1 //===------ Core.h -- Core ORC APIs (Layer, JITDylib, etc.) -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Contains core ORC APIs.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_EXECUTIONENGINE_ORC_CORE_H
14 #define LLVM_EXECUTIONENGINE_ORC_CORE_H
15
16 #include "llvm/ADT/BitmaskEnum.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/FunctionExtras.h"
19 #include "llvm/ADT/IntrusiveRefCntPtr.h"
20 #include "llvm/ExecutionEngine/JITLink/JITLinkDylib.h"
21 #include "llvm/ExecutionEngine/JITSymbol.h"
22 #include "llvm/ExecutionEngine/Orc/ExecutorProcessControl.h"
23 #include "llvm/ExecutionEngine/Orc/Shared/WrapperFunctionUtils.h"
24 #include "llvm/ExecutionEngine/Orc/TaskDispatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ExtensibleRTTI.h"
27
28 #include <atomic>
29 #include <future>
30 #include <memory>
31 #include <vector>
32
33 namespace llvm {
34 namespace orc {
35
36 // Forward declare some classes.
37 class AsynchronousSymbolQuery;
38 class ExecutionSession;
39 class MaterializationUnit;
40 class MaterializationResponsibility;
41 class JITDylib;
42 class ResourceTracker;
43 class InProgressLookupState;
44
45 enum class SymbolState : uint8_t;
46
47 using ResourceTrackerSP = IntrusiveRefCntPtr<ResourceTracker>;
48 using JITDylibSP = IntrusiveRefCntPtr<JITDylib>;
49
50 using ResourceKey = uintptr_t;
51
52 /// API to remove / transfer ownership of JIT resources.
53 class ResourceTracker : public ThreadSafeRefCountedBase<ResourceTracker> {
54 private:
55 friend class ExecutionSession;
56 friend class JITDylib;
57 friend class MaterializationResponsibility;
58
59 public:
60 ResourceTracker(const ResourceTracker &) = delete;
61 ResourceTracker &operator=(const ResourceTracker &) = delete;
62 ResourceTracker(ResourceTracker &&) = delete;
63 ResourceTracker &operator=(ResourceTracker &&) = delete;
64
65 ~ResourceTracker();
66
67 /// Return the JITDylib targeted by this tracker.
getJITDylib()68 JITDylib &getJITDylib() const {
69 return *reinterpret_cast<JITDylib *>(JDAndFlag.load() &
70 ~static_cast<uintptr_t>(1));
71 }
72
73 /// Runs the given callback under the session lock, passing in the associated
74 /// ResourceKey. This is the safe way to associate resources with trackers.
75 template <typename Func> Error withResourceKeyDo(Func &&F);
76
77 /// Remove all resources associated with this key.
78 Error remove();
79
80 /// Transfer all resources associated with this key to the given
81 /// tracker, which must target the same JITDylib as this one.
82 void transferTo(ResourceTracker &DstRT);
83
84 /// Return true if this tracker has become defunct.
isDefunct()85 bool isDefunct() const { return JDAndFlag.load() & 0x1; }
86
87 /// Returns the key associated with this tracker.
88 /// This method should not be used except for debug logging: there is no
89 /// guarantee that the returned value will remain valid.
getKeyUnsafe()90 ResourceKey getKeyUnsafe() const { return reinterpret_cast<uintptr_t>(this); }
91
92 private:
93 ResourceTracker(JITDylibSP JD);
94
95 void makeDefunct();
96
97 std::atomic_uintptr_t JDAndFlag;
98 };
99
100 /// Listens for ResourceTracker operations.
101 class ResourceManager {
102 public:
103 virtual ~ResourceManager();
104 virtual Error handleRemoveResources(JITDylib &JD, ResourceKey K) = 0;
105 virtual void handleTransferResources(JITDylib &JD, ResourceKey DstK,
106 ResourceKey SrcK) = 0;
107 };
108
109 /// A set of symbol names (represented by SymbolStringPtrs for
110 // efficiency).
