1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This pass exposes codegen information to IR-level passes. Every
10 /// transformation that uses codegen information is broken into three parts:
11 /// 1. The IR-level analysis pass.
12 /// 2. The IR-level transformation interface which provides the needed
13 ///    information.
14 /// 3. Codegen-level implementation which uses target-specific hooks.
15 ///
16 /// This file defines #2, which is the interface that IR-level transformations
17 /// use for querying the codegen.
18 ///
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23 
24 #include "llvm/ADT/SmallBitVector.h"
25 #include "llvm/IR/FMF.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/PassManager.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/AtomicOrdering.h"
30 #include "llvm/Support/BranchProbability.h"
31 #include "llvm/Support/InstructionCost.h"
32 #include <functional>
33 #include <optional>
34 #include <utility>
35 
36 namespace llvm {
37 
38 namespace Intrinsic {
39 typedef unsigned ID;
40 }
41 
42 class AllocaInst;
43 class AssumptionCache;
44 class BlockFrequencyInfo;
45 class DominatorTree;
46 class BranchInst;
47 class CallBase;
48 class Function;
49 class GlobalValue;
50 class InstCombiner;
51 class OptimizationRemarkEmitter;
52 class InterleavedAccessInfo;
53 class IntrinsicInst;
54 class LoadInst;
55 class Loop;
56 class LoopInfo;
57 class LoopVectorizationLegality;
58 class ProfileSummaryInfo;
59 class RecurrenceDescriptor;
60 class SCEV;
61 class ScalarEvolution;
62 class StoreInst;
63 class SwitchInst;
64 class TargetLibraryInfo;
65 class Type;
66 class User;
67 class Value;
68 class VPIntrinsic;
69 struct KnownBits;
70 
71 /// Information about a load/store intrinsic defined by the target.
72 struct MemIntrinsicInfo {
73   /// This is the pointer that the intrinsic is loading from or storing to.
74   /// If this is non-null, then analysis/optimization passes can assume that
75   /// this intrinsic is functionally equivalent to a load/store from this
76   /// pointer.
77   Value *PtrVal = nullptr;
78 
79   // Ordering for atomic operations.
80   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
81 
82   // Same Id is set by the target for corresponding load/store intrinsics.
83   unsigned short MatchingId = 0;
84 
85   bool ReadMem = false;
86   bool WriteMem = false;
87   bool IsVolatile = false;
88 
isUnorderedMemIntrinsicInfo89   bool isUnordered() const {
90     return (Ordering == AtomicOrdering::NotAtomic ||
91             Ordering == AtomicOrdering::Unordered) &&
92            !IsVolatile;
93   }
94 };
95 
96 /// Attributes of a target dependent hardware loop.
97 struct HardwareLoopInfo {
98   HardwareLoopInfo() = delete;
99   HardwareLoopInfo(Loop *L);
100   Loop *L = nullptr;
101   BasicBlock *ExitBlock = nullptr;
102   BranchInst *ExitBranch = nullptr;
103   const SCEV *ExitCount = nullptr;
104   IntegerType *CountType = nullptr;
105   Value *LoopDecrement = nullptr; // Decrement the loop counter by this
106                                   // value in every iteration.
107   bool IsNestingLegal = false;    // Can a hardware loop be a parent to
108                                   // another hardware loop?
109   bool CounterInReg = false;      // Should loop counter be updated in
110                                   // the loop via a phi?
111   bool PerformEntryTest = false;  // Generate the intrinsic which also performs
112                                   // icmp ne zero on the loop counter value and
113                                   // produces an i1 to guard the loop entry.
114   bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
115                                DominatorTree &DT, bool ForceNestedLoop = false,
116                                bool ForceHardwareLoopPHI = false);
117   bool canAnalyze(LoopInfo &LI);
118 };
119 
120 class IntrinsicCostAttributes {
121   const IntrinsicInst *II = nullptr;
122   Type *RetTy = nullptr;
123   Intrinsic::ID IID;
124   SmallVector<Type *, 4> ParamTys;
125   SmallVector<const Value *, 4> Arguments;
126   FastMathFlags FMF;
127   // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
128   // arguments and the return value will be computed based on types.
129   InstructionCost ScalarizationCost = InstructionCost::getInvalid();
130 
131 public:
132   IntrinsicCostAttributes(
133       Intrinsic::ID Id, const CallBase &CI,
134       InstructionCost ScalarCost = InstructionCost::getInvalid(),
135       bool TypeBasedOnly = false);
136 
137   IntrinsicCostAttributes(
138       Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
139       FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
140       InstructionCost ScalarCost = InstructionCost::getInvalid());
141 
142   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
143                           ArrayRef<const Value *> Args);
144 
145   IntrinsicCostAttributes(
146       Intrinsic::ID Id, Type *RTy, ArrayRef<const Value *> Args,
147       ArrayRef<Type *> Tys, FastMathFlags Flags = FastMathFlags(),
148       const IntrinsicInst *I = nullptr,
149       InstructionCost ScalarCost = InstructionCost::getInvalid());
150 
getID()151   Intrinsic::ID getID() const { return IID; }
getInst()152   const IntrinsicInst *getInst() const { return II; }
getReturnType()153   Type *getReturnType() const { return RetTy; }
getFlags()154   FastMathFlags getFlags() const { return FMF; }
getScalarizationCost()155   InstructionCost getScalarizationCost() const { return ScalarizationCost; }
getArgs()156   const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
getArgTypes()157   const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
158 
isTypeBasedOnly()159   bool isTypeBasedOnly() const {
160     return Arguments.empty();
161   }
162 
skipScalarizationCost()163   bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
164 };
165 
166 enum class TailFoldingStyle {
167   /// Don't use tail folding
168   None,
169   /// Use predicate only to mask operations on data in the loop.
170   /// When the VL is not known to be a power-of-2, this method requires a
171   /// runtime overflow check for the i + VL in the loop because it compares the
172   /// scalar induction variable against the tripcount rounded up by VL which may
173   /// overflow. When the VL is a power-of-2, both the increment and uprounded
174   /// tripcount will overflow to 0, which does not require a runtime check
175   /// since the loop is exited when the loop induction variable equals the
176   /// uprounded trip-count, which are both 0.
177   Data,
178   /// Same as Data, but avoids using the get.active.lane.mask intrinsic to
179   /// calculate the mask and instead implements this with a
180   /// splat/stepvector/cmp.
181   /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the
182   /// active.lane.mask intrinsic when it is not natively supported?
183   DataWithoutLaneMask,
184   /// Use predicate to control both data and control flow.
185   /// This method always requires a runtime overflow check for the i + VL
186   /// increment inside the loop, because it uses the result direclty in the
187   /// active.lane.mask to calculate the mask for the next iteration. If the
188   /// increment overflows, the mask is no longer correct.
189   DataAndControlFlow,
190   /// Use predicate to control both data and control flow, but modify
191   /// the trip count so that a runtime overflow check can be avoided
192   /// and such that the scalar epilogue loop can always be removed.
193   DataAndControlFlowWithoutRuntimeCheck
194 };
195 
196 struct TailFoldingInfo {
197   TargetLibraryInfo *TLI;
198   LoopVectorizationLegality *LVL;
199   InterleavedAccessInfo *IAI;
TailFoldingInfoTailFoldingInfo200   TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL,
201                   InterleavedAccessInfo *IAI)
202       : TLI(TLI), LVL(LVL), IAI(IAI) {}
203 };
204 
205 class TargetTransformInfo;
206 typedef TargetTransformInfo TTI;
207 
208 /// This pass provides access to the codegen interfaces that are needed
209 /// for IR-level transformations.
210 class TargetTransformInfo {
211 public:
212   /// Construct a TTI object using a type implementing the \c Concept
213   /// API below.
214   ///
215   /// This is used by targets to construct a TTI wrapping their target-specific
216   /// implementation that encodes appropriate costs for their target.
217   template <typename T> TargetTransformInfo(T Impl);
218 
219   /// Construct a baseline TTI object using a minimal implementation of
220   /// the \c Concept API below.
221   ///
222   /// The TTI implementation will reflect the information in the DataLayout
223   /// provided if non-null.
224   explicit TargetTransformInfo(const DataLayout &DL);
225 
226   // Provide move semantics.
227   TargetTransformInfo(TargetTransformInfo &&Arg);
228   TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
229 
230   // We need to define the destructor out-of-line to define our sub-classes
231   // out-of-line.
232   ~TargetTransformInfo();
233 
234   /// Handle the invalidation of this information.
235   ///
236   /// When used as a result of \c TargetIRAnalysis this method will be called
237   /// when the function this was computed for changes. When it returns false,
238   /// the information is preserved across those changes.
invalidate(Function &,const PreservedAnalyses &,FunctionAnalysisManager::Invalidator &)239   bool invalidate(Function &, const PreservedAnalyses &,
240                   FunctionAnalysisManager::Invalidator &) {
241     // FIXME: We should probably in some way ensure that the subtarget
242     // information for a function hasn't changed.
243     return false;
244   }
245 
246   /// \name Generic Target Information
247   /// @{
248 
249   /// The kind of cost model.
250   ///
251   /// There are several different cost models that can be customized by the
252   /// target. The normalization of each cost model may be target specific.
253   /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
254   /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
255   enum TargetCostKind {
256     TCK_RecipThroughput, ///< Reciprocal throughput.
257     TCK_Latency,         ///< The latency of instruction.
258     TCK_CodeSize,        ///< Instruction code size.
259     TCK_SizeAndLatency   ///< The weighted sum of size and latency.
260   };
261 
262   /// Underlying constants for 'cost' values in this interface.
263   ///
264   /// Many APIs in this interface return a cost. This enum defines the
265   /// fundamental values that should be used to interpret (and produce) those
266   /// costs. The costs are returned as an int rather than a member of this
267   /// enumeration because it is expected that the cost of one IR instruction
268   /// may have a multiplicative factor to it or otherwise won't fit directly
269   /// into the enum. Moreover, it is common to sum or average costs which works
270   /// better as simple integral values. Thus this enum only provides constants.
271   /// Also note that the returned costs are signed integers to make it natural
272   /// to add, subtract, and test with zero (a common boundary condition). It is
273   /// not expected that 2^32 is a realistic cost to be modeling at any point.
274   ///
275   /// Note that these costs should usually reflect the intersection of code-size
276   /// cost and execution cost. A free instruction is typically one that folds
277   /// into another instruction. For example, reg-to-reg moves can often be
278   /// skipped by renaming the registers in the CPU, but they still are encoded
279   /// and thus wouldn't be considered 'free' here.
280   enum TargetCostConstants {
281     TCC_Free = 0,     ///< Expected to fold away in lowering.
282     TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
283     TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
284   };
285 
286   /// Estimate the cost of a GEP operation when lowered.
287   ///
288   /// \p PointeeType is the source element type of the GEP.
289   /// \p Ptr is the base pointer operand.
290   /// \p Operands is the list of indices following the base pointer.
291   ///
292   /// \p AccessType is a hint as to what type of memory might be accessed by
293   /// users of the GEP. getGEPCost will use it to determine if the GEP can be
294   /// folded into the addressing mode of a load/store. If AccessType is null,
295   /// then the resulting target type based off of PointeeType will be used as an
296   /// approximation.
297   InstructionCost
298   getGEPCost(Type *PointeeType, const Value *Ptr,
299              ArrayRef<const Value *> Operands, Type *AccessType = nullptr,
300              TargetCostKind CostKind = TCK_SizeAndLatency) const;
301 
302   /// Describe known properties for a set of pointers.
303   struct PointersChainInfo {
304     /// All the GEPs in a set have same base address.
305     unsigned IsSameBaseAddress : 1;
306     /// These properties only valid if SameBaseAddress is set.
307     /// True if all pointers are separated by a unit stride.
308     unsigned IsUnitStride : 1;
309     /// True if distance between any two neigbouring pointers is a known value.
310     unsigned IsKnownStride : 1;
311     unsigned Reserved : 29;
312 
isSameBasePointersChainInfo313     bool isSameBase() const { return IsSameBaseAddress; }
isUnitStridePointersChainInfo314     bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; }
isKnownStridePointersChainInfo315     bool isKnownStride() const { return IsSameBaseAddress && IsKnownStride; }
316 
getUnitStridePointersChainInfo317     static PointersChainInfo getUnitStride() {
318       return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1,
319               /*IsKnownStride=*/1, 0};
320     }
getKnownStridePointersChainInfo321     static PointersChainInfo getKnownStride() {
322       return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
323               /*IsKnownStride=*/1, 0};
324     }
getUnknownStridePointersChainInfo325     static PointersChainInfo getUnknownStride() {
326       return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
327               /*IsKnownStride=*/0, 0};
328     }
329   };
330   static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?");
331 
332   /// Estimate the cost of a chain of pointers (typically pointer operands of a
333   /// chain of loads or stores within same block) operations set when lowered.
334   /// \p AccessTy is the type of the loads/stores that will ultimately use the
335   /// \p Ptrs.
336   InstructionCost
337   getPointersChainCost(ArrayRef<const Value *> Ptrs, const Value *Base,
338                        const PointersChainInfo &Info, Type *AccessTy,
339                        TargetCostKind CostKind = TTI::TCK_RecipThroughput
340 
341   ) const;
342 
343   /// \returns A value by which our inlining threshold should be multiplied.
344   /// This is primarily used to bump up the inlining threshold wholesale on
345   /// targets where calls are unusually expensive.
346   ///
347   /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
348   /// individual classes of instructions would be better.
349   unsigned getInliningThresholdMultiplier() const;
350 
351   unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const;
352   unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const;
353 
354   /// \returns A value to be added to the inlining threshold.
355   unsigned adjustInliningThreshold(const CallBase *CB) const;
356 
357   /// \returns The cost of having an Alloca in the caller if not inlined, to be
358   /// added to the threshold
359   unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const;
360 
361   /// \returns Vector bonus in percent.
362   ///
363   /// Vector bonuses: We want to more aggressively inline vector-dense kernels
364   /// and apply this bonus based on the percentage of vector instructions. A
365   /// bonus is applied if the vector instructions exceed 50% and half that
366   /// amount is applied if it exceeds 10%. Note that these bonuses are some what
367   /// arbitrary and evolved over time by accident as much as because they are
368   /// principled bonuses.
369   /// FIXME: It would be nice to base the bonus values on something more
370   /// scientific. A target may has no bonus on vector instructions.
371   int getInlinerVectorBonusPercent() const;
372 
373   /// \return the expected cost of a memcpy, which could e.g. depend on the
374   /// source/destination type and alignment and the number of bytes copied.
375   InstructionCost getMemcpyCost(const Instruction *I) const;
376 
377   /// Returns the maximum memset / memcpy size in bytes that still makes it
378   /// profitable to inline the call.
379   uint64_t getMaxMemIntrinsicInlineSizeThreshold() const;
380 
381   /// \return The estimated number of case clusters when lowering \p 'SI'.
382   /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
383   /// table.
384   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
385                                             unsigned &JTSize,
386                                             ProfileSummaryInfo *PSI,
387                                             BlockFrequencyInfo *BFI) const;
388 
389   /// Estimate the cost of a given IR user when lowered.
390   ///
391   /// This can estimate the cost of either a ConstantExpr or Instruction when
392   /// lowered.
393   ///
394   /// \p Operands is a list of operands which can be a result of transformations
395   /// of the current operands. The number of the operands on the list must equal
396   /// to the number of the current operands the IR user has. Their order on the
397   /// list must be the same as the order of the current operands the IR user
398   /// has.
399   ///
400   /// The returned cost is defined in terms of \c TargetCostConstants, see its
401   /// comments for a detailed explanation of the cost values.
