1 /* Definitions of target machine for GNU compiler.
2    Sun 68000/68020 version.
3    Copyright (C) 1987, 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4    2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.  */
22 
23 /* We need to have MOTOROLA always defined (either 0 or 1) because we use
24    if-statements and ?: on it.  This way we have compile-time error checking
25    for both the MOTOROLA and MIT code paths.  We do rely on the host compiler
26    to optimize away all constant tests.  */
27 #ifdef MOTOROLA
28 # undef MOTOROLA
29 # define MOTOROLA 1  /* Use the Motorola assembly syntax.  */
30 # define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)")
31 #else
32 # define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)")
33 # define MOTOROLA 0  /* Use the MIT assembly syntax.  */
34 #endif
35 
36 /* Note that some other tm.h files include this one and then override
37    many of the definitions that relate to assembler syntax.  */
38 
39 /* Target CPU builtins.  */
40 #define TARGET_CPU_CPP_BUILTINS()		\
41   do						\
42     {						\
43       builtin_define ("__m68k__");		\
44       builtin_define_std ("mc68000");		\
45       if (TARGET_68040_ONLY)			\
46 	{					\
47 	  if (TARGET_68060)			\
48 	    builtin_define_std ("mc68060");	\
49 	  else					\
50 	    builtin_define_std ("mc68040");	\
51 	}					\
52       else if (TARGET_68060) /* -m68020-60 */	\
53 	{					\
54 	  builtin_define_std ("mc68060");	\
55 	  builtin_define_std ("mc68040");	\
56 	  builtin_define_std ("mc68030");	\
57 	  builtin_define_std ("mc68020");	\
58 	}					\
59       else if (TARGET_68040) /* -m68020-40 */	\
60 	{					\
61 	  builtin_define_std ("mc68040");	\
62 	  builtin_define_std ("mc68030");	\
63  	  builtin_define_std ("mc68020");	\
64 	}					\
65       else if (TARGET_68030)			\
66 	builtin_define_std ("mc68030");		\
67       else if (TARGET_68020)			\
68 	builtin_define_std ("mc68020");		\
69       if (TARGET_68881)				\
70 	builtin_define ("__HAVE_68881__");	\
71       if (TARGET_CPU32)				\
72 	{					\
73 	  builtin_define_std ("mc68332");	\
74 	  builtin_define_std ("mcpu32");	\
75 	}					\
76       if (TARGET_COLDFIRE)			\
77 	builtin_define ("__mcoldfire__");	\
78       if (TARGET_5200)				\
79 	builtin_define ("__mcf5200__");		\
80       if (TARGET_528x)				\
81 	{					\
82 	  builtin_define ("__mcf528x__");	\
83 	  builtin_define ("__mcf5200__");	\
84 	}					\
85       if (TARGET_CFV3)				\
86 	{					\
87 	  builtin_define ("__mcf5300__");	\
88 	  builtin_define ("__mcf5307__");	\
89 	}					\
90       if (TARGET_CFV4)				\
91 	{					\
92 	  builtin_define ("__mcf5400__");	\
93 	  builtin_define ("__mcf5407__");	\
94 	}					\
95       if (TARGET_CF_HWDIV)			\
96 	builtin_define ("__mcfhwdiv__");	\
97       if (flag_pic)				\
98 	{					\
99 	  builtin_define ("__pic__");		\
100 	  if (flag_pic > 1)			\
101 	    builtin_define ("__PIC__");		\
102 	}					\
103       builtin_assert ("cpu=m68k");		\
104       builtin_assert ("machine=m68k");		\
105     }						\
106   while (0)
107 
108 /* Classify the groups of pseudo-ops used to assemble QI, HI and SI
109    quantities.  */
110 #define INT_OP_STANDARD	0	/* .byte, .short, .long */
111 #define INT_OP_DOT_WORD	1	/* .byte, .word, .long */
112 #define INT_OP_NO_DOT   2	/* byte, short, long */
113 #define INT_OP_DC	3	/* dc.b, dc.w, dc.l */
114 
115 /* Set the default */
116 #define INT_OP_GROUP INT_OP_DOT_WORD
117 
118 /* Run-time compilation parameters selecting different hardware subsets.  */
119 
120 extern int target_flags;
121 
122 /* Macros used in the machine description to test the flags.  */
123 
124 /* Compile for a 68020 (not a 68000 or 68010).  */
125 #define MASK_68020	(1<<0)
126 #define TARGET_68020 (target_flags & MASK_68020)
127 
128 /* Compile for a 68030.  This does not really make a difference in GCC,
129    it just enables the __mc68030__ predefine.  */
130 #define MASK_68030	(1<<1)
131 #define TARGET_68030 (target_flags & MASK_68030)
132 
133 /* Optimize for 68040, but still allow execution on 68020
134    (-m68020-40 or -m68040).
135    The 68040 will execute all 68030 and 68881/2 instructions, but some
136    of them must be emulated in software by the OS.  When TARGET_68040 is
137    turned on, these instructions won't be used.  This code will still
138    run on a 68030 and 68881/2.  */
139 #define MASK_68040	(1<<2)
140 #define TARGET_68040 (target_flags & MASK_68040)
141 
142 /* Use the 68040-only fp instructions (-m68040 or -m68060).  */
143 #define MASK_68040_ONLY	(1<<3)
144 #define TARGET_68040_ONLY (target_flags & MASK_68040_ONLY)
145 
146 /* Optimize for 68060, but still allow execution on 68020
147    (-m68020-60 or -m68060).
148    The 68060 will execute all 68030 and 68881/2 instructions, but some
149    of them must be emulated in software by the OS.  When TARGET_68060 is
150    turned on, these instructions won't be used.  This code will still
151    run on a 68030 and 68881/2.  */
152 #define MASK_68060	(1<<4)
153 #define TARGET_68060 (target_flags & MASK_68060)
154 
155 /* Compile for mcf5200 */
156 #define MASK_5200	(1<<5)
157 #define TARGET_5200 (target_flags & MASK_5200)
158 
159 /* Build for ColdFire v3 */
160 #define MASK_CFV3	(1<<6)
161 #define TARGET_CFV3	(target_flags & MASK_CFV3)
162 
163 /* Build for ColdFire v4 */
164 #define MASK_CFV4	(1<<7)
165 #define TARGET_CFV4	(target_flags & MASK_CFV4)
166 
167 /* Compile for ColdFire 528x */
168 #define MASK_528x	(1<<8)
169 #define TARGET_528x	(target_flags & MASK_528x)
170 
171 /* Divide support for ColdFire */
172 #define MASK_CF_HWDIV	(1<<9)
173 #define TARGET_CF_HWDIV	(target_flags & MASK_CF_HWDIV)
174 
175 /* Compile 68881 insns for floating point (not library calls).  */
176 #define MASK_68881	(1<<10)
177 #define TARGET_68881	(target_flags & MASK_68881)
178 
179 /* Compile using 68020 bit-field insns.  */
180 #define MASK_BITFIELD	(1<<11)
181 #define TARGET_BITFIELD (target_flags & MASK_BITFIELD)
182 
183 /* Compile with 16-bit `int'.  */
184 #define MASK_SHORT	(1<<12)
185 #define TARGET_SHORT	(target_flags & MASK_SHORT)
186 
187 /* Align ints to a word boundary.  This breaks compatibility with the
188    published ABI's for structures containing ints, but produces faster
189    code on cpus with 32-bit busses (020, 030, 040, 060, CPU32+, ColdFire).
190    It's required for ColdFire cpus without a misalignment module.  */
191 #define MASK_ALIGN_INT	(1<<13)
192 #define TARGET_ALIGN_INT (target_flags & MASK_ALIGN_INT)
193 
194 /* Use PC-relative addressing modes (without using a global offset table).
195    The m68000 supports 16-bit PC-relative addressing.
196    The m68020 supports 32-bit PC-relative addressing
197    (using outer displacements).
198 
199    Under this model, all SYMBOL_REFs (and CONSTs) and LABEL_REFs are
200    treated as all containing an implicit PC-relative component, and hence
201    cannot be used directly as addresses for memory writes.  See the comments
202    in m68k.c for more information.  */
203 #define MASK_PCREL	(1<<14)
204 #define TARGET_PCREL	(target_flags & MASK_PCREL)
205 
206 /* Relax strict alignment.  */
207 #define MASK_NO_STRICT_ALIGNMENT (1<<15)
208 #define TARGET_STRICT_ALIGNMENT  (~target_flags & MASK_NO_STRICT_ALIGNMENT)
209 
210 /* Compile using rtd insn calling sequence.
211    This will not work unless you use prototypes at least
212    for all functions that can take varying numbers of args.  */
213 #define MASK_RTD	(1<<16)
214 #define TARGET_RTD	(target_flags & MASK_RTD)
215 
216 /* Support A5 relative data separate from text.
217  * This option implies -fPIC, however it inhibits the generation of the
218  * A5 save/restore in functions and the loading of a5 with a got pointer.
