to find the value returned by a function.
502    VALTYPE is the data type of the value (as a tree).
503    If the precise function being called is known, FUNC is its FUNCTION_DECL;
504    otherwise, FUNC is 0.
505 
506    On ROMP the value is found in r2, unless the machine specific option
507    fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */
508 
509 #define FUNCTION_VALUE(VALTYPE, FUNC)					\
510   gen_rtx_REG (TYPE_MODE (VALTYPE),					\
511 	       (TARGET_FP_REGS						\
512 		&& GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT)	\
513 	       ? 18 : 2)
514 
515 /* Define how to find the value returned by a library function
516    assuming the value has mode MODE.  */
517 
518 #define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, 2)
519 
520 /* The definition of this macro implies that there are cases where
521    a scalar value cannot be returned in registers.
522 
523    For the ROMP, if compatibility with HC is required, anything of
524    type DImode is returned in memory.  */
525 
526 #define RETURN_IN_MEMORY(type) \
527   (TYPE_MODE (type) == BLKmode \
528    || (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode))
529 
530 /* 1 if N is a possible register number for a function value
531    as seen by the caller.
532 
533    On ROMP, r2 is the only register thus used unless fp values are to be
534    returned in fp regs, in which case fr1 is also used.  */
535 
536 #define FUNCTION_VALUE_REGNO_P(N)  ((N) == 2 || ((N) == 18 && TARGET_FP_REGS))
537 
538 /* 1 if N is a possible register number for function argument passing.
539    On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used).  */
540 
541 #define FUNCTION_ARG_REGNO_P(N)	\
542   (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21))
543 
544 /* Define a data type for recording info about an argument list
545    during the scan of that argument list.  This data type should
546    hold all necessary information about the function itself
547    and about the args processed so far, enough to enable macros
548    such as FUNCTION_ARG to determine where the next arg should go.
549 
550    On the ROMP, this is a structure.  The first word is the number of
551    words of (integer only if -mfp-arg-in-fpregs is specified) arguments
552    scanned so far (including the invisible argument, if any, which holds
553    the structure-value-address).  The second word hold the corresponding
554    value for floating-point arguments, except that both single and double
555    count as one register.  */
556 
557 struct rt_cargs {int gregs, fregs; };
558 #define CUMULATIVE_ARGS struct rt_cargs
559 
560 #define USE_FP_REG(MODE,CUM)					\
561   (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT	\
562    && (CUM).fregs < 3)
563 
564 /* Define intermediate macro to compute the size (in registers) of an argument
565    for the ROMP.  */
566 
567 #define ROMP_ARG_SIZE(MODE, TYPE, NAMED)				\
568 (! (NAMED) ? 0								\
569  : (MODE) != BLKmode							\
570  ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD 	\
571  : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
572 
573 /* Initialize a variable CUM of type CUMULATIVE_ARGS
574    for a call to a function whose data type is FNTYPE.
575    For a library call, FNTYPE is 0.
576 
577    On ROMP, the offset normally starts at 0, but starts at 4 bytes
578    when the function gets a structure-value-address as an
579    invisible first argument.  */
580 
581 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)	\
582   (CUM).gregs = 0,				\
583   (CUM).fregs = 0
584 
585 /* Update the data in CUM to advance over an argument
586    of mode MODE and data type TYPE.
587    (TYPE is null for libcalls where that information may not be available.)  */
588 
589 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
590 { if (NAMED)						\
591     {							\
592       if (USE_FP_REG(MODE, CUM))			\
593 	(CUM).fregs++;					\
594       else						\
595 	(CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \
596     }							\
597 }
598 
599 /* Determine where to put an argument to a function.
600    Value is zero to push the argument on the stack,
601    or a hard register in which to store the argument.
602 
603    MODE is the argument's machine mode.
604    TYPE is the data type of the argument (as a tree).
605     This is null for libcalls where that information may
606     not be available.
607    CUM is a variable of type CUMULATIVE_ARGS which gives info about
608     the preceding args and about the function being called.
609    NAMED is nonzero if this argument is a named parameter
610     (otherwise it is an extra parameter matching an ellipsis).
611 
612    On ROMP the first four words of args are normally in registers
613    and the rest are pushed.  */
614 
615 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)				\
616   (! (NAMED) ? 0							\
617    : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0	\
618    : USE_FP_REG(MODE,CUM) ? gen_rtx_REG ((MODE), (CUM).fregs + 17)	\
619    : (CUM).gregs < 4 ? gen_rtx_REG ((MODE), 2 + (CUM).gregs) : 0)
620 
621 /* For an arg passed partly in registers and partly in memory,
622    this is the number of registers used.
623    For args passed entirely in registers or entirely in memory, zero.  */
624 
625 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED)		\
626   (! (NAMED) ? 0							\
627    : USE_FP_REG(MODE,CUM) ? 0						\
628    : (((CUM).gregs < 4							\
629        && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED)))	\
630       ? 4 - (CUM).gregs : 0))
631 
632 /* Perform any needed actions needed for a function that is receiving a
633    variable number of arguments.
