xref: /openbsd/gnu/usr.bin/gcc/gcc/config/sh/sh.h (revision 88d50e23)
1 /* Definitions of target machine for GNU compiler for Hitachi / SuperH SH.
2    Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3    Free Software Foundation, Inc.
4    Contributed by Steve Chamberlain (sac@cygnus.com).
5    Improved by Jim Wilson (wilson@cygnus.com).
6 
7 This file is part of GNU CC.
8 
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13 
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING.  If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA.  */
23 
24 #ifndef GCC_SH_H
25 #define GCC_SH_H
26 
27 #define TARGET_VERSION \
28   fputs (" (Hitachi SH)", stderr);
29 
30 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h.  We can't
31    include it here, because hconfig.h is also included by gencodes.c .  */
32 /* ??? No longer true.  */
33 extern int code_for_indirect_jump_scratch;
34 
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do { \
37   builtin_define ("__sh__"); \
38   builtin_assert ("cpu=sh"); \
39   builtin_assert ("machine=sh"); \
40   switch ((int) sh_cpu) \
41     { \
42     case PROCESSOR_SH1: \
43       builtin_define ("__sh1__"); \
44       break; \
45     case PROCESSOR_SH2: \
46       builtin_define ("__sh2__"); \
47       break; \
48     case PROCESSOR_SH3: \
49       builtin_define ("__sh3__"); \
50       builtin_define ("__SH3__"); \
51       if (TARGET_HARD_SH4) \
52 	builtin_define ("__SH4_NOFPU__"); \
53       break; \
54     case PROCESSOR_SH3E: \
55       builtin_define (TARGET_HARD_SH4 ? "__SH4_SINGLE_ONLY__" : "__SH3E__"); \
56       break; \
57     case PROCESSOR_SH4: \
58       builtin_define (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__"); \
59       break; \
60     case PROCESSOR_SH5: \
61       { \
62 	builtin_define_with_value ("__SH5__", \
63 				   TARGET_SHMEDIA64 ? "64" : "32", 0); \
64 	builtin_define_with_value ("__SHMEDIA__", \
65 				   TARGET_SHMEDIA ? "1" : "0", 0); \
66 	if (! TARGET_FPU_DOUBLE) \
67 	  builtin_define ("__SH4_NOFPU__"); \
68       } \
69     } \
70   if (TARGET_HITACHI) \
71     builtin_define ("__HITACHI__"); \
72   builtin_define (TARGET_LITTLE_ENDIAN \
73 		  ? "__LITTLE_ENDIAN__" : "__BIG_ENDIAN__"); \
74   if (flag_pic) \
75     { \
76       builtin_define ("__pic__"); \
77       builtin_define ("__PIC__"); \
78     } \
79   TARGET_OBJFMT_CPP_BUILTINS (); \
80 } while (0)
81 
82 /* We can not debug without a frame pointer.  */
83 /* #define CAN_DEBUG_WITHOUT_FP */
84 
85 #define CONDITIONAL_REGISTER_USAGE do					\
86 {									\
87   int regno;								\
88   for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++)		\
89     if (! VALID_REGISTER_P (regno))					\
90       fixed_regs[regno] = call_used_regs[regno] = 1;			\
91   /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs.  */ \
92   if (TARGET_SH5)							\
93     call_used_regs[FIRST_GENERAL_REG + 8]				\
94       = call_used_regs[FIRST_GENERAL_REG + 9] = 1;			\
95   if (TARGET_SHMEDIA)							\
96     {									\
97       regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS;		\
98       CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]);		\
99       regno_reg_class[FIRST_FP_REG] = FP_REGS;				\
100     }									\
101   if (flag_pic)								\
102     fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;				\
103   /* Hitachi saves and restores mac registers on call.  */		\
104   if (TARGET_HITACHI && ! TARGET_NOMACSAVE)				\
105     {									\
106       call_used_regs[MACH_REG] = 0;					\
107       call_used_regs[MACL_REG] = 0;					\
108     }									\
109   for (regno = FIRST_FP_REG + (TARGET_LITTLE_ENDIAN != 0);		\
110        regno <= LAST_FP_REG; regno += 2)				\
111     SET_HARD_REG_BIT (reg_class_contents[DF_HI_REGS], regno);		\
112   if (TARGET_SHMEDIA)							\
113     {									\
114       for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\
115 	if (! fixed_regs[regno] && call_used_regs[regno])		\
116 	  SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno);	\
117     }									\
118   else									\
119     for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++)	\
120       if (! fixed_regs[regno] && call_used_regs[regno])			\
121 	SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno);	\
122 } while (0)
123 
124 /* ??? Need to write documentation for all SH options and add it to the
125    invoke.texi file.  */
126 
127 /* Run-time compilation parameters selecting different hardware subsets.  */
128 
129 extern int target_flags;
130 #define ISIZE_BIT      	(1<<1)
131 #define DALIGN_BIT     	(1<<6)
132 #define SH1_BIT	       	(1<<8)
133 #define SH2_BIT	       	(1<<9)
134 #define SH3_BIT	       	(1<<10)
135 #define SH3E_BIT	(1<<11)
136 #define HARD_SH4_BIT	(1<<5)
137 #define FPU_SINGLE_BIT	(1<<7)
138 #define SH4_BIT	       	(1<<12)
139 #define FMOVD_BIT	(1<<4)
140 #define SH5_BIT		(1<<0)
141 #define SPACE_BIT 	(1<<13)
142 #define BIGTABLE_BIT  	(1<<14)
143 #define RELAX_BIT	(1<<15)
144 #define USERMODE_BIT	(1<<16)
145 #define HITACHI_BIT     (1<<22)
146 #define NOMACSAVE_BIT   (1<<23)
147 #define PREFERGOT_BIT	(1<<24)
148 #define PADSTRUCT_BIT  (1<<28)
149 #define LITTLE_ENDIAN_BIT (1<<29)
150 #define IEEE_BIT (1<<30)
151 
152 /* Nonzero if we should dump out instruction size info.  */
153 #define TARGET_DUMPISIZE  (target_flags & ISIZE_BIT)
154 
155 /* Nonzero to align doubles on 64 bit boundaries.  */
156 #define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
157 
158 /* Nonzero if we should generate code using type 1 insns.  */
159 #define TARGET_SH1 (target_flags & SH1_BIT)
160 
161 /* Nonzero if we should generate code using type 2 insns.  */
162 #define TARGET_SH2 (target_flags & SH2_BIT)
163 
164 /* Nonzero if we should generate code using type 3 insns.  */
165 #define TARGET_SH3 (target_flags & SH3_BIT)
166 
167 /* Nonzero if we should generate code using type 3E insns.  */
168 #define TARGET_SH3E ((target_flags & SH3E_BIT) && (target_flags & SH1_BIT))
169 
170 /* Nonzero if the cache line size is 32.  */
171 #define TARGET_CACHE32 (target_flags & HARD_SH4_BIT || TARGET_SH5)
172 
173 /* Nonzero if we schedule for a superscalar implementation.  */
174 #define TARGET_SUPERSCALAR (target_flags & HARD_SH4_BIT)
175 
176 /* Nonzero if the target has separate instruction and data caches.  */
177 #define TARGET_HARVARD (target_flags & HARD_SH4_BIT)
178 
179 /* Nonzero if compiling for SH4 hardware (to be used for insn costs etc.)  */
180 #define TARGET_HARD_SH4 (target_flags & HARD_SH4_BIT)
181 
182 /* Nonzero if the default precision of th FPU is single */
183 #define TARGET_FPU_SINGLE (target_flags & FPU_SINGLE_BIT)
184 
185 /* Nonzero if a double-precision FPU is available.  */
186 #define TARGET_FPU_DOUBLE (target_flags & SH4_BIT)
187 
188 /* Nonzero if an FPU is available.  */
189 #define TARGET_FPU_ANY (TARGET_SH3E || TARGET_FPU_DOUBLE)
190 
191 /* Nonzero if we should generate code using type 4 insns.  */
192 #define TARGET_SH4 ((target_flags & SH4_BIT) && (target_flags & SH1_BIT))
193 
194 /* Nonzero if we should generate code for a SH5 CPU (either ISA).  */
195 #define TARGET_SH5 (target_flags & SH5_BIT)
196 
197 /* Nonzero if we should generate code using the SHcompact instruction
198    set and 32-bit ABI.  */
199 #define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1)
200 
201 /* Nonzero if we should generate code using the SHmedia instruction
202    set and ABI.  */
203 #define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1)
204 
205 /* Nonzero if we should generate code using the SHmedia ISA and 32-bit
206    ABI.  */
207 #define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 \
208 			  && (target_flags & SH3E_BIT))
209 
210 /* Nonzero if we should generate code using the SHmedia ISA and 64-bit
211    ABI.  */
212 #define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 \
213  			  && ! (target_flags & SH3E_BIT))
214 
215 /* Nonzero if we should generate code using SHmedia FPU instructions.  */
216 #define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE)
217 /* Nonzero if we should generate fmovd.  */
218 #define TARGET_FMOVD (target_flags & FMOVD_BIT)
219 
220 /* Nonzero if we respect NANs.  */
221 #define TARGET_IEEE (target_flags & IEEE_BIT)
222 
223 /* Nonzero if we should generate smaller code rather than faster code.  */
224 #define TARGET_SMALLCODE   (target_flags & SPACE_BIT)
225 
226 /* Nonzero to use long jump tables.  */
227 #define TARGET_BIGTABLE     (target_flags & BIGTABLE_BIT)
228 
229 /* Nonzero to generate pseudo-ops needed by the assembler and linker
230    to do function call relaxing.  */
231 #define TARGET_RELAX (target_flags & RELAX_BIT)
232 
233 /* Nonzero if using Hitachi's calling convention.  */
234 #define TARGET_HITACHI 		(target_flags & HITACHI_BIT)
235 
236 /* Nonzero if not saving macl/mach when using -mhitachi */
237 #define TARGET_NOMACSAVE	(target_flags & NOMACSAVE_BIT)
238 
239 /* Nonzero if padding structures to a multiple of 4 bytes.  This is
240    incompatible with Hitachi's compiler, and gives unusual structure layouts
241    which confuse programmers.
242    ??? This option is not useful, but is retained in case there are people
243    who are still relying on it.  It may be deleted in the future.  */
244 #define TARGET_PADSTRUCT       (target_flags & PADSTRUCT_BIT)
245 
246 /* Nonzero if generating code for a little endian SH.  */
247 #define TARGET_LITTLE_ENDIAN     (target_flags & LITTLE_ENDIAN_BIT)
248 
249 /* Nonzero if we should do everything in userland.  */
250 #define TARGET_USERMODE		(target_flags & USERMODE_BIT)
251 
252 /* Nonzero if we should prefer @GOT calls when generating PIC.  */
253 #define TARGET_PREFERGOT	(target_flags & PREFERGOT_BIT)
254 
255 #define SELECT_SH1 (SH1_BIT)
256 #define SELECT_SH2 (SH2_BIT | SELECT_SH1)
257 #define SELECT_SH3 (SH3_BIT | SELECT_SH2)
258 #define SELECT_SH3E (SH3E_BIT | FPU_SINGLE_BIT | SELECT_SH3)
259 #define SELECT_SH4_NOFPU (HARD_SH4_BIT | SELECT_SH3)
260 #define SELECT_SH4_SINGLE_ONLY (HARD_SH4_BIT | SELECT_SH3E)
261 #define SELECT_SH4 (SH4_BIT|SH3E_BIT|HARD_SH4_BIT | SELECT_SH3)
262 #define SELECT_SH4_SINGLE (FPU_SINGLE_BIT | SELECT_SH4)
263 #define SELECT_SH5_64 (SH5_BIT | SH4_BIT)
264 #define SELECT_SH5_64_NOFPU (SH5_BIT)
265 #define SELECT_SH5_32 (SH5_BIT | SH4_BIT | SH3E_BIT)
266 #define SELECT_SH5_32_NOFPU (SH5_BIT | SH3E_BIT)
267 #define SELECT_SH5_COMPACT (SH5_BIT | SH4_BIT | SELECT_SH3E)
268 #define SELECT_SH5_COMPACT_NOFPU (SH5_BIT | SELECT_SH3)
269 
270 /* Reset all target-selection flags.  */
271 #define TARGET_NONE -(SH1_BIT | SH2_BIT | SH3_BIT | SH3E_BIT | SH4_BIT \
272 		      | HARD_SH4_BIT | FPU_SINGLE_BIT | SH5_BIT)
273 
274 #define TARGET_SWITCHES  			\
275 { {"1",	        TARGET_NONE, "" },		\
276   {"1",	        SELECT_SH1, "" },			\
277   {"2",	        TARGET_NONE, "" },		\
278   {"2",	        SELECT_SH2, "" },		\
279   {"3",	        TARGET_NONE, "" },		\
280   {"3",	        SELECT_SH3, "" },	\
281   {"3e",	TARGET_NONE, "" },		\
282   {"3e",	SELECT_SH3E, "" },	\
283   {"4-single-only",	TARGET_NONE, "" },	\
284   {"4-single-only",	SELECT_SH4_SINGLE_ONLY, "" },	\
285   {"4-single",	TARGET_NONE, "" },		\
286   {"4-single",	SELECT_SH4_SINGLE, "" },\
287   {"4-nofpu",	TARGET_NONE, "" },		\
288   {"4-nofpu",	SELECT_SH4_NOFPU, "" },\
289   {"4",	        TARGET_NONE, "" },		\
290   {"4",	        SELECT_SH4, "" }, \
291   {"5-64media",	TARGET_NONE, "" },		\
292   {"5-64media", SELECT_SH5_64, "Generate 64-bit SHmedia code" }, \
293   {"5-64media-nofpu", TARGET_NONE, "" },	\
294   {"5-64media-nofpu", SELECT_SH5_64_NOFPU, "Generate 64-bit FPU-less SHmedia code" }, \
295   {"5-32media",	TARGET_NONE, "" },		\
296   {"5-32media", SELECT_SH5_32, "Generate 32-bit SHmedia code" }, \
297   {"5-32media-nofpu", TARGET_NONE, "" },	\
298   {"5-32media-nofpu", SELECT_SH5_32_NOFPU, "Generate 32-bit FPU-less SHmedia code" }, \
299   {"5-compact",	TARGET_NONE, "" },		\
300   {"5-compact",	SELECT_SH5_COMPACT, "Generate SHcompact code" }, \
301   {"5-compact-nofpu", TARGET_NONE, "" },	\
302   {"5-compact-nofpu", SELECT_SH5_COMPACT_NOFPU, "Generate FPU-less SHcompact code" }, \
303   {"b",		-LITTLE_ENDIAN_BIT, "" },  	\
304   {"bigtable", 	BIGTABLE_BIT, "" },		\
305   {"dalign",  	DALIGN_BIT, "" },		\
306   {"fmovd",  	FMOVD_BIT, "" },		\
307   {"hitachi",	HITACHI_BIT, "" },		\
308   {"nomacsave", NOMACSAVE_BIT, "" },		\
309   {"ieee",  	IEEE_BIT, "" },			\
310   {"isize", 	ISIZE_BIT, "" },		\
311   {"l",		LITTLE_ENDIAN_BIT, "" },  	\
312   {"no-ieee",  	-IEEE_BIT, "" },		\
313   {"padstruct", PADSTRUCT_BIT, "" },    	\
314   {"prefergot",	PREFERGOT_BIT, "" },		\
315   {"relax",	RELAX_BIT, "" },		\
316   {"space", 	SPACE_BIT, "" },		\
317   {"usermode",	USERMODE_BIT, "" },		\
318   SUBTARGET_SWITCHES                            \
319   {"",   	TARGET_DEFAULT, "" } 		\
320 }
321 
322 /* This are meant to be redefined in the host dependent files */
323 #define SUBTARGET_SWITCHES
324 
325 /* This defaults us to big-endian.  */
326 #ifndef TARGET_ENDIAN_DEFAULT
327 #define TARGET_ENDIAN_DEFAULT 0
328 #endif
329 
330 #ifndef TARGET_CPU_DEFAULT
331 #define TARGET_CPU_DEFAULT SELECT_SH1
332 #endif
333 
334 #define TARGET_DEFAULT  (TARGET_CPU_DEFAULT|TARGET_ENDIAN_DEFAULT)
335 
336 #define CPP_SPEC " %(subtarget_cpp_spec) "
337 
338 #ifndef SUBTARGET_CPP_SPEC
339 #define SUBTARGET_CPP_SPEC ""
340 #endif
341 
342 #ifndef SUBTARGET_EXTRA_SPECS
343 #define SUBTARGET_EXTRA_SPECS
344 #endif
345 
346 #define EXTRA_SPECS						\
347   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },			\
348   { "link_emul_prefix", LINK_EMUL_PREFIX },			\
349   { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL },		\
350   { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX },	\
351   { "subtarget_link_spec", SUBTARGET_LINK_SPEC },		\
352   { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC },	\
353   SUBTARGET_EXTRA_SPECS
354 
355 #define ASM_SPEC  "%(subtarget_asm_endian_spec) %{mrelax:-relax}"
356 
357 #ifndef SUBTARGET_ASM_ENDIAN_SPEC
358 #if TARGET_ENDIAN_DEFAULT == LITTLE_ENDIAN_BIT
359 #define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
360 #else
361 #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
362 #endif
363 #endif
364 
365 #define LINK_EMUL_PREFIX "sh%{ml:l}"
366 
367 #if TARGET_CPU_DEFAULT & SH5_BIT
368 #if TARGET_CPU_DEFAULT & SH3E_BIT
369 #define LINK_DEFAULT_CPU_EMUL "32"
370 #else
371 #define LINK_DEFAULT_CPU_EMUL "64"
372 #endif /* SH3E_BIT */
373 #else
374 #define LINK_DEFAULT_CPU_EMUL ""
375 #endif /* SH5_BIT */
376 
377 #define SUBTARGET_LINK_EMUL_SUFFIX ""
378 #define SUBTARGET_LINK_SPEC ""
379 
380 /* svr4.h redefines LINK_SPEC inappropriately, so go via SH_LINK_SPEC,
381    so that we can undo the damage without code replication.  */
382 #define LINK_SPEC SH_LINK_SPEC
383 
384 #define SH_LINK_SPEC "\
385 -m %(link_emul_prefix)\
386 %{m5-compact*|m5-32media*:32}\
387 %{m5-64media*:64}\
388 %{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(link_default_cpu_emul)}}}}}\
389 %(subtarget_link_emul_suffix) \
390 %{mrelax:-relax} %(subtarget_link_spec)"
391 
392 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE)				\
393 do {									\
394   if (LEVEL)								\
395     flag_omit_frame_pointer = -1;					\
396   if (SIZE)								\
397     target_flags |= SPACE_BIT;						\
398 } while (0)
399 
400 #define ASSEMBLER_DIALECT assembler_dialect
401 
402 extern int assembler_dialect;
403 
404 #define OVERRIDE_OPTIONS sh_override_options ()
405 
406 /* Target machine storage layout.  */
407 
408 /* Define this if most significant bit is lowest numbered
409    in instructions that operate on numbered bit-fields.  */
410 
411 #define BITS_BIG_ENDIAN  0
412 
413 /* Define this if most significant byte of a word is the lowest numbered.  */
414 #define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
415 
416 /* Define this if most significant word of a multiword number is the lowest
417    numbered.  */
418 #define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
419 
420 /* Define this to set the endianness to use in libgcc2.c, which can
421    not depend on target_flags.  */
422 #if defined(__LITTLE_ENDIAN__)
423 #define LIBGCC2_WORDS_BIG_ENDIAN 0
424 #else
425 #define LIBGCC2_WORDS_BIG_ENDIAN 1
426 #endif
427 
428 #define MAX_BITS_PER_WORD 64
429 
430 #define MAX_LONG_TYPE_SIZE MAX_BITS_PER_WORD
431 
432 /* Width in bits of an `int'.  We want just 32-bits, even if words are
433    longer. */
434 #define INT_TYPE_SIZE 32
435 
436 /* Width in bits of a `long'.  */
437 #define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
438 
439 /* Width in bits of a `long long'.  */
440 #define LONG_LONG_TYPE_SIZE 64
441 
442 /* Width in bits of a `long double'.  */
443 #define LONG_DOUBLE_TYPE_SIZE 64
444 
445 /* Width of a word, in units (bytes).  */
446 #define UNITS_PER_WORD	(TARGET_SHMEDIA ? 8 : 4)
447 #define MIN_UNITS_PER_WORD 4
448 
449 /* Width in bits of a pointer.