111 using SymbolNameSet = DenseSet<SymbolStringPtr>;
112
113 /// A vector of symbol names.
114 using SymbolNameVector = std::vector<SymbolStringPtr>;
115
116 /// A map from symbol names (as SymbolStringPtrs) to JITSymbols
117 /// (address/flags pairs).
118 using SymbolMap = DenseMap<SymbolStringPtr, JITEvaluatedSymbol>;
119
120 /// A map from symbol names (as SymbolStringPtrs) to JITSymbolFlags.
121 using SymbolFlagsMap = DenseMap<SymbolStringPtr, JITSymbolFlags>;
122
123 /// A map from JITDylibs to sets of symbols.
124 using SymbolDependenceMap = DenseMap<JITDylib *, SymbolNameSet>;
125
126 /// Lookup flags that apply to each dylib in the search order for a lookup.
127 ///
128 /// If MatchHiddenSymbolsOnly is used (the default) for a given dylib, then
129 /// only symbols in that Dylib's interface will be searched. If
130 /// MatchHiddenSymbols is used then symbols with hidden visibility will match
131 /// as well.
132 enum class JITDylibLookupFlags { MatchExportedSymbolsOnly, MatchAllSymbols };
133
134 /// Lookup flags that apply to each symbol in a lookup.
135 ///
136 /// If RequiredSymbol is used (the default) for a given symbol then that symbol
137 /// must be found during the lookup or the lookup will fail returning a
138 /// SymbolNotFound error. If WeaklyReferencedSymbol is used and the given
139 /// symbol is not found then the query will continue, and no result for the
140 /// missing symbol will be present in the result (assuming the rest of the
141 /// lookup succeeds).
142 enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
143
144 /// Describes the kind of lookup being performed. The lookup kind is passed to
145 /// symbol generators (if they're invoked) to help them determine what
146 /// definitions to generate.
147 ///
148 /// Static -- Lookup is being performed as-if at static link time (e.g.
149 /// generators representing static archives should pull in new
150 /// definitions).
151 ///
152 /// DLSym -- Lookup is being performed as-if at runtime (e.g. generators
153 /// representing static archives should not pull in new definitions).
154 enum class LookupKind { Static, DLSym };
155
156 /// A list of (JITDylib*, JITDylibLookupFlags) pairs to be used as a search
157 /// order during symbol lookup.
158 using JITDylibSearchOrder =
159 std::vector<std::pair<JITDylib *, JITDylibLookupFlags>>;
160
161 /// Convenience function for creating a search order from an ArrayRef of
162 /// JITDylib*, all with the same flags.
163 inline JITDylibSearchOrder makeJITDylibSearchOrder(
164 ArrayRef<JITDylib *> JDs,
165 JITDylibLookupFlags Flags = JITDylibLookupFlags::MatchExportedSymbolsOnly) {
166 JITDylibSearchOrder O;
167 O.reserve(JDs.size());
168 for (auto *JD : JDs)
169 O.push_back(std::make_pair(JD, Flags));
170 return O;
171 }
172
173 /// A set of symbols to look up, each associated with a SymbolLookupFlags
174 /// value.
175 ///
176 /// This class is backed by a vector and optimized for fast insertion,
177 /// deletion and iteration. It does not guarantee a stable order between
178 /// operations, and will not automatically detect duplicate elements (they
179 /// can be manually checked by calling the validate method).
180 class SymbolLookupSet {
181 public:
182 using value_type = std::pair<SymbolStringPtr, SymbolLookupFlags>;
183 using UnderlyingVector = std::vector<value_type>;
184 using iterator = UnderlyingVector::iterator;
185 using const_iterator = UnderlyingVector::const_iterator;
186
187 SymbolLookupSet() = default;
188
189 explicit SymbolLookupSet(
190 SymbolStringPtr Name,
191 SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
192 add(std::move(Name), Flags);
193 }
194
195 /// Construct a SymbolLookupSet from an initializer list of SymbolStringPtrs.