219  */
220 #define MASK_SEP_DATA	(1<<17)
221 #define TARGET_SEP_DATA (target_flags & MASK_SEP_DATA)
222 
223 /* Compile using library ID based shared libraries.
224  * Set a specific ID using the -mshared-library-id=xxx option.
225  */
226 #define MASK_ID_SHARED_LIBRARY	(1<<18)
227 #define TARGET_ID_SHARED_LIBRARY	(target_flags & MASK_ID_SHARED_LIBRARY)
228 
229 /* Compile for a CPU32.  A 68020 without bitfields is a good
230    heuristic for a CPU32.  */
231 #define TARGET_CPU32	(TARGET_68020 && !TARGET_BITFIELD)
232 
233 /* Is the target a ColdFire?  */
234 #define MASK_COLDFIRE	(MASK_5200|MASK_528x|MASK_CFV3|MASK_CFV4)
235 #define TARGET_COLDFIRE	(target_flags & MASK_COLDFIRE)
236 
237 /* Which bits can be set by specifying a ColdFire */
238 #define MASK_ALL_CF_BITS	(MASK_COLDFIRE|MASK_CF_HWDIV)
239 
240 /* Macro to define tables used to set the flags.
241    This is a list in braces of pairs in braces,
242    each pair being { "NAME", VALUE }
243    where VALUE is the bits to set or minus the bits to clear.
244    An empty string NAME is used to identify the default VALUE.  */
245 
246 #define TARGET_SWITCHES							\
247   { { "68020", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY),	\
248       N_("Generate code for a 68020") },				\
249     { "c68020", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY),	\
250       N_("Generate code for a 68020") },				\
251     { "68020", (MASK_68020|MASK_BITFIELD), "" },			\
252     { "c68020", (MASK_68020|MASK_BITFIELD), "" },			\
253     { "68000", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY	\
254 		|MASK_68020|MASK_BITFIELD|MASK_68881),			\
255       N_("Generate code for a 68000") },				\
256     { "c68000", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY	\
257 		|MASK_68020|MASK_BITFIELD|MASK_68881),			\
258       N_("Generate code for a 68000") },				\
259     { "bitfield", MASK_BITFIELD,					\
260       N_("Use the bit-field instructions") },				\
261     { "nobitfield", - MASK_BITFIELD,					\
262       N_("Do not use the bit-field instructions") },			\
263     { "short", MASK_SHORT,						\
264       N_("Consider type `int' to be 16 bits wide") },			\
265     { "noshort", - MASK_SHORT,						\
266       N_("Consider type `int' to be 32 bits wide") },			\
267     { "68881", MASK_68881, "" },					\
268     { "soft-float", - MASK_68881,					\
269       N_("Generate code with library calls for floating point") },	\
270     { "68020-40", -(MASK_ALL_CF_BITS|MASK_68060|MASK_68040_ONLY),	\
271       N_("Generate code for a 68040, without any new instructions") },	\
272     { "68020-40", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040), ""},\
273     { "68020-60", -(MASK_ALL_CF_BITS|MASK_68040_ONLY),			\
274       N_("Generate code for a 68060, without any new instructions") },	\
275     { "68020-60", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040	\
276 		   |MASK_68060), "" },					\
277     { "68030", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY),	\
278       N_("Generate code for a 68030") },				\
279     { "68030", (MASK_68020|MASK_68030|MASK_BITFIELD), "" },		\
280     { "68040", - (MASK_ALL_CF_BITS|MASK_68060),				\
281       N_("Generate code for a 68040") },				\
282     { "68040", (MASK_68020|MASK_68881|MASK_BITFIELD			\
283 		|MASK_68040_ONLY|MASK_68040), "" },			\
284     { "68060", - (MASK_ALL_CF_BITS|MASK_68040),				\
285       N_("Generate code for a 68060") },				\
286     { "68060", (MASK_68020|MASK_68881|MASK_BITFIELD			\
287 		|MASK_68040_ONLY|MASK_68060), "" },			\
288     { "5200", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020	\
289 		|MASK_BITFIELD|MASK_68881),				\
290       N_("Generate code for a 520X") },					\
291     { "5200", (MASK_5200), "" },					\
292     { "5206e", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020	\
293 		|MASK_BITFIELD|MASK_68881),				\
294       N_("Generate code for a 5206e") },				\
295     { "5206e", (MASK_5200|MASK_CF_HWDIV), "" },				\
296     { "528x", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020	\
297 		|MASK_BITFIELD|MASK_68881),				\
298       N_("Generate code for a 528x") },					\
299     { "528x", (MASK_528x|MASK_CF_HWDIV), "" },				\
300     { "5307", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020	\
301 		|MASK_BITFIELD|MASK_68881),				\
302       N_("Generate code for a 5307") },					\
303     { "5307", (MASK_CFV3|MASK_CF_HWDIV), "" },				\
304     { "5407", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020	\
305 		|MASK_BITFIELD|MASK_68881),				\
306       N_("Generate code for a 5407") },					\
307     { "5407", (MASK_CFV4|MASK_CF_HWDIV), "" },				\
308     { "68851", 0,							\
309       N_("Generate code for a 68851") },				\
310     { "no-68851", 0,							\
311       N_("Do no generate code for a 68851") },				\
312     { "68302", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY	\
313 		  |MASK_68020|MASK_BITFIELD|MASK_68881),		\
314       N_("Generate code for a 68302") },				\
315     { "68332", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY	\
316 		  |MASK_BITFIELD|MASK_68881),				\
317       N_("Generate code for a 68332") },				\
318     { "68332", MASK_68020, "" },					\
319     { "cpu32", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY	\
320 		  |MASK_BITFIELD|MASK_68881),				\
321       N_("Generate code for a cpu32") },				\
322     { "cpu32", MASK_68020, "" },					\
323     { "align-int", MASK_ALIGN_INT, 					\
324       N_("Align variables on a 32-bit boundary") },			\
325     { "no-align-int", -MASK_ALIGN_INT, 					\
326       N_("Align variables on a 16-bit boundary") },			\
327     { "sep-data", MASK_SEP_DATA,					\
328       N_("Enable separate data segment") },				\
329     { "no-sep-data", -MASK_SEP_DATA,					\
330       N_("Disable separate data segment") },				\
331     { "id-shared-library", MASK_ID_SHARED_LIBRARY,			\
332       N_("Enable ID based shared library") },				\
333     { "no-id-shared-library", -MASK_ID_SHARED_LIBRARY,			\
334       N_("Disable ID based shared library") },				\
335     { "pcrel", MASK_PCREL,						\
336       N_("Generate pc-relative code") },				\
337     { "strict-align", -MASK_NO_STRICT_ALIGNMENT,			\
338       N_("Do not use unaligned memory references") },			\
339     { "no-strict-align", MASK_NO_STRICT_ALIGNMENT,			\
340       N_("Use unaligned memory references") },				\
341     { "rtd", MASK_RTD,							\
342       N_("Use different calling convention using 'rtd'") },		\
343     { "nortd", - MASK_RTD,						\
344       N_("Use normal calling convention") },				\
345     SUBTARGET_SWITCHES							\
346     { "", TARGET_DEFAULT, "" }}
347 /* TARGET_DEFAULT is defined in m68k-none.h, netbsd.h, etc.  */
348 
349 /* This macro is similar to `TARGET_SWITCHES' but defines names of
350    command options that have values.  Its definition is an
351    initializer with a subgrouping for each command option.
352 
353    Each subgrouping contains a string constant, that defines the
354    fixed part of the option name, and the address of a variable.  The
355    variable, type `char *', is set to the variable part of the given
356    option if the fixed part matches.  The actual option name is made
357    by appending `-m' to the specified name.  */
358 #define TARGET_OPTIONS							\
359 { { "align-loops=",	&m68k_align_loops_string,			\
360     N_("Loop code aligned to this power of 2"), 0},			\
361   { "align-jumps=",	&m68k_align_jumps_string,			\
362     N_("Jump targets are aligned to this power of 2"), 0},		\
363   { "align-functions=",	&m68k_align_funcs_string,			\
364     N_("Function starts are aligned to this power of 2"), 0},		\
365   { "shared-library-id=",	&m68k_library_id_string,		\
366     N_("ID of shared library to build"), 0},				\
367   SUBTARGET_OPTIONS							\
368 }
369 
370 /* Sometimes certain combinations of command options do not make
371    sense on a particular target machine.  You can define a macro
372    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
373    defined, is executed once just after all the command options have
374    been parsed.
375 
376    Don't use this macro to turn on various extra optimizations for
377    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
378 
379 #define OVERRIDE_OPTIONS   override_options()
380 
381 /* These are meant to be redefined in the host dependent files */
382 #define SUBTARGET_SWITCHES
383 #define SUBTARGET_OPTIONS
384 #define SUBTARGET_OVERRIDE_OPTIONS
385 
386 /* target machine storage layout */
387 
388 /* Define for XFmode extended real floating point support.  */
389 #define LONG_DOUBLE_TYPE_SIZE 96
390 
391 /* Set the value of FLT_EVAL_METHOD in float.h.  When using 68040 fp
392    instructions, we get proper intermediate rounding, otherwise we
393    get extended precision results.  */
394 #define TARGET_FLT_EVAL_METHOD ((TARGET_68040_ONLY || ! TARGET_68881) ? 0 : 2)
395 
396 /* Define this if most significant bit is lowest numbered
397    in instructions that operate on numbered bit-fields.