450    See also the macro `Pmode' defined below.  */
451 #define POINTER_SIZE  (TARGET_SHMEDIA64 ? 64 : 32)
452 
453 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
454 #define PARM_BOUNDARY  	(TARGET_SH5 ? 64 : 32)
455 
456 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
457 #define STACK_BOUNDARY  BIGGEST_ALIGNMENT
458 
459 /* The log (base 2) of the cache line size, in bytes.  Processors prior to
460    SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
461    The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
462 #define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
463 
464 /* ABI given & required minimum allocation boundary (in *bits*) for the
465    code of a function.  */
466 #define FUNCTION_BOUNDARY (16 << TARGET_SHMEDIA)
467 
468 /* On SH5, the lowest bit is used to indicate SHmedia functions, so
469    the vbit must go into the delta field of
470    pointers-to-member-functions.  */
471 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
472   (TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn)
473 
474 /* Alignment of field after `int : 0' in a structure.  */
475 #define EMPTY_FIELD_BOUNDARY  32
476 
477 /* No data type wants to be aligned rounder than this.  */
478 #define BIGGEST_ALIGNMENT  (TARGET_ALIGN_DOUBLE ? 64 : 32)
479 
480 /* The best alignment to use in cases where we have a choice.  */
481 #define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32)
482 
483 /* Make strings word-aligned so strcpy from constants will be faster.  */
484 #define CONSTANT_ALIGNMENT(EXP, ALIGN)	\
485   ((TREE_CODE (EXP) == STRING_CST	\
486     && (ALIGN) < FASTEST_ALIGNMENT)	\
487     ? FASTEST_ALIGNMENT : (ALIGN))
488 
489 /* Make arrays of chars word-aligned for the same reasons.  */
490 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
491   (TREE_CODE (TYPE) == ARRAY_TYPE		\
492    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
493    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
494 
495 /* Number of bits which any structure or union's size must be a
496    multiple of.  Each structure or union's size is rounded up to a
497    multiple of this.  */
498 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
499 
500 /* Set this nonzero if move instructions will actually fail to work
501    when given unaligned data.  */
502 #define STRICT_ALIGNMENT 1
503 
504 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm.  */
505 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
506   barrier_align (LABEL_AFTER_BARRIER)
507 
508 #define LOOP_ALIGN(A_LABEL) \
509   ((! optimize || TARGET_HARVARD || TARGET_SMALLCODE) \
510    ? 0 : sh_loop_align (A_LABEL))
511 
512 #define LABEL_ALIGN(A_LABEL) \
513 (									\
514   (PREV_INSN (A_LABEL)							\
515    && GET_CODE (PREV_INSN (A_LABEL)) == INSN				\
516    && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE	\
517    && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN)		\
518    /* explicit alignment insn in constant tables.  */			\
519   ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0))		\
520   : 0)
521 
522 /* Jump tables must be 32 bit aligned, no matter the size of the element.  */
523 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
524 
525 /* The base two logarithm of the known minimum alignment of an insn length.  */
526 #define INSN_LENGTH_ALIGNMENT(A_INSN)					\
527   (GET_CODE (A_INSN) == INSN						\
528    ? 1 << TARGET_SHMEDIA						\
529    : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN	\
530    ? 1 << TARGET_SHMEDIA						\
531    : CACHE_LOG)
532 
533 /* Standard register usage.  */
534 
535 /* Register allocation for the Hitachi calling convention:
536 
537         r0		arg return
538 	r1..r3          scratch
539 	r4..r7		args in
540 	r8..r13		call saved
541 	r14		frame pointer/call saved
542 	r15		stack pointer
543 	ap		arg pointer (doesn't really exist, always eliminated)
544 	pr		subroutine return address
545 	t               t bit
546 	mach		multiply/accumulate result, high part
547 	macl		multiply/accumulate result, low part.
548 	fpul		fp/int communication register
549 	rap		return address pointer register
550 	fr0		fp arg return
551 	fr1..fr3	scratch floating point registers
552 	fr4..fr11	fp args in
553 	fr12..fr15	call saved floating point registers  */
554 
555 #define MAX_REGISTER_NAME_LENGTH 5
556 extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
557 
558 #define SH_REGISTER_NAMES_INITIALIZER					\
559 {				                   			\
560   "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7", 	\
561   "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",	\
562   "r16",  "r17",  "r18",  "r19",  "r20",  "r21",  "r22",  "r23",	\
563   "r24",  "r25",  "r26",  "r27",  "r28",  "r29",  "r30",  "r31",	\
564   "r32",  "r33",  "r34",  "r35",  "r36",  "r37",  "r38",  "r39", 	\
565   "r40",  "r41",  "r42",  "r43",  "r44",  "r45",  "r46",  "r47",	\
566   "r48",  "r49",  "r50",  "r51",  "r52",  "r53",  "r54",  "r55",	\
567   "r56",  "r57",  "r58",  "r59",  "r60",  "r61",  "r62",  "r63",	\
568   "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7", 	\
569   "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",	\
570   "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",	\
571   "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",	\
572   "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", 	\
573   "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",	\
574   "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",	\
575   "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",	\
576   "tr0",  "tr1",  "tr2",  "tr3",  "tr4",  "tr5",  "tr6",  "tr7", 	\
577   "xd0",  "xd2",  "xd4",  "xd6",  "xd8",  "xd10", "xd12", "xd14",	\
578   "gbr",  "ap",	  "pr",   "t",    "mach", "macl", "fpul", "fpscr",	\
579   "rap"									\
580 }
581 
582 #define DEBUG_REGISTER_NAMES SH_REGISTER_NAMES_INITIALIZER
583 
584 #define REGNAMES_ARR_INDEX_1(index) \
585   (sh_register_names[index])
586 #define REGNAMES_ARR_INDEX_2(index) \
587   REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
588 #define REGNAMES_ARR_INDEX_4(index) \
589   REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
590 #define REGNAMES_ARR_INDEX_8(index) \
591   REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
592 #define REGNAMES_ARR_INDEX_16(index) \
593   REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
594 #define REGNAMES_ARR_INDEX_32(index) \
595   REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
596 #define REGNAMES_ARR_INDEX_64(index) \
597   REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
598 
599 #define REGISTER_NAMES \
600 { \
601   REGNAMES_ARR_INDEX_64 (0), \
602   REGNAMES_ARR_INDEX_64 (64), \
603   REGNAMES_ARR_INDEX_8 (128), \
604   REGNAMES_ARR_INDEX_8 (136), \
605   REGNAMES_ARR_INDEX_8 (144), \
606   REGNAMES_ARR_INDEX_1 (152) \
607 }
608 
609 #define ADDREGNAMES_SIZE 32
610 #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
611 extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
612   [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
613 
614 #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER			\
615 {									\
616   "dr0",  "dr2",  "dr4",  "dr6",  "dr8",  "dr10", "dr12", "dr14",	\
617   "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",	\
618   "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",	\
619   "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62"	\
620 }
621 
622 #define ADDREGNAMES_REGNO(index) \
623   ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
624    : (-1))
625 
626 #define ADDREGNAMES_ARR_INDEX_1(index) \
627   { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
628 #define ADDREGNAMES_ARR_INDEX_2(index) \
629   ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
630 #define ADDREGNAMES_ARR_INDEX_4(index) \
631   ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
632 #define ADDREGNAMES_ARR_INDEX_8(index) \
633   ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
634 #define ADDREGNAMES_ARR_INDEX_16(index) \
635   ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
636 #define ADDREGNAMES_ARR_INDEX_32(index) \
637   ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
638 
639 #define ADDITIONAL_REGISTER_NAMES \
640 {					\
641   ADDREGNAMES_ARR_INDEX_32 (0)		\
642 }
643 
644 /* Number of actual hardware registers.
645    The hardware registers are assigned numbers for the compiler
646    from 0 to just below FIRST_PSEUDO_REGISTER.
647    All registers that the compiler knows about must be given numbers,
648    even those that are not normally considered general registers.  */
649 
650 /* There are many other relevant definitions in sh.md's md_constants.  */
651 
652 #define FIRST_GENERAL_REG R0_REG
653 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15))
654 #define FIRST_FP_REG DR0_REG
655 #define LAST_FP_REG  (FIRST_FP_REG + \
656 		      (TARGET_SHMEDIA_FPU ? 63 : TARGET_SH3E ? 15 : -1))
657 #define FIRST_XD_REG XD0_REG
658 #define LAST_XD_REG  (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
659 #define FIRST_TARGET_REG TR0_REG
660 #define LAST_TARGET_REG  (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1))
661 
662 #define GENERAL_REGISTER_P(REGNO) \
663   IN_RANGE ((REGNO), FIRST_GENERAL_REG, LAST_GENERAL_REG)
664 
665 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
666   (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG))
667 
668 #define FP_REGISTER_P(REGNO) \
669   ((REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG)
670 
671 #define XD_REGISTER_P(REGNO) \
672   ((REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG)
673 
674 #define FP_OR_XD_REGISTER_P(REGNO) \
675   (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
676 
677 #define FP_ANY_REGISTER_P(REGNO) \
678   (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
679 
680 #define SPECIAL_REGISTER_P(REGNO) \
681   ((REGNO) == GBR_REG || (REGNO) == T_REG \
682    || (REGNO) == MACH_REG || (REGNO) == MACL_REG)
683 
684 #define TARGET_REGISTER_P(REGNO) \
685   ((REGNO) >= FIRST_TARGET_REG && (REGNO) <= LAST_TARGET_REG)
686 
687 #define SHMEDIA_REGISTER_P(REGNO) \
688   (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
689    || TARGET_REGISTER_P (REGNO))
690 
691 /* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers
692    that should be fixed.  */
693 #define VALID_REGISTER_P(REGNO) \
694   (SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \
695    || (REGNO) == AP_REG || (REGNO) == RAP_REG \
696    || (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
697    || (TARGET_SH3E && (REGNO) == FPUL_REG))
698 
699 /* The mode that should be generally used to store a register by
700    itself in the stack, or to load it back.  */
701 #define REGISTER_NATURAL_MODE(REGNO) \
702   (FP_REGISTER_P (REGNO) ? SFmode \
703    : XD_REGISTER_P (REGNO) ? DFmode \
704    : TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \
705    ? DImode \
706    : SImode)
707 
708 #define FIRST_PSEUDO_REGISTER 153
709 
710 /* 1 for registers that have pervasive standard uses
711    and are not available for the register allocator.
712 
713    Mach register is fixed 'cause it's only 10 bits wide for SH1.
714    It is 32 bits wide for SH2.  */
715 
716 #define FIXED_REGISTERS  						\
717 {				                   			\
718 /* Regular registers.  */						\
719   0,      0,      0,      0,      0,      0,      0,      0,		\
720   0,      0,      0,      0,      0,      0,      0,      1,		\
721   /* r16 is reserved, r18 is the former pr.  */				\
722   1,      0,      0,      0,      0,      0,      0,      0,		\
723   /* r24 is reserved for the OS; r25, for the assembler or linker.  */	\
724   /* r26 is a global variable data pointer; r27 is for constants.  */	\
725   1,      1,      1,      1,      0,      0,      0,      0,		\
726   0,      0,      0,      0,      0,      0,      0,      0,		\
727   0,      0,      0,      0,      0,      0,      0,      0,		\
728   0,      0,      0,      0,      0,      0,      0,      0,		\
729   0,      0,      0,      0,      0,      0,      0,      1,		\
730 /* FP registers.  */							\
731   0,      0,      0,      0,      0,      0,      0,      0,		\
732   0,      0,      0,      0,      0,      0,      0,      0,		\
733   0,      0,      0,      0,      0,      0,      0,      0,		\
734   0,      0,      0,      0,      0,      0,      0,      0,		\
735   0,      0,      0,      0,      0,      0,      0,      0,		\
736   0,      0,      0,      0,      0,      0,      0,      0,		\
737   0,      0,      0,      0,      0,      0,      0,      0,		\
738   0,      0,      0,      0,      0,      0,      0,      0,		\
739 /* Branch target registers.  */						\
740   0,      0,      0,      0,      0,      0,      0,      0,		\
741 /* XD registers.  */							\
742   0,      0,      0,      0,      0,      0,      0,      0,		\
743 /*"gbr",  "ap",	  "pr",   "t",    "mach", "macl", "fpul", "fpscr", */	\
744   1,      1,      1,      1,      1,      1,      0,      1,		\
745 /*"rap" */								\
746   1,									\
747 }
748 
749 /* 1 for registers not available across function calls.
750    These must include the FIXED_REGISTERS and also any
751    registers that can be used without being saved.
752    The latter must include the registers where values are returned
753    and the register where structure-value addresses are passed.
754    Aside from that, you can include as many other registers as you like.  */
755 
756 #define CALL_USED_REGISTERS  						\
757 {				                   			\
758 /* Regular registers.  */						\
759   1,      1,      1,      1,      1,      1,      1,      1,		\
760   /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs.	\
761      Only the lower 32bits of R10-R14 are guaranteed to be preserved	\
762      across SH5 function calls.  */					\
763   0,      0,      0,      0,      0,      0,      0,      1,		\
764   1,      1,      0,      1,      1,      1,      1,      1,		\
765   1,      1,      1,      1,      0,      0,      0,      0,		\
766   0,      0,      0,      0,      1,      1,      1,      1,		\
767   1,      1,      1,      1,      0,      0,      0,      0,		\
768   0,      0,      0,      0,      0,      0,      0,      0,		\
769   0,      0,      0,      0,      1,      1,      1,      1,		\
770 /* FP registers.  */							\
771   1,      1,      1,      1,      1,      1,      1,      1,		\
772   1,      1,      1,      1,      0,      0,      0,      0,		\
773   1,      1,      1,      1,      1,      1,      1,      1,		\
774   1,      1,      1,      1,      1,      1,      1,      1,		\
775   1,      1,      1,      1,      0,      0,      0,      0,		\
776   0,      0,      0,      0,      0,      0,      0,      0,		\
777   0,      0,      0,      0,      0,      0,      0,      0,		\
778   0,      0,      0,      0,      0,      0,      0,      0,		\
779 /* Branch target registers.  */						\
780   1,      1,      1,      1,      1,      0,      0,      0,		\
781 /* XD registers.  */							\
782   1,      1,      1,      1,      1,      1,      0,      0,		\
783 /*"gbr",  "ap",	  "pr",   "t",    "mach", "macl", "fpul", "fpscr", */	\
784   1,      1,      0,      1,      1,      1,      1,      1,		\
785 /*"rap" */								\
786   1,									\
787 }
788 
789 /* Only the lower 32-bits of R10-R14 are guaranteed to be preserved
790    across SHcompact function calls.  We can't tell whether a called
791    function is SHmedia or SHcompact, so we assume it may be when
792    compiling SHmedia code with the 32-bit ABI, since that's the only
793    ABI that can be linked with SHcompact code.  */
794 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \
795   (TARGET_SHMEDIA32 \
796    && GET_MODE_SIZE (MODE) > 4 \
797    && (((REGNO) >= FIRST_GENERAL_REG + 10 \
798         && (REGNO) <= FIRST_GENERAL_REG + 14) \
799        || (REGNO) == PR_MEDIA_REG))
800 
801 /* Return number of consecutive hard regs needed starting at reg REGNO
802    to hold something of mode MODE.
803    This is ordinarily the length in words of a value of mode MODE
804    but can be less for certain modes in special long registers.
805 
806    On the SH all but the XD regs are UNITS_PER_WORD bits wide.  */
807 
808 #define HARD_REGNO_NREGS(REGNO, MODE) \
809    (XD_REGISTER_P (REGNO) \
810     ? (GET_MODE_SIZE (MODE) / (2 * UNITS_PER_WORD)) \
811     : (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \
812     ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \
813     : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
814 
815 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
816    We can allow any mode in any general register.  The special registers
817    only allow SImode.  Don't allow any mode in the PR.  */
818 
819 /* We cannot hold DCmode values in the XD registers because alter_reg
820    handles subregs of them incorrectly.  We could work around this by
821    spacing the XD registers like the DR registers, but this would require
822    additional memory in every compilation to hold larger register vectors.