402   InstructionCost getInstructionCost(const User *U,
403                                      ArrayRef<const Value *> Operands,
404                                      TargetCostKind CostKind) const;
405 
406   /// This is a helper function which calls the three-argument
407   /// getInstructionCost with \p Operands which are the current operands U has.
getInstructionCost(const User * U,TargetCostKind CostKind)408   InstructionCost getInstructionCost(const User *U,
409                                      TargetCostKind CostKind) const {
410     SmallVector<const Value *, 4> Operands(U->operand_values());
411     return getInstructionCost(U, Operands, CostKind);
412   }
413 
414   /// If a branch or a select condition is skewed in one direction by more than
415   /// this factor, it is very likely to be predicted correctly.
416   BranchProbability getPredictableBranchThreshold() const;
417 
418   /// Return true if branch divergence exists.
419   ///
420   /// Branch divergence has a significantly negative impact on GPU performance
421   /// when threads in the same wavefront take different paths due to conditional
422   /// branches.
423   ///
424   /// If \p F is passed, provides a context function. If \p F is known to only
425   /// execute in a single threaded environment, the target may choose to skip
426   /// uniformity analysis and assume all values are uniform.
427   bool hasBranchDivergence(const Function *F = nullptr) const;
428 
429   /// Returns whether V is a source of divergence.
430   ///
431   /// This function provides the target-dependent information for
432   /// the target-independent UniformityAnalysis.
433   bool isSourceOfDivergence(const Value *V) const;
434 
435   // Returns true for the target specific
436   // set of operations which produce uniform result
437   // even taking non-uniform arguments
438   bool isAlwaysUniform(const Value *V) const;
439 
440   /// Query the target whether the specified address space cast from FromAS to
441   /// ToAS is valid.
442   bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
443 
444   /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address.
445   bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const;
446 
447   /// Returns the address space ID for a target's 'flat' address space. Note
448   /// this is not necessarily the same as addrspace(0), which LLVM sometimes
449   /// refers to as the generic address space. The flat address space is a
450   /// generic address space that can be used access multiple segments of memory
451   /// with different address spaces. Access of a memory location through a
452   /// pointer with this address space is expected to be legal but slower
453   /// compared to the same memory location accessed through a pointer with a
454   /// different address space.
455   //
456   /// This is for targets with different pointer representations which can
457   /// be converted with the addrspacecast instruction. If a pointer is converted
458   /// to this address space, optimizations should attempt to replace the access
459   /// with the source address space.
460   ///
461   /// \returns ~0u if the target does not have such a flat address space to
462   /// optimize away.
463   unsigned getFlatAddressSpace() const;
464 
465   /// Return any intrinsic address operand indexes which may be rewritten if
466   /// they use a flat address space pointer.
467   ///
468   /// \returns true if the intrinsic was handled.
469   bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
470                                   Intrinsic::ID IID) const;
471 
472   bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
473 
474   /// Return true if globals in this address space can have initializers other
475   /// than `undef`.
476   bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const;
477 
478   unsigned getAssumedAddrSpace(const Value *V) const;
479 
480   bool isSingleThreaded() const;
481 
482   std::pair<const Value *, unsigned>
483   getPredicatedAddrSpace(const Value *V) const;
484 
485   /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
486   /// NewV, which has a different address space. This should happen for every
487   /// operand index that collectFlatAddressOperands returned for the intrinsic.
488   /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
489   /// new value (which may be the original \p II with modified operands).
490   Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
491                                           Value *NewV) const;
492 
493   /// Test whether calls to a function lower to actual program function
494   /// calls.
495   ///
496   /// The idea is to test whether the program is likely to require a 'call'
497   /// instruction or equivalent in order to call the given function.
498   ///
499   /// FIXME: It's not clear that this is a good or useful query API. Client's
500   /// should probably move to simpler cost metrics using the above.
501   /// Alternatively, we could split the cost interface into distinct code-size
502   /// and execution-speed costs. This would allow modelling the core of this
503   /// query more accurately as a call is a single small instruction, but
504   /// incurs significant execution cost.
505   bool isLoweredToCall(const Function *F) const;
506 
507   struct LSRCost {
508     /// TODO: Some of these could be merged. Also, a lexical ordering
509     /// isn't always optimal.
510     unsigned Insns;
511     unsigned NumRegs;
512     unsigned AddRecCost;
513     unsigned NumIVMuls;
514     unsigned NumBaseAdds;
515     unsigned ImmCost;
516     unsigned SetupCost;
517     unsigned ScaleCost;
518   };
519 
520   /// Parameters that control the generic loop unrolling transformation.
521   struct UnrollingPreferences {
522     /// The cost threshold for the unrolled loop. Should be relative to the
523     /// getInstructionCost values returned by this API, and the expectation is
524     /// that the unrolled loop's instructions when run through that interface
525     /// should not exceed this cost. However, this is only an estimate. Also,
526     /// specific loops may be unrolled even with a cost above this threshold if
527     /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
528     /// restriction.
529     unsigned Threshold;
530     /// If complete unrolling will reduce the cost of the loop, we will boost
531     /// the Threshold by a certain percent to allow more aggressive complete
532     /// unrolling. This value provides the maximum boost percentage that we
533     /// can apply to Threshold (The value should be no less than 100).
534     /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
535     ///                                    MaxPercentThresholdBoost / 100)
536     /// E.g. if complete unrolling reduces the loop execution time by 50%
537     /// then we boost the threshold by the factor of 2x. If unrolling is not
538     /// expected to reduce the running time, then we do not increase the
539     /// threshold.
540     unsigned MaxPercentThresholdBoost;
541     /// The cost threshold for the unrolled loop when optimizing for size (set
542     /// to UINT_MAX to disable).
543     unsigned OptSizeThreshold;
544     /// The cost threshold for the unrolled loop, like Threshold, but used
545     /// for partial/runtime unrolling (set to UINT_MAX to disable).
546     unsigned PartialThreshold;
547     /// The cost threshold for the unrolled loop when optimizing for size, like
548     /// OptSizeThreshold, but used for partial/runtime unrolling (set to
549     /// UINT_MAX to disable).
550     unsigned PartialOptSizeThreshold;
551     /// A forced unrolling factor (the number of concatenated bodies of the
552     /// original loop in the unrolled loop body). When set to 0, the unrolling
553     /// transformation will select an unrolling factor based on the current cost
554     /// threshold and other factors.
555     unsigned Count;
556     /// Default unroll count for loops with run-time trip count.
557     unsigned DefaultUnrollRuntimeCount;
558     // Set the maximum unrolling factor. The unrolling factor may be selected
559     // using the appropriate cost threshold, but may not exceed this number
560     // (set to UINT_MAX to disable). This does not apply in cases where the
561     // loop is being fully unrolled.
562     unsigned MaxCount;
563     /// Set the maximum upper bound of trip count. Allowing the MaxUpperBound
564     /// to be overrided by a target gives more flexiblity on certain cases.
565     /// By default, MaxUpperBound uses UnrollMaxUpperBound which value is 8.
566     unsigned MaxUpperBound;
567     /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
568     /// applies even if full unrolling is selected. This allows a target to fall
569     /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
570     unsigned FullUnrollMaxCount;
571     // Represents number of instructions optimized when "back edge"
572     // becomes "fall through" in unrolled loop.
573     // For now we count a conditional branch on a backedge and a comparison
574     // feeding it.
575     unsigned BEInsns;
576     /// Allow partial unrolling (unrolling of loops to expand the size of the
577     /// loop body, not only to eliminate small constant-trip-count loops).
578     bool Partial;
579     /// Allow runtime unrolling (unrolling of loops to expand the size of the
580     /// loop body even when the number of loop iterations is not known at
581     /// compile time).
582     bool Runtime;
583     /// Allow generation of a loop remainder (extra iterations after unroll).
584     bool AllowRemainder;
585     /// Allow emitting expensive instructions (such as divisions) when computing
586     /// the trip count of a loop for runtime unrolling.
587     bool AllowExpensiveTripCount;
588     /// Apply loop unroll on any kind of loop
589     /// (mainly to loops that fail runtime unrolling).
590     bool Force;
591     /// Allow using trip count upper bound to unroll loops.
592     bool UpperBound;
593     /// Allow unrolling of all the iterations of the runtime loop remainder.
594     bool UnrollRemainder;
595     /// Allow unroll and jam. Used to enable unroll and jam for the target.
596     bool UnrollAndJam;
597     /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
598     /// value above is used during unroll and jam for the outer loop size.
599     /// This value is used in the same manner to limit the size of the inner
600     /// loop.
601     unsigned UnrollAndJamInnerLoopThreshold;
602     /// Don't allow loop unrolling to simulate more than this number of
603     /// iterations when checking full unroll profitability
604     unsigned MaxIterationsCountToAnalyze;
605     /// Don't disable runtime unroll for the loops which were vectorized.
606     bool UnrollVectorizedLoop = false;
607   };
608 
609   /// Get target-customized preferences for the generic loop unrolling
610   /// transformation. The caller will initialize UP with the current
611   /// target-independent defaults.
612   void getUnrollingPreferences(Loop *L, ScalarEvolution &,
613                                UnrollingPreferences &UP,
614                                OptimizationRemarkEmitter *ORE) const;
615 
616   /// Query the target whether it would be profitable to convert the given loop
617   /// into a hardware loop.
618   bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
619                                 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
620                                 HardwareLoopInfo &HWLoopInfo) const;
621 
622   /// Query the target whether it would be prefered to create a predicated
623   /// vector loop, which can avoid the need to emit a scalar epilogue loop.
624   bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const;
625 
626   /// Query the target what the preferred style of tail folding is.
627   /// \param IVUpdateMayOverflow Tells whether it is known if the IV update
628   /// may (or will never) overflow for the suggested VF/UF in the given loop.
629   /// Targets can use this information to select a more optimal tail folding
630   /// style. The value conservatively defaults to true, such that no assumptions
631   /// are made on overflow.
632   TailFoldingStyle
633   getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const;
634 
635   // Parameters that control the loop peeling transformation
636   struct PeelingPreferences {
637     /// A forced peeling factor (the number of bodied of the original loop
638     /// that should be peeled off before the loop body). When set to 0, the
639     /// a peeling factor based on profile information and other factors.
640     unsigned PeelCount;
641     /// Allow peeling off loop iterations.
642     bool AllowPeeling;
643     /// Allow peeling off loop iterations for loop nests.
644     bool AllowLoopNestsPeeling;
645     /// Allow peeling basing on profile. Uses to enable peeling off all
646     /// iterations basing on provided profile.
647     /// If the value is true the peeling cost model can decide to peel only
648     /// some iterations and in this case it will set this to false.
649     bool PeelProfiledIterations;
650   };
651 
652   /// Get target-customized preferences for the generic loop peeling
653   /// transformation. The caller will initialize \p PP with the current
654   /// target-independent defaults with information from \p L and \p SE.
655   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
656                              PeelingPreferences &PP) const;
657 
658   /// Targets can implement their own combinations for target-specific
659   /// intrinsics. This function will be called from the InstCombine pass every
660   /// time a target-specific intrinsic is encountered.
661   ///
662   /// \returns std::nullopt to not do anything target specific or a value that
663   /// will be returned from the InstCombiner. It is possible to return null and
664   /// stop further processing of the intrinsic by returning nullptr.
665   std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC,
666                                                     IntrinsicInst & II) const;
667   /// Can be used to implement target-specific instruction combining.
668   /// \see instCombineIntrinsic
669   std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
670       InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask,
671       KnownBits & Known, bool &KnownBitsComputed) const;
672   /// Can be used to implement target-specific instruction combining.
673   /// \see instCombineIntrinsic
674   std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
675       InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts,
676       APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3,
677       std::function<void(Instruction *, unsigned, APInt, APInt &)>
678           SimplifyAndSetOp) const;
679   /// @}
680 
681   /// \name Scalar Target Information
682   /// @{
683 
684   /// Flags indicating the kind of support for population count.
685   ///
686   /// Compared to the SW implementation, HW support is supposed to
687   /// significantly boost the performance when the population is dense, and it
688   /// may or may not degrade performance if the population is sparse. A HW
689   /// support is considered as "Fast" if it can outperform, or is on a par
690   /// with, SW implementation when the population is sparse; otherwise, it is
691   /// considered as "Slow".
692   enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
693 
694   /// Return true if the specified immediate is legal add immediate, that
695   /// is the target has add instructions which can add a register with the
696   /// immediate without having to materialize the immediate into a register.
697   bool isLegalAddImmediate(int64_t Imm) const;
698 
699   /// Return true if the specified immediate is legal icmp immediate,
700   /// that is the target has icmp instructions which can compare a register
701   /// against the immediate without having to materialize the immediate into a
702   /// register.
703   bool isLegalICmpImmediate(int64_t Imm) const;
704 
705   /// Return true if the addressing mode represented by AM is legal for
706   /// this target, for a load/store of the specified type.
707   /// The type may be VoidTy, in which case only return true if the addressing
708   /// mode is legal for a load/store of any legal type.
709   /// If target returns true in LSRWithInstrQueries(), I may be valid.
710   /// TODO: Handle pre/postinc as well.
711   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
712                              bool HasBaseReg, int64_t Scale,
713                              unsigned AddrSpace = 0,
714                              Instruction *I = nullptr) const;
715 
716   /// Return true if LSR cost of C1 is lower than C2.
717   bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
718                      const TargetTransformInfo::LSRCost &C2) const;
719 
720   /// Return true if LSR major cost is number of registers. Targets which
721   /// implement their own isLSRCostLess and unset number of registers as major
722   /// cost should return false, otherwise return true.
723   bool isNumRegsMajorCostOfLSR() const;
724 
725   /// Return true if LSR should attempts to replace a use of an otherwise dead
726   /// primary IV in the latch condition with another IV available in the loop.
727   /// When successful, makes the primary IV dead.
728   bool shouldFoldTerminatingConditionAfterLSR() const;
729 
730   /// \returns true if LSR should not optimize a chain that includes \p I.
731   bool isProfitableLSRChainElement(Instruction *I) const;
732 
733   /// Return true if the target can fuse a compare and branch.
734   /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
735   /// calculation for the instructions in a loop.
736   bool canMacroFuseCmp() const;
737 
738   /// Return true if the target can save a compare for loop count, for example
739   /// hardware loop saves a compare.
740   bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
741                   DominatorTree *DT, AssumptionCache *AC,
742                   TargetLibraryInfo *LibInfo) const;
743 
744   enum AddressingModeKind {
745     AMK_PreIndexed,
746     AMK_PostIndexed,
747     AMK_None
748   };
749 
750   /// Return the preferred addressing mode LSR should make efforts to generate.
751   AddressingModeKind getPreferredAddressingMode(const Loop *L,
752                                                 ScalarEvolution *SE) const;
753 
754   /// Return true if the target supports masked store.
755   bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
756   /// Return true if the target supports masked load.
757   bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
758 
759   /// Return true if the target supports nontemporal store.
760   bool isLegalNTStore(Type *DataType, Align Alignment) const;
761   /// Return true if the target supports nontemporal load.
762   bool isLegalNTLoad(Type *DataType, Align Alignment) const;
763 
764   /// \Returns true if the target supports broadcasting a load to a vector of
765   /// type <NumElements x ElementTy>.
766   bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const;
767 
768   /// Return true if the target supports masked scatter.
769   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
770   /// Return true if the target supports masked gather.
771   bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
772   /// Return true if the target forces scalarizing of llvm.masked.gather
773   /// intrinsics.
774   bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const;
775   /// Return true if the target forces scalarizing of llvm.masked.scatter
776   /// intrinsics.
777   bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const;
778 
779   /// Return true if the target supports masked compress store.
780   bool isLegalMaskedCompressStore(Type *DataType) const;
781   /// Return true if the target supports masked expand load.
782   bool isLegalMaskedExpandLoad(Type *DataType) const;
783 
784   /// Return true if this is an alternating opcode pattern that can be lowered
785   /// to a single instruction on the target. In X86 this is for the addsub
786   /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
787   /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
788   /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
789   /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
790   /// \p VecTy is the vector type of the instruction to be generated.
791   bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
792                        const SmallBitVector &OpcodeMask) const;
793 
794   /// Return true if we should be enabling ordered reductions for the target.