398    This is true for 68020 insns such as bfins and bfexts.
399    We make it true always by avoiding using the single-bit insns
400    except in special cases with constant bit numbers.  */
401 #define BITS_BIG_ENDIAN 1
402 
403 /* Define this if most significant byte of a word is the lowest numbered.  */
404 /* That is true on the 68000.  */
405 #define BYTES_BIG_ENDIAN 1
406 
407 /* Define this if most significant word of a multiword number is the lowest
408    numbered.  */
409 /* For 68000 we can decide arbitrarily
410    since there are no machine instructions for them.
411    So let's be consistent.  */
412 #define WORDS_BIG_ENDIAN 1
413 
414 /* Width of a word, in units (bytes).  */
415 #define UNITS_PER_WORD 4
416 
417 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
418 #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
419 
420 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
421 #define STACK_BOUNDARY 16
422 
423 /* Allocation boundary (in *bits*) for the code of a function.  */
424 #define FUNCTION_BOUNDARY (1 << (m68k_align_funcs + 3))
425 
426 /* Alignment of field after `int : 0' in a structure.  */
427 #define EMPTY_FIELD_BOUNDARY 16
428 
429 /* No data type wants to be aligned rounder than this.
430    Most published ABIs say that ints should be aligned on 16 bit
431    boundaries, but cpus with 32-bit busses get better performance
432    aligned on 32-bit boundaries.  ColdFires without a misalignment
433    module require 32-bit alignment.  */
434 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_INT ? 32 : 16)
435 
436 /* Set this nonzero if move instructions will actually fail to work
437    when given unaligned data.  */
438 #define STRICT_ALIGNMENT (TARGET_STRICT_ALIGNMENT)
439 
440 /* Maximum power of 2 that code can be aligned to.  */
441 #define MAX_CODE_ALIGN	2			/* 4 byte alignment */
442 
443 /* Maximum number of library ids we permit */
444 #define MAX_LIBRARY_ID 255
445 
446 /* Align loop starts for optimal branching.  */
447 #define LOOP_ALIGN(LABEL) (m68k_align_loops)
448 
449 /* This is how to align an instruction for optimal branching.  */
450 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (m68k_align_jumps)
451 
452 /* Define number of bits in most basic integer type.
453    (If undefined, default is BITS_PER_WORD).  */
454 
455 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
456 
457 /* Define these to avoid dependence on meaning of `int'.  */
458 
459 #define WCHAR_TYPE "long int"
460 #define WCHAR_TYPE_SIZE 32
461 
462 /* Standard register usage.  */
463 
464 /* Number of actual hardware registers.
465    The hardware registers are assigned numbers for the compiler
466    from 0 to just below FIRST_PSEUDO_REGISTER.
467    All registers that the compiler knows about must be given numbers,
468    even those that are not normally considered general registers.
469    For the 68000, we give the data registers numbers 0-7,
470    the address registers numbers 010-017,
471    and the 68881 floating point registers numbers 020-027.  */
472 #define FIRST_PSEUDO_REGISTER 25
473 
474 /* This defines the register which is used to hold the offset table for PIC.  */
475 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 13 : INVALID_REGNUM)
476 
477 /* 1 for registers that have pervasive standard uses
478    and are not available for the register allocator.
479    On the 68000, only the stack pointer is such.  */
480 
481 #define FIXED_REGISTERS        \
482  {/* Data registers.  */       \
483   0, 0, 0, 0, 0, 0, 0, 0,      \
484                                \
485   /* Address registers.  */    \
486   0, 0, 0, 0, 0, 0, 0, 1,      \
487                                \
488   /* Floating point registers  \
489      (if available).  */       \
490   0, 0, 0, 0, 0, 0, 0, 0,      \
491                                \
492   /* Arg pointer.  */          \
493   1 }
494 
495 /* 1 for registers not available across function calls.
496    These must include the FIXED_REGISTERS and also any
497    registers that can be used without being saved.
498    The latter must include the registers where values are returned
499    and the register where structure-value addresses are passed.
500    Aside from that, you can include as many other registers as you like.  */
501 #define CALL_USED_REGISTERS \
502  {1, 1, 0, 0, 0, 0, 0, 0,   \
503   1, 1, 0, 0, 0, 0, 0, 1,   \
504   1, 1, 0, 0, 0, 0, 0, 0, 1 }
505 
506 #define REG_ALLOC_ORDER		\
507 { /* d0/d1/a0/a1 */		\
508   0, 1, 8, 9,			\
509   /* d2-d7 */			\
510   2, 3, 4, 5, 6, 7,		\
511   /* a2-a7/arg */		\
512   10, 11, 12, 13, 14, 15, 24,	\
513   /* fp0-fp7 */			\
514   16, 17, 18, 19, 20, 21, 22, 23\
515 }
516 
517 
518 /* Make sure everything's fine if we *don't* have a given processor.
519    This assumes that putting a register in fixed_regs will keep the
520    compiler's mitts completely off it.  We don't bother to zero it out
521    of register classes.  */
522 
523 #define CONDITIONAL_REGISTER_USAGE				\
524 { 								\
525   int i; 							\
526   HARD_REG_SET x; 						\
527   if (! TARGET_68881)						\
528     { 								\
529       COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);	\
530       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ )		\
531        if (TEST_HARD_REG_BIT (x, i)) 				\
532 	fixed_regs[i] = call_used_regs[i] = 1; 			\
533     } 								\
534   if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)		\
535     fixed_regs[PIC_OFFSET_TABLE_REGNUM]				\
536       = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
537 }
538 
539 /* Return number of consecutive hard regs needed starting at reg REGNO
540    to hold something of mode MODE.
541    This is ordinarily the length in words of a value of mode MODE
542    but can be less for certain modes in special long registers.
543 
544    On the 68000, ordinary registers hold 32 bits worth;
545    for the 68881 registers, a single register is always enough for
546    anything that can be stored in them at all.  */
547 #define HARD_REGNO_NREGS(REGNO, MODE)   \
548   ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE)	\
549    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
550 
551 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
552    On the 68000, the cpu registers can hold any mode but the 68881 registers
553    can hold only SFmode or DFmode.  */
554 
555 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
556   (((REGNO) < 16					\
557     && !((REGNO) < 8 && (REGNO) + GET_MODE_SIZE (MODE) / 4 > 8))	\
558    || ((REGNO) >= 16 && (REGNO) < 24				        \
559        && (GET_MODE_CLASS (MODE) == MODE_FLOAT		\
560 	   || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)		\
561        && GET_MODE_UNIT_SIZE (MODE) <= 12))
562 
563 
564 /* Value is 1 if it is a good idea to tie two pseudo registers
565    when one has mode MODE1 and one has mode MODE2.
566    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
567    for any hard reg, then this must be 0 for correct output.  */
568 #define MODES_TIEABLE_P(MODE1, MODE2)			\
569   (! TARGET_68881					\
570    || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
571 	|| GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)	\
572        == (GET_MODE_CLASS (MODE2) == MODE_FLOAT		\
573 	   || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
574 
575 /* Specify the registers used for certain standard purposes.
576    The values of these macros are register numbers.  */
577 
578 /* m68000 pc isn't overloaded on a register.  */
579 /* #define PC_REGNUM  */
580 
581 /* Register to use for pushing function arguments.  */
582 #define STACK_POINTER_REGNUM 15
583 
584 /* Base register for access to local variables of the function.  */
585 #define FRAME_POINTER_REGNUM 14
586 
587 /* Value should be nonzero if functions must have frame pointers.
588    Zero means the frame pointer need not be set up (and parms
589    may be accessed via the stack pointer) in functions that seem suitable.
590    This is computed in `reload', in reload1.c.  */
591 #define FRAME_POINTER_REQUIRED 0
592 
593 /* Base register for access to arguments of the function.
594  * This isn't a hardware register. It will be eliminated to the
595  * stack pointer or frame pointer.
596  */
597 #define ARG_POINTER_REGNUM 24
598 
599 /* Register in which static-chain is passed to a function.  */
600 #define STATIC_CHAIN_REGNUM 8
601 
602 /* Register in which address to store a structure value
603    is passed to a function.  */
604 #define STRUCT_VALUE_REGNUM 9
605 
606 /* Define the classes of registers for register constraints in the
607    machine description.  Also define ranges of constants.
608 
609    One of the classes must always be named ALL_REGS and include all hard regs.
610    If there is more than one class, another class must be named NO_REGS
611    and contain no registers.