823    We could hold SFmode / SCmode values in XD registers, but that
824    would require a tertiary reload when reloading from / to memory,
825    and a secondary reload to reload from / to general regs; that
826    seems to be a loosing proposition.  */
827 /* We want to allow TImode FP regs so that when V4SFmode is loaded as TImode,
828    it won't be ferried through GP registers first.  */
829 #define HARD_REGNO_MODE_OK(REGNO, MODE)		\
830   (SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \
831    : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode	\
832    : FP_REGISTER_P (REGNO) && (MODE) == SFmode \
833    ? 1 \
834    : (MODE) == V2SFmode \
835    ? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 2 == 0) \
836       || GENERAL_REGISTER_P (REGNO)) \
837    : (MODE) == V4SFmode \
838    ? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 4 == 0) \
839       || (! TARGET_SHMEDIA && GENERAL_REGISTER_P (REGNO))) \
840    : (MODE) == V16SFmode \
841    ? (TARGET_SHMEDIA \
842       ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 16 == 0) \
843       : (REGNO) == FIRST_XD_REG) \
844    : FP_REGISTER_P (REGNO) \
845    ? ((MODE) == SFmode || (MODE) == SImode \
846       || ((TARGET_SH3E || TARGET_SHMEDIA) && (MODE) == SCmode) \
847       || (((TARGET_SH4 && (MODE) == DFmode) || (MODE) == DCmode \
848 	   || (TARGET_SHMEDIA && ((MODE) == DFmode || (MODE) == DImode \
849 				  || (MODE) == V2SFmode || (MODE) == TImode))) \
850 	  && (((REGNO) - FIRST_FP_REG) & 1) == 0)) \
851    : XD_REGISTER_P (REGNO) \
852    ? (MODE) == DFmode \
853    : TARGET_REGISTER_P (REGNO) \
854    ? ((MODE) == DImode || (MODE) == SImode) \
855    : (REGNO) == PR_REG ? 0			\
856    : (REGNO) == FPSCR_REG ? (MODE) == PSImode \
857    : 1)
858 
859 /* Value is 1 if MODE is a supported vector mode.  */
860 #define VECTOR_MODE_SUPPORTED_P(MODE) \
861   ((TARGET_FPU_ANY \
862     && ((MODE) == V2SFmode || (MODE) == V4SFmode || (MODE) == V16SFmode)) \
863    || (TARGET_SHMEDIA \
864        && ((MODE) == V8QImode || (MODE) == V2HImode || (MODE) == V4HImode \
865 	   || (MODE) == V2SImode)))
866 
867 /* Value is 1 if it is a good idea to tie two pseudo registers
868    when one has mode MODE1 and one has mode MODE2.
869    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
870    for any hard reg, then this must be 0 for correct output.
871    That's the case for xd registers: we don't hold SFmode values in
872    them, so we can't tie an SFmode pseudos with one in another
873    floating-point mode.  */
874 
875 #define MODES_TIEABLE_P(MODE1, MODE2) \
876   ((MODE1) == (MODE2) \
877    || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
878        && (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \
879 			      && (GET_MODE_SIZE (MODE2) <= 4)) \
880 			  : ((MODE1) != SFmode && (MODE2) != SFmode))))
881 
882 /* A C expression that is nonzero if hard register NEW_REG can be
883    considered for use as a rename register for OLD_REG register */
884 
885 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
886    sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
887 
888 /* Specify the registers used for certain standard purposes.
889    The values of these macros are register numbers.  */
890 
891 /* Define this if the program counter is overloaded on a register.  */
892 /* #define PC_REGNUM		15*/
893 
894 /* Register to use for pushing function arguments.  */
895 #define STACK_POINTER_REGNUM	SP_REG
896 
897 /* Base register for access to local variables of the function.  */
898 #define FRAME_POINTER_REGNUM	FP_REG
899 
900 /* Fake register that holds the address on the stack of the
901    current function's return address.  */
902 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
903 
904 /* Register to hold the addressing base for position independent
905    code access to data items.  */
906 #define PIC_OFFSET_TABLE_REGNUM	(flag_pic ? PIC_REG : INVALID_REGNUM)
907 
908 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
909 
910 /* Value should be nonzero if functions must have frame pointers.
911    Zero means the frame pointer need not be set up (and parms may be accessed
912    via the stack pointer) in functions that seem suitable.  */
913 
914 #define FRAME_POINTER_REQUIRED	0
915 
916 /* Definitions for register eliminations.
917 
918    We have three registers that can be eliminated on the SH.  First, the
919    frame pointer register can often be eliminated in favor of the stack
920    pointer register.  Secondly, the argument pointer register can always be
921    eliminated; it is replaced with either the stack or frame pointer.
922    Third, there is the return address pointer, which can also be replaced
923    with either the stack or the frame pointer.  */
924 
925 /* This is an array of structures.  Each structure initializes one pair
926    of eliminable registers.  The "from" register number is given first,
927    followed by "to".  Eliminations of the same "from" register are listed
928    in order of preference.  */
929 
930 /* If you add any registers here that are not actually hard registers,
931    and that have any alternative of elimination that doesn't always
932    apply, you need to amend calc_live_regs to exclude it, because
933    reload spills all eliminable registers where it sees an
934    can_eliminate == 0 entry, thus making them 'live' .
935    If you add any hard registers that can be eliminated in different
936    ways, you have to patch reload to spill them only when all alternatives
937    of elimination fail.  */
938 
939 #define ELIMINABLE_REGS						\
940 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},			\
941  { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
942  { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
943  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},			\
944  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
945 
946 /* Given FROM and TO register numbers, say whether this elimination
947    is allowed.  */
948 #define CAN_ELIMINATE(FROM, TO) \
949   (!((FROM) == FRAME_POINTER_REGNUM && ! frame_pointer_needed))
950 
951 /* Define the offset between two registers, one to be eliminated, and the other
952    its replacement, at the start of a routine.  */
953 
954 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
955   OFFSET = initial_elimination_offset ((FROM), (TO))
956 
957 /* Base register for access to arguments of the function.  */
958 #define ARG_POINTER_REGNUM	AP_REG
959 
960 /* Register in which the static-chain is passed to a function.  */
961 #define STATIC_CHAIN_REGNUM	(TARGET_SH5 ? 1 : 3)
962 
963 /* The register in which a struct value address is passed.  */
964 
965 #define STRUCT_VALUE_REGNUM 2
966 
967 /* If the structure value address is not passed in a register, define
968    `STRUCT_VALUE' as an expression returning an RTX for the place
969    where the address is passed.  If it returns 0, the address is
970    passed as an "invisible" first argument.  */
971 
972 /* The Hitachi calling convention doesn't quite fit into this scheme since
973    the address is passed like an invisible argument, but one that is always
974    passed in memory.  */
975 #define STRUCT_VALUE \
976   (TARGET_HITACHI ? 0 : gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM))
977 
978 #define RETURN_IN_MEMORY(TYPE) \
979   (TARGET_SH5 \
980    ? ((TYPE_MODE (TYPE) == BLKmode \
981        ? (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) \
982        : GET_MODE_SIZE (TYPE_MODE (TYPE))) > 8) \
983    : (TYPE_MODE (TYPE) == BLKmode \
984       || TARGET_HITACHI && TREE_CODE (TYPE) == RECORD_TYPE))
985 
986 /* Don't default to pcc-struct-return, because we have already specified
987    exactly how to return structures in the RETURN_IN_MEMORY macro.  */
988 
989 #define DEFAULT_PCC_STRUCT_RETURN 0
990 
991 #define SHMEDIA_REGS_STACK_ADJUST() \
992   (TARGET_SHCOMPACT && current_function_has_nonlocal_label \
993    ? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \
994       + (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \
995    : 0)
996 
997 
998 /* Define the classes of registers for register constraints in the
999    machine description.  Also define ranges of constants.
1000 
1001    One of the classes must always be named ALL_REGS and include all hard regs.
1002    If there is more than one class, another class must be named NO_REGS
1003    and contain no registers.
1004 
1005    The name GENERAL_REGS must be the name of a class (or an alias for
1006    another name such as ALL_REGS).  This is the class of registers
1007    that is allowed by "g" or "r" in a register constraint.
1008    Also, registers outside this class are allocated only when
1009    instructions express preferences for them.
1010 
1011    The classes must be numbered in nondecreasing order; that is,
1012    a larger-numbered class must never be contained completely
1013    in a smaller-numbered class.
1014 
1015    For any two classes, it is very desirable that there be another
1016    class that represents their union.  */
1017 
1018 /* The SH has two sorts of general registers, R0 and the rest.  R0 can
1019    be used as the destination of some of the arithmetic ops. There are
1020    also some special purpose registers; the T bit register, the
1021    Procedure Return Register and the Multiply Accumulate Registers.  */
1022 /* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
1023    reg_class_subunion.  We don't want to have an actual union class
1024    of these, because it would only be used when both classes are calculated
1025    to give the same cost, but there is only one FPUL register.
1026    Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
1027    applying to the actual instruction alternative considered.  E.g., the
1028    y/r alternative of movsi_ie is considered to have no more cost that
1029    the r/r alternative, which is patently untrue.  */
1030 
1031 enum reg_class
1032 {
1033   NO_REGS,
1034   R0_REGS,
1035   PR_REGS,
1036   T_REGS,
1037   MAC_REGS,
1038   FPUL_REGS,
1039   SIBCALL_REGS,
1040   GENERAL_REGS,
1041   FP0_REGS,
1042   FP_REGS,
1043   DF_HI_REGS,
1044   DF_REGS,
1045   FPSCR_REGS,
1046   GENERAL_FP_REGS,
1047   TARGET_REGS,
1048   ALL_REGS,
1049   LIM_REG_CLASSES
1050 };
1051 
1052 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
1053 
1054 /* Give names of register classes as strings for dump file.  */
1055 #define REG_CLASS_NAMES	\
1056 {			\
1057   "NO_REGS",		\
1058   "R0_REGS",		\
1059   "PR_REGS",		\
1060   "T_REGS",		\
1061   "MAC_REGS",		\
1062   "FPUL_REGS",		\
1063   "SIBCALL_REGS",	\
1064   "GENERAL_REGS",	\
1065   "FP0_REGS",		\
1066   "FP_REGS",		\
1067   "DF_HI_REGS",		\
1068   "DF_REGS",		\
1069   "FPSCR_REGS",		\
1070   "GENERAL_FP_REGS",	\
1071   "TARGET_REGS",	\
1072   "ALL_REGS",		\
1073 }
1074 
1075 /* Define which registers fit in which classes.
1076    This is an initializer for a vector of HARD_REG_SET
1077    of length N_REG_CLASSES.  */
1078 
1079 #define REG_CLASS_CONTENTS						\
1080 {									\
1081 /* NO_REGS:  */								\
1082   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	\
1083 /* R0_REGS:  */								\
1084   { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	\
1085 /* PR_REGS:  */								\
1086   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 },	\
1087 /* T_REGS:  */								\
1088   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 },	\
1089 /* MAC_REGS:  */							\
1090   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 },	\
1091 /* FPUL_REGS:  */							\
1092   { 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0x00400000 },	\
1093 /* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE.  */	\
1094   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	\
1095 /* GENERAL_REGS:  */							\
1096   { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x01020000 },	\
1097 /* FP0_REGS:  */							\
1098   { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 },	\
1099 /* FP_REGS:  */								\
1100   { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },	\
1101 /* DF_HI_REGS:  Initialized in CONDITIONAL_REGISTER_USAGE.  */		\
1102   { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 },	\
1103 /* DF_REGS:  */								\
1104   { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 },	\
1105 /* FPSCR_REGS:  */							\
1106   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 },	\
1107 /* GENERAL_FP_REGS:  */							\
1108   { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0102ff00 },	\
1109 /* TARGET_REGS:  */							\
1110   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff },	\
1111 /* ALL_REGS:  */							\
1112   { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x01ffffff },	\
1113 }
1114 
1115 /* The same information, inverted:
1116    Return the class number of the smallest class containing
1117    reg number REGNO.  This could be a conditional expression
1118    or could index an array.  */
1119 
1120 extern int regno_reg_class[FIRST_PSEUDO_REGISTER];
1121 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1122 
1123 /* When defined, the compiler allows registers explicitly used in the
1124    rtl to be used as spill registers but prevents the compiler from
1125    extending the lifetime of these registers.  */
1126 
1127 #define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA)
1128 
1129 /* The order in which register should be allocated.  */
1130 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1131    and GENERAL_FP_REGS the alternate class.  Since FP0 is likely to be
1132    spilled or used otherwise, we better have the FP_REGS allocated first.  */
1133 #define REG_ALLOC_ORDER \
1134   { 65, 66, 67, 68, 69, 70, 71, 64, \
1135     72, 73, 74, 75, 76, 77, 78, 79, \
1136    136,137,138,139,140,141,142,143, \
1137     80, 81, 82, 83, 84, 85, 86, 87, \
1138     88, 89, 90, 91, 92, 93, 94, 95, \
1139     96, 97, 98, 99,100,101,102,103, \
1140    104,105,106,107,108,109,110,111, \
1141    112,113,114,115,116,117,118,119, \
1142    120,121,122,123,124,125,126,127, \
1143    151,  1,  2,  3,  7,  6,  5,  4, \
1144      0,  8,  9, 10, 11, 12, 13, 14, \
1145     16, 17, 18, 19, 20, 21, 22, 23, \
1146     24, 25, 26, 27, 28, 29, 30, 31, \
1147     32, 33, 34, 35, 36, 37, 38, 39, \
1148     40, 41, 42, 43, 44, 45, 46, 47, \
1149     48, 49, 50, 51, 52, 53, 54, 55, \
1150     56, 57, 58, 59, 60, 61, 62, 63, \
1151    150, 15,145,146,147,144,148,149, \
1152    128,129,130,131,132,133,134,135, \
1153    152 }
1154 
1155 /* The class value for index registers, and the one for base regs.  */
1156 #define INDEX_REG_CLASS  (TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS)
1157 #define BASE_REG_CLASS	 GENERAL_REGS
1158 
1159 /* Get reg_class from a letter such as appears in the machine
1160    description.  */
1161 extern enum reg_class reg_class_from_letter[];
1162 
1163 #define REG_CLASS_FROM_LETTER(C) \
1164    ( ISLOWER (C) ? reg_class_from_letter[(C)-'a'] : NO_REGS )
1165 
1166 /* The letters I, J, K, L and M in a register constraint string
1167    can be used to stand for particular ranges of immediate operands.
1168    This macro defines what the ranges are.
1169    C is the letter, and VALUE is a constant value.
1170    Return 1 if VALUE is in the range specified by C.
1171 	I: arithmetic operand -127..128, as used in add, sub, etc
1172 	J: arithmetic operand -32768..32767, as used in SHmedia movi and shori
1173 	K: shift operand 1,2,8 or 16
1174 	L: logical operand 0..255, as used in and, or, etc.
1175 	M: constant 1
1176 	N: constant 0
1177 	O: arithmetic operand -32..31, as used in SHmedia beqi, bnei and xori
1178 	P: arithmetic operand -512..511, as used in SHmedia andi, ori
1179 */
1180 
1181 #define CONST_OK_FOR_I(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1182 			       && ((HOST_WIDE_INT)(VALUE)) <= 127)
1183 #define CONST_OK_FOR_J(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \
1184 			       && ((HOST_WIDE_INT)(VALUE)) <= 32767)
1185 #define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
1186 #define CONST_OK_FOR_L(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1187 			       && ((HOST_WIDE_INT)(VALUE)) <= 255)
1188 #define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
1189 #define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
1190 #define CONST_OK_FOR_O(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \
1191 			       && ((HOST_WIDE_INT)(VALUE)) <= 31)
1192 #define CONST_OK_FOR_P(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
1193 			       && ((HOST_WIDE_INT)(VALUE)) <= 511)
1194 #define CONST_OK_FOR_LETTER_P(VALUE, C)		\
1195      ((C) == 'I' ? CONST_OK_FOR_I (VALUE)	\
1196     : (C) == 'J' ? CONST_OK_FOR_J (VALUE)	\
1197     : (C) == 'K' ? CONST_OK_FOR_K (VALUE)	\
1198     : (C) == 'L' ? CONST_OK_FOR_L (VALUE)	\
1199     : (C) == 'M' ? CONST_OK_FOR_M (VALUE)	\
1200     : (C) == 'N' ? CONST_OK_FOR_N (VALUE)	\
1201     : (C) == 'O' ? CONST_OK_FOR_O (VALUE)	\
1202     : (C) == 'P' ? CONST_OK_FOR_P (VALUE)	\
1203     : 0)
1204 
1205 /* Similar, but for floating constants, and defining letters G and H.
1206    Here VALUE is the CONST_DOUBLE rtx itself.  */
1207 
1208 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)		\
1209 ((C) == 'G' ? (fp_zero_operand (VALUE) && fldi_ok ())	\
1210  : (C) == 'H' ? (fp_one_operand (VALUE) && fldi_ok ())	\
1211  : (C) == 'F')
1212 
1213 /* Given an rtx X being reloaded into a reg required to be
1214    in class CLASS, return the class of reg to actually use.