634 
635    CUM is as above.
636 
637    MODE and TYPE are the mode and type of the current parameter.
638 
639    PRETEND_SIZE is a variable that should be set to the amount of stack
640    that must be pushed by the prolog to pretend that our caller pushed
641    it.
642 
643    Normally, this macro will push all remaining incoming registers on the
644    stack and set PRETEND_SIZE to the length of the registers pushed.  */
645 
646 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL)	\
647 { if (TARGET_FP_REGS)							\
648     error ("can't have varargs with -mfp-arg-in-fp-regs");		\
649   else if ((CUM).gregs < 4)						\
650     {									\
651       int first_reg_offset = (CUM).gregs;				\
652 									\
653       if (MUST_PASS_IN_STACK (MODE, TYPE))				\
654 	first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1);	\
655 									\
656       if (first_reg_offset > 4)						\
657 	first_reg_offset = 4;						\
658 									\
659       if (! NO_RTL && first_reg_offset != 4)				\
660 	move_block_from_reg						\
661 	  (2 + first_reg_offset,					\
662 	   gen_rtx_MEM (BLKmode,					\
663 			plus_constant (virtual_incoming_args_rtx,	\
664 				       first_reg_offset * 4)), 		\
665 	   4 - first_reg_offset, (4 - first_reg_offset) * UNITS_PER_WORD); \
666       PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD;		\
667     }									\
668 }
669 
670 /* This macro produces the initial definition of a function name.
671    On the ROMP, we need to place an extra '.' in the function name.  */
672 
673 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL)	\
674 { if (TREE_PUBLIC(DECL))				\
675     fprintf (FILE, "\t.globl _.%s\n", NAME);		\
676   fprintf (FILE, "_.%s:\n", NAME);			\
677 }
678 
679 /* This macro is used to output the start of the data area.
680 
681    On the ROMP, the _name is a pointer to the data area.  At that
682    location is the address of _.name, which is really the name of
683    the function.  We need to set all this up here.
684 
685    The global declaration of the data area, if needed, is done in
686    `assemble_function', where it thinks it is globalizing the function
687    itself.  */
688 
689 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE)	\
690 { extern int data_offset;					\
691   data_section ();						\
692   fprintf (FILE, "\t.align 2\n");				\
693   ASM_OUTPUT_LABEL (FILE, NAME);				\
694   fprintf (FILE, "\t.long _.%s, 0, ", NAME);			\
695   if (current_function_calls_alloca)				\
696     fprintf (FILE, "0x%x\n",					\
697 	     0xf6900000 + current_function_outgoing_args_size); \
698   else								\
699     fprintf (FILE, "0\n");					\
700   data_offset = ((SIZE) + 12 + 3) / 4;				\
701 }
702 
703 /* Output assembler code to FILE to increment profiler label # LABELNO
704    for profiling a function entry.  */
705 
706 #define FUNCTION_PROFILER(FILE, LABELNO)	\
707   fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n");
708 
709 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
710    the stack pointer does not matter.  The value is tested only in
711    functions that have frame pointers.
712    No definition is equivalent to always zero.  */
713 /* #define EXIT_IGNORE_STACK	1	*/
714 
715 /* Output assembler code for a block containing the constant parts
716    of a trampoline, leaving space for the variable parts.
717 
718    The trampoline should set the static chain pointer to value placed
719    into the trampoline and should branch to the specified routine.
720 
721    On the ROMP, we have a problem.  There are no free registers to use
722    to construct the static chain and function addresses.  Hence we use
723    the following kludge:  r15 (the return address) is first saved in mq.
724    Then we use r15 to form the function address.  We then branch to the
725    function and restore r15 in the delay slot.  This makes it appear that
726    the function was called directly from the caller.
727 
728    (Note that the function address built is actually that of the data block.
729    This is passed in r0 and the actual routine address is loaded into r15.)
730 
731    In addition, note that the address of the "called function", in this case
732    the trampoline, is actually the address of the data area.  So we need to
733    make a fake data area that will contain the address of the trampoline.
734    Note that this must be defined as two half-words, since the trampoline
735    template (as opposed to the trampoline on the stack) is only half-word
736    aligned.  */
737 
738 #define TRAMPOLINE_TEMPLATE(FILE)	\
739 {					\
740   fprintf (FILE, "\t.short 0,0\n");	\
741   fprintf (FILE, "\tcau r0,0(r0)\n");	\
742   fprintf (FILE, "\toil r0,r0,0\n");	\
743   fprintf (FILE, "\tmts r10,r15\n");	\
744   fprintf (FILE, "\tst r0,-36(r1)\n");	\
745   fprintf (FILE, "\tcau r15,0(r0)\n");	\
746   fprintf (FILE, "\toil r15,r15,0\n");	\
747   fprintf (FILE, "\tcas r0,r15,r0\n");	\
748   fprintf (FILE, "\tls r15,0(r15)\n");	\
749   fprintf (FILE, "\tbrx r15\n");	\
750   fprintf (FILE, "\tmfs r10,r15\n");	\
751 }
752 
753 /* Length in units of the trampoline for entering a nested function.  */
754 
755 #define TRAMPOLINE_SIZE    36
756 
757 /* Emit RTL insns to initialize the variable parts of a trampoline.