196 explicit SymbolLookupSet(
197 std::initializer_list<SymbolStringPtr> Names,
198 SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
199 Symbols.reserve(Names.size());
200 for (const auto &Name : Names)
201 add(std::move(Name), Flags);
202 }
203
204 /// Construct a SymbolLookupSet from a SymbolNameSet with the given
205 /// Flags used for each value.
206 explicit SymbolLookupSet(
207 const SymbolNameSet &Names,
208 SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
209 Symbols.reserve(Names.size());
210 for (const auto &Name : Names)
211 add(Name, Flags);
212 }
213
214 /// Construct a SymbolLookupSet from a vector of symbols with the given Flags
215 /// used for each value.
216 /// If the ArrayRef contains duplicates it is up to the client to remove these
217 /// before using this instance for lookup.
218 explicit SymbolLookupSet(
219 ArrayRef<SymbolStringPtr> Names,
220 SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
221 Symbols.reserve(Names.size());
222 for (const auto &Name : Names)
223 add(Name, Flags);
224 }
225
226 /// Construct a SymbolLookupSet from DenseMap keys.
227 template <typename KeyT>
228 static SymbolLookupSet
229 fromMapKeys(const DenseMap<SymbolStringPtr, KeyT> &M,
230 SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
231 SymbolLookupSet Result;
232 Result.Symbols.reserve(M.size());
233 for (const auto &KV : M)
234 Result.add(KV.first, Flags);
235 return Result;
236 }
237
238 /// Add an element to the set. The client is responsible for checking that
239 /// duplicates are not added.
240 SymbolLookupSet &
241 add(SymbolStringPtr Name,
242 SymbolLookupFlags Flags = SymbolLookupFlags::RequiredSymbol) {
243 Symbols.push_back(std::make_pair(std::move(Name), Flags));
244 return *this;
245 }
246
247 /// Quickly append one lookup set to another.
append(SymbolLookupSet Other)248 SymbolLookupSet &append(SymbolLookupSet Other) {
249 Symbols.reserve(Symbols.size() + Other.size());
250 for (auto &KV : Other)
251 Symbols.push_back(std::move(KV));
252 return *this;
253 }
254
empty()255 bool empty() const { return Symbols.empty(); }
size()256 UnderlyingVector::size_type size() const { return Symbols.size(); }
begin()257 iterator begin() { return Symbols.begin(); }
end()258 iterator end() { return Symbols.end(); }
begin()259 const_iterator begin() const { return Symbols.begin(); }
end()260 const_iterator end() const { return Symbols.end(); }
261
262 /// Removes the Ith element of the vector, replacing it with the last element.
remove(UnderlyingVector::size_type I)263 void remove(UnderlyingVector::size_type I) {
264 std::swap(Symbols[I], Symbols.back());
265 Symbols.pop_back();
266 }
267
268 /// Removes the element pointed to by the given iterator. This iterator and
269 /// all subsequent ones (including end()) are invalidated.
remove(iterator I)270 void remove(iterator I) { remove(I - begin()); }
271
272 /// Removes all elements matching the given predicate, which must be callable
273 /// as bool(const SymbolStringPtr &, SymbolLookupFlags Flags).
remove_if(PredFn && Pred)274 template <typename PredFn> void remove_if(PredFn &&Pred) {
275 UnderlyingVector::size_type I = 0;
276 while (I != Symbols.size()) {
277 const auto &Name = Symbols[I].first;
278 auto Flags = Symbols[I].second;
279 if (Pred(Name, Flags))
280 remove(I);
281 else
282 ++I;
283 }
284 }
285
286 /// Loop over the elements of this SymbolLookupSet, applying the Body function
287 /// to each one. Body must be callable as
288 /// bool(const SymbolStringPtr &, SymbolLookupFlags).