1215    In general this is just CLASS; but on some machines
1216    in some cases it is preferable to use a more restrictive class.  */
1217 
1218 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1219   ((CLASS) == NO_REGS && TARGET_SHMEDIA \
1220    && (GET_CODE (X) == CONST_DOUBLE \
1221        || GET_CODE (X) == SYMBOL_REF) \
1222    ? GENERAL_REGS \
1223    : (CLASS)) \
1224 
1225 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
1226   ((((REGCLASS_HAS_FP_REG (CLASS) 					\
1227       && (GET_CODE (X) == REG						\
1228       && (GENERAL_OR_AP_REGISTER_P (REGNO (X))				\
1229 	  || (FP_REGISTER_P (REGNO (X)) && (MODE) == SImode		\
1230 	      && TARGET_FMOVD))))					\
1231      || (REGCLASS_HAS_GENERAL_REG (CLASS) 				\
1232 	 && GET_CODE (X) == REG						\
1233 	 && FP_REGISTER_P (REGNO (X))))					\
1234     && ! TARGET_SHMEDIA							\
1235     && ((MODE) == SFmode || (MODE) == SImode))				\
1236    ? FPUL_REGS								\
1237    : (((CLASS) == FPUL_REGS						\
1238        || (REGCLASS_HAS_FP_REG (CLASS)					\
1239 	   && ! TARGET_SHMEDIA && MODE == SImode))			\
1240       && (GET_CODE (X) == MEM						\
1241 	  || (GET_CODE (X) == REG					\
1242 	      && (REGNO (X) >= FIRST_PSEUDO_REGISTER			\
1243 		  || REGNO (X) == T_REG					\
1244 		  || system_reg_operand (X, VOIDmode)))))		\
1245    ? GENERAL_REGS							\
1246    : ((CLASS) == TARGET_REGS						\
1247       || (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS))			\
1248    ? ((target_operand ((X), (MODE))					\
1249        && ! target_reg_operand ((X), (MODE)))				\
1250       ? NO_REGS : GENERAL_REGS)						\
1251    : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS)			\
1252       && GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X))	\
1253       && (CLASS) != REGNO_REG_CLASS (REGNO (X)))			\
1254    ? GENERAL_REGS							\
1255    : ((CLASS) != GENERAL_REGS && GET_CODE (X) == REG			\
1256       && TARGET_REGISTER_P (REGNO (X)))					\
1257    ? GENERAL_REGS : NO_REGS)
1258 
1259 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X)  \
1260   ((REGCLASS_HAS_FP_REG (CLASS) 					\
1261     && ! TARGET_SHMEDIA							\
1262     && immediate_operand ((X), (MODE))					\
1263     && ! ((fp_zero_operand (X) || fp_one_operand (X))			\
1264 	  && (MODE) == SFmode && fldi_ok ()))				\
1265    ? R0_REGS								\
1266    : (CLASS == FPUL_REGS						\
1267       && ((GET_CODE (X) == REG						\
1268 	   && (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG		\
1269 	       || REGNO (X) == T_REG))					\
1270 	  || GET_CODE (X) == PLUS))					\
1271    ? GENERAL_REGS							\
1272    : CLASS == FPUL_REGS && immediate_operand ((X), (MODE))		\
1273    ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I (INTVAL (X))		\
1274       ? GENERAL_REGS							\
1275       : R0_REGS)							\
1276    : (CLASS == FPSCR_REGS						\
1277       && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER)	\
1278 	  || (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\
1279    ? GENERAL_REGS							\
1280    : (REGCLASS_HAS_FP_REG (CLASS) 					\
1281       && TARGET_SHMEDIA							\
1282       && immediate_operand ((X), (MODE))				\
1283       && (X) != CONST0_RTX (GET_MODE (X))				\
1284       && GET_MODE (X) != V4SFmode)					\
1285    ? GENERAL_REGS							\
1286    : SECONDARY_OUTPUT_RELOAD_CLASS((CLASS),(MODE),(X)))
1287 
1288 /* Return the maximum number of consecutive registers
1289    needed to represent mode MODE in a register of class CLASS.
1290 
1291    On SH this is the size of MODE in words.  */
1292 #define CLASS_MAX_NREGS(CLASS, MODE) \
1293      ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1294 
1295 /* If defined, gives a class of registers that cannot be used as the
1296    operand of a SUBREG that changes the mode of the object illegally.  */
1297 /* ??? We need to renumber the internal numbers for the frnn registers
1298    when in little endian in order to allow mode size changes.  */
1299 
1300 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) 			    \
1301   sh_cannot_change_mode_class (FROM, TO, CLASS)
1302 
1303 /* Stack layout; function entry, exit and calling.  */
1304 
1305 /* Define the number of registers that can hold parameters.
1306    These macros are used only in other macro definitions below.  */
1307 
1308 #define NPARM_REGS(MODE) \
1309   (TARGET_FPU_ANY && (MODE) == SFmode \
1310    ? (TARGET_SH5 ? 12 : 8) \
1311    : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1312 		    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1313    ? (TARGET_SH5 ? 12 : 8) \
1314    : (TARGET_SH5 ? 8 : 4))
1315 
1316 #define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4))
1317 #define FIRST_RET_REG  (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0))
1318 
1319 #define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4))
1320 #define FIRST_FP_RET_REG FIRST_FP_REG
1321 
1322 /* Define this if pushing a word on the stack
1323    makes the stack pointer a smaller address.  */
1324 #define STACK_GROWS_DOWNWARD
1325 
1326 /*  Define this macro if the addresses of local variable slots are at
1327     negative offsets from the frame pointer.
1328 
1329     The SH only has positive indexes, so grow the frame up.  */
1330 /* #define FRAME_GROWS_DOWNWARD */
1331 
1332 /* Offset from the frame pointer to the first local variable slot to
1333    be allocated.  */
1334 #define STARTING_FRAME_OFFSET  0
1335 
1336 /* If we generate an insn to push BYTES bytes,
1337    this says how many the stack pointer really advances by.  */
1338 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1339    When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1340    do correct alignment.  */
1341 #if 0
1342 #define PUSH_ROUNDING(NPUSHED)  (((NPUSHED) + 3) & ~3)
1343 #endif
1344 
1345 /* Offset of first parameter from the argument pointer register value.  */
1346 #define FIRST_PARM_OFFSET(FNDECL)  0
1347 
1348 /* Value is the number of byte of arguments automatically
1349    popped when returning from a subroutine call.
1350    FUNDECL is the declaration node of the function (as a tree),
1351    FUNTYPE is the data type of the function (as a tree),
1352    or for a library call it is an identifier node for the subroutine name.
1353    SIZE is the number of bytes of arguments passed on the stack.
1354 
1355    On the SH, the caller does not pop any of its arguments that were passed
1356    on the stack.  */
1357 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)  0
1358 
1359 /* Value is the number of bytes of arguments automatically popped when
1360    calling a subroutine.
1361    CUM is the accumulated argument list.
1362 
1363    On SHcompact, the call trampoline pops arguments off the stack.  */
1364 #define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0)
1365 
1366 /* Nonzero if we do not know how to pass TYPE solely in registers.
1367    Values that come in registers with inconvenient padding are stored
1368    to memory at the function start.  */
1369 
1370 #define MUST_PASS_IN_STACK(MODE,TYPE)			\
1371   ((TYPE) != 0						\
1372    && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST	\
1373        || TREE_ADDRESSABLE (TYPE)))
1374 /* Some subroutine macros specific to this machine.  */
1375 
1376 #define BASE_RETURN_VALUE_REG(MODE) \
1377   ((TARGET_FPU_ANY && ((MODE) == SFmode))			\
1378    ? FIRST_FP_RET_REG					\
1379    : TARGET_FPU_ANY && (MODE) == SCmode		\
1380    ? FIRST_FP_RET_REG					\
1381    : (TARGET_FPU_DOUBLE					\
1382       && ((MODE) == DFmode || (MODE) == SFmode		\
1383 	  || (MODE) == DCmode || (MODE) == SCmode ))	\
1384    ? FIRST_FP_RET_REG					\
1385    : FIRST_RET_REG)
1386 
1387 #define BASE_ARG_REG(MODE) \
1388   ((TARGET_SH3E && ((MODE) == SFmode))			\
1389    ? FIRST_FP_PARM_REG					\
1390    : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT	\
1391 		    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1392    ? FIRST_FP_PARM_REG					\
1393    : FIRST_PARM_REG)
1394 
1395 /* Define how to find the value returned by a function.
1396    VALTYPE is the data type of the value (as a tree).
1397    If the precise function being called is known, FUNC is its FUNCTION_DECL;
1398    otherwise, FUNC is 0.
1399    For the SH, this is like LIBCALL_VALUE, except that we must change the
1400    mode like PROMOTE_MODE does.
1401    ??? PROMOTE_MODE is ignored for non-scalar types.  The set of types
1402    tested here has to be kept in sync with the one in explow.c:promote_mode.  */
1403 
1404 #define FUNCTION_VALUE(VALTYPE, FUNC)					\
1405   gen_rtx (REG,								\
1406 	   ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT		\
1407 	     && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < UNITS_PER_WORD	\
1408 	     && (TREE_CODE (VALTYPE) == INTEGER_TYPE			\
1409 		 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE		\
1410 		 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE			\
1411 		 || TREE_CODE (VALTYPE) == CHAR_TYPE			\
1412 		 || TREE_CODE (VALTYPE) == REAL_TYPE			\
1413 		 || TREE_CODE (VALTYPE) == OFFSET_TYPE))		\
1414 	    ? (TARGET_SHMEDIA ? DImode : SImode) : TYPE_MODE (VALTYPE)), \
1415 	   BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1416 
1417 /* Define how to find the value returned by a library function
1418    assuming the value has mode MODE.  */
1419 #define LIBCALL_VALUE(MODE) \
1420   gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE));
1421 
1422 /* 1 if N is a possible register number for a function value.  */
1423 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1424   ((REGNO) == FIRST_RET_REG || (TARGET_SH3E && (REGNO) == FIRST_FP_RET_REG) \
1425    || (TARGET_SHMEDIA_FPU && (REGNO) == FIRST_FP_RET_REG))
1426 
1427 /* 1 if N is a possible register number for function argument passing.  */
1428 #define FUNCTION_ARG_REGNO_P(REGNO) \
1429   (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG		\
1430 					    + NPARM_REGS (SImode)))	\
1431    || (TARGET_FPU_ANY                                                   \
1432        && (REGNO) >= FIRST_FP_PARM_REG && (REGNO) < (FIRST_FP_PARM_REG	\
1433 						     + NPARM_REGS (SFmode))))
1434 
1435 /* Define a data type for recording info about an argument list
1436    during the scan of that argument list.  This data type should
1437    hold all necessary information about the function itself
1438    and about the args processed so far, enough to enable macros
1439    such as FUNCTION_ARG to determine where the next arg should go.
1440 
1441    On SH, this is a single integer, which is a number of words
1442    of arguments scanned so far (including the invisible argument,
1443    if any, which holds the structure-value-address).
1444    Thus NARGREGS or more means all following args should go on the stack.  */
1445 
1446 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1447 struct sh_args {
1448     int arg_count[2];
1449     int force_mem;
1450   /* Nonzero if a prototype is available for the function.  */
1451     int prototype_p;
1452   /* The number of an odd floating-point register, that should be used
1453      for the next argument of type float.  */
1454     int free_single_fp_reg;
1455   /* Whether we're processing an outgoing function call.  */
1456     int outgoing;
1457   /* The number of general-purpose registers that should have been
1458      used to pass partial arguments, that are passed totally on the
1459      stack.  On SHcompact, a call trampoline will pop them off the
1460      stack before calling the actual function, and, if the called
1461      function is implemented in SHcompact mode, the incoming arguments
1462      decoder will push such arguments back onto the stack.  For
1463      incoming arguments, STACK_REGS also takes into account other
1464      arguments passed by reference, that the decoder will also push
1465      onto the stack.  */
1466     int stack_regs;
1467   /* The number of general-purpose registers that should have been
1468      used to pass arguments, if the arguments didn't have to be passed
1469      by reference.  */
1470     int byref_regs;
1471   /* Set by SHCOMPACT_BYREF if the current argument is to be passed by
1472      reference.  */
1473     int byref;
1474 
1475   /* call_cookie is a bitmask used by call expanders, as well as
1476      function prologue and epilogues, to allow SHcompact to comply
1477      with the SH5 32-bit ABI, that requires 64-bit registers to be
1478      used even though only the lower 32-bit half is visible in
1479      SHcompact mode.  The strategy is to call SHmedia trampolines.
1480 
1481      The alternatives for each of the argument-passing registers are
1482      (a) leave it unchanged; (b) pop it off the stack; (c) load its
1483      contents from the address in it; (d) add 8 to it, storing the
1484      result in the next register, then (c); (e) copy it from some
1485      floating-point register,
1486 
1487      Regarding copies from floating-point registers, r2 may only be
1488      copied from dr0.  r3 may be copied from dr0 or dr2.  r4 maybe
1489      copied from dr0, dr2 or dr4.  r5 maybe copied from dr0, dr2,
1490      dr4 or dr6.  r6 may be copied from dr0, dr2, dr4, dr6 or dr8.
1491      r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or
1492      dr10.
1493 
1494      The bit mask is structured as follows:
1495 
1496      - 1 bit to tell whether to set up a return trampoline.
1497 
1498      - 3 bits to count the number consecutive registers to pop off the
1499        stack.
1500 
1501      - 4 bits for each of r9, r8, r7 and r6.
1502 
1503      - 3 bits for each of r5, r4, r3 and r2.
1504 
1505      - 3 bits set to 0 (the most significant ones)
1506 
1507         3           2            1           0
1508        1098 7654 3210 9876 5432 1098 7654 3210
1509        FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST
1510        2223 3344 4555 6666 7777 8888 9999 SSS-
1511 
1512      - If F is set, the register must be copied from an FP register,
1513        whose number is encoded in the remaining bits.
1514 
1515      - Else, if L is set, the register must be loaded from the address
1516        contained in it.  If the P bit is *not* set, the address of the
1517        following dword should be computed first, and stored in the
1518        following register.
1519 
1520      - Else, if P is set, the register alone should be popped off the
1521        stack.
1522 
1523      - After all this processing, the number of registers represented
1524        in SSS will be popped off the stack.  This is an optimization
1525        for pushing/popping consecutive registers, typically used for
1526        varargs and large arguments partially passed in registers.
1527 
1528      - If T is set, a return trampoline will be set up for 64-bit
1529      return values to be split into 2 32-bit registers.  */
1530 #define CALL_COOKIE_RET_TRAMP_SHIFT 0
1531 #define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT)
1532 #define CALL_COOKIE_STACKSEQ_SHIFT 1
1533 #define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT)
1534 #define CALL_COOKIE_STACKSEQ_GET(COOKIE) \
1535   (((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7)
1536 #define CALL_COOKIE_INT_REG_SHIFT(REG) \
1537   (4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3)
1538 #define CALL_COOKIE_INT_REG(REG, VAL) \
1539   ((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG))
1540 #define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \
1541   (((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15))
1542     long call_cookie;
1543 };
1544 
1545 #define CUMULATIVE_ARGS  struct sh_args
1546 
1547 #define GET_SH_ARG_CLASS(MODE) \
1548   ((TARGET_FPU_ANY && (MODE) == SFmode) \
1549    ? SH_ARG_FLOAT \
1550    /* There's no mention of complex float types in the SH5 ABI, so we
1551       should presumably handle them as aggregate types.  */ \
1552    : TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1553    ? SH_ARG_INT \
1554    : TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1555 			   || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1556    ? SH_ARG_FLOAT : SH_ARG_INT)
1557 
1558 #define ROUND_ADVANCE(SIZE) \
1559   (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1560 
1561 /* Round a register number up to a proper boundary for an arg of mode
1562    MODE.
1563 
1564    The SH doesn't care about double alignment, so we only
1565    round doubles to even regs when asked to explicitly.  */
1566 
1567 #define ROUND_REG(CUM, MODE) \
1568    (((TARGET_ALIGN_DOUBLE					\
1569       || (TARGET_SH4 && ((MODE) == DFmode || (MODE) == DCmode)	\
1570 	  && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
1571      && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD)		\
1572     ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)]		\
1573        + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1))	\
1574     : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
1575 
1576 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1577    for a call to a function whose data type is FNTYPE.
1578    For a library call, FNTYPE is 0.
1579 
1580    On SH, the offset always starts at 0: the first parm reg is always
1581    the same reg for a given argument class.
1582 
1583    For TARGET_HITACHI, the structure value pointer is passed in memory.  */
1584 
1585 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1586   do {								\
1587     (CUM).arg_count[(int) SH_ARG_INT] = 0;			\
1588     (CUM).arg_count[(int) SH_ARG_FLOAT] = 0;			\
1589     (CUM).force_mem						\
1590       = (TARGET_HITACHI && FNTYPE				\
1591 	 && aggregate_value_p (TREE_TYPE (FNTYPE)));		\
1592     (CUM).prototype_p = (FNTYPE) && TYPE_ARG_TYPES (FNTYPE);	\
1593     (CUM).arg_count[(int) SH_ARG_INT]				\
1594       = (TARGET_SH5 && (FNTYPE)					\
1595 	 && aggregate_value_p (TREE_TYPE (FNTYPE)));		\
1596     (CUM).free_single_fp_reg = 0;				\
1597     (CUM).outgoing = 1;						\
1598     (CUM).stack_regs = 0;					\
1599     (CUM).byref_regs = 0;					\
1600     (CUM).byref = 0;						\
1601     (CUM).call_cookie						\
1602       = (CALL_COOKIE_RET_TRAMP					\
1603 	 (TARGET_SHCOMPACT && (FNTYPE)				\
1604 	  && (CUM).arg_count[(int) SH_ARG_INT] == 0		\
1605 	  && (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode		\
1606 	      ? int_size_in_bytes (TREE_TYPE (FNTYPE))		\
1607 	      : GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (FNTYPE)))) > 4 \
1608 	  && (BASE_RETURN_VALUE_REG (TYPE_MODE (TREE_TYPE	\
1609  						(FNTYPE)))	\
1610 	      == FIRST_RET_REG)));				\
1611   } while (0)
1612 
1613 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1614   do {								\
1615     INIT_CUMULATIVE_ARGS ((CUM), NULL_TREE, (LIBNAME), 0);	\
1616     (CUM).call_cookie						\
1617       = (CALL_COOKIE_RET_TRAMP					\
1618 	 (TARGET_SHCOMPACT && GET_MODE_SIZE (MODE) > 4		\
1619 	  && BASE_RETURN_VALUE_REG (MODE) == FIRST_RET_REG));	\
1620   } while (0)
1621 
1622 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1623   do {								\
1624     INIT_CUMULATIVE_ARGS ((CUM), (FNTYPE), (LIBNAME), 0);	\
1625     (CUM).outgoing = 0;						\
1626   } while (0)
1627 
1628 /* FIXME: This is overly conservative.  A SHcompact function that
1629    receives arguments ``by reference'' will have them stored in its
1630    own stack frame, so it must not pass pointers or references to
1631    these arguments to other functions by means of sibling calls.  */
1632 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1633   (! TARGET_SHCOMPACT || current_function_args_info.stack_regs == 0)
1634 
1635 /* Update the data in CUM to advance over an argument
1636    of mode MODE and data type TYPE.