758    FNADDR is an RTX for the address of the function's pure code.
759    CXT is an RTX for the static chain value for the function.
760 
761    On the RT, the static chain and function addresses are written in
762    two 16-bit sections.
763 
764    We also need to write the address of the first instruction in
765    the trampoline into the first word of the trampoline to simulate a
766    data area.  */
767 
768 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)		\
769 	romp_initialize_trampoline (ADDR, FNADDR, CXT)
770 
771 /* Definitions for register eliminations.
772 
773    We have two registers that can be eliminated on the ROMP.  First, the
774    frame pointer register can often be eliminated in favor of the stack
775    pointer register.  Secondly, the argument pointer register can always be
776    eliminated; it is replaced with either the stack or frame pointer.
777 
778    In addition, we use the elimination mechanism to see if r14 is needed.
779    Initially we assume that it isn't.  If it is, we spill it.  This is done
780    by making it an eliminable register.  It doesn't matter what we replace
781    it with, since it will never occur in the rtl at this point.  */
782 
783 /* This is an array of structures.  Each structure initializes one pair
784    of eliminable registers.  The "from" register number is given first,
785    followed by "to".  Eliminations of the same "from" register are listed
786    in order of preference.  */
787 #define ELIMINABLE_REGS				\
788 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
789  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
790  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
791  { 14, 0}}
792 
793 /* Given FROM and TO register numbers, say whether this elimination is allowed.
794    Frame pointer elimination is automatically handled.
795 
796    For the ROMP, if frame pointer elimination is being done, we would like to
797    convert ap into fp, not sp.
798 
799    We need r14 if various conditions (tested in romp_using_r14) are true.
800 
801    All other eliminations are valid.  */
802 #define CAN_ELIMINATE(FROM, TO)					\
803  ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM	\
804   ? ! frame_pointer_needed					\
805   : (FROM) == 14 ? ! romp_using_r14 ()				\
806   : 1)
807 
808 /* Define the offset between two registers, one to be eliminated, and the other
809    its replacement, at the start of a routine.  */
810 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
811 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)	\
812     {									\
813       if (romp_pushes_stack ())						\
814 	(OFFSET) = ((get_frame_size () - 64)				\
815 		    + current_function_outgoing_args_size);		\
816       else								\
817 	(OFFSET) = - (romp_sa_size () + 64);				\
818     }									\
819   else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
820     (OFFSET) = romp_sa_size () - 16 + 64;				\
821   else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
822     {									\
823       if (romp_pushes_stack ())						\
824 	(OFFSET) = (get_frame_size () + (romp_sa_size () - 16)		\
825 		    + current_function_outgoing_args_size);		\
826       else								\
827 	(OFFSET) = -16;							\
828     }									\
829   else if ((FROM) == 14)						\
830     (OFFSET) = 0;							\
831   else									\
832     abort ();								\
833 }
834 
835 /* Addressing modes, and classification of registers for them.  */
836 
837 /* #define HAVE_POST_INCREMENT 0 */
838 /* #define HAVE_POST_DECREMENT 0 */
839 
840 /* #define HAVE_PRE_DECREMENT 0 */
841 /* #define HAVE_PRE_INCREMENT 0 */
842 
843 /* Macros to check register numbers against specific register classes.  */
844 
845 /* These assume that REGNO is a hard or pseudo reg number.
846    They give nonzero only if REGNO is a hard reg of the suitable class
847    or a pseudo reg currently allocated to a suitable hard reg.
848    Since they use reg_renumber, they are safe only once reg_renumber
849    has been allocated, which happens in local-alloc.c.  */
850 
851 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
852 #define REGNO_OK_FOR_BASE_P(REGNO)				\
853 ((REGNO) < FIRST_PSEUDO_REGISTER				\
854  ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16		\
855  : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0	\
856     && reg_renumber[REGNO] != 16))
857 
858 /* Maximum number of registers that can appear in a valid memory address.  */
859 
860 #define MAX_REGS_PER_ADDRESS 1
861 
862 /* Recognize any constant value that is a valid address.  */
863 
864 #define CONSTANT_ADDRESS_P(X)   \
865   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
866    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
867    || GET_CODE (X) == HIGH)
868 
869 /* Nonzero if the constant value X is a legitimate general operand.
870    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
871 
872    On the ROMP, there is a bit of a hack here.  Basically, we wish to
873    only issue instructions that are not `as' macros.  However, in the
874    case of `get', `load', and `store', if the operand is a relocatable
875    symbol (possibly +/- an integer), there is no way to express the
876    resulting split-relocation except with the macro.  Therefore, allow
877    either a constant valid in a normal (sign-extended) D-format insn or
878    a relocatable expression.