612 
613    The name GENERAL_REGS must be the name of a class (or an alias for
614    another name such as ALL_REGS).  This is the class of registers
615    that is allowed by "g" or "r" in a register constraint.
616    Also, registers outside this class are allocated only when
617    instructions express preferences for them.
618 
619    The classes must be numbered in nondecreasing order; that is,
620    a larger-numbered class must never be contained completely
621    in a smaller-numbered class.
622 
623    For any two classes, it is very desirable that there be another
624    class that represents their union.  */
625 
626 /* The 68000 has three kinds of registers, so eight classes would be
627    a complete set.  One of them is not needed.  */
628 
629 enum reg_class {
630   NO_REGS, DATA_REGS,
631   ADDR_REGS, FP_REGS,
632   GENERAL_REGS, DATA_OR_FP_REGS,
633   ADDR_OR_FP_REGS, ALL_REGS,
634   LIM_REG_CLASSES };
635 
636 #define N_REG_CLASSES (int) LIM_REG_CLASSES
637 
638 /* Give names of register classes as strings for dump file.  */
639 
640 #define REG_CLASS_NAMES \
641  { "NO_REGS", "DATA_REGS",              \
642    "ADDR_REGS", "FP_REGS",              \
643    "GENERAL_REGS", "DATA_OR_FP_REGS",   \
644    "ADDR_OR_FP_REGS", "ALL_REGS" }
645 
646 /* Define which registers fit in which classes.
647    This is an initializer for a vector of HARD_REG_SET
648    of length N_REG_CLASSES.  */
649 
650 #define REG_CLASS_CONTENTS \
651 {					\
652   {0x00000000},  /* NO_REGS */		\
653   {0x000000ff},  /* DATA_REGS */	\
654   {0x0100ff00},  /* ADDR_REGS */	\
655   {0x00ff0000},  /* FP_REGS */		\
656   {0x0100ffff},  /* GENERAL_REGS */	\
657   {0x00ff00ff},  /* DATA_OR_FP_REGS */	\
658   {0x01ffff00},  /* ADDR_OR_FP_REGS */	\
659   {0x01ffffff},  /* ALL_REGS */		\
660 }
661 
662 /* The same information, inverted:
663    Return the class number of the smallest class containing
664    reg number REGNO.  This could be a conditional expression
665    or could index an array.  */
666 
667 extern enum reg_class regno_reg_class[];
668 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)])
669 
670 /* The class value for index registers, and the one for base regs.  */
671 
672 #define INDEX_REG_CLASS GENERAL_REGS
673 #define BASE_REG_CLASS ADDR_REGS
674 
675 /* Get reg_class from a letter such as appears in the machine description.
676    We do a trick here to modify the effective constraints on the
677    machine description; we zorch the constraint letters that aren't
678    appropriate for a specific target.  This allows us to guarantee
679    that a specific kind of register will not be used for a given target
680    without fiddling with the register classes above.  */
681 
682 #define REG_CLASS_FROM_LETTER(C) \
683   ((C) == 'a' ? ADDR_REGS :			\
684    ((C) == 'd' ? DATA_REGS :			\
685     ((C) == 'f' ? (TARGET_68881 ? FP_REGS :	\
686 		   NO_REGS) :			\
687      NO_REGS)))
688 
689 /* The letters I, J, K, L and M in a register constraint string
690    can be used to stand for particular ranges of immediate operands.
691    This macro defines what the ranges are.
692    C is the letter, and VALUE is a constant value.
693    Return 1 if VALUE is in the range specified by C.
694 
695    For the 68000, `I' is used for the range 1 to 8
696    allowed as immediate shift counts and in addq.
697    `J' is used for the range of signed numbers that fit in 16 bits.
698    `K' is for numbers that moveq can't handle.
699    `L' is for range -8 to -1, range of values that can be added with subq.
700    `M' is for numbers that moveq+notb can't handle.
701    'N' is for range 24 to 31, rotatert:SI 8 to 1 expressed as rotate.
702    'O' is for 16 (for rotate using swap).
703    'P' is for range 8 to 15, rotatert:HI 8 to 1 expressed as rotate.  */
704 
705 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
706   ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
707    (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
708    (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
709    (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : \
710    (C) == 'M' ? (VALUE) < -0x100 || (VALUE) >= 0x100 : \
711    (C) == 'N' ? (VALUE) >= 24 && (VALUE) <= 31 : \
712    (C) == 'O' ? (VALUE) == 16 : \
713    (C) == 'P' ? (VALUE) >= 8 && (VALUE) <= 15 : 0)
714 
715 /*
716  * A small bit of explanation:
717  * "G" defines all of the floating constants that are *NOT* 68881
718  * constants.  this is so 68881 constants get reloaded and the
719  * fpmovecr is used.
720  */
721 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
722   ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
723 
724 /* A C expression that defines the optional machine-dependent constraint
725    letters that can be used to segregate specific types of operands,
726    usually memory references, for the target machine.  It should return 1 if
727    VALUE corresponds to the operand type represented by the constraint letter
728    C.  If C is not defined as an extra constraint, the value returned should
729    be 0 regardless of VALUE.  */
730 
731 /* Letters in the range `Q' through `U' may be defined in a
732    machine-dependent fashion to stand for arbitrary operand types.
733    The machine description macro `EXTRA_CONSTRAINT' is passed the
734    operand as its first argument and the constraint letter as its
735    second operand.
736 
737    `Q' means address register indirect addressing mode.
738    `S' is for operands that satisfy 'm' when -mpcrel is in effect.
739    `T' is for operands that satisfy 's' when -mpcrel is not in effect.
740    `U' is for register offset addressing.  */
741 
742 #define EXTRA_CONSTRAINT(OP,CODE)			\
743   (((CODE) == 'S')					\
744    ? (TARGET_PCREL					\
745       && GET_CODE (OP) == MEM				\
746       && (GET_CODE (XEXP (OP, 0)) == SYMBOL_REF		\
747 	  || GET_CODE (XEXP (OP, 0)) == LABEL_REF	\
748 	  || GET_CODE (XEXP (OP, 0)) == CONST))		\
749    : 							\
750   (((CODE) == 'T')					\
751    ? ( !TARGET_PCREL 					\
752       && (GET_CODE (OP) == SYMBOL_REF			\
753 	  || GET_CODE (OP) == LABEL_REF			\
754 	  || GET_CODE (OP) == CONST))			\
755    :							\
756   (((CODE) == 'Q')					\
757    ? (GET_CODE (OP) == MEM 				\
758       && GET_CODE (XEXP (OP, 0)) == REG)		\
759    :							\
760   (((CODE) == 'U')					\
761    ? (GET_CODE (OP) == MEM 				\
762       && GET_CODE (XEXP (OP, 0)) == PLUS		\
763       && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG	\
764       && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT) \
765    :							\
766    0))))
767 
768 /* Given an rtx X being reloaded into a reg required to be
769    in class CLASS, return the class of reg to actually use.
770    In general this is just CLASS; but on some machines
771    in some cases it is preferable to use a more restrictive class.
772    On the 68000 series, use a data reg if possible when the
773    value is a constant in the range where moveq could be used
774    and we ensure that QImodes are reloaded into data regs.  */
775 
776 #define PREFERRED_RELOAD_CLASS(X,CLASS)  \
777   ((GET_CODE (X) == CONST_INT			\
778     && (unsigned) (INTVAL (X) + 0x80) < 0x100	\
779     && (CLASS) != ADDR_REGS)			\
780    ? DATA_REGS					\
781    : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
782    ? DATA_REGS					\
783    : (GET_CODE (X) == CONST_DOUBLE					\
784       && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)			\
785    ? (TARGET_68881 && (CLASS == FP_REGS || CLASS == DATA_OR_FP_REGS)	\
786       ? FP_REGS : NO_REGS)						\
787    : (TARGET_PCREL				\
788       && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
789 	  || GET_CODE (X) == LABEL_REF))	\
790    ? ADDR_REGS					\
791    : (CLASS))
792 
793 /* Force QImode output reloads from subregs to be allocated to data regs,
794    since QImode stores from address regs are not supported.  We make the
795    assumption that if the class is not ADDR_REGS, then it must be a superset
796    of DATA_REGS.  */
797 
798 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
799   (((MODE) == QImode && (CLASS) != ADDR_REGS)	\
800    ? DATA_REGS					\
801    : (CLASS))
802 
803 /* Return the maximum number of consecutive registers
804    needed to represent mode MODE in a register of class CLASS.  */
805 /* On the 68000, this is the size of MODE in words,
806    except in the FP regs, where a single reg is always enough.  */
807 #define CLASS_MAX_NREGS(CLASS, MODE)	\
808  ((CLASS) == FP_REGS ? 1 \
809   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
810 
811 /* Moves between fp regs and other regs are two insns.  */
812 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)	\
813   (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS)	        \
814     || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)	\
815     ? 4 : 2)
816 
817 /* Stack layout; function entry, exit and calling.  */
818 
819 /* Define this if pushing a word on the stack
820    makes the stack pointer a smaller address.  */
821 #define STACK_GROWS_DOWNWARD
822 
823 /* Define this if the nominal address of the stack frame
824    is at the high-address end of the local variables;
825    that is, each additional local variable allocated
826    goes at a more negative offset in the frame.  */
827 #define FRAME_GROWS_DOWNWARD
828 
829 /* Offset within stack frame to start allocating local variables at.