1637    (TYPE is null for libcalls where that information may not be
1638    available.)  */
1639 
1640 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1641  if ((CUM).force_mem)					\
1642    (CUM).force_mem = 0;					\
1643  else if (TARGET_SH5)					\
1644    {							\
1645      tree TYPE_ = ((CUM).byref && (TYPE)		\
1646 		   ? TREE_TYPE (TYPE)			\
1647  		   : (TYPE));				\
1648      enum machine_mode MODE_ = ((CUM).byref && (TYPE)	\
1649 				? TYPE_MODE (TYPE_)	\
1650 				: (MODE));		\
1651      int dwords = (((CUM).byref				\
1652 		    ? (CUM).byref			\
1653 		    : (MODE_) == BLKmode		\
1654 		    ? int_size_in_bytes (TYPE_)		\
1655 		    : GET_MODE_SIZE (MODE_)) + 7) / 8;	\
1656      int numregs = MIN (dwords, NPARM_REGS (SImode)	\
1657 			- (CUM).arg_count[(int) SH_ARG_INT]); \
1658 							\
1659      if (numregs)					\
1660        {						\
1661 	 (CUM).arg_count[(int) SH_ARG_INT] += numregs;	\
1662 	 if (TARGET_SHCOMPACT				\
1663 	     && SHCOMPACT_FORCE_ON_STACK (MODE_, TYPE_)) \
1664 	   {						\
1665 	     (CUM).call_cookie 				\
1666 	       |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1667 					- numregs), 1);	\
1668 	     /* N.B. We want this also for outgoing.   */\
1669 	     (CUM).stack_regs += numregs;		\
1670 	   }						\
1671 	 else if ((CUM).byref)				\
1672 	   {						\
1673 	     if (! (CUM).outgoing)			\
1674 	       (CUM).stack_regs += numregs;		\
1675 	     (CUM).byref_regs += numregs;		\
1676 	     (CUM).byref = 0;				\
1677 	     do						\
1678 	       (CUM).call_cookie			\
1679 		 |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1680 					  - numregs), 2); \
1681 	     while (--numregs);				\
1682 	     (CUM).call_cookie				\
1683 	       |= CALL_COOKIE_INT_REG (((CUM).arg_count[(int) SH_ARG_INT] \
1684 				        - 1), 1); \
1685 	   }						\
1686 	 else if (dwords > numregs)			\
1687 	   {						\
1688 	     int pushregs = numregs;			\
1689 							\
1690 	     if (TARGET_SHCOMPACT)			\
1691 	       (CUM).stack_regs += numregs;		\
1692 	     while (pushregs < NPARM_REGS (SImode) - 1	\
1693 		    && (CALL_COOKIE_INT_REG_GET		\
1694 			((CUM).call_cookie,		\
1695 			NPARM_REGS (SImode) - pushregs) \
1696 			== 1))				\
1697 	       {					\
1698 		 (CUM).call_cookie			\
1699 		   &= ~ CALL_COOKIE_INT_REG (NPARM_REGS (SImode) \
1700 					     - pushregs, 1); \
1701 		 pushregs++;				\
1702 	       }					\
1703 	     if (numregs == NPARM_REGS (SImode))	\
1704 	       (CUM).call_cookie 			\
1705 		 |= CALL_COOKIE_INT_REG (0, 1)		\
1706 		    | CALL_COOKIE_STACKSEQ (numregs - 1); \
1707 	     else					\
1708 	       (CUM).call_cookie			\
1709 		 |= CALL_COOKIE_STACKSEQ (numregs);	\
1710 	   }						\
1711        }						\
1712      if (GET_SH_ARG_CLASS (MODE_) == SH_ARG_FLOAT	\
1713 	 && ((NAMED) || ! (CUM).prototype_p))		\
1714        {						\
1715 	 if ((MODE_) == SFmode && (CUM).free_single_fp_reg) \
1716 	   (CUM).free_single_fp_reg = 0;		\
1717 	 else if ((CUM).arg_count[(int) SH_ARG_FLOAT]	\
1718  		  < NPARM_REGS (SFmode))		\
1719 	   {					        \
1720 	     int numfpregs		 		\
1721 	       = MIN ((GET_MODE_SIZE (MODE_) + 7) / 8 * 2, \
1722 		      NPARM_REGS (SFmode)		\
1723 		      - (CUM).arg_count[(int) SH_ARG_FLOAT]); \
1724 		 					\
1725 	     (CUM).arg_count[(int) SH_ARG_FLOAT] += numfpregs; \
1726 							\
1727 	     if (TARGET_SHCOMPACT && ! (CUM).prototype_p) \
1728 	       {					\
1729 		 if ((CUM).outgoing && numregs > 0)	\
1730 		   do					\
1731 		     {					\
1732 		       (CUM).call_cookie		\
1733 			 |= (CALL_COOKIE_INT_REG	\
1734 			     ((CUM).arg_count[(int) SH_ARG_INT] \
1735 			      - numregs + ((numfpregs - 2) / 2), \
1736 			      4 + ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1737 				   - numfpregs) / 2));	\
1738 		     }					\
1739 		   while (numfpregs -= 2);		\
1740 	       }					\
1741 	     else if ((MODE_) == SFmode && (NAMED)	\
1742 		      && ((CUM).arg_count[(int) SH_ARG_FLOAT] \
1743 			  < NPARM_REGS (SFmode)))	\
1744 	       (CUM).free_single_fp_reg			\
1745 		 = FIRST_FP_PARM_REG - numfpregs	\
1746 		 + (CUM).arg_count[(int) SH_ARG_FLOAT] + 1; \
1747 	   }						\
1748        }						\
1749    }							\
1750  else if (! TARGET_SH4 || PASS_IN_REG_P ((CUM), (MODE), (TYPE))) \
1751    ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)]	\
1752     = (ROUND_REG ((CUM), (MODE))			\
1753        + ((MODE) == BLKmode				\
1754 	  ? ROUND_ADVANCE (int_size_in_bytes (TYPE))	\
1755 	  : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))))
1756 
1757 /* Return boolean indicating arg of mode MODE will be passed in a reg.
1758    This macro is only used in this file.  */
1759 
1760 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1761   (((TYPE) == 0 \
1762     || (! TREE_ADDRESSABLE ((tree)(TYPE)) \
1763 	&& (! TARGET_HITACHI || ! AGGREGATE_TYPE_P (TYPE)))) \
1764    && ! (CUM).force_mem \
1765    && (TARGET_SH3E \
1766        ? ((MODE) == BLKmode \
1767 	  ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
1768 	      + int_size_in_bytes (TYPE)) \
1769 	     <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
1770 	  : ((ROUND_REG((CUM), (MODE)) \
1771 	      + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
1772 	     <= NPARM_REGS (MODE))) \
1773        : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
1774 
1775 /* Define where to put the arguments to a function.
1776    Value is zero to push the argument on the stack,
1777    or a hard register in which to store the argument.
1778 
1779    MODE is the argument's machine mode.
1780    TYPE is the data type of the argument (as a tree).
1781     This is null for libcalls where that information may
1782     not be available.
1783    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1784     the preceding args and about the function being called.
1785    NAMED is nonzero if this argument is a named parameter
1786     (otherwise it is an extra parameter matching an ellipsis).
1787 
1788    On SH the first args are normally in registers
1789    and the rest are pushed.  Any arg that starts within the first
1790    NPARM_REGS words is at least partially passed in a register unless
1791    its data type forbids.  */
1792 
1793 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1794   ((! TARGET_SH5 \
1795     && PASS_IN_REG_P ((CUM), (MODE), (TYPE))				\
1796     && ((NAMED) || !TARGET_HITACHI))					\
1797    ? gen_rtx_REG ((MODE),						\
1798 		  ((BASE_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))) 	\
1799 		   ^ ((MODE) == SFmode && TARGET_SH4			\
1800 		      && TARGET_LITTLE_ENDIAN != 0)))			\
1801    : TARGET_SH5								\
1802    ? ((MODE) == VOIDmode && TARGET_SHCOMPACT				\
1803       ? GEN_INT ((CUM).call_cookie)					\
1804       /* The following test assumes unnamed arguments are promoted to	\
1805 	 DFmode.  */							\
1806       : (MODE) == SFmode && (CUM).free_single_fp_reg			\
1807       ? SH5_PROTOTYPED_FLOAT_ARG ((CUM), (MODE), (CUM).free_single_fp_reg) \
1808       : (GET_SH_ARG_CLASS (MODE) == SH_ARG_FLOAT			\
1809          && ((NAMED) || ! (CUM).prototype_p)				\
1810          && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (SFmode))	\
1811       ? ((! (CUM).prototype_p && TARGET_SHMEDIA)			\
1812 	 ? SH5_PROTOTYPELESS_FLOAT_ARG ((CUM), (MODE))			\
1813 	 : SH5_PROTOTYPED_FLOAT_ARG ((CUM), (MODE),			\
1814 				     FIRST_FP_PARM_REG			\
1815 				     + (CUM).arg_count[(int) SH_ARG_FLOAT])) \
1816       : ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode)	\
1817 	 && (! TARGET_SHCOMPACT						\
1818 	     || (! SHCOMPACT_FORCE_ON_STACK ((MODE), (TYPE))		\
1819 	         && ! SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE),	\
1820 						  (TYPE), (NAMED)))))	\
1821       ? gen_rtx_REG ((MODE), (FIRST_PARM_REG				\
1822  			      + (CUM).arg_count[(int) SH_ARG_INT]))	\
1823       : 0)								\
1824    : 0)
1825 
1826 /* Whether an argument must be passed by reference.  On SHcompact, we
1827    pretend arguments wider than 32-bits that would have been passed in
1828    registers are passed by reference, so that an SHmedia trampoline
1829    loads them into the full 64-bits registers.  */
1830 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM,MODE,TYPE,NAMED) \
1831   (MUST_PASS_IN_STACK ((MODE), (TYPE)) \
1832    || SHCOMPACT_BYREF ((CUM), (MODE), (TYPE), (NAMED)))
1833 
1834 #define SHCOMPACT_BYREF(CUM, MODE, TYPE, NAMED) \
1835   ((CUM).byref								\
1836    = (TARGET_SHCOMPACT							\
1837       && (CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode)	\
1838       && (! (NAMED) || GET_SH_ARG_CLASS (MODE) == SH_ARG_INT		\
1839 	  || (GET_SH_ARG_CLASS (MODE) == SH_ARG_FLOAT			\
1840 	      && ((CUM).arg_count[(int) SH_ARG_FLOAT]			\
1841  		  >= NPARM_REGS (SFmode))))				\
1842       && ((MODE) == BLKmode ? int_size_in_bytes (TYPE)			\
1843 	  : GET_MODE_SIZE (MODE)) > 4				       	\
1844       && ! SHCOMPACT_FORCE_ON_STACK ((MODE), (TYPE))			\
1845       && ! SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE),			\
1846 				       (TYPE), (NAMED)))		\
1847       ? ((MODE) == BLKmode ? int_size_in_bytes (TYPE)			\
1848 	 : GET_MODE_SIZE (MODE))					\
1849       : 0)
1850 
1851 /* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit
1852    register in SHcompact mode, it must be padded in the most
1853    significant end.  This means that passing it by reference wouldn't
1854    pad properly on a big-endian machine.  In this particular case, we
1855    pass this argument on the stack, in a way that the call trampoline
1856    will load its value into the appropriate register.  */
1857 #define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \
1858   ((MODE) == BLKmode \
1859    && TARGET_SHCOMPACT \
1860    && ! TARGET_LITTLE_ENDIAN \
1861    && int_size_in_bytes (TYPE) > 4 \
1862    && int_size_in_bytes (TYPE) < 8)
1863 
1864 /* Minimum alignment for an argument to be passed by callee-copy
1865    reference.  We need such arguments to be aligned to 8 byte
1866    boundaries, because they'll be loaded using quad loads.  */
1867 #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
1868 
1869 #define FUNCTION_ARG_CALLEE_COPIES(CUM,MODE,TYPE,NAMED) \
1870   ((CUM).outgoing							\
1871    && (((MODE) == BLKmode ? TYPE_ALIGN (TYPE)				\
1872 	: GET_MODE_ALIGNMENT (MODE))					\
1873        % SH_MIN_ALIGN_FOR_CALLEE_COPY == 0))
1874 
1875 /* The SH5 ABI requires floating-point arguments to be passed to
1876    functions without a prototype in both an FP register and a regular
1877    register or the stack.  When passing the argument in both FP and
1878    general-purpose registers, list the FP register first.  */
1879 #define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \
1880   (gen_rtx_PARALLEL							\
1881    ((MODE),								\
1882     gen_rtvec (2,							\
1883 	       gen_rtx_EXPR_LIST					\
1884 	       (VOIDmode,						\
1885 		((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1886 		 ? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG		\
1887 				+ (CUM).arg_count[(int) SH_ARG_FLOAT])	\
1888 		 : NULL_RTX),						\
1889 		const0_rtx),						\
1890 	       gen_rtx_EXPR_LIST					\
1891 	       (VOIDmode,						\
1892 		((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1893 		 ? gen_rtx_REG ((MODE), FIRST_PARM_REG			\
1894 				+ (CUM).arg_count[(int) SH_ARG_INT])	\
1895 		 : gen_rtx_REG ((MODE), FIRST_FP_PARM_REG		\
1896 				+ (CUM).arg_count[(int) SH_ARG_FLOAT])), \
1897 		const0_rtx))))
1898 
1899 /* The SH5 ABI requires regular registers or stack slots to be
1900    reserved for floating-point arguments.  Registers are taken care of
1901    in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here.
1902    Unfortunately, there's no way to just reserve a stack slot, so
1903    we'll end up needlessly storing a copy of the argument in the
1904    stack.  For incoming arguments, however, the PARALLEL will be
1905    optimized to the register-only form, and the value in the stack
1906    slot won't be used at all.  */
1907 #define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \
1908   ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode)		\
1909    ? gen_rtx_REG ((MODE), (REG))					\
1910    : gen_rtx_PARALLEL ((MODE),						\
1911 		       gen_rtvec (2,					\
1912 				  gen_rtx_EXPR_LIST			\
1913 				  (VOIDmode, NULL_RTX,			\
1914 				   const0_rtx),				\
1915 				  gen_rtx_EXPR_LIST			\
1916 				  (VOIDmode, gen_rtx_REG ((MODE),	\
1917 							  (REG)),	\
1918 				   const0_rtx))))
1919 
1920 #define STRICT_ARGUMENT_NAMING TARGET_SH5
1921 
1922 #define PRETEND_OUTGOING_VARARGS_NAMED (! TARGET_HITACHI && ! TARGET_SH5)
1923 
1924 /* For an arg passed partly in registers and partly in memory,
1925    this is the number of registers used.
1926    For args passed entirely in registers or entirely in memory, zero.
1927 
1928    We sometimes split args.  */
1929 
1930 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1931   ((! TARGET_SH5 \
1932     && PASS_IN_REG_P ((CUM), (MODE), (TYPE))			\
1933     && ! TARGET_SH4						\
1934     && (ROUND_REG ((CUM), (MODE))				\
1935 	+ ((MODE) != BLKmode					\
1936 	   ? ROUND_ADVANCE (GET_MODE_SIZE (MODE))		\
1937 	   : ROUND_ADVANCE (int_size_in_bytes (TYPE)))		\
1938 	> NPARM_REGS (MODE)))					\
1939    ? NPARM_REGS (MODE) - ROUND_REG ((CUM), (MODE))		\
1940    : (SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), (TYPE), (NAMED)) \
1941       && ! TARGET_SHCOMPACT)					\
1942    ? NPARM_REGS (SImode) - (CUM).arg_count[(int) SH_ARG_INT]	\
1943    : 0)
1944 
1945 #define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1946   (TARGET_SH5 && ((MODE) == BLKmode || (MODE) == TImode)	\
1947    && ((CUM).arg_count[(int) SH_ARG_INT]			\
1948        + (int_size_in_bytes (TYPE) + 7) / 8) > NPARM_REGS (SImode))
1949 
1950 /* Perform any needed actions needed for a function that is receiving a
1951    variable number of arguments.  */
1952 
1953 /* We actually emit the code in sh_expand_prologue.  We used to use
1954    a static variable to flag that we need to emit this code, but that
1955    doesn't when inlining, when functions are deferred and then emitted
1956    later.  Fortunately, we already have two flags that are part of struct
1957    function that tell if a function uses varargs or stdarg.  */
1958 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST)  do \
1959   if (! current_function_stdarg) \
1960     abort (); \
1961 while (0)
1962 
1963 /* Define the `__builtin_va_list' type for the ABI.  */
1964 #define BUILD_VA_LIST_TYPE(VALIST) \
1965   (VALIST) = sh_build_va_list ()
1966 
1967 /* Implement `va_start' for varargs and stdarg.  */
1968 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1969   sh_va_start (valist, nextarg)
1970 
1971 /* Implement `va_arg'.  */
1972 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1973   sh_va_arg (valist, type)
1974 
1975 /* Call the function profiler with a given profile label.
1976    We use two .aligns, so as to make sure that both the .long is aligned
1977    on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
1978    from the trapa instruction.  */
1979 
1980 #define FUNCTION_PROFILER(STREAM,LABELNO)			\
1981 {								\
1982 	fprintf((STREAM), "\t.align\t2\n");			\
1983 	fprintf((STREAM), "\ttrapa\t#33\n");			\
1984  	fprintf((STREAM), "\t.align\t2\n");			\
1985 	asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO));	\
1986 }
1987 
1988 /* Define this macro if the code for function profiling should come
1989    before the function prologue.  Normally, the profiling code comes
1990    after.  */
1991 
1992 #define PROFILE_BEFORE_PROLOGUE
1993 
1994 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1995    the stack pointer does not matter.  The value is tested only in
1996    functions that have frame pointers.