879 
880    Also, for DFmode and DImode, we must ensure that both words are
881    addressable.
882 
883    We define two macros: The first is given an offset (0 or 4) and indicates
884    that the operand is a CONST_INT that is valid for that offset.  The second
885    indicates a valid non-CONST_INT constant.  */
886 
887 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET)				\
888   (GET_CODE (X) == CONST_INT						\
889    && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
890 
891 #define LEGITIMATE_ADDRESS_CONSTANT_P(X)				\
892  (GET_CODE (X) == SYMBOL_REF						\
893   || GET_CODE (X) == LABEL_REF						\
894   || (GET_CODE (X) == CONST						\
895       && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF		\
896           || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF)		\
897       && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))
898 
899 /* Include all constant integers and constant double, but exclude
900    SYMBOL_REFs that are to be obtained from the data area (see below).  */
901 #define LEGITIMATE_CONSTANT_P(X)		\
902   ((LEGITIMATE_ADDRESS_CONSTANT_P (X)		\
903     || GET_CODE (X) == CONST_INT		\
904     || GET_CODE (X) == CONST_DOUBLE)		\
905    && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
906 
907 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
908    and check its validity for a certain class.
909    We have two alternate definitions for each of them.
910    The usual definition accepts all pseudo regs; the other rejects
911    them unless they have been allocated suitable hard regs.
912    The symbol REG_OK_STRICT causes the latter definition to be used.
913 
914    Most source files want to accept pseudo regs in the hope that
915    they will get allocated to the class that the insn wants them to be in.
916    Source files for reload pass need to be strict.
917    After reload, it makes no difference, since pseudo regs have
918    been eliminated by then.  */
919 
920 #ifndef REG_OK_STRICT
921 
922 /* Nonzero if X is a hard reg that can be used as an index
923    or if it is a pseudo reg.  */
924 #define REG_OK_FOR_INDEX_P(X) 0
925 /* Nonzero if X is a hard reg that can be used as a base reg
926    or if it is a pseudo reg.  */
927 #define REG_OK_FOR_BASE_P(X)		\
928   (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
929 
930 #else
931 
932 /* Nonzero if X is a hard reg that can be used as an index.  */
933 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
934 /* Nonzero if X is a hard reg that can be used as a base reg.  */
935 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
936 
937 #endif
938 
939 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
940    that is a valid memory address for an instruction.
941    The MODE argument is the machine mode for the MEM expression
942    that wants to use this address.
943 
944    On the ROMP, a legitimate address is either a legitimate constant,
945    a register plus a legitimate constant, or a register.  See the
946    discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro.  */
947 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
948 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
949     goto ADDR;								\
950   if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X))	\
951     goto ADDR;								\
952   if (GET_CODE (X) == PLUS						\
953       && GET_CODE (XEXP (X, 0)) == REG					\
954       && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
955       && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1)))			\
956 	goto ADDR;							\
957   if (GET_CODE (X) == PLUS						\
958       && GET_CODE (XEXP (X, 0)) == REG					\
959       && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
960       && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0)			\
961       && (((MODE) != DFmode && (MODE) != DImode)			\
962 	  || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4))))		\
963 	goto ADDR;							\
964 }
965 
966 /* Try machine-dependent ways of modifying an illegitimate address
967    to be legitimate.  If we find one, return the new, valid address.
968    This macro is used in only one place: `memory_address' in explow.c.
969 
970    OLDX is the address as it was before break_out_memory_refs was called.
971    In some cases it is useful to look at this to decide what needs to be done.
972 
973    MODE and WIN are passed so that this macro can use
974    GO_IF_LEGITIMATE_ADDRESS.
975 
976    It is always safe for this macro to do nothing.  It exists to recognize
977    opportunities to optimize the output.
978 
979    On ROMP, check for the sum of a register with a constant
980    integer that is out of range.  If so, generate code to add the
981    constant with the low-order 16 bits masked to the register and force
982    this result into another register (this can be done with `cau').
983    Then generate an address of REG+(CONST&0xffff), allowing for the
984    possibility of bit 16 being a one.
985 
986    If the register is not OK for a base register, abort.  */
987 
988 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
989 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG	\
990     && GET_CODE (XEXP (X, 1)) == CONST_INT			\
991     && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000)	\
992     { int high_int, low_int;					\
993       if (! REG_OK_FOR_BASE_P (XEXP (X, 0)))			\
994 	abort ();						\
995       high_int = INTVAL (XEXP (X, 1)) >> 16;			\
996       low_int = INTVAL (XEXP (X, 1)) & 0xffff;			\
997       if (low_int & 0x8000)					\
998 	high_int += 1, low_int |= 0xffff0000;			\
999       (X) = gen_rtx_PLUS (SImode,				\
1000 			  force_operand (plus_constant (XEXP (X, 0),  \
1001 							high_int << 16), 0), \
1002 			  GEN_INT (low_int));			\
1003     }								\
1004 }
1005 
1006 /* Go to LABEL if ADDR (a legitimate address expression)
1007    has an effect that depends on the machine mode it is used for.