289 /// If Body returns true then the element just passed in is removed from the
290 /// set. If Body returns false then the element is retained.
291 template <typename BodyFn>
292 auto forEachWithRemoval(BodyFn &&Body) -> std::enable_if_t<
293 std::is_same<decltype(Body(std::declval<const SymbolStringPtr &>(),
294 std::declval<SymbolLookupFlags>())),
295 bool>::value> {
296 UnderlyingVector::size_type I = 0;
297 while (I != Symbols.size()) {
298 const auto &Name = Symbols[I].first;
299 auto Flags = Symbols[I].second;
300 if (Body(Name, Flags))
301 remove(I);
302 else
303 ++I;
304 }
305 }
306
307 /// Loop over the elements of this SymbolLookupSet, applying the Body function
308 /// to each one. Body must be callable as
309 /// Expected<bool>(const SymbolStringPtr &, SymbolLookupFlags).
310 /// If Body returns a failure value, the loop exits immediately. If Body
311 /// returns true then the element just passed in is removed from the set. If
312 /// Body returns false then the element is retained.
313 template <typename BodyFn>
314 auto forEachWithRemoval(BodyFn &&Body) -> std::enable_if_t<
315 std::is_same<decltype(Body(std::declval<const SymbolStringPtr &>(),
316 std::declval<SymbolLookupFlags>())),
317 Expected<bool>>::value,
318 Error> {
319 UnderlyingVector::size_type I = 0;
320 while (I != Symbols.size()) {
321 const auto &Name = Symbols[I].first;
322 auto Flags = Symbols[I].second;
323 auto Remove = Body(Name, Flags);
324 if (!Remove)
325 return Remove.takeError();
326 if (*Remove)
327 remove(I);
328 else
329 ++I;
330 }
331 return Error::success();
332 }
333
334 /// Construct a SymbolNameVector from this instance by dropping the Flags
335 /// values.
getSymbolNames()336 SymbolNameVector getSymbolNames() const {
337 SymbolNameVector Names;
338 Names.reserve(Symbols.size());
339 for (const auto &KV : Symbols)
340 Names.push_back(KV.first);
341 return Names;
342 }
343
344 /// Sort the lookup set by pointer value. This sort is fast but sensitive to
345 /// allocation order and so should not be used where a consistent order is
346 /// required.
sortByAddress()347 void sortByAddress() { llvm::sort(Symbols, llvm::less_first()); }
348
349 /// Sort the lookup set lexicographically. This sort is slow but the order
350 /// is unaffected by allocation order.
sortByName()351 void sortByName() {
352 llvm::sort(Symbols, [](const value_type &LHS, const value_type &RHS) {
353 return *LHS.first < *RHS.first;
354 });
355 }
356
357 /// Remove any duplicate elements. If a SymbolLookupSet is not duplicate-free
358 /// by construction, this method can be used to turn it into a proper set.
removeDuplicates()359 void removeDuplicates() {
360 sortByAddress();
361 auto LastI = std::unique(Symbols.begin(), Symbols.end());
362 Symbols.erase(LastI, Symbols.end());
363 }
364
365 #ifndef NDEBUG
366 /// Returns true if this set contains any duplicates. This should only be used
367 /// in assertions.
containsDuplicates()368 bool containsDuplicates() {
369 if (Symbols.size() < 2)
370 return false;
371 sortByAddress();
372 for (UnderlyingVector::size_type I = 1; I != Symbols.size(); ++I)
373 if (Symbols[I].first == Symbols[I - 1].first)
374 return true;
375 return false;
376 }
377 #endif
378
379 private:
380 UnderlyingVector Symbols;
381 };
382
383 struct SymbolAliasMapEntry {
384 SymbolAliasMapEntry() = default;
SymbolAliasMapEntrySymbolAliasMapEntry385 SymbolAliasMapEntry(SymbolStringPtr Aliasee, JITSymbolFlags AliasFlags)
386 : Aliasee(std::move(Aliasee)), AliasFlags(AliasFlags) {}
387
388 SymbolStringPtr Aliasee;
389 JITSymbolFlags AliasFlags;
390 };
391
392 /// A map of Symbols to (Symbol, Flags) pairs.