795   bool enableOrderedReductions() const;
796 
797   /// Return true if the target has a unified operation to calculate division
798   /// and remainder. If so, the additional implicit multiplication and
799   /// subtraction required to calculate a remainder from division are free. This
800   /// can enable more aggressive transformations for division and remainder than
801   /// would typically be allowed using throughput or size cost models.
802   bool hasDivRemOp(Type *DataType, bool IsSigned) const;
803 
804   /// Return true if the given instruction (assumed to be a memory access
805   /// instruction) has a volatile variant. If that's the case then we can avoid
806   /// addrspacecast to generic AS for volatile loads/stores. Default
807   /// implementation returns false, which prevents address space inference for
808   /// volatile loads/stores.
809   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
810 
811   /// Return true if target doesn't mind addresses in vectors.
812   bool prefersVectorizedAddressing() const;
813 
814   /// Return the cost of the scaling factor used in the addressing
815   /// mode represented by AM for this target, for a load/store
816   /// of the specified type.
817   /// If the AM is supported, the return value must be >= 0.
818   /// If the AM is not supported, it returns a negative value.
819   /// TODO: Handle pre/postinc as well.
820   InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
821                                        int64_t BaseOffset, bool HasBaseReg,
822                                        int64_t Scale,
823                                        unsigned AddrSpace = 0) const;
824 
825   /// Return true if the loop strength reduce pass should make
826   /// Instruction* based TTI queries to isLegalAddressingMode(). This is
827   /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
828   /// immediate offset and no index register.
829   bool LSRWithInstrQueries() const;
830 
831   /// Return true if it's free to truncate a value of type Ty1 to type
832   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
833   /// by referencing its sub-register AX.
834   bool isTruncateFree(Type *Ty1, Type *Ty2) const;
835 
836   /// Return true if it is profitable to hoist instruction in the
837   /// then/else to before if.
838   bool isProfitableToHoist(Instruction *I) const;
839 
840   bool useAA() const;
841 
842   /// Return true if this type is legal.
843   bool isTypeLegal(Type *Ty) const;
844 
845   /// Returns the estimated number of registers required to represent \p Ty.
846   unsigned getRegUsageForType(Type *Ty) const;
847 
848   /// Return true if switches should be turned into lookup tables for the
849   /// target.
850   bool shouldBuildLookupTables() const;
851 
852   /// Return true if switches should be turned into lookup tables
853   /// containing this constant value for the target.
854   bool shouldBuildLookupTablesForConstant(Constant *C) const;
855 
856   /// Return true if lookup tables should be turned into relative lookup tables.
857   bool shouldBuildRelLookupTables() const;
858 
859   /// Return true if the input function which is cold at all call sites,
860   ///  should use coldcc calling convention.
861   bool useColdCCForColdCall(Function &F) const;
862 
863   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
864   /// are set if the demanded result elements need to be inserted and/or
865   /// extracted from vectors.
866   InstructionCost getScalarizationOverhead(VectorType *Ty,
867                                            const APInt &DemandedElts,
868                                            bool Insert, bool Extract,
869                                            TTI::TargetCostKind CostKind) const;
870 
871   /// Estimate the overhead of scalarizing an instructions unique
872   /// non-constant operands. The (potentially vector) types to use for each of
873   /// argument are passes via Tys.
874   InstructionCost
875   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
876                                    ArrayRef<Type *> Tys,
877                                    TTI::TargetCostKind CostKind) const;
878 
879   /// If target has efficient vector element load/store instructions, it can
880   /// return true here so that insertion/extraction costs are not added to
881   /// the scalarization cost of a load/store.
882   bool supportsEfficientVectorElementLoadStore() const;
883 
884   /// If the target supports tail calls.
885   bool supportsTailCalls() const;
886 
887   /// If target supports tail call on \p CB
888   bool supportsTailCallFor(const CallBase *CB) const;
889 
890   /// Don't restrict interleaved unrolling to small loops.
891   bool enableAggressiveInterleaving(bool LoopHasReductions) const;
892 
893   /// Returns options for expansion of memcmp. IsZeroCmp is
894   // true if this is the expansion of memcmp(p1, p2, s) == 0.
895   struct MemCmpExpansionOptions {
896     // Return true if memcmp expansion is enabled.
897     operator bool() const { return MaxNumLoads > 0; }
898 
899     // Maximum number of load operations.
900     unsigned MaxNumLoads = 0;
901 
902     // The list of available load sizes (in bytes), sorted in decreasing order.
903     SmallVector<unsigned, 8> LoadSizes;
904 
905     // For memcmp expansion when the memcmp result is only compared equal or
906     // not-equal to 0, allow up to this number of load pairs per block. As an
907     // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
908     //   a0 = load2bytes &a[0]
909     //   b0 = load2bytes &b[0]
910     //   a2 = load1byte  &a[2]
911     //   b2 = load1byte  &b[2]
912     //   r  = cmp eq (a0 ^ b0 | a2 ^ b2), 0
913     unsigned NumLoadsPerBlock = 1;
914 
915     // Set to true to allow overlapping loads. For example, 7-byte compares can
916     // be done with two 4-byte compares instead of 4+2+1-byte compares. This
917     // requires all loads in LoadSizes to be doable in an unaligned way.
918     bool AllowOverlappingLoads = false;
919 
920     // Sometimes, the amount of data that needs to be compared is smaller than
921     // the standard register size, but it cannot be loaded with just one load
922     // instruction. For example, if the size of the memory comparison is 6
923     // bytes, we can handle it more efficiently by loading all 6 bytes in a
924     // single block and generating an 8-byte number, instead of generating two
925     // separate blocks with conditional jumps for 4 and 2 byte loads. This
926     // approach simplifies the process and produces the comparison result as
927     // normal. This array lists the allowed sizes of memcmp tails that can be
928     // merged into one block
929     SmallVector<unsigned, 4> AllowedTailExpansions;
930   };
931   MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
932                                                bool IsZeroCmp) const;
933 
934   /// Should the Select Optimization pass be enabled and ran.
935   bool enableSelectOptimize() const;
936 
937   /// Should the Select Optimization pass treat the given instruction like a
938   /// select, potentially converting it to a conditional branch. This can
939   /// include select-like instructions like or(zext(c), x) that can be converted
940   /// to selects.
941   bool shouldTreatInstructionLikeSelect(const Instruction *I) const;
942 
943   /// Enable matching of interleaved access groups.
944   bool enableInterleavedAccessVectorization() const;
945 
946   /// Enable matching of interleaved access groups that contain predicated
947   /// accesses or gaps and therefore vectorized using masked
948   /// vector loads/stores.
949   bool enableMaskedInterleavedAccessVectorization() const;
950 
951   /// Indicate that it is potentially unsafe to automatically vectorize
952   /// floating-point operations because the semantics of vector and scalar
953   /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
954   /// does not support IEEE-754 denormal numbers, while depending on the
955   /// platform, scalar floating-point math does.
956   /// This applies to floating-point math operations and calls, not memory
957   /// operations, shuffles, or casts.
958   bool isFPVectorizationPotentiallyUnsafe() const;
959 
960   /// Determine if the target supports unaligned memory accesses.
961   bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
962                                       unsigned AddressSpace = 0,
963                                       Align Alignment = Align(1),
964                                       unsigned *Fast = nullptr) const;
965 
966   /// Return hardware support for population count.
967   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
968 
969   /// Return true if the hardware has a fast square-root instruction.
970   bool haveFastSqrt(Type *Ty) const;
971 
972   /// Return true if the cost of the instruction is too high to speculatively
973   /// execute and should be kept behind a branch.
974   /// This normally just wraps around a getInstructionCost() call, but some
975   /// targets might report a low TCK_SizeAndLatency value that is incompatible
976   /// with the fixed TCC_Expensive value.
977   /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
978   bool isExpensiveToSpeculativelyExecute(const Instruction *I) const;
979 
980   /// Return true if it is faster to check if a floating-point value is NaN
981   /// (or not-NaN) versus a comparison against a constant FP zero value.
982   /// Targets should override this if materializing a 0.0 for comparison is
983   /// generally as cheap as checking for ordered/unordered.
984   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
985 
986   /// Return the expected cost of supporting the floating point operation
987   /// of the specified type.
988   InstructionCost getFPOpCost(Type *Ty) const;
989 
990   /// Return the expected cost of materializing for the given integer
991   /// immediate of the specified type.
992   InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
993                                 TargetCostKind CostKind) const;
994 
995   /// Return the expected cost of materialization for the given integer
996   /// immediate of the specified type for a given instruction. The cost can be
997   /// zero if the immediate can be folded into the specified instruction.
998   InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
999                                     const APInt &Imm, Type *Ty,
1000                                     TargetCostKind CostKind,
1001                                     Instruction *Inst = nullptr) const;
1002   InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
1003                                       const APInt &Imm, Type *Ty,
1004                                       TargetCostKind CostKind) const;
1005 
1006   /// Return the expected cost for the given integer when optimising
1007   /// for size. This is different than the other integer immediate cost
1008   /// functions in that it is subtarget agnostic. This is useful when you e.g.
1009   /// target one ISA such as Aarch32 but smaller encodings could be possible
1010   /// with another such as Thumb. This return value is used as a penalty when
1011   /// the total costs for a constant is calculated (the bigger the cost, the
1012   /// more beneficial constant hoisting is).
1013   InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1014                                         const APInt &Imm, Type *Ty) const;
1015 
1016   /// It can be advantageous to detach complex constants from their uses to make
1017   /// their generation cheaper. This hook allows targets to report when such
1018   /// transformations might negatively effect the code generation of the
1019   /// underlying operation. The motivating example is divides whereby hoisting
1020   /// constants prevents the code generator's ability to transform them into
1021   /// combinations of simpler operations.
1022   bool preferToKeepConstantsAttached(const Instruction &Inst,
1023                                      const Function &Fn) const;
1024 
1025   /// @}
1026 
1027   /// \name Vector Target Information
1028   /// @{
1029 
1030   /// The various kinds of shuffle patterns for vector queries.
1031   enum ShuffleKind {
1032     SK_Broadcast,        ///< Broadcast element 0 to all other elements.
1033     SK_Reverse,          ///< Reverse the order of the vector.
1034     SK_Select,           ///< Selects elements from the corresponding lane of
1035                          ///< either source operand. This is equivalent to a
1036                          ///< vector select with a constant condition operand.
1037     SK_Transpose,        ///< Transpose two vectors.
1038     SK_InsertSubvector,  ///< InsertSubvector. Index indicates start offset.
1039     SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
1040     SK_PermuteTwoSrc,    ///< Merge elements from two source vectors into one
1041                          ///< with any shuffle mask.
1042     SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
1043                          ///< shuffle mask.
1044     SK_Splice            ///< Concatenates elements from the first input vector
1045                          ///< with elements of the second input vector. Returning
1046                          ///< a vector of the same type as the input vectors.
1047                          ///< Index indicates start offset in first input vector.
1048   };
1049 
1050   /// Additional information about an operand's possible values.
1051   enum OperandValueKind {
1052     OK_AnyValue,               // Operand can have any value.
1053     OK_UniformValue,           // Operand is uniform (splat of a value).
1054     OK_UniformConstantValue,   // Operand is uniform constant.
1055     OK_NonUniformConstantValue // Operand is a non uniform constant value.
1056   };
1057 
1058   /// Additional properties of an operand's values.
1059   enum OperandValueProperties {
1060     OP_None = 0,
1061     OP_PowerOf2 = 1,
1062     OP_NegatedPowerOf2 = 2,
1063   };
1064 
1065   // Describe the values an operand can take.  We're in the process
1066   // of migrating uses of OperandValueKind and OperandValueProperties
1067   // to use this class, and then will change the internal representation.
1068   struct OperandValueInfo {
1069     OperandValueKind Kind = OK_AnyValue;
1070     OperandValueProperties Properties = OP_None;
1071 
isConstantOperandValueInfo1072     bool isConstant() const {
1073       return Kind == OK_UniformConstantValue || Kind == OK_NonUniformConstantValue;
1074     }
isUniformOperandValueInfo1075     bool isUniform() const {
1076       return Kind == OK_UniformConstantValue || Kind == OK_UniformValue;
1077     }
isPowerOf2OperandValueInfo1078     bool isPowerOf2() const {
1079       return Properties == OP_PowerOf2;
1080     }
isNegatedPowerOf2OperandValueInfo1081     bool isNegatedPowerOf2() const {
1082       return Properties == OP_NegatedPowerOf2;
1083     }
1084 
getNoPropsOperandValueInfo1085     OperandValueInfo getNoProps() const {
1086       return {Kind, OP_None};
1087     }
1088   };
1089 
1090   /// \return the number of registers in the target-provided register class.
1091   unsigned getNumberOfRegisters(unsigned ClassID) const;
1092 
1093   /// \return the target-provided register class ID for the provided type,
1094   /// accounting for type promotion and other type-legalization techniques that
1095   /// the target might apply. However, it specifically does not account for the
1096   /// scalarization or splitting of vector types. Should a vector type require
1097   /// scalarization or splitting into multiple underlying vector registers, that
1098   /// type should be mapped to a register class containing no registers.
1099   /// Specifically, this is designed to provide a simple, high-level view of the
1100   /// register allocation later performed by the backend. These register classes
1101   /// don't necessarily map onto the register classes used by the backend.
1102   /// FIXME: It's not currently possible to determine how many registers
1103   /// are used by the provided type.
1104   unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
1105 
1106   /// \return the target-provided register class name
1107   const char *getRegisterClassName(unsigned ClassID) const;
1108 
1109   enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector };
1110 
1111   /// \return The width of the largest scalar or vector register type.
1112   TypeSize getRegisterBitWidth(RegisterKind K) const;
1113 
1114   /// \return The width of the smallest vector register type.
1115   unsigned getMinVectorRegisterBitWidth() const;
1116 
1117   /// \return The maximum value of vscale if the target specifies an
1118   ///  architectural maximum vector length, and std::nullopt otherwise.
1119   std::optional<unsigned> getMaxVScale() const;
1120 
1121   /// \return the value of vscale to tune the cost model for.
1122   std::optional<unsigned> getVScaleForTuning() const;
1123 
1124   /// \return true if vscale is known to be a power of 2
1125   bool isVScaleKnownToBeAPowerOfTwo() const;
1126 
1127   /// \return True if the vectorization factor should be chosen to
1128   /// make the vector of the smallest element type match the size of a
1129   /// vector register. For wider element types, this could result in
1130   /// creating vectors that span multiple vector registers.
1131   /// If false, the vectorization factor will be chosen based on the
1132   /// size of the widest element type.
1133   /// \p K Register Kind for vectorization.
1134   bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;
1135 
1136   /// \return The minimum vectorization factor for types of given element
1137   /// bit width, or 0 if there is no minimum VF. The returned value only
1138   /// applies when shouldMaximizeVectorBandwidth returns true.
1139   /// If IsScalable is true, the returned ElementCount must be a scalable VF.
1140   ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
1141 
1142   /// \return The maximum vectorization factor for types of given element
1143   /// bit width and opcode, or 0 if there is no maximum VF.
1144   /// Currently only used by the SLP vectorizer.
1145   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
1146 
1147   /// \return The minimum vectorization factor for the store instruction. Given
1148   /// the initial estimation of the minimum vector factor and store value type,
1149   /// it tries to find possible lowest VF, which still might be profitable for
1150   /// the vectorization.
1151   /// \param VF Initial estimation of the minimum vector factor.
1152   /// \param ScalarMemTy Scalar memory type of the store operation.
1153   /// \param ScalarValTy Scalar type of the stored value.
1154   /// Currently only used by the SLP vectorizer.
1155   unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1156                              Type *ScalarValTy) const;
1157 
1158   /// \return True if it should be considered for address type promotion.
1159   /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
1160   /// profitable without finding other extensions fed by the same input.
1161   bool shouldConsiderAddressTypePromotion(
1162       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
1163 
1164   /// \return The size of a cache line in bytes.