1008 
1009    On the ROMP this is true only if the address is valid with a zero offset
1010    but not with an offset of four (this means it cannot be used as an
1011    address for DImode or DFmode).  Since we know it is valid, we just check
1012    for an address that is not valid with an offset of four.  */
1013 
1014 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)		\
1015 { if (GET_CODE (ADDR) == PLUS					\
1016       && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1))	\
1017       && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4))	\
1018     goto LABEL;							\
1019 }
1020 
1021 /* Define this if some processing needs to be done immediately before
1022    emitting code for an insn.
1023 
1024    This is used on the ROMP, to compensate for a bug in the floating-point
1025    code.  When a floating-point operation is done with the first and third
1026    operands both the same floating-point register, it will generate bad code
1027    for the MC68881.  So we must detect this.  If it occurs, we patch the
1028    first operand to be fr0 and insert a move insn to move it to the desired
1029    destination.  */
1030 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS)			\
1031   { rtx op0, op1, op2, operation, tem;					\
1032     if (NOPERANDS >= 3	&& get_attr_type (INSN) == TYPE_FP)		\
1033       {									\
1034 	op0 = OPERANDS[0];						\
1035 	operation = OPERANDS[1];					\
1036 	if (float_conversion (operation, VOIDmode))			\
1037 	  operation = XEXP (operation, 0);				\
1038         if (float_binary (operation, VOIDmode))				\
1039 	  {								\
1040 	    op1 = XEXP (operation, 0), op2 = XEXP (operation, 1);	\
1041 	    if (float_conversion (op1, VOIDmode))			\
1042 	      op1 = XEXP (op1, 0);					\
1043 	    if (float_conversion (op2, VOIDmode))			\
1044 	      op2 = XEXP (op2, 0);					\
1045 	    if (rtx_equal_p (op0, op2)					\
1046 		&& (GET_CODE (operation) == PLUS			\
1047 		    || GET_CODE (operation) == MULT))			\
1048 	      tem = op1, op1 = op2, op2 = tem;				\
1049 	    if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0))	\
1050 		&& GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2))	\
1051 		&& REGNO (op0) == REGNO (op2))				\
1052 	      {								\
1053 		tem = gen_rtx_REG (GET_MODE (op0), 17);		\
1054 		emit_insn_after (gen_move_insn (op0, tem), INSN);	\
1055 		SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; 	\
1056 		OPERANDS[0] = tem;					\
1057 	      }								\
1058 	  }								\
1059       }									\
1060   }
1061 
1062 /* Specify the machine mode that this machine uses
1063    for the index in the tablejump instruction.  */
1064 #define CASE_VECTOR_MODE SImode
1065 
1066 /* Define as C expression which evaluates to nonzero if the tablejump
1067    instruction expects the table to contain offsets from the address of the
1068    table.
1069    Do not define this if the table should contain absolute addresses.  */
1070 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1071 
1072 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1073 #define DEFAULT_SIGNED_CHAR 0
1074 
1075 /* This flag, if defined, says the same insns that convert to a signed fixnum
1076    also convert validly to an unsigned one.
1077 
1078    We actually lie a bit here as overflow conditions are different.  But
1079    they aren't being checked anyway.  */
1080 
1081 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1082 
1083 /* Max number of bytes we can move from memory to memory
1084    in one reasonably fast instruction.  */
1085 #define MOVE_MAX 4
1086 
1087 /* Nonzero if access to memory by bytes is no faster than for words.
1088    Also nonzero if doing byte operations (specifically shifts) in registers
1089    is undesirable.  */
1090 #define SLOW_BYTE_ACCESS 1
1091 
1092 /* Define if operations between registers always perform the operation
1093    on the full register even if a narrower mode is specified.  */
1094 #define WORD_REGISTER_OPERATIONS
1095 
1096 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1097    will either zero-extend or sign-extend.  The value of this macro should
1098    be the code that says which one of the two operations is implicitly
1099    done, NIL if none.  */
1100 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1101 
1102 /* This is BSD, so it wants DBX format.  */
1103 #define DBX_DEBUGGING_INFO 1
1104 
1105 /* Define the letter code used in a stabs entry for parameters passed
1106    with the register attribute.
1107 
1108    GCC's default value, 'P', is used by dbx to refers to an external
1109    procedure. The section 5 manual page for dbx implies that 'R' would be the
1110    right letter, but dbx 1.5 has a bug in it that precludes its use.