1997    No definition is equivalent to always zero.  */
1998 
1999 #define EXIT_IGNORE_STACK 1
2000 
2001 /*
2002    On the SH, the trampoline looks like
2003    2 0002 D202     	   	mov.l	l2,r2
2004    1 0000 D301     		mov.l	l1,r3
2005    3 0004 422B     		jmp	@r2
2006    4 0006 0009     		nop
2007    5 0008 00000000 	l1:  	.long   area
2008    6 000c 00000000 	l2:	.long   function  */
2009 
2010 /* Length in units of the trampoline for entering a nested function.  */
2011 #define TRAMPOLINE_SIZE  (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 24 : 16)
2012 
2013 /* Alignment required for a trampoline in bits .  */
2014 #define TRAMPOLINE_ALIGNMENT \
2015   ((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 \
2016    : TARGET_SHMEDIA ? 256 : 64)
2017 
2018 /* Emit RTL insns to initialize the variable parts of a trampoline.
2019    FNADDR is an RTX for the address of the function's pure code.
2020    CXT is an RTX for the static chain value for the function.  */
2021 
2022 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2023   sh_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
2024 
2025 /* On SH5, trampolines are SHmedia code, so add 1 to the address.  */
2026 
2027 #define TRAMPOLINE_ADJUST_ADDRESS(TRAMP) do				\
2028 {									\
2029   if (TARGET_SHMEDIA)							\
2030     (TRAMP) = expand_simple_binop (Pmode, PLUS, (TRAMP), GEN_INT (1),	\
2031 				   gen_reg_rtx (Pmode), 0,		\
2032 				   OPTAB_LIB_WIDEN);			\
2033 } while (0)
2034 
2035 /* A C expression whose value is RTL representing the value of the return
2036    address for the frame COUNT steps up from the current frame.
2037    FRAMEADDR is already the frame pointer of the COUNT frame, so we
2038    can ignore COUNT.  */
2039 
2040 #define RETURN_ADDR_RTX(COUNT, FRAME)	\
2041   (((COUNT) == 0) ? sh_get_pr_initial_val () : (rtx) 0)
2042 
2043 /* A C expression whose value is RTL representing the location of the
2044    incoming return address at the beginning of any function, before the
2045    prologue.  This RTL is either a REG, indicating that the return
2046    value is saved in REG, or a MEM representing a location in
2047    the stack.  */
2048 #define INCOMING_RETURN_ADDR_RTX \
2049   gen_rtx_REG (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
2050 
2051 /* Generate necessary RTL for __builtin_saveregs().  */
2052 #define EXPAND_BUILTIN_SAVEREGS() sh_builtin_saveregs ()
2053 
2054 /* Addressing modes, and classification of registers for them.  */
2055 #define HAVE_POST_INCREMENT  TARGET_SH1
2056 /*#define HAVE_PRE_INCREMENT   1*/
2057 /*#define HAVE_POST_DECREMENT  1*/
2058 #define HAVE_PRE_DECREMENT   TARGET_SH1
2059 
2060 #define USE_LOAD_POST_INCREMENT(mode)    ((mode == SImode || mode == DImode) \
2061                                            ? 0 : TARGET_SH1)
2062 #define USE_LOAD_PRE_DECREMENT(mode)     0
2063 #define USE_STORE_POST_INCREMENT(mode)   0
2064 #define USE_STORE_PRE_DECREMENT(mode)    ((mode == SImode || mode == DImode) \
2065                                            ? 0 : TARGET_SH1)
2066 
2067 #define MOVE_BY_PIECES_P(SIZE, ALIGN)  (move_by_pieces_ninsns (SIZE, ALIGN) \
2068                                         < (TARGET_SMALLCODE ? 2 :           \
2069                                            ((ALIGN >= 32) ? 16 : 2)))
2070 
2071 /* Macros to check register numbers against specific register classes.  */
2072 
2073 /* These assume that REGNO is a hard or pseudo reg number.
2074    They give nonzero only if REGNO is a hard reg of the suitable class
2075    or a pseudo reg currently allocated to a suitable hard reg.
2076    Since they use reg_renumber, they are safe only once reg_renumber
2077    has been allocated, which happens in local-alloc.c.  */
2078 
2079 #define REGNO_OK_FOR_BASE_P(REGNO) \
2080   (GENERAL_OR_AP_REGISTER_P (REGNO) \
2081    || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
2082 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2083   (TARGET_SHMEDIA \
2084    ? (GENERAL_REGISTER_P (REGNO) \
2085       || GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \
2086    : (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
2087 
2088 /* Maximum number of registers that can appear in a valid memory
2089    address.  */
2090 
2091 #define MAX_REGS_PER_ADDRESS 2
2092 
2093 /* Recognize any constant value that is a valid address.  */
2094 
2095 #define CONSTANT_ADDRESS_P(X)	(GET_CODE (X) == LABEL_REF)
2096 
2097 /* Nonzero if the constant value X is a legitimate general operand.  */
2098 
2099 #define LEGITIMATE_CONSTANT_P(X) \
2100   (TARGET_SHMEDIA							\
2101    ? ((GET_MODE (X) != DFmode						\
2102        && GET_MODE_CLASS (GET_MODE (X)) != MODE_VECTOR_FLOAT)		\
2103       || (X) == CONST0_RTX (GET_MODE (X))				\
2104       || ! TARGET_SHMEDIA_FPU						\
2105       || TARGET_SHMEDIA64)						\
2106    : (GET_CODE (X) != CONST_DOUBLE					\
2107       || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode		\
2108       || (TARGET_SH3E && (fp_zero_operand (X) || fp_one_operand (X)))))
2109 
2110 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2111    and check its validity for a certain class.
2112    We have two alternate definitions for each of them.
2113    The usual definition accepts all pseudo regs; the other rejects
2114    them unless they have been allocated suitable hard regs.
2115    The symbol REG_OK_STRICT causes the latter definition to be used.  */
2116 
2117 #ifndef REG_OK_STRICT
2118 
2119 /* Nonzero if X is a hard reg that can be used as a base reg
2120    or if it is a pseudo reg.  */
2121 #define REG_OK_FOR_BASE_P(X) \
2122   (GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2123 
2124 /* Nonzero if X is a hard reg that can be used as an index
2125    or if it is a pseudo reg.  */
2126 #define REG_OK_FOR_INDEX_P(X) \
2127   ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2128     : REGNO (X) == R0_REG) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2129 
2130 /* Nonzero if X/OFFSET is a hard reg that can be used as an index
2131    or if X is a pseudo reg.  */
2132 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2133   ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2134     : REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2135 
2136 #else
2137 
2138 /* Nonzero if X is a hard reg that can be used as a base reg.  */
2139 #define REG_OK_FOR_BASE_P(X) \
2140   REGNO_OK_FOR_BASE_P (REGNO (X))
2141 
2142 /* Nonzero if X is a hard reg that can be used as an index.  */
2143 #define REG_OK_FOR_INDEX_P(X) \
2144   REGNO_OK_FOR_INDEX_P (REGNO (X))
2145 
2146 /* Nonzero if X/OFFSET is a hard reg that can be used as an index.  */
2147 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2148   (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
2149 
2150 #endif
2151 
2152 /* The 'Q' constraint is a pc relative load operand.  */
2153 #define EXTRA_CONSTRAINT_Q(OP)                          		\
2154   (GET_CODE (OP) == MEM 						\
2155    && ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF)				\
2156        || (GET_CODE (XEXP ((OP), 0)) == CONST                		\
2157 	   && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS		\
2158 	   && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
2159 	   && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
2160 
2161 /* The `S' constraint is a 16-bit constant, literal or symbolic.  */
2162 #define EXTRA_CONSTRAINT_S(OP) \
2163   (GET_CODE (OP) == CONST \
2164    && GET_CODE (XEXP ((OP), 0)) == SIGN_EXTEND \
2165    && GET_MODE (XEXP ((OP), 0)) == DImode \
2166    && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == TRUNCATE \
2167    && GET_MODE (XEXP (XEXP ((OP), 0), 0)) == HImode \
2168    && (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) \
2169        || (GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == ASHIFTRT \
2170 	   && (MOVI_SHORI_BASE_OPERAND_P \
2171 	       (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), 0))) \
2172 	   && GET_CODE (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), \
2173 			      1)) == CONST_INT)))
2174 
2175 /* Check whether OP is a datalabel unspec.  */
2176 #define DATALABEL_REF_NO_CONST_P(OP) \
2177   (GET_CODE (OP) == UNSPEC \
2178    && XINT ((OP), 1) == UNSPEC_DATALABEL \
2179    && XVECLEN ((OP), 0) == 1 \
2180    && (GET_CODE (XVECEXP ((OP), 0, 0)) == SYMBOL_REF \
2181        || GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF))
2182 
2183 /* Check whether OP is a datalabel unspec, possibly enclosed within a
2184    CONST.  */
2185 #define DATALABEL_REF_P(OP) \
2186   ((GET_CODE (OP) == CONST && DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0))) \
2187    || DATALABEL_REF_NO_CONST_P (OP))
2188 
2189 #define GOT_ENTRY_P(OP) \
2190   (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2191    && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
2192 
2193 #define GOTPLT_ENTRY_P(OP) \
2194   (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2195    && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
2196 
2197 #define UNSPEC_GOTOFF_P(OP) \
2198   (GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
2199 
2200 #define GOTOFF_P(OP) \
2201   (GET_CODE (OP) == CONST \
2202    && (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
2203        || (GET_CODE (XEXP ((OP), 0)) == PLUS \
2204            && UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
2205 	   && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT)))
2206 
2207 #define PIC_ADDR_P(OP) \
2208   (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2209    && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
2210 
2211 #define NON_PIC_REFERENCE_P(OP) \
2212   (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
2213    || DATALABEL_REF_P (OP) \
2214    || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
2215        && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
2216 	   || DATALABEL_REF_P (XEXP (XEXP ((OP), 0), 0))) \
2217        && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))
2218 
2219 #define PIC_REFERENCE_P(OP) \
2220   (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
2221    || GOTOFF_P (OP) || PIC_ADDR_P (OP))
2222 
2223 #define MOVI_SHORI_BASE_OPERAND_P(OP) \
2224   (flag_pic ? PIC_REFERENCE_P (OP) : NON_PIC_REFERENCE_P (OP))
2225 
2226 /* The `T' constraint is a label or a symbol.  */
2227 #define EXTRA_CONSTRAINT_T(OP) \
2228   (NON_PIC_REFERENCE_P (OP))
2229 
2230 /* A zero in any shape or form.  */
2231 #define EXTRA_CONSTRAINT_U(OP) \
2232   ((OP) == CONST0_RTX (GET_MODE (OP)))
2233 
2234 /* Any vector constant we can handle.  */
2235 #define EXTRA_CONSTRAINT_W(OP) \
2236   (GET_CODE (OP) == CONST_VECTOR \
2237    && (sh_rep_vec ((OP), VOIDmode) \
2238        || (HOST_BITS_PER_WIDE_INT >= 64 \
2239 	   ? sh_const_vec ((OP), VOIDmode) \
2240 	   : sh_1el_vec ((OP), VOIDmode))))
2241 
2242 #define EXTRA_CONSTRAINT(OP, C)		\
2243   ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP)	\
2244    : (C) == 'S' ? EXTRA_CONSTRAINT_S (OP) \
2245    : (C) == 'T' ? EXTRA_CONSTRAINT_T (OP) \
2246    : (C) == 'U' ? EXTRA_CONSTRAINT_U (OP) \
2247    : (C) == 'W' ? EXTRA_CONSTRAINT_W (OP) \
2248    : 0)
2249 
2250 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2251    that is a valid memory address for an instruction.
2252    The MODE argument is the machine mode for the MEM expression
2253    that wants to use this address.  */
2254 
2255 #define MODE_DISP_OK_4(X,MODE) \
2256 (GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64	\
2257  && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && (MODE) == SFmode))
2258 
2259 #define MODE_DISP_OK_8(X,MODE) \
2260 ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60)	\
2261  && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
2262 
2263 #define BASE_REGISTER_RTX_P(X)				\
2264   ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))	\
2265    || (GET_CODE (X) == SUBREG				\
2266        && GET_CODE (SUBREG_REG (X)) == REG		\
2267        && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2268 
2269 /* Since this must be r0, which is a single register class, we must check
2270    SUBREGs more carefully, to be sure that we don't accept one that extends
2271    outside the class.  */
2272 #define INDEX_REGISTER_RTX_P(X)				\
2273   ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))	\
2274    || (GET_CODE (X) == SUBREG				\
2275        && GET_CODE (SUBREG_REG (X)) == REG		\
2276        && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X))))
2277 
2278 /* Jump to LABEL if X is a valid address RTX.  This must also take
2279    REG_OK_STRICT into account when deciding about valid registers, but it uses
2280    the above macros so we are in luck.
2281 
2282    Allow  REG
2283 	  REG+disp
2284 	  REG+r0
2285 	  REG++
2286 	  --REG  */
2287 
2288 /* ??? The SH3e does not have the REG+disp addressing mode when loading values
2289    into the FRx registers.  We implement this by setting the maximum offset
2290    to zero when the value is SFmode.  This also restricts loading of SFmode
2291    values into the integer registers, but that can't be helped.  */
2292 
2293 /* The SH allows a displacement in a QI or HI amode, but only when the
2294    other operand is R0. GCC doesn't handle this very well, so we forgo
2295    all of that.
2296 
2297    A legitimate index for a QI or HI is 0, SI can be any number 0..63,
2298    DI can be any number 0..60.  */
2299 
2300 #define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL)  			\
2301   do {									\
2302     if (GET_CODE (OP) == CONST_INT) 					\
2303       {									\
2304 	if (TARGET_SHMEDIA)						\
2305 	  {								\
2306 	    int MODE_SIZE = GET_MODE_SIZE (MODE);			\
2307 	    if (! (INTVAL (OP) & (MODE_SIZE - 1))			\
2308 		&& INTVAL (OP) >= -512 * MODE_SIZE			\
2309 		&& INTVAL (OP) < 512 * MODE_SIZE)			\
2310 	      goto LABEL;						\
2311 	    else							\
2312 	      break;							\
2313 	  }								\
2314 	if (MODE_DISP_OK_4 ((OP), (MODE)))  goto LABEL;		      	\
2315 	if (MODE_DISP_OK_8 ((OP), (MODE)))  goto LABEL;		      	\
2316       }									\
2317   } while(0)
2318 
2319 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)			\
2320 {									\
2321   if (BASE_REGISTER_RTX_P (X))						\
2322     goto LABEL;								\
2323   else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC)	\
2324 	   && ! TARGET_SHMEDIA						\
2325 	   && BASE_REGISTER_RTX_P (XEXP ((X), 0)))			\
2326     goto LABEL;								\
2327   else if (GET_CODE (X) == PLUS						\
2328 	   && ((MODE) != PSImode || reload_completed))			\
2329     {									\
2330       rtx xop0 = XEXP ((X), 0);						\
2331       rtx xop1 = XEXP ((X), 1);						\
2332       if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0))	\
2333 	GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL);			\
2334       if (GET_MODE_SIZE (MODE) <= 4					\
2335 	  || (TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 8)		\
2336 	  || (TARGET_SH4 && TARGET_FMOVD && MODE == DFmode))		\
2337 	{								\
2338 	  if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
2339 	    goto LABEL;							\
2340 	  if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
2341 	    goto LABEL;							\
2342 	}								\
2343     }									\
2344 }
2345 
2346 /* Try machine-dependent ways of modifying an illegitimate address
2347    to be legitimate.  If we find one, return the new, valid address.
2348    This macro is used in only one place: `memory_address' in explow.c.
2349 
2350    OLDX is the address as it was before break_out_memory_refs was called.
2351    In some cases it is useful to look at this to decide what needs to be done.
2352 
2353    MODE and WIN are passed so that this macro can use
2354    GO_IF_LEGITIMATE_ADDRESS.
2355 
2356    It is always safe for this macro to do nothing.  It exists to recognize
2357    opportunities to optimize the output.
2358 
2359    For the SH, if X is almost suitable for indexing, but the offset is
2360    out of range, convert it into a normal form so that cse has a chance
2361    of reducing the number of address registers used.  */
2362 
2363 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2364 {								\
2365   if (flag_pic)							\
2366     (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX);	\
2367   if (GET_CODE (X) == PLUS					\
2368       && (GET_MODE_SIZE (MODE) == 4				\
2369 	  || GET_MODE_SIZE (MODE) == 8)				\
2370       && GET_CODE (XEXP ((X), 1)) == CONST_INT			\
2371       && BASE_REGISTER_RTX_P (XEXP ((X), 0))			\
2372       && ! TARGET_SHMEDIA					\
2373       && ! (TARGET_SH4 && (MODE) == DFmode)			\
2374       && ! (TARGET_SH3E && (MODE) == SFmode))			\
2375     {								\
2376       rtx index_rtx = XEXP ((X), 1);				\
2377       HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base;	\
2378       rtx sum;							\
2379 								\
2380       GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN);		\
2381       /* On rare occasions, we might get an unaligned pointer	\
2382 	 that is indexed in a way to give an aligned address.	\
2383 	 Therefore, keep the lower two bits in offset_base.  */ \
2384       /* Instead of offset_base 128..131 use 124..127, so that	\
2385 	 simple add suffices.  */				\
2386       if (offset > 127)						\
2387 	{							\
2388 	  offset_base = ((offset + 4) & ~60) - 4;		\
2389 	}							\
2390       else							\
2391 	offset_base = offset & ~60;				\
2392       /* Sometimes the normal form does not suit DImode.  We	\
2393 	 could avoid that by using smaller ranges, but that	\
2394 	 would give less optimized code when SImode is		\
2395 	 prevalent.  */						\
2396       if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64)	\
2397 	{							\
2398 	  sum = expand_binop (Pmode, add_optab, XEXP ((X), 0),	\
2399 			      GEN_INT (offset_base), NULL_RTX, 0, \
2400 			      OPTAB_LIB_WIDEN);			\
2401                                                                 \
2402 	  (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \
2403 	  goto WIN;						\
2404 	}							\
2405     }								\
2406 }
2407 
2408 /* A C compound statement that attempts to replace X, which is an address
2409    that needs reloading, with a valid memory address for an operand of
2410    mode MODE.  WIN is a C statement label elsewhere in the code.