1165   unsigned getCacheLineSize() const;
1166 
1167   /// The possible cache levels
1168   enum class CacheLevel {
1169     L1D, // The L1 data cache
1170     L2D, // The L2 data cache
1171 
1172     // We currently do not model L3 caches, as their sizes differ widely between
1173     // microarchitectures. Also, we currently do not have a use for L3 cache
1174     // size modeling yet.
1175   };
1176 
1177   /// \return The size of the cache level in bytes, if available.
1178   std::optional<unsigned> getCacheSize(CacheLevel Level) const;
1179 
1180   /// \return The associativity of the cache level, if available.
1181   std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
1182 
1183   /// \return The minimum architectural page size for the target.
1184   std::optional<unsigned> getMinPageSize() const;
1185 
1186   /// \return How much before a load we should place the prefetch
1187   /// instruction.  This is currently measured in number of
1188   /// instructions.
1189   unsigned getPrefetchDistance() const;
1190 
1191   /// Some HW prefetchers can handle accesses up to a certain constant stride.
1192   /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
1193   /// and the arguments provided are meant to serve as a basis for deciding this
1194   /// for a particular loop.
1195   ///
1196   /// \param NumMemAccesses        Number of memory accesses in the loop.
1197   /// \param NumStridedMemAccesses Number of the memory accesses that
1198   ///                              ScalarEvolution could find a known stride
1199   ///                              for.
1200   /// \param NumPrefetches         Number of software prefetches that will be
1201   ///                              emitted as determined by the addresses
1202   ///                              involved and the cache line size.
1203   /// \param HasCall               True if the loop contains a call.
1204   ///
1205   /// \return This is the minimum stride in bytes where it makes sense to start
1206   ///         adding SW prefetches. The default is 1, i.e. prefetch with any
1207   ///         stride.
1208   unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1209                                 unsigned NumStridedMemAccesses,
1210                                 unsigned NumPrefetches, bool HasCall) const;
1211 
1212   /// \return The maximum number of iterations to prefetch ahead.  If
1213   /// the required number of iterations is more than this number, no
1214   /// prefetching is performed.
1215   unsigned getMaxPrefetchIterationsAhead() const;
1216 
1217   /// \return True if prefetching should also be done for writes.
1218   bool enableWritePrefetching() const;
1219 
1220   /// \return if target want to issue a prefetch in address space \p AS.
1221   bool shouldPrefetchAddressSpace(unsigned AS) const;
1222 
1223   /// \return The maximum interleave factor that any transform should try to
1224   /// perform for this target. This number depends on the level of parallelism
1225   /// and the number of execution units in the CPU.
1226   unsigned getMaxInterleaveFactor(ElementCount VF) const;
1227 
1228   /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1229   static OperandValueInfo getOperandInfo(const Value *V);
1230 
1231   /// This is an approximation of reciprocal throughput of a math/logic op.
1232   /// A higher cost indicates less expected throughput.
1233   /// From Agner Fog's guides, reciprocal throughput is "the average number of
1234   /// clock cycles per instruction when the instructions are not part of a
1235   /// limiting dependency chain."
1236   /// Therefore, costs should be scaled to account for multiple execution units
1237   /// on the target that can process this type of instruction. For example, if
1238   /// there are 5 scalar integer units and 2 vector integer units that can
1239   /// calculate an 'add' in a single cycle, this model should indicate that the
1240   /// cost of the vector add instruction is 2.5 times the cost of the scalar
1241   /// add instruction.
1242   /// \p Args is an optional argument which holds the instruction operands
1243   /// values so the TTI can analyze those values searching for special
1244   /// cases or optimizations based on those values.
1245   /// \p CxtI is the optional original context instruction, if one exists, to
1246   /// provide even more information.
1247   InstructionCost getArithmeticInstrCost(
1248       unsigned Opcode, Type *Ty,
1249       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1250       TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None},
1251       TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
1252       ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
1253       const Instruction *CxtI = nullptr) const;
1254 
1255   /// Returns the cost estimation for alternating opcode pattern that can be
1256   /// lowered to a single instruction on the target. In X86 this is for the
1257   /// addsub instruction which corrsponds to a Shuffle + Fadd + FSub pattern in
1258   /// IR. This function expects two opcodes: \p Opcode1 and \p Opcode2 being
1259   /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
1260   /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
1261   /// \p VecTy is the vector type of the instruction to be generated.
1262   InstructionCost getAltInstrCost(
1263       VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
1264       const SmallBitVector &OpcodeMask,
1265       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1266 
1267   /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
1268   /// The exact mask may be passed as Mask, or else the array will be empty.
1269   /// The index and subtype parameters are used by the subvector insertion and
1270   /// extraction shuffle kinds to show the insert/extract point and the type of
1271   /// the subvector being inserted/extracted. The operands of the shuffle can be
1272   /// passed through \p Args, which helps improve the cost estimation in some
1273   /// cases, like in broadcast loads.
1274   /// NOTE: For subvector extractions Tp represents the source type.
1275   InstructionCost
1276   getShuffleCost(ShuffleKind Kind, VectorType *Tp,
1277                  ArrayRef<int> Mask = std::nullopt,
1278                  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1279                  int Index = 0, VectorType *SubTp = nullptr,
1280                  ArrayRef<const Value *> Args = std::nullopt) const;
1281 
1282   /// Represents a hint about the context in which a cast is used.
1283   ///
1284   /// For zext/sext, the context of the cast is the operand, which must be a
1285   /// load of some kind. For trunc, the context is of the cast is the single
1286   /// user of the instruction, which must be a store of some kind.
1287   ///
1288   /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1289   /// type of cast it's dealing with, as not every cast is equal. For instance,
1290   /// the zext of a load may be free, but the zext of an interleaving load can
1291   //// be (very) expensive!
1292   ///
1293   /// See \c getCastContextHint to compute a CastContextHint from a cast
1294   /// Instruction*. Callers can use it if they don't need to override the
1295   /// context and just want it to be calculated from the instruction.
1296   ///
1297   /// FIXME: This handles the types of load/store that the vectorizer can
1298   /// produce, which are the cases where the context instruction is most
1299   /// likely to be incorrect. There are other situations where that can happen
1300   /// too, which might be handled here but in the long run a more general
1301   /// solution of costing multiple instructions at the same times may be better.
1302   enum class CastContextHint : uint8_t {
1303     None,          ///< The cast is not used with a load/store of any kind.
1304     Normal,        ///< The cast is used with a normal load/store.
1305     Masked,        ///< The cast is used with a masked load/store.
1306     GatherScatter, ///< The cast is used with a gather/scatter.
1307     Interleave,    ///< The cast is used with an interleaved load/store.
1308     Reversed,      ///< The cast is used with a reversed load/store.
1309   };
1310 
1311   /// Calculates a CastContextHint from \p I.
1312   /// This should be used by callers of getCastInstrCost if they wish to
1313   /// determine the context from some instruction.
1314   /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1315   /// or if it's another type of cast.
1316   static CastContextHint getCastContextHint(const Instruction *I);
1317 
1318   /// \return The expected cost of cast instructions, such as bitcast, trunc,
1319   /// zext, etc. If there is an existing instruction that holds Opcode, it
1320   /// may be passed in the 'I' parameter.
1321   InstructionCost
1322   getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1323                    TTI::CastContextHint CCH,
1324                    TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
1325                    const Instruction *I = nullptr) const;
1326 
1327   /// \return The expected cost of a sign- or zero-extended vector extract. Use
1328   /// Index = -1 to indicate that there is no information about the index value.
1329   InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1330                                            VectorType *VecTy,
1331                                            unsigned Index) const;
1332 
1333   /// \return The expected cost of control-flow related instructions such as
1334   /// Phi, Ret, Br, Switch.
1335   InstructionCost
1336   getCFInstrCost(unsigned Opcode,
1337                  TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
1338                  const Instruction *I = nullptr) const;
1339 
1340   /// \returns The expected cost of compare and select instructions. If there
1341   /// is an existing instruction that holds Opcode, it may be passed in the
1342   /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1343   /// is using a compare with the specified predicate as condition. When vector
1344   /// types are passed, \p VecPred must be used for all lanes.
1345   InstructionCost
1346   getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1347                      CmpInst::Predicate VecPred,
1348                      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1349                      const Instruction *I = nullptr) const;
1350 
1351   /// \return The expected cost of vector Insert and Extract.
1352   /// Use -1 to indicate that there is no information on the index value.
1353   /// This is used when the instruction is not available; a typical use
1354   /// case is to provision the cost of vectorization/scalarization in
1355   /// vectorizer passes.
1356   InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1357                                      TTI::TargetCostKind CostKind,
1358                                      unsigned Index = -1, Value *Op0 = nullptr,
1359                                      Value *Op1 = nullptr) const;
1360 
1361   /// \return The expected cost of vector Insert and Extract.
1362   /// This is used when instruction is available, and implementation
1363   /// asserts 'I' is not nullptr.
1364   ///
1365   /// A typical suitable use case is cost estimation when vector instruction
1366   /// exists (e.g., from basic blocks during transformation).
1367   InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1368                                      TTI::TargetCostKind CostKind,
1369                                      unsigned Index = -1) const;
1370 
1371   /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
1372   /// \p ReplicationFactor times.
1373   ///
1374   /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
1375   ///   <0,0,0,1,1,1,2,2,2,3,3,3>
1376   InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
1377                                             int VF,
1378                                             const APInt &DemandedDstElts,
1379                                             TTI::TargetCostKind CostKind);
1380 
1381   /// \return The cost of Load and Store instructions.
1382   InstructionCost
1383   getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1384                   unsigned AddressSpace,
1385                   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1386                   OperandValueInfo OpdInfo = {OK_AnyValue, OP_None},
1387                   const Instruction *I = nullptr) const;
1388 
1389   /// \return The cost of VP Load and Store instructions.
1390   InstructionCost
1391   getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1392                     unsigned AddressSpace,
1393                     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1394                     const Instruction *I = nullptr) const;
1395 
1396   /// \return The cost of masked Load and Store instructions.
1397   InstructionCost getMaskedMemoryOpCost(
1398       unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1399       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1400 
1401   /// \return The cost of Gather or Scatter operation
1402   /// \p Opcode - is a type of memory access Load or Store
1403   /// \p DataTy - a vector type of the data to be loaded or stored
1404   /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1405   /// \p VariableMask - true when the memory access is predicated with a mask
1406   ///                   that is not a compile-time constant
1407   /// \p Alignment - alignment of single element
1408   /// \p I - the optional original context instruction, if one exists, e.g. the
1409   ///        load/store to transform or the call to the gather/scatter intrinsic
1410   InstructionCost getGatherScatterOpCost(
1411       unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1412       Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1413       const Instruction *I = nullptr) const;
1414 
1415   /// \return The cost of the interleaved memory operation.
1416   /// \p Opcode is the memory operation code
1417   /// \p VecTy is the vector type of the interleaved access.
1418   /// \p Factor is the interleave factor
1419   /// \p Indices is the indices for interleaved load members (as interleaved
1420   ///    load allows gaps)
1421   /// \p Alignment is the alignment of the memory operation
1422   /// \p AddressSpace is address space of the pointer.
1423   /// \p UseMaskForCond indicates if the memory access is predicated.
1424   /// \p UseMaskForGaps indicates if gaps should be masked.
1425   InstructionCost getInterleavedMemoryOpCost(
1426       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1427       Align Alignment, unsigned AddressSpace,
1428       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1429       bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1430 
1431   /// A helper function to determine the type of reduction algorithm used
1432   /// for a given \p Opcode and set of FastMathFlags \p FMF.
requiresOrderedReduction(std::optional<FastMathFlags> FMF)1433   static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
1434     return FMF && !(*FMF).allowReassoc();
1435   }
1436 
1437   /// Calculate the cost of vector reduction intrinsics.
1438   ///
1439   /// This is the cost of reducing the vector value of type \p Ty to a scalar
1440   /// value using the operation denoted by \p Opcode. The FastMathFlags
1441   /// parameter \p FMF indicates what type of reduction we are performing:
1442   ///   1. Tree-wise. This is the typical 'fast' reduction performed that
1443   ///   involves successively splitting a vector into half and doing the
1444   ///   operation on the pair of halves until you have a scalar value. For
1445   ///   example:
1446   ///     (v0, v1, v2, v3)
1447   ///     ((v0+v2), (v1+v3), undef, undef)
1448   ///     ((v0+v2+v1+v3), undef, undef, undef)
1449   ///   This is the default behaviour for integer operations, whereas for
1450   ///   floating point we only do this if \p FMF indicates that
1451   ///   reassociation is allowed.
1452   ///   2. Ordered. For a vector with N elements this involves performing N
1453   ///   operations in lane order, starting with an initial scalar value, i.e.
1454   ///     result = InitVal + v0
1455   ///     result = result + v1
1456   ///     result = result + v2
1457   ///     result = result + v3
1458   ///   This is only the case for FP operations and when reassociation is not
1459   ///   allowed.
1460   ///
1461   InstructionCost getArithmeticReductionCost(
1462       unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1463       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1464 
1465   InstructionCost getMinMaxReductionCost(
1466       Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF = FastMathFlags(),
1467       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1468 
1469   /// Calculate the cost of an extended reduction pattern, similar to
1470   /// getArithmeticReductionCost of an Add reduction with multiply and optional
1471   /// extensions. This is the cost of as:
1472   /// ResTy vecreduce.add(mul (A, B)).
1473   /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)).
1474   InstructionCost getMulAccReductionCost(
1475       bool IsUnsigned, Type *ResTy, VectorType *Ty,
1476       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1477 
1478   /// Calculate the cost of an extended reduction pattern, similar to
1479   /// getArithmeticReductionCost of a reduction with an extension.
1480   /// This is the cost of as:
1481   /// ResTy vecreduce.opcode(ext(Ty A)).
1482   InstructionCost getExtendedReductionCost(
1483       unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1484       FastMathFlags FMF,
1485       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1486 
1487   /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1488   /// Three cases are handled: 1. scalar instruction 2. vector instruction
1489   /// 3. scalar instruction which is to be vectorized.
1490   InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1491                                         TTI::TargetCostKind CostKind) const;
1492 
1493   /// \returns The cost of Call instructions.
1494   InstructionCost getCallInstrCost(
1495       Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1496       TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
1497 
1498   /// \returns The number of pieces into which the provided type must be
1499   /// split during legalization. Zero is returned when the answer is unknown.
1500   unsigned getNumberOfParts(Type *Tp) const;
1501 
1502   /// \returns The cost of the address computation. For most targets this can be
1503   /// merged into the instruction indexing mode. Some targets might want to
1504   /// distinguish between address computation for memory operations on vector
1505   /// types and scalar types. Such targets should override this function.
1506   /// The 'SE' parameter holds pointer for the scalar evolution object which
1507   /// is used in order to get the Ptr step value in case of constant stride.
1508   /// The 'Ptr' parameter holds SCEV of the access pointer.
1509   InstructionCost getAddressComputationCost(Type *Ty,
1510                                             ScalarEvolution *SE = nullptr,
1511                                             const SCEV *Ptr = nullptr) const;
1512 
1513   /// \returns The cost, if any, of keeping values of the given types alive
1514   /// over a callsite.
1515   ///
1516   /// Some types may require the use of register classes that do not have
1517   /// any callee-saved registers, so would require a spill and fill.
1518   InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
1519 
1520   /// \returns True if the intrinsic is a supported memory intrinsic.  Info
1521   /// will contain additional information - whether the intrinsic may write
1522   /// or read to memory, volatility and the pointer.  Info is undefined
1523   /// if false is returned.
1524   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
1525 
1526   /// \returns The maximum element size, in bytes, for an element
1527   /// unordered-atomic memory intrinsic.
1528   unsigned getAtomicMemIntrinsicMaxElementSize() const;
1529 
1530   /// \returns A value which is the result of the given memory intrinsic.  New
1531   /// instructions may be created to extract the result from the given intrinsic
1532   /// memory operation.  Returns nullptr if the target cannot create a result
1533   /// from the given intrinsic.