830    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
831    first local allocated.  Otherwise, it is the offset to the BEGINNING
832    of the first local allocated.  */
833 #define STARTING_FRAME_OFFSET 0
834 
835 /* If we generate an insn to push BYTES bytes,
836    this says how many the stack pointer really advances by.
837    On the 68000, sp@- in a byte insn really pushes a word.
838    On the 5200 (ColdFire), sp@- in a byte insn pushes just a byte.  */
839 #define PUSH_ROUNDING(BYTES) (TARGET_COLDFIRE ? BYTES : ((BYTES) + 1) & ~1)
840 
841 /* We want to avoid trying to push bytes.  */
842 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
843   (move_by_pieces_ninsns (SIZE, ALIGN) < MOVE_RATIO \
844     && (((SIZE) >=16 && (ALIGN) >= 16) || (TARGET_COLDFIRE)))
845 
846 /* Offset of first parameter from the argument pointer register value.  */
847 #define FIRST_PARM_OFFSET(FNDECL) 8
848 
849 /* Value is the number of byte of arguments automatically
850    popped when returning from a subroutine call.
851    FUNDECL is the declaration node of the function (as a tree),
852    FUNTYPE is the data type of the function (as a tree),
853    or for a library call it is an identifier node for the subroutine name.
854    SIZE is the number of bytes of arguments passed on the stack.
855 
856    On the 68000, the RTS insn cannot pop anything.
857    On the 68010, the RTD insn may be used to pop them if the number
858      of args is fixed, but if the number is variable then the caller
859      must pop them all.  RTD can't be used for library calls now
860      because the library is compiled with the Unix compiler.
861    Use of RTD is a selectable option, since it is incompatible with
862    standard Unix calling sequences.  If the option is not selected,
863    the caller must always pop the args.  */
864 
865 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)   \
866   ((TARGET_RTD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE)	\
867     && (TYPE_ARG_TYPES (FUNTYPE) == 0				\
868 	|| (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE)))	\
869 	    == void_type_node)))				\
870    ? (SIZE) : 0)
871 
872 /* Define how to find the value returned by a function.
873    VALTYPE is the data type of the value (as a tree).
874    If the precise function being called is known, FUNC is its FUNCTION_DECL;
875    otherwise, FUNC is 0.  */
876 
877 /* On the 68000 the return value is in D0 regardless.  */
878 
879 #define FUNCTION_VALUE(VALTYPE, FUNC)  \
880   gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
881 
882 /* Define how to find the value returned by a library function
883    assuming the value has mode MODE.  */
884 
885 /* On the 68000 the return value is in D0 regardless.  */
886 
887 #define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, 0)
888 
889 /* 1 if N is a possible register number for a function value.
890    On the 68000, d0 is the only register thus used.  */
891 
892 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
893 
894 /* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
895    more than one register.  */
896 
897 #define NEEDS_UNTYPED_CALL 0
898 
899 /* Define this if PCC uses the nonreentrant convention for returning
900    structure and union values.  */
901 
902 #define PCC_STATIC_STRUCT_RETURN
903 
904 /* 1 if N is a possible register number for function argument passing.
905    On the 68000, no registers are used in this way.  */
906 
907 #define FUNCTION_ARG_REGNO_P(N) 0
908 
909 /* Define a data type for recording info about an argument list
910    during the scan of that argument list.  This data type should
911    hold all necessary information about the function itself
912    and about the args processed so far, enough to enable macros
913    such as FUNCTION_ARG to determine where the next arg should go.
914 
915    On the m68k, this is a single integer, which is a number of bytes
916    of arguments scanned so far.  */
917 
918 #define CUMULATIVE_ARGS int
919 
920 /* Initialize a variable CUM of type CUMULATIVE_ARGS
921    for a call to a function whose data type is FNTYPE.
922    For a library call, FNTYPE is 0.
923 
924    On the m68k, the offset starts at 0.  */
925 
926 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
927  ((CUM) = 0)
928 
929 /* Update the data in CUM to advance over an argument
930    of mode MODE and data type TYPE.
931    (TYPE is null for libcalls where that information may not be available.)  */
932 
933 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
934  ((CUM) += ((MODE) != BLKmode			\
935 	    ? (GET_MODE_SIZE (MODE) + 3) & ~3	\
936 	    : (int_size_in_bytes (TYPE) + 3) & ~3))
937 
938 /* Define where to put the arguments to a function.
939    Value is zero to push the argument on the stack,
940    or a hard register in which to store the argument.
941 
942    MODE is the argument's machine mode.
943    TYPE is the data type of the argument (as a tree).
944     This is null for libcalls where that information may
945     not be available.
946    CUM is a variable of type CUMULATIVE_ARGS which gives info about
947     the preceding args and about the function being called.
948    NAMED is nonzero if this argument is a named parameter
949     (otherwise it is an extra parameter matching an ellipsis).
950 
951    On the m68k all args are always pushed.  */
952 
953 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
954 
955 /* For an arg passed partly in registers and partly in memory,
956    this is the number of registers used.
957    For args passed entirely in registers or entirely in memory, zero.  */
958 
959 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
960 
961 /* Output assembler code to FILE to increment profiler label # LABELNO
962    for profiling a function entry.  */
963 
964 #define FUNCTION_PROFILER(FILE, LABELNO)  \
965   asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
966 
967 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
968    the stack pointer does not matter.  The value is tested only in
969    functions that have frame pointers.
970    No definition is equivalent to always zero.  */
971 
972 #define EXIT_IGNORE_STACK 1
973 
974 /* This is a hook for other tm files to change.  */
975 /* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */
976 
977 /* Determine if the epilogue should be output as RTL.
978    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
979 #define USE_RETURN_INSN use_return_insn ()
980 
981 /* Output assembler code for a block containing the constant parts
982    of a trampoline, leaving space for the variable parts.  */
983 
984 /* On the 68k, the trampoline looks like this:
985      movl #STATIC,a0
986      jmp  FUNCTION
987 
988    WARNING: Targets that may run on 68040+ cpus must arrange for
989    the instruction cache to be flushed.  Previous incarnations of
990    the m68k trampoline code attempted to get around this by either
991    using an out-of-line transfer function or pc-relative data, but
992    the fact remains that the code to jump to the transfer function
993    or the code to load the pc-relative data needs to be flushed
994    just as much as the "variable" portion of the trampoline.
995    Recognizing that a cache flush is going to be required anyway,
996    dispense with such notions and build a smaller trampoline.  */
997 
998 /* Since more instructions are required to move a template into
999    place than to create it on the spot, don't use a template.  */
1000 
1001 /* Length in units of the trampoline for entering a nested function.  */
1002 
1003 #define TRAMPOLINE_SIZE 12
1004 
1005 /* Alignment required for a trampoline in bits.  */
1006 
1007 #define TRAMPOLINE_ALIGNMENT 16
1008 
1009 /* Targets redefine this to invoke code to either flush the cache,
1010    or enable stack execution (or both).  */
1011 
1012 #ifndef FINALIZE_TRAMPOLINE
1013 #define FINALIZE_TRAMPOLINE(TRAMP)
1014 #endif
1015 
1016 /* Emit RTL insns to initialize the variable parts of a trampoline.
1017    FNADDR is an RTX for the address of the function's pure code.
1018    CXT is an RTX for the static chain value for the function.
1019 
1020    We generate a two-instructions program at address TRAMP :
1021 	movea.l &CXT,%a0
1022 	jmp FNADDR					*/
1023 
1024 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
1025 {									\
1026   emit_move_insn (gen_rtx_MEM (HImode, TRAMP), GEN_INT(0x207C));	\
1027   emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 2)), CXT); \
1028   emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)),	\
1029 		  GEN_INT(0x4EF9));					\
1030   emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 8)), FNADDR); \
1031   FINALIZE_TRAMPOLINE(TRAMP);						\
1032 }
1033 
1034 /* This is the library routine that is used
1035    to transfer control from the trampoline
1036    to the actual nested function.
1037    It is defined for backward compatibility,
1038    for linking with object code that used the old
1039    trampoline definition.  */
1040 
1041 /* A colon is used with no explicit operands
1042    to cause the template string to be scanned for %-constructs.  */
1043 /* The function name __transfer_from_trampoline is not actually used.
1044    The function definition just permits use of "asm with operands"
1045    (though the operand list is empty).  */
1046 #define TRANSFER_FROM_TRAMPOLINE				\
1047 void								\
1048 __transfer_from_trampoline ()					\
1049 {								\
1050   register char *a0 asm ("%a0");				\
1051   asm (GLOBAL_ASM_OP "___trampoline");				\
1052   asm ("___trampoline:");					\
1053   asm volatile ("move%.l %0,%@" : : "m" (a0[22]));		\
1054   asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18]));	\
1055   asm ("rts":);							\
1056 }
1057 
1058 /* Definitions for register eliminations.