2411 
2412    Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
2413    of the address.  That will allow inheritance of the address reloads.  */
2414 
2415 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	\
2416 {									\
2417   if (GET_CODE (X) == PLUS						\
2418       && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8)	\
2419       && GET_CODE (XEXP (X, 1)) == CONST_INT				\
2420       && BASE_REGISTER_RTX_P (XEXP (X, 0))				\
2421       && ! TARGET_SHMEDIA						\
2422       && ! (TARGET_SH4 && (MODE) == DFmode)				\
2423       && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS))	\
2424     {									\
2425       rtx index_rtx = XEXP (X, 1);					\
2426       HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base;		\
2427       rtx sum;								\
2428 									\
2429       if (TARGET_SH3E && MODE == SFmode)				\
2430 	{								\
2431 	  X = copy_rtx (X);						\
2432 	  push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL,		\
2433 		       INDEX_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM),	\
2434 		       (TYPE));						\
2435 	  goto WIN;							\
2436 	}								\
2437       /* Instead of offset_base 128..131 use 124..127, so that		\
2438 	 simple add suffices.  */					\
2439       if (offset > 127)							\
2440 	{								\
2441 	  offset_base = ((offset + 4) & ~60) - 4;			\
2442 	}								\
2443       else								\
2444 	offset_base = offset & ~60;					\
2445       /* Sometimes the normal form does not suit DImode.  We		\
2446 	 could avoid that by using smaller ranges, but that		\
2447 	 would give less optimized code when SImode is			\
2448 	 prevalent.  */							\
2449       if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64)		\
2450 	{								\
2451 	  sum = gen_rtx (PLUS, Pmode, XEXP (X, 0),			\
2452 			 GEN_INT (offset_base));			\
2453 	  X = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base));\
2454 	  push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL,		\
2455 		       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM),	\
2456 		       (TYPE));						\
2457 	  goto WIN;							\
2458 	}								\
2459     }									\
2460   /* We must re-recognize what we created before.  */			\
2461   else if (GET_CODE (X) == PLUS						\
2462 	   && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8)	\
2463 	   && GET_CODE (XEXP (X, 0)) == PLUS				\
2464 	   && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT		\
2465 	   && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0))		\
2466 	   && GET_CODE (XEXP (X, 1)) == CONST_INT			\
2467 	   && ! TARGET_SHMEDIA						\
2468 	   && ! (TARGET_SH3E && MODE == SFmode))			\
2469     {									\
2470       /* Because this address is so complex, we know it must have	\
2471 	 been created by LEGITIMIZE_RELOAD_ADDRESS before; thus,	\
2472 	 it is already unshared, and needs no further unsharing.  */	\
2473       push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL,	\
2474 		   BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
2475       goto WIN;								\
2476     }									\
2477 }
2478 
2479 /* Go to LABEL if ADDR (a legitimate address expression)
2480    has an effect that depends on the machine mode it is used for.
2481 
2482    ??? Strictly speaking, we should also include all indexed addressing,
2483    because the index scale factor is the length of the operand.
2484    However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
2485    high if we did that.  So we rely on reload to fix things up.  */
2486 
2487 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)			\
2488 {									\
2489   if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC)		\
2490     goto LABEL;								\
2491 }
2492 
2493 /* Specify the machine mode that this machine uses
2494    for the index in the tablejump instruction.  */
2495 #define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
2496 
2497 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
2498 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
2499  ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
2500  : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
2501  ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
2502  : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
2503  : SImode)
2504 
2505 /* Define as C expression which evaluates to nonzero if the tablejump
2506    instruction expects the table to contain offsets from the address of the
2507    table.
2508    Do not define this if the table should contain absolute addresses.  */
2509 #define CASE_VECTOR_PC_RELATIVE 1
2510 
2511 /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia.  */
2512 #define FLOAT_TYPE_SIZE 32
2513 
2514 /* Since the SH3e has only `float' support, it is desirable to make all
2515    floating point types equivalent to `float'.  */
2516 #define DOUBLE_TYPE_SIZE ((TARGET_SH3E && ! TARGET_SH4) ? 32 : 64)
2517 
2518 /* 'char' is signed by default.  */
2519 #define DEFAULT_SIGNED_CHAR  1
2520 
2521 /* The type of size_t unsigned int.  */
2522 #define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int")
2523 
2524 #undef  PTRDIFF_TYPE
2525 #define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int")
2526 
2527 #define WCHAR_TYPE "short unsigned int"
2528 #define WCHAR_TYPE_SIZE 16
2529 
2530 #define SH_ELF_WCHAR_TYPE "long int"
2531 
2532 /* Don't cse the address of the function being compiled.  */
2533 /*#define NO_RECURSIVE_FUNCTION_CSE 1*/
2534 
2535 /* Max number of bytes we can move from memory to memory
2536    in one reasonably fast instruction.  */
2537 #define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4)
2538 
2539 /* Maximum value possibly taken by MOVE_MAX.  Must be defined whenever
2540    MOVE_MAX is not a compile-time constant.  */
2541 #define MAX_MOVE_MAX 8
2542 
2543 /* Max number of bytes we want move_by_pieces to be able to copy
2544    efficiently.  */
2545 #define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4)
2546 
2547 /* Define if operations between registers always perform the operation
2548    on the full register even if a narrower mode is specified.  */
2549 #define WORD_REGISTER_OPERATIONS
2550 
2551 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2552    will either zero-extend or sign-extend.  The value of this macro should
2553    be the code that says which one of the two operations is implicitly
2554    done, NIL if none.  */
2555 /* For SHmedia, we can truncate to QImode easier using zero extension.  */
2556 /* FP registers can load SImode values, but don't implicitly sign-extend
2557    them to DImode.  */
2558 #define LOAD_EXTEND_OP(MODE) \
2559  (((MODE) == QImode  && TARGET_SHMEDIA) ? ZERO_EXTEND \
2560   : (MODE) != SImode ? SIGN_EXTEND : NIL)
2561 
2562 /* Define if loading short immediate values into registers sign extends.  */
2563 #define SHORT_IMMEDIATES_SIGN_EXTEND
2564 
2565 /* Nonzero if access to memory by bytes is no faster than for words.  */
2566 #define SLOW_BYTE_ACCESS 1
2567 
2568 /* We assume that the store-condition-codes instructions store 0 for false
2569    and some other value for true.  This is the value stored for true.  */
2570 
2571 #define STORE_FLAG_VALUE 1
2572 
2573 /* Immediate shift counts are truncated by the output routines (or was it
2574    the assembler?).  Shift counts in a register are truncated by SH.  Note
2575    that the native compiler puts too large (> 32) immediate shift counts
2576    into a register and shifts by the register, letting the SH decide what
2577    to do instead of doing that itself.  */
2578 /* ??? The library routines in lib1funcs.asm truncate the shift count.
2579    However, the SH3 has hardware shifts that do not truncate exactly as gcc
2580    expects - the sign bit is significant - so it appears that we need to
2581    leave this zero for correct SH3 code.  */
2582 #define SHIFT_COUNT_TRUNCATED (! TARGET_SH3)
2583 
2584 /* All integers have the same format so truncation is easy.  */
2585 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC)  1
2586 
2587 /* Define this if addresses of constant functions
2588    shouldn't be put through pseudo regs where they can be cse'd.
2589    Desirable on machines where ordinary constants are expensive
2590    but a CALL with constant address is cheap.  */
2591 /*#define NO_FUNCTION_CSE 1*/
2592 
2593 /* Chars and shorts should be passed as ints.  */
2594 #define PROMOTE_PROTOTYPES 1
2595 
2596 /* The machine modes of pointers and functions.  */
2597 #define Pmode  (TARGET_SHMEDIA64 ? DImode : SImode)
2598 #define FUNCTION_MODE  Pmode
2599 
2600 /* The relative costs of various types of constants.  */
2601 
2602 #define CONST_COSTS(RTX, CODE, OUTER_CODE)	\
2603   case CONST_INT:				\
2604     if (TARGET_SHMEDIA)				\
2605       {						\
2606 	if (INTVAL (RTX) == 0)			\
2607 	  return 0;				\
2608 	if ((OUTER_CODE) == AND && and_operand ((RTX), DImode)) \
2609 	  return 0;				\
2610 	if (((OUTER_CODE) == IOR || (OUTER_CODE) == XOR \
2611 	     || (OUTER_CODE) == PLUS) \
2612 	    && CONST_OK_FOR_P (INTVAL (RTX)))	\
2613 	  return 0;				\
2614 	if (CONST_OK_FOR_J (INTVAL (RTX)))	\
2615           return COSTS_N_INSNS ((OUTER_CODE) != SET);		\
2616 	else if (CONST_OK_FOR_J (INTVAL (RTX) >> 16)) \
2617 	  return COSTS_N_INSNS (2);		\
2618 	else if (CONST_OK_FOR_J ((INTVAL (RTX) >> 16) >> 16)) \
2619 	  return COSTS_N_INSNS (3);		\
2620         else					\
2621 	  return COSTS_N_INSNS (4);		\
2622       }						\
2623     if (CONST_OK_FOR_I (INTVAL (RTX)))		\
2624       return 0;					\
2625     else if (((OUTER_CODE) == AND || (OUTER_CODE) == IOR || (OUTER_CODE) == XOR) \
2626 	     && CONST_OK_FOR_L (INTVAL (RTX)))	\
2627       return 1;					\
2628     else					\
2629       return 8;					\
2630   case CONST: 					\
2631   case LABEL_REF:				\
2632   case SYMBOL_REF:				\
2633     if (TARGET_SHMEDIA64)			\
2634       return COSTS_N_INSNS (4);			\
2635     if (TARGET_SHMEDIA32)			\
2636       return COSTS_N_INSNS (2);			\
2637     return 5;					\
2638   case CONST_DOUBLE:				\
2639     if (TARGET_SHMEDIA)				\
2640       return COSTS_N_INSNS (4);			\
2641     else					\
2642       return 10;
2643 
2644 #define RTX_COSTS(X, CODE, OUTER_CODE)			\
2645   case PLUS:						\
2646     return COSTS_N_INSNS (addsubcosts (X));		\
2647   case AND:						\
2648     return COSTS_N_INSNS (andcosts (X));		\
2649   case MULT:						\
2650     return COSTS_N_INSNS (multcosts (X));		\
2651   case ASHIFT:						\
2652   case ASHIFTRT:					\
2653   case LSHIFTRT:					\
2654     return COSTS_N_INSNS (shiftcosts (X));		\
2655   case DIV:						\
2656   case UDIV:						\
2657   case MOD:						\
2658   case UMOD:						\
2659     return COSTS_N_INSNS (20);				\
2660   case FLOAT:						\
2661   case FIX:						\
2662     return 100;
2663 
2664 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
2665    are actually function calls with some special constraints on arguments
2666    and register usage.
2667 
2668    These macros tell reorg that the references to arguments and
2669    register clobbers for insns of type sfunc do not appear to happen
2670    until after the millicode call.  This allows reorg to put insns
2671    which set the argument registers into the delay slot of the millicode
2672    call -- thus they act more like traditional CALL_INSNs.
2673 
2674    get_attr_is_sfunc will try to recognize the given insn, so make sure to
2675    filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
2676    in particular.  */
2677 
2678 #define INSN_SETS_ARE_DELAYED(X) 		\
2679   ((GET_CODE (X) == INSN			\
2680     && GET_CODE (PATTERN (X)) != SEQUENCE	\
2681     && GET_CODE (PATTERN (X)) != USE		\
2682     && GET_CODE (PATTERN (X)) != CLOBBER	\
2683     && get_attr_is_sfunc (X)))
2684 
2685 #define INSN_REFERENCES_ARE_DELAYED(X) 		\
2686   ((GET_CODE (X) == INSN			\
2687     && GET_CODE (PATTERN (X)) != SEQUENCE	\
2688     && GET_CODE (PATTERN (X)) != USE		\
2689     && GET_CODE (PATTERN (X)) != CLOBBER	\
2690     && get_attr_is_sfunc (X)))
2691 
2692 
2693 /* Position Independent Code.  */
2694 
2695 /* The prefix used to mark SYMBOL_REFs that refer to data symbols.  */
2696 #define SH_DATALABEL_ENCODING "#"
2697 
2698 /* Return true if SYM_NAME starts with SH_DATALABEL_ENCODING.  */
2699 #define DATALABEL_SYMNAME_P(SYM_NAME) \
2700   (SH_DATALABEL_ENCODING[1] ? (abort (), 0) : \
2701    (SYM_NAME)[0] == SH_DATALABEL_ENCODING[0])
2702 
2703 /* Skip an optional SH_DATALABEL_ENCODING in the beginning of
2704    SYM_NAME.  Then, remove a leading *, like the default definition in
2705    output.h.  */
2706 #define STRIP_DATALABEL_ENCODING(VAR, SYM_NAME) \
2707   (VAR) = (SYM_NAME) + (DATALABEL_SYMNAME_P (SYM_NAME) \
2708 			? strlen (SH_DATALABEL_ENCODING) : 0)
2709 
2710 /* We can't directly access anything that contains a symbol,
2711    nor can we indirect via the constant pool.  */
2712 #define LEGITIMATE_PIC_OPERAND_P(X)				\
2713 	(! nonpic_symbol_mentioned_p (X)			\
2714 	 && (GET_CODE (X) != SYMBOL_REF				\
2715 	     || ! CONSTANT_POOL_ADDRESS_P (X)			\
2716 	     || ! nonpic_symbol_mentioned_p (get_pool_constant (X))))
2717 
2718 #define SYMBOLIC_CONST_P(X)	\
2719 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)	\
2720   && nonpic_symbol_mentioned_p (X))
2721 
2722 /* Compute the cost of an address.  For the SH, all valid addresses are
2723    the same cost.  Use a slightly higher cost for reg + reg addressing,
2724    since it increases pressure on r0.  */
2725 
2726 #define ADDRESS_COST(X) (GET_CODE (X) == PLUS && ! CONSTANT_P (XEXP (X, 1)) \
2727 			 && ! TARGET_SHMEDIA \
2728 			 ? 1 : 0)
2729 
2730 /* Compute extra cost of moving data between one register class
2731    and another.  */
2732 
2733 /* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
2734    uses this information.  Hence, the general register <-> floating point
2735    register information here is not used for SFmode.  */
2736 
2737 #define REGCLASS_HAS_GENERAL_REG(CLASS) \
2738   ((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS \
2739     || (! TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS))
2740 
2741 #define REGCLASS_HAS_FP_REG(CLASS) \
2742   ((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
2743    || (CLASS) == DF_REGS || (CLASS) == DF_HI_REGS)
2744 
2745 #define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
2746   sh_register_move_cost ((MODE), (SRCCLASS), (DSTCLASS))
2747 
2748 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option?  This
2749    would be so that people with slow memory systems could generate
2750    different code that does fewer memory accesses.  */
2751 
2752 /* A C expression for the cost of a branch instruction.  A value of 1
2753    is the default; other values are interpreted relative to that.
2754    The SH1 does not have delay slots, hence we get a pipeline stall
2755    at every branch.  The SH4 is superscalar, so the single delay slot
2756    is not sufficient to keep both pipelines filled.  */
2757 #define BRANCH_COST (TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
2758 
2759 /* Assembler output control.  */
2760 
2761 /* A C string constant describing how to begin a comment in the target
2762    assembler language.  The compiler assumes that the comment will end at
2763    the end of the line.  */
2764 #define ASM_COMMENT_START "!"
2765 
2766 /* The text to go at the start of the assembler file.  */
2767 #define ASM_FILE_START(STREAM) \
2768   output_file_start (STREAM)
2769 
2770 #define ASM_APP_ON  		""
2771 #define ASM_APP_OFF  		""
2772 #define FILE_ASM_OP 		"\t.file\n"
2773 #define SET_ASM_OP		"\t.set\t"
2774 
2775 /* How to change between sections.  */
2776 
2777 #define TEXT_SECTION_ASM_OP  		(TARGET_SHMEDIA32 ? "\t.section\t.text..SHmedia32,\"ax\"" : "\t.text")
2778 #define DATA_SECTION_ASM_OP  		"\t.data"
2779 
2780 #if defined CRT_BEGIN || defined CRT_END
2781 /* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant.  */
2782 # undef TEXT_SECTION_ASM_OP
2783 # if __SHMEDIA__ == 1 && __SH5__ == 32
2784 #  define TEXT_SECTION_ASM_OP "\t.section\t.text..SHmedia32,\"ax\""
2785 # else
2786 #  define TEXT_SECTION_ASM_OP "\t.text"
2787 # endif
2788 #endif
2789 
2790 
2791 /* If defined, a C expression whose value is a string containing the
2792    assembler operation to identify the following data as
2793    uninitialized global data.  If not defined, and neither
2794    `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2795    uninitialized global data will be output in the data section if
2796    `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2797    used.  */
2798 #ifndef BSS_SECTION_ASM_OP
2799 #define BSS_SECTION_ASM_OP	"\t.section\t.bss"
2800 #endif
2801 
2802 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
2803    separate, explicit argument.  If you define this macro, it is used
2804    in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
2805    handling the required alignment of the variable.  The alignment is
2806    specified as the number of bits.