1534   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1535                                            Type *ExpectedType) const;
1536 
1537   /// \returns The type to use in a loop expansion of a memcpy call.
1538   Type *getMemcpyLoopLoweringType(
1539       LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1540       unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
1541       std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
1542 
1543   /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1544   /// \param RemainingBytes The number of bytes to copy.
1545   ///
1546   /// Calculates the operand types to use when copying \p RemainingBytes of
1547   /// memory, where source and destination alignments are \p SrcAlign and
1548   /// \p DestAlign respectively.
1549   void getMemcpyLoopResidualLoweringType(
1550       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1551       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1552       unsigned SrcAlign, unsigned DestAlign,
1553       std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
1554 
1555   /// \returns True if the two functions have compatible attributes for inlining
1556   /// purposes.
1557   bool areInlineCompatible(const Function *Caller,
1558                            const Function *Callee) const;
1559 
1560   /// Returns a penalty for invoking call \p Call in \p F.
1561   /// For example, if a function F calls a function G, which in turn calls
1562   /// function H, then getInlineCallPenalty(F, H()) would return the
1563   /// penalty of calling H from F, e.g. after inlining G into F.
1564   /// \p DefaultCallPenalty is passed to give a default penalty that
1565   /// the target can amend or override.
1566   unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
1567                                 unsigned DefaultCallPenalty) const;
1568 
1569   /// \returns True if the caller and callee agree on how \p Types will be
1570   /// passed to or returned from the callee.
1571   /// to the callee.
1572   /// \param Types List of types to check.
1573   bool areTypesABICompatible(const Function *Caller, const Function *Callee,
1574                              const ArrayRef<Type *> &Types) const;
1575 
1576   /// The type of load/store indexing.
1577   enum MemIndexedMode {
1578     MIM_Unindexed, ///< No indexing.
1579     MIM_PreInc,    ///< Pre-incrementing.
1580     MIM_PreDec,    ///< Pre-decrementing.
1581     MIM_PostInc,   ///< Post-incrementing.
1582     MIM_PostDec    ///< Post-decrementing.
1583   };
1584 
1585   /// \returns True if the specified indexed load for the given type is legal.
1586   bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1587 
1588   /// \returns True if the specified indexed store for the given type is legal.
1589   bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1590 
1591   /// \returns The bitwidth of the largest vector type that should be used to
1592   /// load/store in the given address space.
1593   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1594 
1595   /// \returns True if the load instruction is legal to vectorize.
1596   bool isLegalToVectorizeLoad(LoadInst *LI) const;
1597 
1598   /// \returns True if the store instruction is legal to vectorize.
1599   bool isLegalToVectorizeStore(StoreInst *SI) const;
1600 
1601   /// \returns True if it is legal to vectorize the given load chain.
1602   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
1603                                    unsigned AddrSpace) const;
1604 
1605   /// \returns True if it is legal to vectorize the given store chain.
1606   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
1607                                     unsigned AddrSpace) const;
1608 
1609   /// \returns True if it is legal to vectorize the given reduction kind.
1610   bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
1611                                    ElementCount VF) const;
1612 
1613   /// \returns True if the given type is supported for scalable vectors
1614   bool isElementTypeLegalForScalableVector(Type *Ty) const;
1615 
1616   /// \returns The new vector factor value if the target doesn't support \p
1617   /// SizeInBytes loads or has a better vector factor.
1618   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1619                                unsigned ChainSizeInBytes,
1620                                VectorType *VecTy) const;
1621 
1622   /// \returns The new vector factor value if the target doesn't support \p
1623   /// SizeInBytes stores or has a better vector factor.
1624   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1625                                 unsigned ChainSizeInBytes,
1626                                 VectorType *VecTy) const;
1627 
1628   /// Flags describing the kind of vector reduction.
1629   struct ReductionFlags {
1630     ReductionFlags() = default;
1631     bool IsMaxOp =
1632         false; ///< If the op a min/max kind, true if it's a max operation.
1633     bool IsSigned = false; ///< Whether the operation is a signed int reduction.
1634     bool NoNaN =
1635         false; ///< If op is an fp min/max, whether NaNs may be present.
1636   };
1637 
1638   /// \returns True if the target prefers reductions in loop.
1639   bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1640                              ReductionFlags Flags) const;
1641 
1642   /// \returns True if the target prefers reductions select kept in the loop
1643   /// when tail folding. i.e.
1644   /// loop:
1645   ///   p = phi (0, s)
1646   ///   a = add (p, x)
1647   ///   s = select (mask, a, p)
1648   /// vecreduce.add(s)
1649   ///
1650   /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1651   /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1652   /// by the target, this can lead to cleaner code generation.
1653   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1654                                        ReductionFlags Flags) const;
1655 
1656   /// Return true if the loop vectorizer should consider vectorizing an
1657   /// otherwise scalar epilogue loop.
1658   bool preferEpilogueVectorization() const;
1659 
1660   /// \returns True if the target wants to expand the given reduction intrinsic
1661   /// into a shuffle sequence.
1662   bool shouldExpandReduction(const IntrinsicInst *II) const;
1663 
1664   /// \returns the size cost of rematerializing a GlobalValue address relative
1665   /// to a stack reload.
1666   unsigned getGISelRematGlobalCost() const;
1667 
1668   /// \returns the lower bound of a trip count to decide on vectorization
1669   /// while tail-folding.
1670   unsigned getMinTripCountTailFoldingThreshold() const;
1671 
1672   /// \returns True if the target supports scalable vectors.
1673   bool supportsScalableVectors() const;
1674 
1675   /// \return true when scalable vectorization is preferred.
1676   bool enableScalableVectorization() const;
1677 
1678   /// \name Vector Predication Information
1679   /// @{
1680   /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1681   /// in hardware, for the given opcode and type/alignment. (see LLVM Language
1682   /// Reference - "Vector Predication Intrinsics").
1683   /// Use of %evl is discouraged when that is not the case.
1684   bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
1685                              Align Alignment) const;
1686 
1687   struct VPLegalization {
1688     enum VPTransform {
1689       // keep the predicating parameter
1690       Legal = 0,
1691       // where legal, discard the predicate parameter
1692       Discard = 1,
1693       // transform into something else that is also predicating
1694       Convert = 2
1695     };
1696 
1697     // How to transform the EVL parameter.
1698     // Legal:   keep the EVL parameter as it is.
1699     // Discard: Ignore the EVL parameter where it is safe to do so.
1700     // Convert: Fold the EVL into the mask parameter.
1701     VPTransform EVLParamStrategy;
1702 
1703     // How to transform the operator.
1704     // Legal:   The target supports this operator.
1705     // Convert: Convert this to a non-VP operation.
1706     // The 'Discard' strategy is invalid.
1707     VPTransform OpStrategy;
1708 
shouldDoNothingVPLegalization1709     bool shouldDoNothing() const {
1710       return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
1711     }
VPLegalizationVPLegalization1712     VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)
1713         : EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {}
1714   };
1715 
1716   /// \returns How the target needs this vector-predicated operation to be
1717   /// transformed.
1718   VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const;
1719   /// @}
1720 
1721   /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb
1722   /// state.
1723   ///
1724   /// Used by the LowerTypeTests pass, which constructs an IR inline assembler
1725   /// node containing a jump table in a format suitable for the target, so it
1726   /// needs to know what format of jump table it can legally use.
1727   ///
1728   /// For non-Arm targets, this function isn't used. It defaults to returning
1729   /// false, but it shouldn't matter what it returns anyway.
1730   bool hasArmWideBranch(bool Thumb) const;
1731 
1732   /// \return The maximum number of function arguments the target supports.
1733   unsigned getMaxNumArgs() const;
1734 
1735   /// @}
1736 
1737 private:
1738   /// The abstract base class used to type erase specific TTI
1739   /// implementations.
1740   class Concept;
1741 
1742   /// The template model for the base class which wraps a concrete
1743   /// implementation in a type erased interface.
1744   template <typename T> class Model;
1745 
1746   std::unique_ptr<Concept> TTIImpl;
1747 };
1748 
1749 class TargetTransformInfo::Concept {
1750 public:
1751   virtual ~Concept() = 0;
1752   virtual const DataLayout &getDataLayout() const = 0;
1753   virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
1754                                      ArrayRef<const Value *> Operands,
1755                                      Type *AccessType,
1756                                      TTI::TargetCostKind CostKind) = 0;
1757   virtual InstructionCost
1758   getPointersChainCost(ArrayRef<const Value *> Ptrs, const Value *Base,
1759                        const TTI::PointersChainInfo &Info, Type *AccessTy,
1760                        TTI::TargetCostKind CostKind) = 0;
1761   virtual unsigned getInliningThresholdMultiplier() const = 0;
1762   virtual unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const = 0;
1763   virtual unsigned
1764   getInliningCostBenefitAnalysisProfitableMultiplier() const = 0;
1765   virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
1766   virtual int getInlinerVectorBonusPercent() const = 0;
1767   virtual unsigned getCallerAllocaCost(const CallBase *CB,
1768                                        const AllocaInst *AI) const = 0;
1769   virtual InstructionCost getMemcpyCost(const Instruction *I) = 0;
1770   virtual uint64_t getMaxMemIntrinsicInlineSizeThreshold() const = 0;
1771   virtual unsigned
1772   getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
1773                                    ProfileSummaryInfo *PSI,
1774                                    BlockFrequencyInfo *BFI) = 0;
1775   virtual InstructionCost getInstructionCost(const User *U,
1776                                              ArrayRef<const Value *> Operands,
1777                                              TargetCostKind CostKind) = 0;
1778   virtual BranchProbability getPredictableBranchThreshold() = 0;
1779   virtual bool hasBranchDivergence(const Function *F = nullptr) = 0;
1780   virtual bool isSourceOfDivergence(const Value *V) = 0;
1781   virtual bool isAlwaysUniform(const Value *V) = 0;
1782   virtual bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1783   virtual bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const = 0;
1784   virtual unsigned getFlatAddressSpace() = 0;
1785   virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1786                                           Intrinsic::ID IID) const = 0;
1787   virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1788   virtual bool
1789   canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0;
1790   virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
1791   virtual bool isSingleThreaded() const = 0;
1792   virtual std::pair<const Value *, unsigned>
1793   getPredicatedAddrSpace(const Value *V) const = 0;
1794   virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1795                                                   Value *OldV,
1796                                                   Value *NewV) const = 0;
1797   virtual bool isLoweredToCall(const Function *F) = 0;
1798   virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1799                                        UnrollingPreferences &UP,
1800                                        OptimizationRemarkEmitter *ORE) = 0;
1801   virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1802                                      PeelingPreferences &PP) = 0;
1803   virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1804                                         AssumptionCache &AC,
1805                                         TargetLibraryInfo *LibInfo,
1806                                         HardwareLoopInfo &HWLoopInfo) = 0;
1807   virtual bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) = 0;
1808   virtual TailFoldingStyle
1809   getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) = 0;
1810   virtual std::optional<Instruction *> instCombineIntrinsic(
1811       InstCombiner &IC, IntrinsicInst &II) = 0;
1812   virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
1813       InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask,
1814       KnownBits & Known, bool &KnownBitsComputed) = 0;
1815   virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1816       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts,
1817       APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
1818       std::function<void(Instruction *, unsigned, APInt, APInt &)>
1819           SimplifyAndSetOp) = 0;
1820   virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1821   virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1822   virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1823                                      int64_t BaseOffset, bool HasBaseReg,
1824                                      int64_t Scale, unsigned AddrSpace,
1825                                      Instruction *I) = 0;
1826   virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
1827                              const TargetTransformInfo::LSRCost &C2) = 0;
1828   virtual bool isNumRegsMajorCostOfLSR() = 0;
1829   virtual bool shouldFoldTerminatingConditionAfterLSR() const = 0;
1830   virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
1831   virtual bool canMacroFuseCmp() = 0;
1832   virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1833                           LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1834                           TargetLibraryInfo *LibInfo) = 0;
1835   virtual AddressingModeKind
1836     getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0;
1837   virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
1838   virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
1839   virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
1840   virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
1841   virtual bool isLegalBroadcastLoad(Type *ElementTy,
1842                                     ElementCount NumElements) const = 0;
1843   virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
1844   virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
1845   virtual bool forceScalarizeMaskedGather(VectorType *DataType,
1846                                           Align Alignment) = 0;
1847   virtual bool forceScalarizeMaskedScatter(VectorType *DataType,
1848                                            Align Alignment) = 0;
1849   virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
1850   virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
1851   virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
1852                                unsigned Opcode1,
1853                                const SmallBitVector &OpcodeMask) const = 0;
1854   virtual bool enableOrderedReductions() = 0;
1855   virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1856   virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1857   virtual bool prefersVectorizedAddressing() = 0;
1858   virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1859                                                int64_t BaseOffset,
1860                                                bool HasBaseReg, int64_t Scale,
1861                                                unsigned AddrSpace) = 0;
1862   virtual bool LSRWithInstrQueries() = 0;
1863   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1864   virtual bool isProfitableToHoist(Instruction *I) = 0;
1865   virtual bool useAA() = 0;
1866   virtual bool isTypeLegal(Type *Ty) = 0;
1867   virtual unsigned getRegUsageForType(Type *Ty) = 0;
1868   virtual bool shouldBuildLookupTables() = 0;
1869   virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1870   virtual bool shouldBuildRelLookupTables() = 0;
1871   virtual bool useColdCCForColdCall(Function &F) = 0;
1872   virtual InstructionCost getScalarizationOverhead(VectorType *Ty,
1873                                                    const APInt &DemandedElts,
1874                                                    bool Insert, bool Extract,
1875                                                    TargetCostKind CostKind) = 0;
1876   virtual InstructionCost
1877   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1878                                    ArrayRef<Type *> Tys,
1879                                    TargetCostKind CostKind) = 0;
1880   virtual bool supportsEfficientVectorElementLoadStore() = 0;
1881   virtual bool supportsTailCalls() = 0;
1882   virtual bool supportsTailCallFor(const CallBase *CB) = 0;
1883   virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1884   virtual MemCmpExpansionOptions
1885   enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
1886   virtual bool enableSelectOptimize() = 0;
1887   virtual bool shouldTreatInstructionLikeSelect(const Instruction *I) = 0;
1888   virtual bool enableInterleavedAccessVectorization() = 0;
1889   virtual bool enableMaskedInterleavedAccessVectorization() = 0;
1890   virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1891   virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1892                                               unsigned BitWidth,
1893                                               unsigned AddressSpace,
1894                                               Align Alignment,
1895                                               unsigned *Fast) = 0;
1896   virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1897   virtual bool haveFastSqrt(Type *Ty) = 0;
1898   virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) = 0;
1899   virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1900   virtual InstructionCost getFPOpCost(Type *Ty) = 0;
1901   virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1902                                                 const APInt &Imm, Type *Ty) = 0;
1903   virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
1904                                         TargetCostKind CostKind) = 0;
1905   virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1906                                             const APInt &Imm, Type *Ty,
1907                                             TargetCostKind CostKind,
1908                                             Instruction *Inst = nullptr) = 0;
1909   virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
1910                                               const APInt &Imm, Type *Ty,
1911                                               TargetCostKind CostKind) = 0;
1912   virtual bool preferToKeepConstantsAttached(const Instruction &Inst,
1913                                              const Function &Fn) const = 0;
1914   virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
1915   virtual unsigned getRegisterClassForType(bool Vector,
1916                                            Type *Ty = nullptr) const = 0;
1917   virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
1918   virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0;
1919   virtual unsigned getMinVectorRegisterBitWidth() const = 0;
1920   virtual std::optional<unsigned> getMaxVScale() const = 0;
1921   virtual std::optional<unsigned> getVScaleForTuning() const = 0;
1922   virtual bool isVScaleKnownToBeAPowerOfTwo() const = 0;
1923   virtual bool
1924   shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0;
1925   virtual ElementCount getMinimumVF(unsigned ElemWidth,
1926                                     bool IsScalable) const = 0;
1927   virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
1928   virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1929                                      Type *ScalarValTy) const = 0;
1930   virtual bool shouldConsiderAddressTypePromotion(
1931       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
1932   virtual unsigned getCacheLineSize() const = 0;
1933   virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
1934   virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level)
1935       const = 0;
1936   virtual std::optional<unsigned> getMinPageSize() const = 0;
1937 
1938   /// \return How much before a load we should place the prefetch
1939   /// instruction.  This is currently measured in number of
1940   /// instructions.