393 using SymbolAliasMap = DenseMap<SymbolStringPtr, SymbolAliasMapEntry>;
394
395 /// Callback to notify client that symbols have been resolved.
396 using SymbolsResolvedCallback = unique_function<void(Expected<SymbolMap>)>;
397
398 /// Callback to register the dependencies for a given query.
399 using RegisterDependenciesFunction =
400 std::function<void(const SymbolDependenceMap &)>;
401
402 /// This can be used as the value for a RegisterDependenciesFunction if there
403 /// are no dependants to register with.
404 extern RegisterDependenciesFunction NoDependenciesToRegister;
405
406 class ResourceTrackerDefunct : public ErrorInfo<ResourceTrackerDefunct> {
407 public:
408 static char ID;
409
410 ResourceTrackerDefunct(ResourceTrackerSP RT);
411 std::error_code convertToErrorCode() const override;
412 void log(raw_ostream &OS) const override;
413
414 private:
415 ResourceTrackerSP RT;
416 };
417
418 /// Used to notify a JITDylib that the given set of symbols failed to
419 /// materialize.
420 class FailedToMaterialize : public ErrorInfo<FailedToMaterialize> {
421 public:
422 static char ID;
423
424 FailedToMaterialize(std::shared_ptr<SymbolStringPool> SSP,
425 std::shared_ptr<SymbolDependenceMap> Symbols);
426 ~FailedToMaterialize();
427 std::error_code convertToErrorCode() const override;
428 void log(raw_ostream &OS) const override;
getSymbols()429 const SymbolDependenceMap &getSymbols() const { return *Symbols; }
430
431 private:
432 std::shared_ptr<SymbolStringPool> SSP;
433 std::shared_ptr<SymbolDependenceMap> Symbols;
434 };
435
436 /// Used to notify clients when symbols can not be found during a lookup.
437 class SymbolsNotFound : public ErrorInfo<SymbolsNotFound> {
438 public:
439 static char ID;
440
441 SymbolsNotFound(std::shared_ptr<SymbolStringPool> SSP, SymbolNameSet Symbols);
442 SymbolsNotFound(std::shared_ptr<SymbolStringPool> SSP,
443 SymbolNameVector Symbols);
444 std::error_code convertToErrorCode() const override;
445 void log(raw_ostream &OS) const override;
getSymbolStringPool()446 std::shared_ptr<SymbolStringPool> getSymbolStringPool() { return SSP; }
getSymbols()447 const SymbolNameVector &getSymbols() const { return Symbols; }
448
449 private:
450 std::shared_ptr<SymbolStringPool> SSP;
451 SymbolNameVector Symbols;
452 };
453
454 /// Used to notify clients that a set of symbols could not be removed.
455 class SymbolsCouldNotBeRemoved : public ErrorInfo<SymbolsCouldNotBeRemoved> {
456 public:
457 static char ID;
458
459 SymbolsCouldNotBeRemoved(std::shared_ptr<SymbolStringPool> SSP,
460 SymbolNameSet Symbols);
461 std::error_code convertToErrorCode() const override;
462 void log(raw_ostream &OS) const override;
getSymbolStringPool()463 std::shared_ptr<SymbolStringPool> getSymbolStringPool() { return SSP; }
getSymbols()464 const SymbolNameSet &getSymbols() const { return Symbols; }
465
466 private:
467 std::shared_ptr<SymbolStringPool> SSP;
468 SymbolNameSet Symbols;
469 };
470
471 /// Errors of this type should be returned if a module fails to include
472 /// definitions that are claimed by the module's associated
473 /// MaterializationResponsibility. If this error is returned it is indicative of
474 /// a broken transformation / compiler / object cache.