1059 
1060    This is an array of structures.  Each structure initializes one pair
1061    of eliminable registers.  The "from" register number is given first,
1062    followed by "to".  Eliminations of the same "from" register are listed
1063    in order of preference.
1064 
1065    There are two registers that can always be eliminated on the m68k.
1066    The frame pointer and the arg pointer can be replaced by either the
1067    hard frame pointer or to the stack pointer, depending upon the
1068    circumstances.  The hard frame pointer is not used before reload and
1069    so it is not eligible for elimination.  */
1070 
1071 #define ELIMINABLE_REGS					\
1072 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },		\
1073  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },	\
1074  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }}
1075 
1076 /* Given FROM and TO register numbers, say whether this elimination is
1077    allowed.  Frame pointer elimination is automatically handled.
1078 
1079    All other eliminations are valid.  */
1080 
1081 #define CAN_ELIMINATE(FROM, TO) \
1082   ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1083 
1084 /* Define the offset between two registers, one to be eliminated, and the other
1085    its replacement, at the start of a routine.  */
1086 
1087 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1088   (OFFSET) = m68k_initial_elimination_offset(FROM, TO)
1089 
1090 /* Addressing modes, and classification of registers for them.  */
1091 
1092 #define HAVE_POST_INCREMENT 1
1093 
1094 #define HAVE_PRE_DECREMENT 1
1095 
1096 /* Macros to check register numbers against specific register classes.  */
1097 
1098 /* These assume that REGNO is a hard or pseudo reg number.
1099    They give nonzero only if REGNO is a hard reg of the suitable class
1100    or a pseudo reg currently allocated to a suitable hard reg.
1101    Since they use reg_renumber, they are safe only once reg_renumber
1102    has been allocated, which happens in local-alloc.c.  */
1103 
1104 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1105 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
1106 #define REGNO_OK_FOR_BASE_P(REGNO) \
1107 (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
1108 #define REGNO_OK_FOR_DATA_P(REGNO) \
1109 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
1110 #define REGNO_OK_FOR_FP_P(REGNO) \
1111 (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
1112 
1113 /* Now macros that check whether X is a register and also,
1114    strictly, whether it is in a specified class.
1115 
1116    These macros are specific to the 68000, and may be used only
1117    in code for printing assembler insns and in conditions for
1118    define_optimization.  */
1119 
1120 /* 1 if X is a data register.  */
1121 
1122 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
1123 
1124 /* 1 if X is an fp register.  */
1125 
1126 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1127 
1128 /* 1 if X is an address register  */
1129 
1130 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
1131 
1132 /* Maximum number of registers that can appear in a valid memory address.  */
1133 
1134 #define MAX_REGS_PER_ADDRESS 2
1135 
1136 /* Recognize any constant value that is a valid address.  */
1137 
1138 #define CONSTANT_ADDRESS_P(X)   \
1139   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1140    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1141    || GET_CODE (X) == HIGH)
1142 
1143 /* Nonzero if the constant value X is a legitimate general operand.
1144    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1145 
1146 #define LEGITIMATE_CONSTANT_P(X) (GET_MODE (X) != XFmode)
1147 
1148 /* Nonzero if the constant value X is a legitimate general operand
1149    when generating PIC code.  It is given that flag_pic is on and
1150    that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1151 
1152    PCREL_GENERAL_OPERAND_OK makes reload accept addresses that are
1153    accepted by insn predicates, but which would otherwise fail the
1154    `general_operand' test.  */
1155 
1156 #ifndef REG_OK_STRICT
1157 #define PCREL_GENERAL_OPERAND_OK 0
1158 #else
1159 #define PCREL_GENERAL_OPERAND_OK (TARGET_PCREL)
1160 #endif
1161 
1162 #define LEGITIMATE_PIC_OPERAND_P(X)	\
1163   (! symbolic_operand (X, VOIDmode)				\
1164    || (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X))	\
1165    || PCREL_GENERAL_OPERAND_OK)
1166 
1167 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1168    and check its validity for a certain class.
1169    We have two alternate definitions for each of them.
1170    The usual definition accepts all pseudo regs; the other rejects
1171    them unless they have been allocated suitable hard regs.
1172    The symbol REG_OK_STRICT causes the latter definition to be used.
1173 
1174    Most source files want to accept pseudo regs in the hope that
1175    they will get allocated to the class that the insn wants them to be in.
1176    Source files for reload pass need to be strict.
1177    After reload, it makes no difference, since pseudo regs have
1178    been eliminated by then.  */
1179 
1180 #ifndef REG_OK_STRICT
1181 
1182 /* Nonzero if X is a hard reg that can be used as an index
1183    or if it is a pseudo reg.  */
1184 #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
1185 /* Nonzero if X is a hard reg that can be used as a base reg
1186    or if it is a pseudo reg.  */
1187 #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
1188 
1189 #else
1190 
1191 /* Nonzero if X is a hard reg that can be used as an index.  */
1192 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1193 /* Nonzero if X is a hard reg that can be used as a base reg.  */
1194 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1195 
1196 #endif
1197 
1198 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1199    that is a valid memory address for an instruction.
1200    The MODE argument is the machine mode for the MEM expression
1201    that wants to use this address.
1202 
1203    When generating PIC, an address involving a SYMBOL_REF is legitimate
1204    if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
1205    We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
1206    and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
1207 
1208    Likewise for a LABEL_REF when generating PIC.
1209 
1210    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.  */
1211 
1212 /* Allow SUBREG everywhere we allow REG.  This results in better code.  It
1213    also makes function inlining work when inline functions are called with
1214    arguments that are SUBREGs.  */
1215 
1216 #define LEGITIMATE_BASE_REG_P(X)   \
1217   ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))	\
1218    || (GET_CODE (X) == SUBREG				\
1219        && GET_CODE (SUBREG_REG (X)) == REG		\
1220        && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1221 
1222 #define INDIRECTABLE_1_ADDRESS_P(X)  \
1223   ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
1224    || LEGITIMATE_BASE_REG_P (X)						\
1225    || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC)		\
1226        && LEGITIMATE_BASE_REG_P (XEXP (X, 0)))				\
1227    || (GET_CODE (X) == PLUS						\
1228        && LEGITIMATE_BASE_REG_P (XEXP (X, 0))				\
1229        && GET_CODE (XEXP (X, 1)) == CONST_INT				\
1230        && (TARGET_68020							\
1231 	   || ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))	\
1232    || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx 	\
1233        && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF)		\
1234    || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx 	\
1235        && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF))
1236 
1237 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR)  \
1238 { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
1239 
1240 /* Only labels on dispatch tables are valid for indexing from.  */
1241 #define GO_IF_INDEXABLE_BASE(X, ADDR)				\
1242 { rtx temp;							\
1243   if (GET_CODE (X) == LABEL_REF					\
1244       && (temp = next_nonnote_insn (XEXP (X, 0))) != 0		\
1245       && GET_CODE (temp) == JUMP_INSN				\
1246       && (GET_CODE (PATTERN (temp)) == ADDR_VEC			\
1247 	  || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC))	\
1248     goto ADDR;							\
1249   if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
1250 
1251 #define GO_IF_INDEXING(X, ADDR)	\
1252 { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0)))		\
1253     { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); }			\
1254   if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1)))		\
1255     { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
1256 
1257 #define GO_IF_INDEXED_ADDRESS(X, ADDR)	 \
1258 { GO_IF_INDEXING (X, ADDR);						\
1259   if (GET_CODE (X) == PLUS)						\
1260     { if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
1261 	  && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100))		\
1262 	{ rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); }	\
1263       if (GET_CODE (XEXP (X, 0)) == CONST_INT				\
1264 	  && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100))		\
1265 	{ rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
1266 
1267 /* ColdFire/5200 does not allow HImode index registers.  */
1268 #define LEGITIMATE_INDEX_REG_P(X)   \
1269   ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))	\
1270    || (! TARGET_COLDFIRE					\
1271        && GET_CODE (X) == SIGN_EXTEND			\
1272        && GET_CODE (XEXP (X, 0)) == REG			\
1273        && GET_MODE (XEXP (X, 0)) == HImode		\
1274        && REG_OK_FOR_INDEX_P (XEXP (X, 0)))		\
1275    || (GET_CODE (X) == SUBREG				\
1276        && GET_CODE (SUBREG_REG (X)) == REG		\
1277        && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1278 
1279 #define LEGITIMATE_INDEX_P(X)   \
1280    (LEGITIMATE_INDEX_REG_P (X)				\
1281     || ((TARGET_68020 || TARGET_COLDFIRE) && GET_CODE (X) == MULT \
1282 	&& LEGITIMATE_INDEX_REG_P (XEXP (X, 0))		\
1283 	&& GET_CODE (XEXP (X, 1)) == CONST_INT		\
1284 	&& (INTVAL (XEXP (X, 1)) == 2			\
1285 	    || INTVAL (XEXP (X, 1)) == 4		\
1286 	    || (INTVAL (XEXP (X, 1)) == 8 && !TARGET_COLDFIRE))))
1287 
1288 /* If pic, we accept INDEX+LABEL, which is what do_tablejump makes.  */
1289 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1290 { GO_IF_NONINDEXED_ADDRESS (X, ADDR);					\
1291   GO_IF_INDEXED_ADDRESS (X, ADDR);					\
1292   if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS	\
1293       && LEGITIMATE_INDEX_P (XEXP (X, 0))				\
1294       && GET_CODE (XEXP (X, 1)) == LABEL_REF)				\
1295     goto ADDR; }
1296 
1297 /* Don't call memory_address_noforce for the address to fetch
1298    the switch offset.  This address is ok as it stands (see above),
1299    but memory_address_noforce would alter it.  */
1300 #define PIC_CASE_VECTOR_ADDRESS(index) index
1301 
1302 /* Try machine-dependent ways of modifying an illegitimate address
1303    to be legitimate.  If we find one, return the new, valid address.