1941   virtual unsigned getPrefetchDistance() const = 0;
1942 
1943   /// \return Some HW prefetchers can handle accesses up to a certain
1944   /// constant stride.  This is the minimum stride in bytes where it
1945   /// makes sense to start adding SW prefetches.  The default is 1,
1946   /// i.e. prefetch with any stride.  Sometimes prefetching is beneficial
1947   /// even below the HW prefetcher limit, and the arguments provided are
1948   /// meant to serve as a basis for deciding this for a particular loop.
1949   virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1950                                         unsigned NumStridedMemAccesses,
1951                                         unsigned NumPrefetches,
1952                                         bool HasCall) const = 0;
1953 
1954   /// \return The maximum number of iterations to prefetch ahead.  If
1955   /// the required number of iterations is more than this number, no
1956   /// prefetching is performed.
1957   virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
1958 
1959   /// \return True if prefetching should also be done for writes.
1960   virtual bool enableWritePrefetching() const = 0;
1961 
1962   /// \return if target want to issue a prefetch in address space \p AS.
1963   virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0;
1964 
1965   virtual unsigned getMaxInterleaveFactor(ElementCount VF) = 0;
1966   virtual InstructionCost getArithmeticInstrCost(
1967       unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1968       OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
1969       ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0;
1970   virtual InstructionCost getAltInstrCost(
1971       VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
1972       const SmallBitVector &OpcodeMask,
1973       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const = 0;
1974 
1975   virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
1976                                          ArrayRef<int> Mask,
1977                                          TTI::TargetCostKind CostKind,
1978                                          int Index, VectorType *SubTp,
1979                                          ArrayRef<const Value *> Args) = 0;
1980   virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst,
1981                                            Type *Src, CastContextHint CCH,
1982                                            TTI::TargetCostKind CostKind,
1983                                            const Instruction *I) = 0;
1984   virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1985                                                    VectorType *VecTy,
1986                                                    unsigned Index) = 0;
1987   virtual InstructionCost getCFInstrCost(unsigned Opcode,
1988                                          TTI::TargetCostKind CostKind,
1989                                          const Instruction *I = nullptr) = 0;
1990   virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1991                                              Type *CondTy,
1992                                              CmpInst::Predicate VecPred,
1993                                              TTI::TargetCostKind CostKind,
1994                                              const Instruction *I) = 0;
1995   virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1996                                              TTI::TargetCostKind CostKind,
1997                                              unsigned Index, Value *Op0,
1998                                              Value *Op1) = 0;
1999   virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
2000                                              TTI::TargetCostKind CostKind,
2001                                              unsigned Index) = 0;
2002 
2003   virtual InstructionCost
2004   getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
2005                             const APInt &DemandedDstElts,
2006                             TTI::TargetCostKind CostKind) = 0;
2007 
2008   virtual InstructionCost
2009   getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2010                   unsigned AddressSpace, TTI::TargetCostKind CostKind,
2011                   OperandValueInfo OpInfo, const Instruction *I) = 0;
2012   virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src,
2013                                             Align Alignment,
2014                                             unsigned AddressSpace,
2015                                             TTI::TargetCostKind CostKind,
2016                                             const Instruction *I) = 0;
2017   virtual InstructionCost
2018   getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2019                         unsigned AddressSpace,
2020                         TTI::TargetCostKind CostKind) = 0;
2021   virtual InstructionCost
2022   getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2023                          bool VariableMask, Align Alignment,
2024                          TTI::TargetCostKind CostKind,
2025                          const Instruction *I = nullptr) = 0;
2026 
2027   virtual InstructionCost getInterleavedMemoryOpCost(
2028       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2029       Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2030       bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
2031   virtual InstructionCost
2032   getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2033                              std::optional<FastMathFlags> FMF,
2034                              TTI::TargetCostKind CostKind) = 0;
2035   virtual InstructionCost
2036   getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
2037                          TTI::TargetCostKind CostKind) = 0;
2038   virtual InstructionCost getExtendedReductionCost(
2039       unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
2040       FastMathFlags FMF,
2041       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
2042   virtual InstructionCost getMulAccReductionCost(
2043       bool IsUnsigned, Type *ResTy, VectorType *Ty,
2044       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
2045   virtual InstructionCost
2046   getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2047                         TTI::TargetCostKind CostKind) = 0;
2048   virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy,
2049                                            ArrayRef<Type *> Tys,
2050                                            TTI::TargetCostKind CostKind) = 0;
2051   virtual unsigned getNumberOfParts(Type *Tp) = 0;
2052   virtual InstructionCost
2053   getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0;
2054   virtual InstructionCost
2055   getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
2056   virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
2057                                   MemIntrinsicInfo &Info) = 0;
2058   virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
2059   virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2060                                                    Type *ExpectedType) = 0;
2061   virtual Type *getMemcpyLoopLoweringType(
2062       LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
2063       unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
2064       std::optional<uint32_t> AtomicElementSize) const = 0;
2065 
2066   virtual void getMemcpyLoopResidualLoweringType(
2067       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2068       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2069       unsigned SrcAlign, unsigned DestAlign,
2070       std::optional<uint32_t> AtomicCpySize) const = 0;
2071   virtual bool areInlineCompatible(const Function *Caller,
2072                                    const Function *Callee) const = 0;
2073   virtual unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
2074                                         unsigned DefaultCallPenalty) const = 0;
2075   virtual bool areTypesABICompatible(const Function *Caller,
2076                                      const Function *Callee,
2077                                      const ArrayRef<Type *> &Types) const = 0;
2078   virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
2079   virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
2080   virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
2081   virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
2082   virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
2083   virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
2084                                            Align Alignment,
2085                                            unsigned AddrSpace) const = 0;
2086   virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
2087                                             Align Alignment,
2088                                             unsigned AddrSpace) const = 0;
2089   virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
2090                                            ElementCount VF) const = 0;
2091   virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0;
2092   virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2093                                        unsigned ChainSizeInBytes,
2094                                        VectorType *VecTy) const = 0;
2095   virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2096                                         unsigned ChainSizeInBytes,
2097                                         VectorType *VecTy) const = 0;
2098   virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2099                                      ReductionFlags) const = 0;
2100   virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2101                                                ReductionFlags) const = 0;
2102   virtual bool preferEpilogueVectorization() const = 0;
2103 
2104   virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
2105   virtual unsigned getGISelRematGlobalCost() const = 0;
2106   virtual unsigned getMinTripCountTailFoldingThreshold() const = 0;
2107   virtual bool enableScalableVectorization() const = 0;
2108   virtual bool supportsScalableVectors() const = 0;
2109   virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
2110                                      Align Alignment) const = 0;
2111   virtual VPLegalization
2112   getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0;
2113   virtual bool hasArmWideBranch(bool Thumb) const = 0;
2114   virtual unsigned getMaxNumArgs() const = 0;
2115 };
2116 
2117 template <typename T>
2118 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
2119   T Impl;
2120 
2121 public:
Model(T Impl)2122   Model(T Impl) : Impl(std::move(Impl)) {}
2123   ~Model() override = default;
2124 
getDataLayout()2125   const DataLayout &getDataLayout() const override {
2126     return Impl.getDataLayout();
2127   }
2128 
2129   InstructionCost
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands,Type * AccessType,TargetTransformInfo::TargetCostKind CostKind)2130   getGEPCost(Type *PointeeType, const Value *Ptr,
2131              ArrayRef<const Value *> Operands, Type *AccessType,
2132              TargetTransformInfo::TargetCostKind CostKind) override {
2133     return Impl.getGEPCost(PointeeType, Ptr, Operands, AccessType, CostKind);
2134   }
getPointersChainCost(ArrayRef<const Value * > Ptrs,const Value * Base,const PointersChainInfo & Info,Type * AccessTy,TargetCostKind CostKind)2135   InstructionCost getPointersChainCost(ArrayRef<const Value *> Ptrs,
2136                                        const Value *Base,
2137                                        const PointersChainInfo &Info,
2138                                        Type *AccessTy,
2139                                        TargetCostKind CostKind) override {
2140     return Impl.getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind);
2141   }
getInliningThresholdMultiplier()2142   unsigned getInliningThresholdMultiplier() const override {
2143     return Impl.getInliningThresholdMultiplier();
2144   }
adjustInliningThreshold(const CallBase * CB)2145   unsigned adjustInliningThreshold(const CallBase *CB) override {
2146     return Impl.adjustInliningThreshold(CB);
2147   }
getInliningCostBenefitAnalysisSavingsMultiplier()2148   unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const override {
2149     return Impl.getInliningCostBenefitAnalysisSavingsMultiplier();
2150   }
getInliningCostBenefitAnalysisProfitableMultiplier()2151   unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const override {
2152     return Impl.getInliningCostBenefitAnalysisProfitableMultiplier();
2153   }
getInlinerVectorBonusPercent()2154   int getInlinerVectorBonusPercent() const override {
2155     return Impl.getInlinerVectorBonusPercent();
2156   }
getCallerAllocaCost(const CallBase * CB,const AllocaInst * AI)2157   unsigned getCallerAllocaCost(const CallBase *CB,
2158                                const AllocaInst *AI) const override {
2159     return Impl.getCallerAllocaCost(CB, AI);
2160   }
getMemcpyCost(const Instruction * I)2161   InstructionCost getMemcpyCost(const Instruction *I) override {
2162     return Impl.getMemcpyCost(I);
2163   }
2164 
getMaxMemIntrinsicInlineSizeThreshold()2165   uint64_t getMaxMemIntrinsicInlineSizeThreshold() const override {
2166     return Impl.getMaxMemIntrinsicInlineSizeThreshold();
2167   }
2168 
getInstructionCost(const User * U,ArrayRef<const Value * > Operands,TargetCostKind CostKind)2169   InstructionCost getInstructionCost(const User *U,
2170                                      ArrayRef<const Value *> Operands,
2171                                      TargetCostKind CostKind) override {
2172     return Impl.getInstructionCost(U, Operands, CostKind);
2173   }
getPredictableBranchThreshold()2174   BranchProbability getPredictableBranchThreshold() override {
2175     return Impl.getPredictableBranchThreshold();
2176   }
2177   bool hasBranchDivergence(const Function *F = nullptr) override {
2178     return Impl.hasBranchDivergence(F);
2179   }
isSourceOfDivergence(const Value * V)2180   bool isSourceOfDivergence(const Value *V) override {
2181     return Impl.isSourceOfDivergence(V);
2182   }
2183 
isAlwaysUniform(const Value * V)2184   bool isAlwaysUniform(const Value *V) override {
2185     return Impl.isAlwaysUniform(V);
2186   }
2187 
isValidAddrSpaceCast(unsigned FromAS,unsigned ToAS)2188   bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
2189     return Impl.isValidAddrSpaceCast(FromAS, ToAS);
2190   }
2191 
addrspacesMayAlias(unsigned AS0,unsigned AS1)2192   bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const override {
2193     return Impl.addrspacesMayAlias(AS0, AS1);
2194   }
2195 
getFlatAddressSpace()2196   unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
2197 
collectFlatAddressOperands(SmallVectorImpl<int> & OpIndexes,Intrinsic::ID IID)2198   bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
2199                                   Intrinsic::ID IID) const override {
2200     return Impl.collectFlatAddressOperands(OpIndexes, IID);
2201   }
2202 
isNoopAddrSpaceCast(unsigned FromAS,unsigned ToAS)2203   bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
2204     return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
2205   }
2206 
2207   bool
canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS)2208   canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override {
2209     return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS);
2210   }
2211 
getAssumedAddrSpace(const Value * V)2212   unsigned getAssumedAddrSpace(const Value *V) const override {
2213     return Impl.getAssumedAddrSpace(V);
2214   }
2215 
isSingleThreaded()2216   bool isSingleThreaded() const override { return Impl.isSingleThreaded(); }
2217 
2218   std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value * V)2219   getPredicatedAddrSpace(const Value *V) const override {
2220     return Impl.getPredicatedAddrSpace(V);
2221   }
2222 
rewriteIntrinsicWithAddressSpace(IntrinsicInst * II,Value * OldV,Value * NewV)2223   Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
2224                                           Value *NewV) const override {
2225     return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
2226   }
2227 
isLoweredToCall(const Function * F)2228   bool isLoweredToCall(const Function *F) override {
2229     return Impl.isLoweredToCall(F);
2230   }
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)2231   void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2232                                UnrollingPreferences &UP,
2233                                OptimizationRemarkEmitter *ORE) override {
2234     return Impl.getUnrollingPreferences(L, SE, UP, ORE);
2235   }
getPeelingPreferences(Loop * L,ScalarEvolution & SE,PeelingPreferences & PP)2236   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2237                              PeelingPreferences &PP) override {
2238     return Impl.getPeelingPreferences(L, SE, PP);
2239   }
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo)2240   bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
2241                                 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
2242                                 HardwareLoopInfo &HWLoopInfo) override {
2243     return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
2244   }
preferPredicateOverEpilogue(TailFoldingInfo * TFI)2245   bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) override {
2246     return Impl.preferPredicateOverEpilogue(TFI);
2247   }
2248   TailFoldingStyle
2249   getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) override {
2250     return Impl.getPreferredTailFoldingStyle(IVUpdateMayOverflow);
2251   }
2252   std::optional<Instruction *>