1111    Probably that is why neither hc or pcc use this. pcc puts in two
1112    stabs entries: one for the parameter location and one for the register
1113    location. The letter `r' (register)
1114    would be okay, but it loses parameter attribute of the stabs entry.  */
1115 #define DBX_REGPARM_STABS_LETTER 'R'
1116 
1117 /* A C expression for the integer offset value of an automatic variable
1118    (N_LSYM) having address X (an RTX). This gets used in .stabs entries
1119    for the local variables. Compare with the default definition.  */
1120 #define DEBUGGER_AUTO_OFFSET(X)                        \
1121   (GET_CODE (X) == PLUS                                \
1122    ? romp_debugger_auto_correction (INTVAL (XEXP (X, 1)) ) \
1123    : 0 )
1124 
1125 /* A C expression for the integer offset value of an argument (N_PSYM)
1126    having address X (an RTX).  The nominal offset is OFFSET.  */
1127 #define DEBUGGER_ARG_OFFSET(OFFSET, X)             \
1128   romp_debugger_arg_correction (OFFSET);
1129 
1130 /* We don't have GAS for the RT yet, so don't write out special
1131    .stabs in cc1plus.  */
1132 
1133 #define FASCIST_ASSEMBLER
1134 
1135 /* Do not break .stabs pseudos into continuations.  */
1136 #define DBX_CONTIN_LENGTH 0
1137 
1138 /* Don't try to use the `x' type-cross-reference character in DBX data.
1139    Also has the consequence of putting each struct, union or enum
1140    into a separate .stabs, containing only cross-refs to the others.  */
1141 #define DBX_NO_XREFS
1142 
1143 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1144    is done just by pretending it is already truncated.  */
1145 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1146 
1147 /* Specify the machine mode that pointers have.
1148    After generation of rtl, the compiler makes no further distinction
1149    between pointers and any other objects of this machine mode.  */
1150 #define Pmode SImode
1151 
1152 /* Mode of a function address in a call instruction (for indexing purposes).
1153 
1154    Doesn't matter on ROMP.  */
1155 #define FUNCTION_MODE SImode
1156 
1157 /* Define this if addresses of constant functions
1158    shouldn't be put through pseudo regs where they can be cse'd.
1159    Desirable on machines where ordinary constants are expensive
1160    but a CALL with constant address is cheap.  */
1161 #define NO_FUNCTION_CSE
1162 
1163 /* Define this if shift instructions ignore all but the low-order
1164    few bits.
1165 
1166    This is not true on the RT since it uses the low-order 6, not 5, bits.
1167    At some point, this should be extended to see how to express that.  */
1168 
1169 /* #define SHIFT_COUNT_TRUNCATED */
1170 
1171 /* Compute the cost of computing a constant rtl expression RTX whose
1172    rtx-code is CODE, contained within an expression of code OUTER_CODE.
1173    The body of this macro is a portion of a switch statement.  If the
1174    code is computed here, return it with a return statement.  Otherwise,
1175    break from the switch.  */
1176 
1177 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1178   case CONST_INT:						\
1179     if (((OUTER_CODE) == IOR && exact_log2 (INTVAL (RTX)) >= 0)	\
1180 	|| ((OUTER_CODE) == AND && exact_log2 (~INTVAL (RTX)) >= 0) \
1181 	|| (((OUTER_CODE) == PLUS || (OUTER_CODE) == MINUS)	\
1182 	    && (unsigned int) (INTVAL (RTX) + 15) < 31)		\
1183 	|| ((OUTER_CODE) == SET && (unsigned int) INTVAL (RTX) < 16))\
1184       return 0;							\
1185     return ((unsigned int) (INTVAL(RTX) + 0x8000) < 0x10000		\
1186 	    || (INTVAL (RTX) & 0xffff0000) == 0) ? 0 : COSTS_N_INSNS (2);\
1187   case CONST:							\
1188   case LABEL_REF:						\
1189   case SYMBOL_REF:						\
1190     if (current_function_operand (RTX, Pmode)) return 0;	\
1191     return COSTS_N_INSNS (2);					\
1192   case CONST_DOUBLE:						\
1193     if ((RTX) == CONST0_RTX (GET_MODE (RTX))) return 2;		\
1194     return ((GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT)	\
1195 	    ? COSTS_N_INSNS (5) : COSTS_N_INSNS (4));
1196 
1197 /* Provide the costs of a rtl expression.  This is in the body of a
1198    switch on CODE.
1199 
1200    References to our own data area are really references to r14, so they
1201    are very cheap.  Multiples and divides are very expensive.  */
1202 
1203 #define RTX_COSTS(X,CODE,OUTER_CODE)			\
1204   case MEM:						\
1205     return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2);	\
1206   case MULT:						\
1207     return (TARGET_IN_LINE_MUL && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)\
1208 	   ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25);	\
1209   case DIV:						\
1210   case UDIV:						\
1211   case MOD:						\
1212   case UMOD:						\
1213     return COSTS_N_INSNS (45);
1214 
1215 /* Compute the cost of an address.  This is meant to approximate the size
1216    and/or execution delay of an insn using that address.  If the cost is
1217    approximated by the RTL complexity, including CONST_COSTS above, as
1218    is usually the case for CISC machines, this macro should not be defined.