1304    This macro is used in only one place: `memory_address' in explow.c.
1305 
1306    OLDX is the address as it was before break_out_memory_refs was called.
1307    In some cases it is useful to look at this to decide what needs to be done.
1308 
1309    MODE and WIN are passed so that this macro can use
1310    GO_IF_LEGITIMATE_ADDRESS.
1311 
1312    It is always safe for this macro to do nothing.  It exists to recognize
1313    opportunities to optimize the output.
1314 
1315    For the 68000, we handle X+REG by loading X into a register R and
1316    using R+REG.  R will go in an address reg and indexing will be used.
1317    However, if REG is a broken-out memory address or multiplication,
1318    nothing needs to be done because REG can certainly go in an address reg.  */
1319 
1320 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1321 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)   \
1322 { register int ch = (X) != (OLDX);					\
1323   if (GET_CODE (X) == PLUS)						\
1324     { int copied = 0;							\
1325       if (GET_CODE (XEXP (X, 0)) == MULT)				\
1326 	{ COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);}	\
1327       if (GET_CODE (XEXP (X, 1)) == MULT)				\
1328 	{ COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);}	\
1329       if (ch && GET_CODE (XEXP (X, 1)) == REG				\
1330 	  && GET_CODE (XEXP (X, 0)) == REG)				\
1331 	goto WIN;							\
1332       if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); }		\
1333       if (GET_CODE (XEXP (X, 0)) == REG					\
1334 	       || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND		\
1335 		   && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG		\
1336 		   && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode))	\
1337 	{ register rtx temp = gen_reg_rtx (Pmode);			\
1338 	  register rtx val = force_operand (XEXP (X, 1), 0);		\
1339 	  emit_move_insn (temp, val);					\
1340 	  COPY_ONCE (X);						\
1341 	  XEXP (X, 1) = temp;						\
1342 	  goto WIN; }							\
1343       else if (GET_CODE (XEXP (X, 1)) == REG				\
1344 	       || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND		\
1345 		   && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG		\
1346 		   && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode))	\
1347 	{ register rtx temp = gen_reg_rtx (Pmode);			\
1348 	  register rtx val = force_operand (XEXP (X, 0), 0);		\
1349 	  emit_move_insn (temp, val);					\
1350 	  COPY_ONCE (X);						\
1351 	  XEXP (X, 0) = temp;						\
1352 	  goto WIN; }}}
1353 
1354 /* Go to LABEL if ADDR (a legitimate address expression)
1355    has an effect that depends on the machine mode it is used for.
1356    On the 68000, only predecrement and postincrement address depend thus
1357    (the amount of decrement or increment being the length of the operand).  */
1358 
1359 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
1360  if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
1361 
1362 /* Specify the machine mode that this machine uses
1363    for the index in the tablejump instruction.  */
1364 #define CASE_VECTOR_MODE HImode
1365 
1366 /* Define as C expression which evaluates to nonzero if the tablejump
1367    instruction expects the table to contain offsets from the address of the
1368    table.
1369    Do not define this if the table should contain absolute addresses.  */
1370 #define CASE_VECTOR_PC_RELATIVE 1
1371 
1372 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1373 #define DEFAULT_SIGNED_CHAR 1
1374 
1375 /* Don't cse the address of the function being compiled.  */
1376 #define NO_RECURSIVE_FUNCTION_CSE
1377 
1378 /* Max number of bytes we can move from memory to memory
1379    in one reasonably fast instruction.  */
1380 #define MOVE_MAX 4
1381 
1382 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1383 #define SLOW_BYTE_ACCESS 0
1384 
1385 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1386    is done just by pretending it is already truncated.  */
1387 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1388 
1389 /* We assume that the store-condition-codes instructions store 0 for false
1390    and some other value for true.  This is the value stored for true.  */
1391 
1392 #define STORE_FLAG_VALUE (-1)
1393 
1394 /* When a prototype says `char' or `short', really pass an `int'.  */
1395 #define PROMOTE_PROTOTYPES 1
1396 
1397 /* Specify the machine mode that pointers have.
1398    After generation of rtl, the compiler makes no further distinction
1399    between pointers and any other objects of this machine mode.  */
1400 #define Pmode SImode
1401 
1402 /* A function address in a call instruction
1403    is a byte address (for indexing purposes)
1404    so give the MEM rtx a byte's mode.  */
1405 #define FUNCTION_MODE QImode
1406 
1407 
1408 /* Tell final.c how to eliminate redundant test instructions.  */
1409 
1410 /* Here we define machine-dependent flags and fields in cc_status
1411    (see `conditions.h').  */
1412 
1413 /* Set if the cc value is actually in the 68881, so a floating point
1414    conditional branch must be output.  */
1415 #define CC_IN_68881 04000
1416 
1417 /* Store in cc_status the expressions that the condition codes will
1418    describe after execution of an instruction whose pattern is EXP.
1419    Do not alter them if the instruction would not alter the cc's.  */
1420 
1421 /* On the 68000, all the insns to store in an address register fail to
1422    set the cc's.  However, in some cases these instructions can make it
1423    possibly invalid to use the saved cc's.  In those cases we clear out
1424    some or all of the saved cc's so they won't be used.  */
1425 
1426 #define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
1427 
1428 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV)  \
1429 do { if (cc_prev_status.flags & CC_IN_68881)			\
1430     return FLOAT;						\
1431   if (cc_prev_status.flags & CC_NO_OVERFLOW)			\
1432     return NO_OV;						\
1433   return NORMAL; } while (0)
1434 
1435 /* Control the assembler format that we output.  */
1436 
1437 /* Output to assembler file text saying following lines
1438    may contain character constants, extra white space, comments, etc.  */
1439 
1440 #define ASM_APP_ON "#APP\n"
1441 
1442 /* Output to assembler file text saying following lines
1443    no longer contain unusual constructs.  */
1444 
1445 #define ASM_APP_OFF "#NO_APP\n"
1446 
1447 /* Output before read-only data.  */
1448 
1449 #define TEXT_SECTION_ASM_OP "\t.text"
1450 
1451 /* Output before writable data.  */
1452 
1453 #define DATA_SECTION_ASM_OP "\t.data"
1454 
1455 #define GLOBAL_ASM_OP "\t.globl\t"
1456 
1457 /* Here are four prefixes that are used by asm_fprintf to
1458    facilitate customization for alternate assembler syntaxes.
1459    Machines with no likelihood of an alternate syntax need not
1460    define these and need not use asm_fprintf.  */
1461 
1462 /* The prefix for register names.  Note that REGISTER_NAMES
1463    is supposed to include this prefix.  */
1464 
1465 #define REGISTER_PREFIX ""
1466 
1467 /* The prefix for local labels.  You should be able to define this as
1468    an empty string, or any arbitrary string (such as ".", ".L%", etc)
1469    without having to make any other changes to account for the specific
1470    definition.  Note it is a string literal, not interpreted by printf
1471    and friends.  */
1472 
1473 #define LOCAL_LABEL_PREFIX ""
1474 
1475 /* The prefix to add to user-visible assembler symbols.  */
1476 
1477 #define USER_LABEL_PREFIX "_"
1478 
1479 /* The prefix for immediate operands.  */
1480 
1481 #define IMMEDIATE_PREFIX "#"
1482 
1483 /* How to refer to registers in assembler output.
1484    This sequence is indexed by compiler's hard-register-number (see above).  */
1485 
1486 #define REGISTER_NAMES \
1487 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",	\
1488  "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp",	\
1489  "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", "argptr" }
1490 
1491 /* How to renumber registers for dbx and gdb.