475 class MissingSymbolDefinitions : public ErrorInfo<MissingSymbolDefinitions> {
476 public:
477 static char ID;
478
MissingSymbolDefinitions(std::shared_ptr<SymbolStringPool> SSP,std::string ModuleName,SymbolNameVector Symbols)479 MissingSymbolDefinitions(std::shared_ptr<SymbolStringPool> SSP,
480 std::string ModuleName, SymbolNameVector Symbols)
481 : SSP(std::move(SSP)), ModuleName(std::move(ModuleName)),
482 Symbols(std::move(Symbols)) {}
483 std::error_code convertToErrorCode() const override;
484 void log(raw_ostream &OS) const override;
getSymbolStringPool()485 std::shared_ptr<SymbolStringPool> getSymbolStringPool() { return SSP; }
getModuleName()486 const std::string &getModuleName() const { return ModuleName; }
getSymbols()487 const SymbolNameVector &getSymbols() const { return Symbols; }
488 private:
489 std::shared_ptr<SymbolStringPool> SSP;
490 std::string ModuleName;
491 SymbolNameVector Symbols;
492 };
493
494 /// Errors of this type should be returned if a module contains definitions for
495 /// symbols that are not claimed by the module's associated
496 /// MaterializationResponsibility. If this error is returned it is indicative of
497 /// a broken transformation / compiler / object cache.
498 class UnexpectedSymbolDefinitions : public ErrorInfo<UnexpectedSymbolDefinitions> {
499 public:
500 static char ID;
501
UnexpectedSymbolDefinitions(std::shared_ptr<SymbolStringPool> SSP,std::string ModuleName,SymbolNameVector Symbols)502 UnexpectedSymbolDefinitions(std::shared_ptr<SymbolStringPool> SSP,
503 std::string ModuleName, SymbolNameVector Symbols)
504 : SSP(std::move(SSP)), ModuleName(std::move(ModuleName)),
505 Symbols(std::move(Symbols)) {}
506 std::error_code convertToErrorCode() const override;
507 void log(raw_ostream &OS) const override;
getSymbolStringPool()508 std::shared_ptr<SymbolStringPool> getSymbolStringPool() { return SSP; }
getModuleName()509 const std::string &getModuleName() const { return ModuleName; }
getSymbols()510 const SymbolNameVector &getSymbols() const { return Symbols; }
511 private:
512 std::shared_ptr<SymbolStringPool> SSP;
513 std::string ModuleName;
514 SymbolNameVector Symbols;
515 };
516
517 /// Tracks responsibility for materialization, and mediates interactions between
518 /// MaterializationUnits and JDs.
519 ///
520 /// An instance of this class is passed to MaterializationUnits when their
521 /// materialize method is called. It allows MaterializationUnits to resolve and
522 /// emit symbols, or abandon materialization by notifying any unmaterialized
523 /// symbols of an error.
524 class MaterializationResponsibility {
525 friend class ExecutionSession;
526 friend class JITDylib;
527
528 public:
529 MaterializationResponsibility(MaterializationResponsibility &&) = delete;
530 MaterializationResponsibility &
531 operator=(MaterializationResponsibility &&) = delete;
532
533 /// Destruct a MaterializationResponsibility instance. In debug mode
534 /// this asserts that all symbols being tracked have been either
535 /// emitted or notified of an error.
536 ~MaterializationResponsibility();
537
538 /// Runs the given callback under the session lock, passing in the associated
539 /// ResourceKey. This is the safe way to associate resources with trackers.
withResourceKeyDo(Func && F)540 template <typename Func> Error withResourceKeyDo(Func &&F) const {
541 return RT->withResourceKeyDo(std::forward<Func>(F));
542 }
543
544 /// Returns the target JITDylib that these symbols are being materialized
545 /// into.
getTargetJITDylib()546 JITDylib &getTargetJITDylib() const { return JD; }
547
548 /// Returns the ExecutionSession for this instance.