1219    For aggressively RISCy machines, only one insn format is allowed, so
1220    this macro should be a constant.  The value of this macro only matters
1221    for valid addresses.
1222 
1223    For the ROMP, everything is cost 0 except for addresses involving
1224    symbolic constants, which are cost 1.  */
1225 
1226 #define ADDRESS_COST(RTX)				\
1227   ((GET_CODE (RTX) == SYMBOL_REF			\
1228     && ! CONSTANT_POOL_ADDRESS_P (RTX))			\
1229    || GET_CODE (RTX) == LABEL_REF			\
1230    || (GET_CODE (RTX) == CONST				\
1231        && ! constant_pool_address_operand (RTX, Pmode))	\
1232    || (GET_CODE (RTX) == PLUS				\
1233        && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF	\
1234 	    && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \
1235 	   || GET_CODE (XEXP (RTX, 1)) == LABEL_REF	\
1236 	   || GET_CODE (XEXP (RTX, 1)) == CONST)))
1237 
1238 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
1239    should be adjusted to reflect any required changes.  This macro is used when
1240    there is some systematic length adjustment required that would be difficult
1241    to express in the length attribute.
1242 
1243    On the ROMP, there are two adjustments:  First, a 2-byte insn in the delay
1244    slot of a CALL (including floating-point operations) actually takes four
1245    bytes.  Second, we have to make the worst-case alignment assumption for
1246    address vectors.  */
1247 
1248 #define ADJUST_INSN_LENGTH(X,LENGTH)					\
1249   if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE	\
1250       && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN		\
1251       && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2)		\
1252     (LENGTH) += 2;							\
1253   else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \
1254     (LENGTH) += 2;
1255 
1256 /* Tell final.c how to eliminate redundant test instructions.  */
1257 
1258 /* Here we define machine-dependent flags and fields in cc_status
1259    (see `conditions.h').  */
1260 
1261 /* Set if condition code (really not-Z) is stored in `test bit'.  */
1262 #define CC_IN_TB	 01000
1263 
1264 /* Set if condition code is set by an unsigned compare.  */
1265 #define	CC_UNSIGNED        02000
1266 
1267 /* Store in cc_status the expressions
1268    that the condition codes will describe
1269    after execution of an instruction whose pattern is EXP.
1270    Do not alter them if the instruction would not alter the cc's.  */
1271 
1272 #define NOTICE_UPDATE_CC(BODY,INSN) \
1273   update_cc (BODY, INSN)
1274 
1275 /* Control the assembler format that we output.  */
1276 
1277 /* Output at beginning of assembler file.  */
1278 
1279 #define ASM_FILE_START(FILE)				\
1280 { const char *p;					\
1281 							\
1282   fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \
1283   fprintf (FILE, "\t.globl .oVgcc");			\
1284   for (p = version_string; *p != ' ' && *p != 0; p++)	\
1285     fprintf (FILE, "%c", *p);				\
1286   fprintf (FILE, "\n\t.set .oVgcc");			\
1287   for (p = version_string; *p != ' ' && *p != 0; p++)	\
1288     fprintf (FILE, "%c", *p);				\
1289   fprintf (FILE, ",0\n");				\
1290 }
1291 
1292 /* Output to assembler file text saying following lines
1293    may contain character constants, extra white space, comments, etc.  */
1294 
1295 #define ASM_APP_ON ""
1296 
1297 /* Output to assembler file text saying following lines
1298    no longer contain unusual constructs.  */
1299 
1300 #define ASM_APP_OFF ""
1301 
1302 /* Output before instructions and read-only data.  */
1303 
1304 #define TEXT_SECTION_ASM_OP "\t.text"
1305 
1306 /* Output before writable data.  */
1307 
1308 #define DATA_SECTION_ASM_OP "\t.data"
1309 
1310 /* How to refer to registers in assembler output.
1311    This sequence is indexed by compiler's hard-register-number (see above).  */
1312 
1313 #define REGISTER_NAMES \
1314 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9",	\
1315  "r10", "r11", "r12", "r13", "r14", "r15", "ap",		\
1316  "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" }
1317 
1318 /* Globalizing directive for a label.  */
1319 #define GLOBAL_ASM_OP "\t.globl "
1320 
1321 /* The prefix to add to user-visible assembler symbols.  */
1322 
1323 #define USER_LABEL_PREFIX "_"
1324 
1325 /* This is how to output an internal numbered label where
1326    PREFIX is the class of label and NUM is the number within the class.  */
1327 
1328 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
1329   fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1330 
1331 /* This is how to output a label for a jump table.  Arguments are the same as
1332    for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1333    passed.  */
1334 
1335 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN)	\
1336 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1337 
1338 /* This is how to store into the string LABEL
1339    the symbol_ref name of an internal numbered label where
1340    PREFIX is the class of label and NUM is the number within the class.
1341    This is suitable for output with `assemble_name'.  */
1342 
1343 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1344   sprintf (LABEL, "*%s%d", PREFIX, NUM)
1345 
1346 /* This is how to output code to push a register on the stack.