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II)2253   instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override {
2254     return Impl.instCombineIntrinsic(IC, II);
2255   }
2256   std::optional<Value *>
simplifyDemandedUseBitsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedMask,KnownBits & Known,bool & KnownBitsComputed)2257   simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
2258                                    APInt DemandedMask, KnownBits &Known,
2259                                    bool &KnownBitsComputed) override {
2260     return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
2261                                                  KnownBitsComputed);
2262   }
simplifyDemandedVectorEltsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp)2263   std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
2264       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
2265       APInt &UndefElts2, APInt &UndefElts3,
2266       std::function<void(Instruction *, unsigned, APInt, APInt &)>
2267           SimplifyAndSetOp) override {
2268     return Impl.simplifyDemandedVectorEltsIntrinsic(
2269         IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
2270         SimplifyAndSetOp);
2271   }
isLegalAddImmediate(int64_t Imm)2272   bool isLegalAddImmediate(int64_t Imm) override {
2273     return Impl.isLegalAddImmediate(Imm);
2274   }
isLegalICmpImmediate(int64_t Imm)2275   bool isLegalICmpImmediate(int64_t Imm) override {
2276     return Impl.isLegalICmpImmediate(Imm);
2277   }
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace,Instruction * I)2278   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
2279                              bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
2280                              Instruction *I) override {
2281     return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
2282                                       AddrSpace, I);
2283   }
isLSRCostLess(const TargetTransformInfo::LSRCost & C1,const TargetTransformInfo::LSRCost & C2)2284   bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
2285                      const TargetTransformInfo::LSRCost &C2) override {
2286     return Impl.isLSRCostLess(C1, C2);
2287   }
isNumRegsMajorCostOfLSR()2288   bool isNumRegsMajorCostOfLSR() override {
2289     return Impl.isNumRegsMajorCostOfLSR();
2290   }
shouldFoldTerminatingConditionAfterLSR()2291   bool shouldFoldTerminatingConditionAfterLSR() const override {
2292     return Impl.shouldFoldTerminatingConditionAfterLSR();
2293   }
isProfitableLSRChainElement(Instruction * I)2294   bool isProfitableLSRChainElement(Instruction *I) override {
2295     return Impl.isProfitableLSRChainElement(I);
2296   }
canMacroFuseCmp()2297   bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
canSaveCmp(Loop * L,BranchInst ** BI,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * LibInfo)2298   bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
2299                   DominatorTree *DT, AssumptionCache *AC,
2300                   TargetLibraryInfo *LibInfo) override {
2301     return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
2302   }
2303   AddressingModeKind
getPreferredAddressingMode(const Loop * L,ScalarEvolution * SE)2304     getPreferredAddressingMode(const Loop *L,
2305                                ScalarEvolution *SE) const override {
2306     return Impl.getPreferredAddressingMode(L, SE);
2307   }
isLegalMaskedStore(Type * DataType,Align Alignment)2308   bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
2309     return Impl.isLegalMaskedStore(DataType, Alignment);
2310   }
isLegalMaskedLoad(Type * DataType,Align Alignment)2311   bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
2312     return Impl.isLegalMaskedLoad(DataType, Alignment);
2313   }
isLegalNTStore(Type * DataType,Align Alignment)2314   bool isLegalNTStore(Type *DataType, Align Alignment) override {
2315     return Impl.isLegalNTStore(DataType, Alignment);
2316   }
isLegalNTLoad(Type * DataType,Align Alignment)2317   bool isLegalNTLoad(Type *DataType, Align Alignment) override {
2318     return Impl.isLegalNTLoad(DataType, Alignment);
2319   }
isLegalBroadcastLoad(Type * ElementTy,ElementCount NumElements)2320   bool isLegalBroadcastLoad(Type *ElementTy,
2321                             ElementCount NumElements) const override {
2322     return Impl.isLegalBroadcastLoad(ElementTy, NumElements);
2323   }
isLegalMaskedScatter(Type * DataType,Align Alignment)2324   bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
2325     return Impl.isLegalMaskedScatter(DataType, Alignment);
2326   }
isLegalMaskedGather(Type * DataType,Align Alignment)2327   bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
2328     return Impl.isLegalMaskedGather(DataType, Alignment);
2329   }
forceScalarizeMaskedGather(VectorType * DataType,Align Alignment)2330   bool forceScalarizeMaskedGather(VectorType *DataType,
2331                                   Align Alignment) override {
2332     return Impl.forceScalarizeMaskedGather(DataType, Alignment);
2333   }
forceScalarizeMaskedScatter(VectorType * DataType,Align Alignment)2334   bool forceScalarizeMaskedScatter(VectorType *DataType,
2335                                    Align Alignment) override {
2336     return Impl.forceScalarizeMaskedScatter(DataType, Alignment);
2337   }
isLegalMaskedCompressStore(Type * DataType)2338   bool isLegalMaskedCompressStore(Type *DataType) override {
2339     return Impl.isLegalMaskedCompressStore(DataType);
2340   }
isLegalMaskedExpandLoad(Type * DataType)2341   bool isLegalMaskedExpandLoad(Type *DataType) override {
2342     return Impl.isLegalMaskedExpandLoad(DataType);
2343   }
isLegalAltInstr(VectorType * VecTy,unsigned Opcode0,unsigned Opcode1,const SmallBitVector & OpcodeMask)2344   bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
2345                        const SmallBitVector &OpcodeMask) const override {
2346     return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
2347   }
enableOrderedReductions()2348   bool enableOrderedReductions() override {
2349     return Impl.enableOrderedReductions();
2350   }
hasDivRemOp(Type * DataType,bool IsSigned)2351   bool hasDivRemOp(Type *DataType, bool IsSigned) override {
2352     return Impl.hasDivRemOp(DataType, IsSigned);
2353   }
hasVolatileVariant(Instruction * I,unsigned AddrSpace)2354   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
2355     return Impl.hasVolatileVariant(I, AddrSpace);
2356   }
prefersVectorizedAddressing()2357   bool prefersVectorizedAddressing() override {
2358     return Impl.prefersVectorizedAddressing();
2359   }
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace)2360   InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
2361                                        int64_t BaseOffset, bool HasBaseReg,
2362                                        int64_t Scale,
2363                                        unsigned AddrSpace) override {
2364     return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
2365                                      AddrSpace);
2366   }
LSRWithInstrQueries()2367   bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
isTruncateFree(Type * Ty1,Type * Ty2)2368   bool isTruncateFree(Type *Ty1, Type *Ty2) override {
2369     return Impl.isTruncateFree(Ty1, Ty2);
2370   }
isProfitableToHoist(Instruction * I)2371   bool isProfitableToHoist(Instruction *I) override {
2372     return Impl.isProfitableToHoist(I);
2373   }
useAA()2374   bool useAA() override { return Impl.useAA(); }
isTypeLegal(Type * Ty)2375   bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
getRegUsageForType(Type * Ty)2376   unsigned getRegUsageForType(Type *Ty) override {
2377     return Impl.getRegUsageForType(Ty);
2378   }
shouldBuildLookupTables()2379   bool shouldBuildLookupTables() override {
2380     return Impl.shouldBuildLookupTables();
2381   }
shouldBuildLookupTablesForConstant(Constant * C)2382   bool shouldBuildLookupTablesForConstant(Constant *C) override {
2383     return Impl.shouldBuildLookupTablesForConstant(C);
2384   }
shouldBuildRelLookupTables()2385   bool shouldBuildRelLookupTables() override {
2386     return Impl.shouldBuildRelLookupTables();
2387   }
useColdCCForColdCall(Function & F)2388   bool useColdCCForColdCall(Function &F) override {
2389     return Impl.useColdCCForColdCall(F);
2390   }
2391 
getScalarizationOverhead(VectorType * Ty,const APInt & DemandedElts,bool Insert,bool Extract,TargetCostKind CostKind)2392   InstructionCost getScalarizationOverhead(VectorType *Ty,
2393                                            const APInt &DemandedElts,
2394                                            bool Insert, bool Extract,
2395                                            TargetCostKind CostKind) override {
2396     return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
2397                                          CostKind);
2398   }
2399   InstructionCost
getOperandsScalarizationOverhead(ArrayRef<const Value * > Args,ArrayRef<Type * > Tys,TargetCostKind CostKind)2400   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
2401                                    ArrayRef<Type *> Tys,
2402                                    TargetCostKind CostKind) override {
2403     return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind);
2404   }
2405 
supportsEfficientVectorElementLoadStore()2406   bool supportsEfficientVectorElementLoadStore() override {
2407     return Impl.supportsEfficientVectorElementLoadStore();
2408   }
2409 
supportsTailCalls()2410   bool supportsTailCalls() override { return Impl.supportsTailCalls(); }
supportsTailCallFor(const CallBase * CB)2411   bool supportsTailCallFor(const CallBase *CB) override {
2412     return Impl.supportsTailCallFor(CB);
2413   }
2414 
enableAggressiveInterleaving(bool LoopHasReductions)2415   bool enableAggressiveInterleaving(bool LoopHasReductions) override {
2416     return Impl.enableAggressiveInterleaving(LoopHasReductions);
2417   }
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp)2418   MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
2419                                                bool IsZeroCmp) const override {
2420     return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
2421   }
enableSelectOptimize()2422   bool enableSelectOptimize() override {
2423     return Impl.enableSelectOptimize();
2424   }
shouldTreatInstructionLikeSelect(const Instruction * I)2425   bool shouldTreatInstructionLikeSelect(const Instruction *I) override {
2426     return Impl.shouldTreatInstructionLikeSelect(I);
2427   }
enableInterleavedAccessVectorization()2428   bool enableInterleavedAccessVectorization() override {
2429     return Impl.enableInterleavedAccessVectorization();
2430   }
enableMaskedInterleavedAccessVectorization()2431   bool enableMaskedInterleavedAccessVectorization() override {
2432     return Impl.enableMaskedInterleavedAccessVectorization();
2433   }
isFPVectorizationPotentiallyUnsafe()2434   bool isFPVectorizationPotentiallyUnsafe() override {
2435     return Impl.isFPVectorizationPotentiallyUnsafe();
2436   }
allowsMisalignedMemoryAccesses(LLVMContext & Context,unsigned BitWidth,unsigned AddressSpace,Align Alignment,unsigned * Fast)2437   bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
2438                                       unsigned AddressSpace, Align Alignment,
2439                                       unsigned *Fast) override {
2440     return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
2441                                                Alignment, Fast);
2442   }
getPopcntSupport(unsigned IntTyWidthInBit)2443   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
2444     return Impl.getPopcntSupport(IntTyWidthInBit);
2445   }
haveFastSqrt(Type * Ty)2446   bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
2447 
isExpensiveToSpeculativelyExecute(const Instruction * I)2448   bool isExpensiveToSpeculativelyExecute(const Instruction* I) override {
2449     return Impl.isExpensiveToSpeculativelyExecute(I);
2450   }
2451 
isFCmpOrdCheaperThanFCmpZero(Type * Ty)2452   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
2453     return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
2454   }
2455 
getFPOpCost(Type * Ty)2456   InstructionCost getFPOpCost(Type *Ty) override {
2457     return Impl.getFPOpCost(Ty);
2458   }
2459 
getIntImmCodeSizeCost(unsigned Opc,unsigned Idx,const APInt & Imm,Type * Ty)2460   InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
2461                                         const APInt &Imm, Type *Ty) override {
2462     return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
2463   }
getIntImmCost(const APInt & Imm,Type * Ty,TargetCostKind CostKind)2464   InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
2465                                 TargetCostKind CostKind) override {
2466     return Impl.getIntImmCost(Imm, Ty, CostKind);
2467   }
2468   InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
2469                                     const APInt &Imm, Type *Ty,
2470                                     TargetCostKind CostKind,
2471                                     Instruction *Inst = nullptr) override {
2472     return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
2473   }
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TargetCostKind CostKind)2474   InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
2475                                       const APInt &Imm, Type *Ty,
2476                                       TargetCostKind CostKind) override {
2477     return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
2478   }
preferToKeepConstantsAttached(const Instruction & Inst,const Function & Fn)2479   bool preferToKeepConstantsAttached(const Instruction &Inst,
2480                                      const Function &Fn) const override {
2481     return Impl.preferToKeepConstantsAttached(Inst, Fn);
2482   }
getNumberOfRegisters(unsigned ClassID)2483   unsigned getNumberOfRegisters(unsigned ClassID) const override {
2484     return Impl.getNumberOfRegisters(ClassID);
2485   }
2486   unsigned getRegisterClassForType(bool Vector,
2487                                    Type *Ty = nullptr) const override {
2488     return Impl.getRegisterClassForType(Vector, Ty);
2489   }
getRegisterClassName(unsigned ClassID)2490   const char *getRegisterClassName(unsigned ClassID) const override {
2491     return Impl.getRegisterClassName(ClassID);
2492   }
getRegisterBitWidth(RegisterKind K)2493   TypeSize getRegisterBitWidth(RegisterKind K) const override {
2494     return Impl.getRegisterBitWidth(K);
2495   }
getMinVectorRegisterBitWidth()2496   unsigned getMinVectorRegisterBitWidth() const override {
2497     return Impl.getMinVectorRegisterBitWidth();
2498   }
getMaxVScale()2499   std::optional<unsigned> getMaxVScale() const override {
2500     return Impl.getMaxVScale();
2501   }
getVScaleForTuning()2502   std::optional<unsigned> getVScaleForTuning() const override {
2503     return Impl.getVScaleForTuning();
2504   }
isVScaleKnownToBeAPowerOfTwo()2505   bool isVScaleKnownToBeAPowerOfTwo() const override {
2506     return Impl.isVScaleKnownToBeAPowerOfTwo();
2507   }
shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K)2508   bool shouldMaximizeVectorBandwidth(
2509       TargetTransformInfo::RegisterKind K) const override {
2510     return Impl.shouldMaximizeVectorBandwidth(K);
2511   }
getMinimumVF(unsigned ElemWidth,bool IsScalable)2512   ElementCount getMinimumVF(unsigned ElemWidth,
2513                             bool IsScalable) const override {
2514     return Impl.getMinimumVF(ElemWidth, IsScalable);
2515   }
getMaximumVF(unsigned ElemWidth,unsigned Opcode)2516   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
2517     return Impl.getMaximumVF(ElemWidth, Opcode);
2518   }
getStoreMinimumVF(unsigned VF,Type * ScalarMemTy,Type * ScalarValTy)2519   unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
2520                              Type *ScalarValTy) const override {
2521     return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
2522   }
shouldConsiderAddressTypePromotion(const Instruction & I,bool & AllowPromotionWithoutCommonHeader)2523   bool shouldConsiderAddressTypePromotion(
2524       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
2525     return Impl.shouldConsiderAddressTypePromotion(
2526         I, AllowPromotionWithoutCommonHeader);
2527   }
getCacheLineSize()2528   unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
getCacheSize(CacheLevel Level)2529   std::optional<unsigned> getCacheSize(CacheLevel Level) const override {
2530     return Impl.getCacheSize(Level);
2531   }
2532   std::optional<unsigned>
getCacheAssociativity(CacheLevel Level)2533   getCacheAssociativity(CacheLevel Level) const override {
2534     return Impl.getCacheAssociativity(Level);
2535   }
2536 
getMinPageSize()2537   std::optional<unsigned> getMinPageSize() const override {
2538     return Impl.getMinPageSize();
2539   }
2540 
2541   /// Return the preferred prefetch distance in terms of instructions.
2542   ///
getPrefetchDistance()2543   unsigned getPrefetchDistance() const override {
2544     return Impl.getPrefetchDistance();
2545   }
2546 
2547   /// Return the minimum stride necessary to trigger software
2548   /// prefetching.
2549   ///
getMinPrefetchStride(unsigned NumMemAccesses,unsigned NumStridedMemAccesses,unsigned NumPrefetches,bool HasCall)2550   unsigned getMinPrefetchStride(unsigned NumMemAccesses,
2551                                 unsigned NumStridedMemAccesses,
2552                                 unsigned NumPrefetches,
2553                                 bool HasCall) const override {
2554     return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
2555                                      NumPrefetches, HasCall);
2556   }
2557 
2558   /// Return the maximum prefetch distance in terms of loop
2559   /// iterations.