1492    On the Sun-3, the floating point registers have numbers
1493    18 to 25, not 16 to 23 as they do in the compiler.  */
1494 
1495 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1496 
1497 /* Before the prologue, RA is at 0(%sp).  */
1498 #define INCOMING_RETURN_ADDR_RTX \
1499   gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1500 
1501 /* We must not use the DBX register numbers for the DWARF 2 CFA column
1502    numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
1503    Instead use the identity mapping.  */
1504 #define DWARF_FRAME_REGNUM(REG) REG
1505 
1506 /* Before the prologue, the top of the frame is at 4(%sp).  */
1507 #define INCOMING_FRAME_SP_OFFSET 4
1508 
1509 /* Describe how we implement __builtin_eh_return.  */
1510 #define EH_RETURN_DATA_REGNO(N) \
1511   ((N) < 2 ? (N) : INVALID_REGNUM)
1512 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 8)
1513 #define EH_RETURN_HANDLER_RTX					    \
1514   gen_rtx_MEM (Pmode,						    \
1515 	       gen_rtx_PLUS (Pmode, arg_pointer_rtx,		    \
1516 			     plus_constant (EH_RETURN_STACKADJ_RTX, \
1517 					    UNITS_PER_WORD)))
1518 
1519 /* Select a format to encode pointers in exception handling data.  CODE
1520    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1521    true if the symbol may be affected by dynamic relocations.  */
1522 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		   \
1523   (flag_pic								   \
1524    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1525    : DW_EH_PE_absptr)
1526 
1527 /* This is how to output a reference to a user-level label named NAME.
1528    `assemble_name' uses this.  */
1529 
1530 #define ASM_OUTPUT_LABELREF(FILE,NAME)	\
1531   asm_fprintf (FILE, "%U%s", NAME)
1532 
1533 /* This is how to store into the string LABEL
1534    the symbol_ref name of an internal numbered label where
1535    PREFIX is the class of label and NUM is the number within the class.
1536    This is suitable for output with `assemble_name'.  */
1537 
1538 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1539   sprintf (LABEL, "*%s%s%ld", LOCAL_LABEL_PREFIX, PREFIX, (long)(NUM))
1540 
1541 /* This is how to output an insn to push a register on the stack.
1542    It need not be very fast code.  */
1543 
1544 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
1545   asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
1546 
1547 /* This is how to output an insn to pop a register from the stack.
1548    It need not be very fast code.  */
1549 
1550 #define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
1551   asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
1552 
1553 /* This is how to output an element of a case-vector that is absolute.
1554    (The 68000 does not use such vectors,
1555    but we must define this macro anyway.)  */
1556 
1557 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1558   asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
1559 
1560 /* This is how to output an element of a case-vector that is relative.  */
1561 
1562 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1563   asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
1564 
1565 /* This is how to output an assembler line
1566    that says to advance the location counter
1567    to a multiple of 2**LOG bytes.  */
1568 
1569 /* We don't have a way to align to more than a two-byte boundary, so do the
1570    best we can and don't complain.  */
1571 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1572   if ((LOG) >= 1)			\
1573     fprintf (FILE, "\t.even\n");
1574 
1575 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1576   fprintf (FILE, "\t.skip %u\n", (int)(SIZE))
1577 
1578 /* This says how to output an assembler line
1579    to define a global common symbol.  */
1580 
1581 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1582 ( fputs (".comm ", (FILE)),			\
1583   assemble_name ((FILE), (NAME)),		\
1584   fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
1585 
1586 /* This says how to output an assembler line
1587    to define a local common symbol.  */
1588 
1589 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
1590 ( fputs (".lcomm ", (FILE)),			\
1591   assemble_name ((FILE), (NAME)),		\
1592   fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
1593 
1594 /* Output a float value (represented as a C double) as an immediate operand.
1595    This macro is a 68k-specific macro.  */
1596 
1597 #define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE)		\
1598  do {								\
1599       if (CODE == 'f')						\
1600         {							\
1601           char dstr[30];					\
1602       	  real_to_decimal (dstr, &(VALUE), sizeof (dstr), 9, 0); \
1603           asm_fprintf ((FILE), "%I0r%s", dstr);			\
1604         }							\
1605       else							\
1606         {							\
1607           long l;						\
1608           REAL_VALUE_TO_TARGET_SINGLE (VALUE, l);		\
1609           asm_fprintf ((FILE), "%I0x%lx", l);			\
1610         }							\
1611      } while (0)
1612 
1613 /* Output a double value (represented as a C double) as an immediate operand.
1614    This macro is a 68k-specific macro.  */
1615 #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE)				\
1616  do { char dstr[30];							\
1617       real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1);		\
1618       asm_fprintf (FILE, "%I0r%s", dstr);				\
1619     } while (0)
1620 
1621 /* Note, long double immediate operands are not actually
1622    generated by m68k.md.  */
1623 #define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE)			\
1624  do { char dstr[30];							\
1625       real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1);		\
1626       asm_fprintf (FILE, "%I0r%s", dstr);				\
1627     } while (0)
1628 
1629 /* Print operand X (an rtx) in assembler syntax to file FILE.
1630    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1631    For `%' followed by punctuation, CODE is the punctuation and X is null.
1632 
1633    On the 68000, we use several CODE characters:
1634    '.' for dot needed in Motorola-style opcode names.
1635    '-' for an operand pushing on the stack:
1636        sp@-, -(sp) or -(%sp) depending on the style of syntax.
1637    '+' for an operand pushing on the stack:
1638        sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1639    '@' for a reference to the top word on the stack:
1640        sp@, (sp) or (%sp) depending on the style of syntax.
1641    '#' for an immediate operand prefix (# in MIT and Motorola syntax
1642        but & in SGS syntax).
1643    '!' for the fpcr register (used in some float-to-fixed conversions).
1644    '$' for the letter `s' in an op code, but only on the 68040.
1645    '&' for the letter `d' in an op code, but only on the 68040.
1646    '/' for register prefix needed by longlong.h.
1647 
1648    'b' for byte insn (no effect, on the Sun; this is for the ISI).
1649    'd' to force memory addressing to be absolute, not relative.
1650    'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1651    'o' for operands to go directly to output_operand_address (bypassing
1652        print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
1653    'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1654        or print pair of registers as rx:ry.  */
1655 
1656 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)				\
1657   ((CODE) == '.' || (CODE) == '#' || (CODE) == '-'			\
1658    || (CODE) == '+' || (CODE) == '@' || (CODE) == '!'			\
1659    || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
1660 
1661 /* A C compound statement to output to stdio stream STREAM the
1662    assembler syntax for an instruction operand X.  X is an RTL
1663    expression.
1664 
1665    CODE is a value that can be used to specify one of several ways
1666    of printing the operand.  It is used when identical operands
1667    must be printed differently depending on the context.  CODE
1668    comes from the `%' specification that was used to request
1669    printing of the operand.  If the specification was just `%DIGIT'
1670    then CODE is 0; if the specification was `%LTR DIGIT' then CODE
1671    is the ASCII code for LTR.
1672 
1673    If X is a register, this macro should print the register's name.
1674    The names can be found in an array `reg_names' whose type is
1675    `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
1676 
1677    When the machine description has a specification `%PUNCT' (a `%'
1678    followed by a punctuation character), this macro is called with
1679    a null pointer for X and the punctuation character for CODE.
1680 
1681    See m68k.c for the m68k specific codes.  */
1682 
1683 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1684 
1685 /* A C compound statement to output to stdio stream STREAM the
1686    assembler syntax for an instruction operand that is a memory
1687    reference whose address is ADDR.  ADDR is an RTL expression.  */
1688 
1689 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1690 
1691 /* Variables in m68k.c */
1692 extern const char *m68k_align_loops_string;
1693 extern const char *m68k_align_jumps_string;
1694 extern const char *m68k_align_funcs_string;
1695 extern const char *m68k_library_id_string;
1696 extern int m68k_align_loops;
1697 extern int m68k_align_jumps;
1698 extern int m68k_align_funcs;
1699 extern int m68k_last_compare_had_fp_operands;
1700 
1701 
1702 /* Define the codes that are matched by predicates in m68k.c.  */
1703 
1704 #define PREDICATE_CODES							\
1705   {"general_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
1706 			   LABEL_REF, SUBREG, REG, MEM}},		\
1707   {"nonimmediate_src_operand", {SUBREG, REG, MEM}},			\
1708   {"memory_src_operand", {SUBREG, MEM}},				\
1709   {"not_sp_operand", {SUBREG, REG, MEM}},				\
1710   {"pcrel_address", {SYMBOL_REF, LABEL_REF, CONST}},			\
1711   {"const_uint32_operand", {CONST_INT, CONST_DOUBLE}},			\
1712   {"const_sint32_operand", {CONST_INT}},				\
1713   {"valid_dbcc_comparison_p", {EQ, NE, GTU, LTU, GEU, LEU,		\
1714 			       GT, LT, GE, LE}},			\
1715   {"extend_operator", {SIGN_EXTEND, ZERO_EXTEND}},
1716 
1717 /*
1718 Local variables:
1719 version-control: t
1720 End:
1721 */
1722