1347    It need not be very fast code.  */
1348 
1349 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
1350   fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO])
1351 
1352 /* This is how to output an insn to pop a register from the stack.
1353    It need not be very fast code.  */
1354 
1355 #define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
1356   fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO])
1357 
1358 /* This is how to output an element of a case-vector that is absolute.  */
1359 
1360 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1361   fprintf (FILE, "\t.long L%d\n", VALUE)
1362 
1363 /* This is how to output an element of a case-vector that is relative.
1364    Don't define this if it is not supported.  */
1365 
1366 /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
1367 
1368 /* This is how to output an assembler line
1369    that says to advance the location counter
1370    to a multiple of 2**LOG bytes.  */
1371 
1372 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1373   if ((LOG) != 0)			\
1374     fprintf (FILE, "\t.align %d\n", (LOG))
1375 
1376 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1377   fprintf (FILE, "\t.space %d\n", (SIZE))
1378 
1379 /* This says how to output an assembler line
1380    to define a global common symbol.  */
1381 
1382 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1383 ( fputs (".comm ", (FILE)),			\
1384   assemble_name ((FILE), (NAME)),		\
1385   fprintf ((FILE), ",%d\n", (SIZE)))
1386 
1387 /* This says how to output an assembler line
1388    to define a local common symbol.  */
1389 
1390 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED)	\
1391 ( fputs (".lcomm ", (FILE)),				\
1392   assemble_name ((FILE), (NAME)),			\
1393   fprintf ((FILE), ",%d\n", (SIZE)))
1394 
1395 /* Store in OUTPUT a string (made with alloca) containing
1396    an assembler-name for a local static variable named NAME.
1397    LABELNO is an integer which is different for each call.  */
1398 
1399 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
1400 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
1401   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1402 
1403 /* Print operand X (an rtx) in assembler syntax to file FILE.
1404    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1405    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1406 
1407 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
1408 
1409 /* Define which CODE values are valid.  */
1410 
1411 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)	\
1412   ((CODE) == '.' || (CODE) == '#')
1413 
1414 /* Print a memory address as an operand to reference that memory location.  */
1415 
1416 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)			\
1417 { register rtx addr = ADDR;					\
1418   register rtx base = 0, offset = addr;				\
1419   if (GET_CODE (addr) == REG)					\
1420     base = addr, offset = const0_rtx;				\
1421   else if (GET_CODE (addr) == PLUS				\
1422 	   && GET_CODE (XEXP (addr, 0)) == REG)			\
1423     base = XEXP (addr, 0), offset = XEXP (addr, 1);		\
1424   else if (GET_CODE (addr) == SYMBOL_REF			\
1425 	   && CONSTANT_POOL_ADDRESS_P (addr))			\
1426     {								\
1427       offset = GEN_INT (get_pool_offset (addr) + 12);  		\
1428       base = gen_rtx_REG (SImode, 14);				\
1429     }								\
1430   else if (GET_CODE (addr) == CONST				\
1431 	   && GET_CODE (XEXP (addr, 0)) == PLUS			\
1432 	   && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT	\
1433 	   && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF	\
1434 	   && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \
1435     {								\
1436       offset = plus_constant (XEXP (XEXP (addr, 0), 1),		\
1437 			      (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \
1438 			       + 12));				\
1439       base = gen_rtx_REG (SImode, 14);				\
1440     }								\
1441   output_addr_const (FILE, offset);				\
1442   if (base)							\
1443     fprintf (FILE, "(%s)", reg_names [REGNO (base)]);		\
1444 }
1445 
1446 /* Define the codes that are matched by predicates in aux-output.c.  */
1447 
1448 #define PREDICATE_CODES \
1449   {"zero_memory_operand", {SUBREG, MEM}},			\
1450   {"short_memory_operand", {SUBREG, MEM}},			\
1451   {"symbolic_memory_operand", {SUBREG, MEM}},			\
1452   {"current_function_operand", {MEM}},				\
1453   {"constant_pool_address_operand", {SUBREG, CONST}},		\
1454   {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}},	\
1455   {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \
1456   {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}},		\
1457   {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}},	\
1458   {"short_cint_operand", {CONST_INT}},				\
1459   {"reg_or_D_operand", {SUBREG, REG, CONST_INT}},		\
1460   {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF,	\
1461 			  PLUS, CONST, CONST_INT}}, 		\
1462   {"reg_or_and_operand", {SUBREG, REG, CONST_INT}},		\
1463   {"reg_or_mem_operand", {SUBREG, REG, MEM}},			\
1464   {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}},		\
1465   {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \
1466 		    SYMBOL_REF, CONST_DOUBLE}},			\
1467   {"reg_0_operand", {REG}},					\
1468   {"reg_15_operand", {REG}},					\
1469   {"float_binary", {PLUS, MINUS, MULT, DIV}},			\
1470   {"float_unary", {NEG, ABS}},					\
1471   {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}},
1472 
1473