2560   ///
getMaxPrefetchIterationsAhead()2561   unsigned getMaxPrefetchIterationsAhead() const override {
2562     return Impl.getMaxPrefetchIterationsAhead();
2563   }
2564 
2565   /// \return True if prefetching should also be done for writes.
enableWritePrefetching()2566   bool enableWritePrefetching() const override {
2567     return Impl.enableWritePrefetching();
2568   }
2569 
2570   /// \return if target want to issue a prefetch in address space \p AS.
shouldPrefetchAddressSpace(unsigned AS)2571   bool shouldPrefetchAddressSpace(unsigned AS) const override {
2572     return Impl.shouldPrefetchAddressSpace(AS);
2573   }
2574 
getMaxInterleaveFactor(ElementCount VF)2575   unsigned getMaxInterleaveFactor(ElementCount VF) override {
2576     return Impl.getMaxInterleaveFactor(VF);
2577   }
getEstimatedNumberOfCaseClusters(const SwitchInst & SI,unsigned & JTSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)2578   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
2579                                             unsigned &JTSize,
2580                                             ProfileSummaryInfo *PSI,
2581                                             BlockFrequencyInfo *BFI) override {
2582     return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
2583   }
2584   InstructionCost getArithmeticInstrCost(
2585       unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
2586       OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
2587       ArrayRef<const Value *> Args,
2588       const Instruction *CxtI = nullptr) override {
2589     return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
2590                                        Args, CxtI);
2591   }
getAltInstrCost(VectorType * VecTy,unsigned Opcode0,unsigned Opcode1,const SmallBitVector & OpcodeMask,TTI::TargetCostKind CostKind)2592   InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0,
2593                                   unsigned Opcode1,
2594                                   const SmallBitVector &OpcodeMask,
2595                                   TTI::TargetCostKind CostKind) const override {
2596     return Impl.getAltInstrCost(VecTy, Opcode0, Opcode1, OpcodeMask, CostKind);
2597   }
2598 
getShuffleCost(ShuffleKind Kind,VectorType * Tp,ArrayRef<int> Mask,TTI::TargetCostKind CostKind,int Index,VectorType * SubTp,ArrayRef<const Value * > Args)2599   InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
2600                                  ArrayRef<int> Mask,
2601                                  TTI::TargetCostKind CostKind, int Index,
2602                                  VectorType *SubTp,
2603                                  ArrayRef<const Value *> Args) override {
2604     return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args);
2605   }
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I)2606   InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
2607                                    CastContextHint CCH,
2608                                    TTI::TargetCostKind CostKind,
2609                                    const Instruction *I) override {
2610     return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
2611   }
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index)2612   InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
2613                                            VectorType *VecTy,
2614                                            unsigned Index) override {
2615     return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
2616   }
2617   InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
2618                                  const Instruction *I = nullptr) override {
2619     return Impl.getCFInstrCost(Opcode, CostKind, I);
2620   }
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I)2621   InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2622                                      CmpInst::Predicate VecPred,
2623                                      TTI::TargetCostKind CostKind,
2624                                      const Instruction *I) override {
2625     return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2626   }
getVectorInstrCost(unsigned Opcode,Type * Val,TTI::TargetCostKind CostKind,unsigned Index,Value * Op0,Value * Op1)2627   InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
2628                                      TTI::TargetCostKind CostKind,
2629                                      unsigned Index, Value *Op0,
2630                                      Value *Op1) override {
2631     return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
2632   }
getVectorInstrCost(const Instruction & I,Type * Val,TTI::TargetCostKind CostKind,unsigned Index)2633   InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
2634                                      TTI::TargetCostKind CostKind,
2635                                      unsigned Index) override {
2636     return Impl.getVectorInstrCost(I, Val, CostKind, Index);
2637   }
2638   InstructionCost
getReplicationShuffleCost(Type * EltTy,int ReplicationFactor,int VF,const APInt & DemandedDstElts,TTI::TargetCostKind CostKind)2639   getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
2640                             const APInt &DemandedDstElts,
2641                             TTI::TargetCostKind CostKind) override {
2642     return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
2643                                           DemandedDstElts, CostKind);
2644   }
getMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,OperandValueInfo OpInfo,const Instruction * I)2645   InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2646                                   unsigned AddressSpace,
2647                                   TTI::TargetCostKind CostKind,
2648                                   OperandValueInfo OpInfo,
2649                                   const Instruction *I) override {
2650     return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind,
2651                                 OpInfo, I);
2652   }
getVPMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)2653   InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2654                                     unsigned AddressSpace,
2655                                     TTI::TargetCostKind CostKind,
2656                                     const Instruction *I) override {
2657     return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2658                                   CostKind, I);
2659   }
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind)2660   InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
2661                                         Align Alignment, unsigned AddressSpace,
2662                                         TTI::TargetCostKind CostKind) override {
2663     return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2664                                       CostKind);
2665   }
2666   InstructionCost
2667   getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2668                          bool VariableMask, Align Alignment,
2669                          TTI::TargetCostKind CostKind,
2670                          const Instruction *I = nullptr) override {
2671     return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
2672                                        Alignment, CostKind, I);
2673   }
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)2674   InstructionCost getInterleavedMemoryOpCost(
2675       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2676       Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2677       bool UseMaskForCond, bool UseMaskForGaps) override {
2678     return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2679                                            Alignment, AddressSpace, CostKind,
2680                                            UseMaskForCond, UseMaskForGaps);
2681   }
2682   InstructionCost
getArithmeticReductionCost(unsigned Opcode,VectorType * Ty,std::optional<FastMathFlags> FMF,TTI::TargetCostKind CostKind)2683   getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2684                              std::optional<FastMathFlags> FMF,
2685                              TTI::TargetCostKind CostKind) override {
2686     return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
2687   }
2688   InstructionCost
getMinMaxReductionCost(Intrinsic::ID IID,VectorType * Ty,FastMathFlags FMF,TTI::TargetCostKind CostKind)2689   getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
2690                          TTI::TargetCostKind CostKind) override {
2691     return Impl.getMinMaxReductionCost(IID, Ty, FMF, CostKind);
2692   }
2693   InstructionCost
getExtendedReductionCost(unsigned Opcode,bool IsUnsigned,Type * ResTy,VectorType * Ty,FastMathFlags FMF,TTI::TargetCostKind CostKind)2694   getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
2695                            VectorType *Ty, FastMathFlags FMF,
2696                            TTI::TargetCostKind CostKind) override {
2697     return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
2698                                          CostKind);
2699   }
2700   InstructionCost
getMulAccReductionCost(bool IsUnsigned,Type * ResTy,VectorType * Ty,TTI::TargetCostKind CostKind)2701   getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty,
2702                          TTI::TargetCostKind CostKind) override {
2703     return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
2704   }
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)2705   InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2706                                         TTI::TargetCostKind CostKind) override {
2707     return Impl.getIntrinsicInstrCost(ICA, CostKind);
2708   }
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys,TTI::TargetCostKind CostKind)2709   InstructionCost getCallInstrCost(Function *F, Type *RetTy,
2710                                    ArrayRef<Type *> Tys,
2711                                    TTI::TargetCostKind CostKind) override {
2712     return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
2713   }
getNumberOfParts(Type * Tp)2714   unsigned getNumberOfParts(Type *Tp) override {
2715     return Impl.getNumberOfParts(Tp);
2716   }
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)2717   InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2718                                             const SCEV *Ptr) override {
2719     return Impl.getAddressComputationCost(Ty, SE, Ptr);
2720   }
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)2721   InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
2722     return Impl.getCostOfKeepingLiveOverCall(Tys);
2723   }
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)2724   bool getTgtMemIntrinsic(IntrinsicInst *Inst,
2725                           MemIntrinsicInfo &Info) override {
2726     return Impl.getTgtMemIntrinsic(Inst, Info);
2727   }
getAtomicMemIntrinsicMaxElementSize()2728   unsigned getAtomicMemIntrinsicMaxElementSize() const override {
2729     return Impl.getAtomicMemIntrinsicMaxElementSize();
2730   }
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)2731   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2732                                            Type *ExpectedType) override {
2733     return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
2734   }
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign,std::optional<uint32_t> AtomicElementSize)2735   Type *getMemcpyLoopLoweringType(
2736       LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
2737       unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
2738       std::optional<uint32_t> AtomicElementSize) const override {
2739     return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
2740                                           DestAddrSpace, SrcAlign, DestAlign,
2741                                           AtomicElementSize);
2742   }
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign,std::optional<uint32_t> AtomicCpySize)2743   void getMemcpyLoopResidualLoweringType(
2744       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2745       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2746       unsigned SrcAlign, unsigned DestAlign,
2747       std::optional<uint32_t> AtomicCpySize) const override {
2748     Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
2749                                            SrcAddrSpace, DestAddrSpace,
2750                                            SrcAlign, DestAlign, AtomicCpySize);
2751   }
areInlineCompatible(const Function * Caller,const Function * Callee)2752   bool areInlineCompatible(const Function *Caller,
2753                            const Function *Callee) const override {
2754     return Impl.areInlineCompatible(Caller, Callee);
2755   }
getInlineCallPenalty(const Function * F,const CallBase & Call,unsigned DefaultCallPenalty)2756   unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
2757                                 unsigned DefaultCallPenalty) const override {
2758     return Impl.getInlineCallPenalty(F, Call, DefaultCallPenalty);
2759   }
areTypesABICompatible(const Function * Caller,const Function * Callee,const ArrayRef<Type * > & Types)2760   bool areTypesABICompatible(const Function *Caller, const Function *Callee,
2761                              const ArrayRef<Type *> &Types) const override {
2762     return Impl.areTypesABICompatible(Caller, Callee, Types);
2763   }
isIndexedLoadLegal(MemIndexedMode Mode,Type * Ty)2764   bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
2765     return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
2766   }
isIndexedStoreLegal(MemIndexedMode Mode,Type * Ty)2767   bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
2768     return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
2769   }
getLoadStoreVecRegBitWidth(unsigned AddrSpace)2770   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
2771     return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
2772   }
isLegalToVectorizeLoad(LoadInst * LI)2773   bool isLegalToVectorizeLoad(LoadInst *LI) const override {
2774     return Impl.isLegalToVectorizeLoad(LI);
2775   }
isLegalToVectorizeStore(StoreInst * SI)2776   bool isLegalToVectorizeStore(StoreInst *SI) const override {
2777     return Impl.isLegalToVectorizeStore(SI);
2778   }
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace)2779   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
2780                                    unsigned AddrSpace) const override {
2781     return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
2782                                             AddrSpace);
2783   }
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace)2784   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
2785                                     unsigned AddrSpace) const override {
2786     return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
2787                                              AddrSpace);
2788   }
isLegalToVectorizeReduction(const RecurrenceDescriptor & RdxDesc,ElementCount VF)2789   bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
2790                                    ElementCount VF) const override {
2791     return Impl.isLegalToVectorizeReduction(RdxDesc, VF);
2792   }
isElementTypeLegalForScalableVector(Type * Ty)2793   bool isElementTypeLegalForScalableVector(Type *Ty) const override {
2794     return Impl.isElementTypeLegalForScalableVector(Ty);
2795   }
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy)2796   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2797                                unsigned ChainSizeInBytes,
2798                                VectorType *VecTy) const override {
2799     return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
2800   }
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy)2801   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2802                                 unsigned ChainSizeInBytes,
2803                                 VectorType *VecTy) const override {
2804     return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
2805   }
preferInLoopReduction(unsigned Opcode,Type * Ty,ReductionFlags Flags)2806   bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2807                              ReductionFlags Flags) const override {
2808     return Impl.preferInLoopReduction(Opcode, Ty, Flags);
2809   }
preferPredicatedReductionSelect(unsigned Opcode,Type * Ty,ReductionFlags Flags)2810   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2811                                        ReductionFlags Flags) const override {
2812     return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
2813   }
preferEpilogueVectorization()2814   bool preferEpilogueVectorization() const override {
2815     return Impl.preferEpilogueVectorization();
2816   }
2817 
shouldExpandReduction(const IntrinsicInst * II)2818   bool shouldExpandReduction(const IntrinsicInst *II) const override {
2819     return Impl.shouldExpandReduction(II);
2820   }
2821 
getGISelRematGlobalCost()2822   unsigned getGISelRematGlobalCost() const override {
2823     return Impl.getGISelRematGlobalCost();
2824   }
2825 
getMinTripCountTailFoldingThreshold()2826   unsigned getMinTripCountTailFoldingThreshold() const override {
2827     return Impl.getMinTripCountTailFoldingThreshold();
2828   }
2829 
supportsScalableVectors()2830   bool supportsScalableVectors() const override {
2831     return Impl.supportsScalableVectors();
2832   }
2833 
enableScalableVectorization()2834   bool enableScalableVectorization() const override {
2835     return Impl.enableScalableVectorization();
2836   }
2837 
hasActiveVectorLength(unsigned Opcode,Type * DataType,Align Alignment)2838   bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
2839                              Align Alignment) const override {
2840     return Impl.hasActiveVectorLength(Opcode, DataType, Alignment);
2841   }
2842 
2843   VPLegalization
getVPLegalizationStrategy(const VPIntrinsic & PI)2844   getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
2845     return Impl.getVPLegalizationStrategy(PI);
2846   }
2847 
hasArmWideBranch(bool Thumb)2848   bool hasArmWideBranch(bool Thumb) const override {
2849     return Impl.hasArmWideBranch(Thumb);
2850   }
2851 
getMaxNumArgs()2852   unsigned getMaxNumArgs() const override {
2853     return Impl.getMaxNumArgs();
2854   }
2855 };
2856 
2857 template <typename T>
TargetTransformInfo(T Impl)2858 TargetTransformInfo::TargetTransformInfo(T Impl)
2859     : TTIImpl(new Model<T>(Impl)) {}
2860 
2861 /// Analysis pass providing the \c TargetTransformInfo.
2862 ///
2863 /// The core idea of the TargetIRAnalysis is to expose an interface through
2864 /// which LLVM targets can analyze and provide information about the middle
2865 /// end's target-independent IR. This supports use cases such as target-aware
2866 /// cost modeling of IR constructs.
2867 ///
2868 /// This is a function analysis because much of the cost modeling for targets
2869 /// is done in a subtarget specific way and LLVM supports compiling different
2870 /// functions targeting different subtargets in order to support runtime
2871 /// dispatch according to the observed subtarget.
2872 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
2873 public:
2874   typedef TargetTransformInfo Result;
2875 
2876   /// Default construct a target IR analysis.
2877   ///
2878   /// This will use the module's datalayout to construct a baseline
2879   /// conservative TTI result.
2880   TargetIRAnalysis();
2881 
2882   /// Construct an IR analysis pass around a target-provide callback.
2883   ///
2884   /// The callback will be called with a particular function for which the TTI
2885   /// is needed and must return a TTI object for that function.
2886   TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2887 
2888   // Value semantics. We spell out the constructors for MSVC.
TargetIRAnalysis(const TargetIRAnalysis & Arg)2889   TargetIRAnalysis(const TargetIRAnalysis &Arg)
2890       : TTICallback(Arg.TTICallback) {}
TargetIRAnalysis(TargetIRAnalysis && Arg)2891   TargetIRAnalysis(TargetIRAnalysis &&Arg)
2892       : TTICallback(std::move(Arg.TTICallback)) {}
2893   TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
2894     TTICallback = RHS.TTICallback;
2895     return *this;
2896   }
2897   TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
2898     TTICallback = std::move(RHS.TTICallback);
2899     return *this;
2900   }
2901 
2902   Result run(const Function &F, FunctionAnalysisManager &);
2903 
2904 private:
2905   friend AnalysisInfoMixin<TargetIRAnalysis>;
2906   static AnalysisKey Key;
2907 
2908   /// The callback used to produce a result.
2909   ///
2910   /// We use a completely opaque callback so that targets can provide whatever
2911   /// mechanism they desire for constructing the TTI for a given function.
2912   ///
2913   /// FIXME: Should we really use std::function? It's relatively inefficient.
2914   /// It might be possible to arrange for even stateful callbacks to outlive
2915   /// the analysis and thus use a function_ref which would be lighter weight.
2916   /// This may also be less error prone as the callback is likely to reference
2917   /// the external TargetMachine, and that reference needs to never dangle.
2918   std::function<Result(const Function &)> TTICallback;
2919 
2920   /// Helper function used as the callback in the default constructor.
2921   static Result getDefaultTTI(const Function &F);
2922 };
2923 
2924 /// Wrapper pass for TargetTransformInfo.
2925 ///
2926 /// This pass can be constructed from a TTI object which it stores internally
2927 /// and is queried by passes.
2928 class TargetTransformInfoWrapperPass : public ImmutablePass {
2929   TargetIRAnalysis TIRA;
2930   std::optional<TargetTransformInfo> TTI;
2931 
2932   virtual void anchor();
2933 
2934 public:
2935   static char ID;
2936 
2937   /// We must provide a default constructor for the pass but it should
2938   /// never be used.
2939   ///
2940   /// Use the constructor below or call one of the creation routines.
2941   TargetTransformInfoWrapperPass();
2942 
2943   explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
2944 
2945   TargetTransformInfo &getTTI(const Function &F);
2946 };
2947 
2948 /// Create an analysis pass wrapper around a TTI object.
2949 ///
2950 /// This analysis pass just holds the TTI instance and makes it available to
2951 /// clients.
2952 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
2953 
2954 } // namespace llvm
2955 
2956 #endif
2957