2807 
2808    Try to use function `asm_output_aligned_bss' defined in file
2809    `varasm.c' when defining this macro.  */
2810 #ifndef ASM_OUTPUT_ALIGNED_BSS
2811 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2812   asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
2813 #endif
2814 
2815 /* Define this so that jump tables go in same section as the current function,
2816    which could be text or it could be a user defined section.  */
2817 #define JUMP_TABLES_IN_TEXT_SECTION 1
2818 
2819 #undef DO_GLOBAL_CTORS_BODY
2820 #define DO_GLOBAL_CTORS_BODY			\
2821 {						\
2822   typedef (*pfunc)();				\
2823   extern pfunc __ctors[];			\
2824   extern pfunc __ctors_end[];			\
2825   pfunc *p;					\
2826   for (p = __ctors_end; p > __ctors; )		\
2827     {						\
2828       (*--p)();					\
2829     }						\
2830 }
2831 
2832 #undef DO_GLOBAL_DTORS_BODY
2833 #define DO_GLOBAL_DTORS_BODY			\
2834 {						\
2835   typedef (*pfunc)();				\
2836   extern pfunc __dtors[];			\
2837   extern pfunc __dtors_end[];			\
2838   pfunc *p;					\
2839   for (p = __dtors; p < __dtors_end; p++)	\
2840     {						\
2841       (*p)();					\
2842     }						\
2843 }
2844 
2845 #define ASM_OUTPUT_REG_PUSH(file, v) \
2846   fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v));
2847 
2848 #define ASM_OUTPUT_REG_POP(file, v) \
2849   fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v));
2850 
2851 /* DBX register number for a given compiler register number.  */
2852 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
2853    to match gdb.  */
2854 /* svr4.h undefines this macro, yet we really want to use the same numbers
2855    for coff as for elf, so we go via another macro: SH_DBX_REGISTER_NUMBER.  */
2856 #define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
2857 
2858 #define SH_DBX_REGISTER_NUMBER(REGNO) \
2859   (GENERAL_REGISTER_P (REGNO) \
2860    ? ((REGNO) - FIRST_GENERAL_REG) \
2861    : FP_REGISTER_P (REGNO) \
2862    ? ((REGNO) - FIRST_FP_REG + (TARGET_SH5 ? (TARGET_SHCOMPACT ? 245 \
2863 					      : 77) : 25)) \
2864    : XD_REGISTER_P (REGNO) \
2865    ? ((REGNO) - FIRST_XD_REG + (TARGET_SH5 ? 289 : 87)) \
2866    : TARGET_REGISTER_P (REGNO) \
2867    ? ((REGNO) - FIRST_TARGET_REG + 68) \
2868    : (REGNO) == PR_REG \
2869    ? (TARGET_SH5 ? 241 : 17) \
2870    : (REGNO) == PR_MEDIA_REG \
2871    ? (TARGET_SH5 ? 18 : -1) \
2872    : (REGNO) == T_REG \
2873    ? (TARGET_SH5 ? 242 : 18) \
2874    : (REGNO) == GBR_REG \
2875    ? (TARGET_SH5 ? 238 : 19) \
2876    : (REGNO) == MACH_REG \
2877    ? (TARGET_SH5 ? 239 : 20) \
2878    : (REGNO) == MACL_REG \
2879    ? (TARGET_SH5 ? 240 : 21) \
2880    : (REGNO) == FPUL_REG \
2881    ? (TARGET_SH5 ? 244 : 23) \
2882    : (abort(), -1))
2883 
2884 /* This is how to output a reference to a user-level label named NAME.  */
2885 #define ASM_OUTPUT_LABELREF(FILE, NAME)			\
2886   do							\
2887     {							\
2888       const char * lname;				\
2889 							\
2890       STRIP_DATALABEL_ENCODING (lname, (NAME));		\
2891       if (lname[0] == '*')				\
2892 	fputs (lname + 1, (FILE));			\
2893       else						\
2894 	asm_fprintf ((FILE), "%U%s", lname);		\
2895     }							\
2896   while (0)
2897 
2898 /* This is how to output a reference to a symbol_ref.  On SH5,
2899    references to non-code symbols must be preceded by `datalabel'.  */
2900 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM)			\
2901   do 							\
2902     {							\
2903       if (TARGET_SH5					\
2904 	  && (DATALABEL_SYMNAME_P (XSTR ((SYM), 0))	\
2905 	      || CONSTANT_POOL_ADDRESS_P (SYM)))	\
2906 	fputs ("datalabel ", (FILE));			\
2907       assemble_name ((FILE), XSTR ((SYM), 0));		\
2908     }							\
2909   while (0)
2910 
2911 /* This is how to output an assembler line
2912    that says to advance the location counter
2913    to a multiple of 2**LOG bytes.  */
2914 
2915 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2916   if ((LOG) != 0)			\
2917     fprintf ((FILE), "\t.align %d\n", (LOG))
2918 
2919 /* Globalizing directive for a label.  */
2920 #define GLOBAL_ASM_OP "\t.global\t"
2921 
2922 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE)	    */
2923 
2924 /* Construct a private name.  */
2925 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER)	\
2926   ((OUTVAR) = (char *) alloca (strlen (NAME) + 10),	\
2927    sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
2928 
2929 /* Output a relative address table.  */
2930 
2931 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL)  		\
2932   switch (GET_MODE (BODY))						\
2933     {									\
2934     case SImode:							\
2935       if (TARGET_SH5)							\
2936 	{								\
2937 	  asm_fprintf ((STREAM), "\t.long\t%LL%d-datalabel %LL%d\n",	\
2938 		       (VALUE), (REL));					\
2939 	  break;							\
2940 	}								\
2941       asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL));	\
2942       break;								\
2943     case HImode:							\
2944       if (TARGET_SH5)							\
2945 	{								\
2946 	  asm_fprintf ((STREAM), "\t.word\t%LL%d-datalabel %LL%d\n",	\
2947 		       (VALUE), (REL));					\
2948 	  break;							\
2949 	}								\
2950       asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL));	\
2951       break;								\
2952     case QImode:							\
2953       if (TARGET_SH5)							\
2954 	{								\
2955 	  asm_fprintf ((STREAM), "\t.byte\t%LL%d-datalabel %LL%d\n",	\
2956 		       (VALUE), (REL));					\
2957 	  break;							\
2958 	}								\
2959       asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL));	\
2960       break;								\
2961     default:								\
2962       break;								\
2963     }
2964 
2965 /* Output an absolute table element.  */
2966 
2967 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE)  				\
2968   if (! optimize || TARGET_BIGTABLE)					\
2969     asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); 		\
2970   else									\
2971     asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
2972 
2973 
2974 /* A C statement to be executed just prior to the output of
2975    assembler code for INSN, to modify the extracted operands so
2976    they will be output differently.
2977 
2978    Here the argument OPVEC is the vector containing the operands
2979    extracted from INSN, and NOPERANDS is the number of elements of
2980    the vector which contain meaningful data for this insn.
2981    The contents of this vector are what will be used to convert the insn
2982    template into assembler code, so you can change the assembler output
2983    by changing the contents of the vector.  */
2984 
2985 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2986   final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
2987 
2988 /* Print operand X (an rtx) in assembler syntax to file FILE.
2989    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2990    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2991 
2992 #define PRINT_OPERAND(STREAM, X, CODE)  print_operand ((STREAM), (X), (CODE))
2993 
2994 /* Print a memory address as an operand to reference that memory location.  */
2995 
2996 #define PRINT_OPERAND_ADDRESS(STREAM,X)  print_operand_address ((STREAM), (X))
2997 
2998 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2999   ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ','	\
3000    || (CHAR) == '$'|| (CHAR) == '\'')
3001 
3002 /* Recognize machine-specific patterns that may appear within
3003    constants.  Used for PIC-specific UNSPECs.  */
3004 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
3005   do									\
3006     if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1)	\
3007       {									\
3008 	switch (XINT ((X), 1))						\
3009 	  {								\
3010 	  case UNSPEC_DATALABEL:					\
3011 	    fputs ("datalabel ", (STREAM));				\
3012 	    output_addr_const ((STREAM), XVECEXP ((X), 0, 0));		\
3013 	    break;							\
3014 	  case UNSPEC_PIC:						\
3015 	    /* GLOBAL_OFFSET_TABLE or local symbols, no suffix.  */	\
3016 	    output_addr_const ((STREAM), XVECEXP ((X), 0, 0));		\
3017 	    break;							\
3018 	  case UNSPEC_GOT:						\
3019 	    output_addr_const ((STREAM), XVECEXP ((X), 0, 0));		\
3020 	    fputs ("@GOT", (STREAM));					\
3021 	    break;							\
3022 	  case UNSPEC_GOTOFF:						\
3023 	    output_addr_const ((STREAM), XVECEXP ((X), 0, 0));		\
3024 	    fputs ("@GOTOFF", (STREAM));				\
3025 	    break;							\
3026 	  case UNSPEC_PLT:						\
3027 	    output_addr_const ((STREAM), XVECEXP ((X), 0, 0));		\
3028 	    fputs ("@PLT", (STREAM));					\
3029 	    break;							\
3030 	  case UNSPEC_GOTPLT:						\
3031 	    output_addr_const ((STREAM), XVECEXP ((X), 0, 0));		\
3032 	    fputs ("@GOTPLT", (STREAM));				\
3033 	    break;							\
3034 	  case UNSPEC_CALLER:						\
3035 	    {								\
3036 	      char name[32];						\
3037 	      /* LPCS stands for Label for PIC Call Site.  */		\
3038 	      ASM_GENERATE_INTERNAL_LABEL				\
3039 		(name, "LPCS", INTVAL (XVECEXP ((X), 0, 0)));		\
3040 	      assemble_name ((STREAM), name);				\
3041 	    }								\
3042 	    break;							\
3043 	  default:							\
3044 	    goto FAIL;							\
3045 	  }								\
3046 	break;								\
3047       }									\
3048     else								\
3049       goto FAIL;							\
3050   while (0)
3051 
3052 
3053 extern struct rtx_def *sh_compare_op0;
3054 extern struct rtx_def *sh_compare_op1;
3055 
3056 /* Which processor to schedule for.  The elements of the enumeration must
3057    match exactly the cpu attribute in the sh.md file.  */
3058 
3059 enum processor_type {
3060   PROCESSOR_SH1,
3061   PROCESSOR_SH2,
3062   PROCESSOR_SH3,
3063   PROCESSOR_SH3E,
3064   PROCESSOR_SH4,
3065   PROCESSOR_SH5
3066 };
3067 
3068 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
3069 extern enum processor_type sh_cpu;
3070 
3071 extern int optimize; /* needed for gen_casesi.  */
3072 
3073 enum mdep_reorg_phase_e
3074 {
3075   SH_BEFORE_MDEP_REORG,
3076   SH_INSERT_USES_LABELS,
3077   SH_SHORTEN_BRANCHES0,
3078   SH_FIXUP_PCLOAD,
3079   SH_SHORTEN_BRANCHES1,
3080   SH_AFTER_MDEP_REORG
3081 };
3082 
3083 extern enum mdep_reorg_phase_e mdep_reorg_phase;
3084 
3085 #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X)
3086 
3087 /* Generate calls to memcpy, memcmp and memset.  */
3088 
3089 #define TARGET_MEM_FUNCTIONS
3090 
3091 /* Handle Hitachi compiler's pragmas.  */
3092 #define REGISTER_TARGET_PRAGMAS(PFILE) do {				    \
3093   cpp_register_pragma (PFILE, 0, "interrupt", sh_pr_interrupt);		    \
3094   cpp_register_pragma (PFILE, 0, "trapa", sh_pr_trapa);			    \
3095   cpp_register_pragma (PFILE, 0, "nosave_low_regs", sh_pr_nosave_low_regs); \
3096 } while (0)
3097 
3098 /* Set when processing a function with pragma interrupt turned on.  */
3099 
3100 extern int pragma_interrupt;
3101 
3102 /* Set when processing a function with interrupt attribute.  */
3103 
3104 extern int current_function_interrupt;
3105 
3106 /* Set to an RTX containing the address of the stack to switch to
3107    for interrupt functions.  */
3108 extern struct rtx_def *sp_switch;
3109 
3110 extern int rtx_equal_function_value_matters;
3111 
3112 
3113 /* Instructions with unfilled delay slots take up an
3114    extra two bytes for the nop in the delay slot.
3115    sh-dsp parallel processing insns are four bytes long.  */
3116 
3117 #define ADJUST_INSN_LENGTH(X, LENGTH)				\
3118   (LENGTH) += sh_insn_length_adjustment (X);
3119 
3120 /* Define the codes that are matched by predicates in sh.c.  */
3121 #define PREDICATE_CODES \
3122   {"and_operand", {SUBREG, REG, CONST_INT}},				\
3123   {"any_register_operand", {SUBREG, REG}},				\
3124   {"arith_operand", {SUBREG, REG, CONST_INT}},				\
3125   {"arith_reg_dest", {SUBREG, REG}},					\
3126   {"arith_reg_operand", {SUBREG, REG}},					\
3127   {"arith_reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_VECTOR}},	\
3128   {"binary_float_operator", {PLUS, MINUS, MULT, DIV}},			\
3129   {"binary_logical_operator", {AND, IOR, XOR}},				\
3130   {"cmpsi_operand", {SUBREG, REG, CONST_INT}},				\
3131   {"commutative_float_operator", {PLUS, MULT}},				\
3132   {"equality_comparison_operator", {EQ,NE}},				\
3133   {"extend_reg_operand", {SUBREG, REG, TRUNCATE}},			\
3134   {"extend_reg_or_0_operand", {SUBREG, REG, TRUNCATE, CONST_INT}},	\
3135   {"fp_arith_reg_operand", {SUBREG, REG}},				\
3136   {"fpscr_operand", {REG}},						\
3137   {"fpul_operand", {REG}},						\
3138   {"general_extend_operand", {SUBREG, REG, MEM, TRUNCATE}},		\
3139   {"general_movsrc_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
3140   {"general_movdst_operand", {SUBREG, REG, MEM}},			\
3141   {"greater_comparison_operator", {GT,GE,GTU,GEU}},			\
3142   {"int_gpr_dest", {SUBREG, REG}},					\
3143   {"inqhi_operand", {TRUNCATE}},					\
3144   {"less_comparison_operator", {LT,LE,LTU,LEU}},			\
3145   {"logical_operand", {SUBREG, REG, CONST_INT}},			\
3146   {"mextr_bit_offset", {CONST_INT}},					\
3147   {"noncommutative_float_operator", {MINUS, DIV}},			\
3148   {"shmedia_6bit_operand", {SUBREG, REG, CONST_INT}},			\
3149   {"sh_register_operand", {REG, SUBREG, CONST_INT}},			\
3150   {"target_reg_operand", {SUBREG, REG}},				\
3151   {"target_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST, UNSPEC}},\
3152   {"trunc_hi_operand", {SUBREG, REG, TRUNCATE}},			\
3153   {"register_operand", {SUBREG, REG}},					\
3154   {"sh_const_vec", {CONST_VECTOR}},					\
3155   {"sh_1el_vec", {CONST_VECTOR, PARALLEL}},				\
3156   {"sh_rep_vec", {CONST_VECTOR, PARALLEL}},				\
3157   {"symbol_ref_operand", {SYMBOL_REF}},					\
3158   {"unary_float_operator", {ABS, NEG, SQRT}},				\
3159 
3160 #define SPECIAL_MODE_PREDICATES \
3161   "any_register_operand", \
3162   "int_gpr_dest", \
3163   "trunc_hi_operand", \
3164   /* This line intentionally left blank.  */
3165 
3166 #define any_register_operand register_operand
3167 
3168 /* Define this macro if it is advisable to hold scalars in registers
3169    in a wider mode than that declared by the program.  In such cases,
3170    the value is constrained to be within the bounds of the declared
3171    type, but kept valid in the wider mode.  The signedness of the
3172    extension may differ from that of the type.
3173 
3174    Leaving the unsignedp unchanged gives better code than always setting it
3175    to 0.  This is despite the fact that we have only signed char and short
3176    load instructions.  */
3177 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
3178   if (GET_MODE_CLASS (MODE) == MODE_INT			\
3179       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)		\
3180     (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)),	\
3181     (MODE) = (TARGET_SH1 ? SImode : DImode);
3182 
3183 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
3184    extensions applied to char/short functions arguments.  Defining
3185    PROMOTE_FUNCTION_RETURN does the same for function returns.  */
3186 
3187 #define PROMOTE_FUNCTION_ARGS
3188 #define PROMOTE_FUNCTION_RETURN
3189 
3190 #define MAX_FIXED_MODE_SIZE (TARGET_SH5 ? 128 : 64)
3191 
3192 /* ??? Define ACCUMULATE_OUTGOING_ARGS?  This is more efficient than pushing
3193    and poping arguments.  However, we do have push/pop instructions, and
3194    rather limited offsets (4 bits) in load/store instructions, so it isn't
3195    clear if this would give better code.  If implemented, should check for
3196    compatibility problems.  */
3197 
3198 #define SH_DYNAMIC_SHIFT_COST \
3199   (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
3200 
3201 
3202 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
3203 
3204 #define OPTIMIZE_MODE_SWITCHING(ENTITY) TARGET_SH4
3205 
3206 #define NORMAL_MODE(ENTITY) \
3207   (sh_cfun_interrupt_handler_p () ? FP_MODE_NONE \
3208    : TARGET_FPU_SINGLE ? FP_MODE_SINGLE \
3209    : FP_MODE_DOUBLE)
3210 
3211 #define EPILOGUE_USES(REGNO)       ((TARGET_SH3E || TARGET_SH4)		\
3212 				    && (REGNO) == FPSCR_REG)
3213 
3214 #define MODE_NEEDED(ENTITY, INSN)					\
3215   (recog_memoized (INSN) >= 0						\
3216    ? get_attr_fp_mode (INSN)						\
3217    : FP_MODE_NONE)
3218 
3219 #define MODE_PRIORITY_TO_MODE(ENTITY, N) \
3220   ((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3221 
3222 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3223   fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
3224 
3225 #define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
3226   sh_can_redirect_branch ((INSN), (SEQ))
3227 
3228 #define DWARF_FRAME_RETURN_COLUMN \
3229   (TARGET_SH5 ? DWARF_FRAME_REGNUM (PR_MEDIA_REG) : DWARF_FRAME_REGNUM (PR_REG))
3230 
3231 #if (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__
3232 /* SH constant pool breaks the devices in crtstuff.c to control section
3233    in where code resides.  We have to write it as asm code.  */
3234 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3235    asm (SECTION_OP "\n\
3236 	mov.l	1f,r1\n\
3237 	mova	2f,r0\n\
3238 	braf	r1\n\
3239 	lds	r0,pr\n\
3240 0:	.p2align 2\n\
3241 1:	.long	" USER_LABEL_PREFIX #FUNC " - 0b\n\
3242 2:\n" TEXT_SECTION_ASM_OP);
3243 #endif /* (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__ */
3244 
3245 #define ALLOCATE_INITIAL_VALUE(hard_reg) \
3246   (REGNO (hard_reg) == (TARGET_SH5 ? PR_MEDIA_REG : PR_REG) \
3247    ? (current_function_is_leaf && ! sh_pr_n_sets () \
3248       ? (hard_reg) \
3249       : gen_rtx_MEM (Pmode, return_address_pointer_rtx)) \
3250    : NULL_RTX)
3251 
3252 #endif /* ! GCC_SH_H */
3253