549 ExecutionSession &getExecutionSession() const;
550
551 /// Returns the symbol flags map for this responsibility instance.
552 /// Note: The returned flags may have transient flags (Lazy, Materializing)
553 /// set. These should be stripped with JITSymbolFlags::stripTransientFlags
554 /// before using.
getSymbols()555 const SymbolFlagsMap &getSymbols() const { return SymbolFlags; }
556
557 /// Returns the initialization pseudo-symbol, if any. This symbol will also
558 /// be present in the SymbolFlagsMap for this MaterializationResponsibility
559 /// object.
getInitializerSymbol()560 const SymbolStringPtr &getInitializerSymbol() const { return InitSymbol; }
561
562 /// Returns the names of any symbols covered by this
563 /// MaterializationResponsibility object that have queries pending. This
564 /// information can be used to return responsibility for unrequested symbols
565 /// back to the JITDylib via the delegate method.
566 SymbolNameSet getRequestedSymbols() const;
567
568 /// Notifies the target JITDylib that the given symbols have been resolved.
569 /// This will update the given symbols' addresses in the JITDylib, and notify
570 /// any pending queries on the given symbols of their resolution. The given
571 /// symbols must be ones covered by this MaterializationResponsibility
572 /// instance. Individual calls to this method may resolve a subset of the
573 /// symbols, but all symbols must have been resolved prior to calling emit.
574 ///
575 /// This method will return an error if any symbols being resolved have been
576 /// moved to the error state due to the failure of a dependency. If this
577 /// method returns an error then clients should log it and call
578 /// failMaterialize. If no dependencies have been registered for the
579 /// symbols covered by this MaterializationResponsibiility then this method
580 /// is guaranteed to return Error::success() and can be wrapped with cantFail.
581 Error notifyResolved(const SymbolMap &Symbols);
582
583 /// Notifies the target JITDylib (and any pending queries on that JITDylib)
584 /// that all symbols covered by this MaterializationResponsibility instance
585 /// have been emitted.
586 ///
587 /// This method will return an error if any symbols being resolved have been
588 /// moved to the error state due to the failure of a dependency. If this
589 /// method returns an error then clients should log it and call
590 /// failMaterialize. If no dependencies have been registered for the
591 /// symbols covered by this MaterializationResponsibiility then this method
592 /// is guaranteed to return Error::success() and can be wrapped with cantFail.
593 Error notifyEmitted();
594
595 /// Attempt to claim responsibility for new definitions. This method can be
596 /// used to claim responsibility for symbols that are added to a
597 /// materialization unit during the compilation process (e.g. literal pool
598 /// symbols). Symbol linkage rules are the same as for symbols that are
599 /// defined up front: duplicate strong definitions will result in errors.
600 /// Duplicate weak definitions will be discarded (in which case they will
601 /// not be added to this responsibility instance).
602 ///
603 /// This method can be used by materialization units that want to add
604 /// additional symbols at materialization time (e.g. stubs, compile
605 /// callbacks, metadata).
606 Error defineMaterializing(SymbolFlagsMap SymbolFlags);
607
608 /// Define the given symbols as non-existent, removing it from the symbol
609 /// table and notifying any pending queries. Queries that lookup up the
610 /// symbol using the SymbolLookupFlags::WeaklyReferencedSymbol flag will
611 /// behave as if the symbol had not been matched in the first place. Queries
612 /// that required this symbol will fail with a missing symbol definition
613 /// error.
614 ///
615 /// This method is intended to support cleanup of special symbols like
616 /// initializer symbols: Queries using
617 /// SymbolLookupFlags::WeaklyReferencedSymbol can be used to trigger their
618 /// emission, and this method can be used to remove them from the JITDylib
619 /// once materialization is complete.
620 void defineNonExistent(ArrayRef<SymbolStringPtr> Symbols);
621
622 /// Notify all not-yet-emitted covered by this MaterializationResponsibility
623 /// instance that an error has occurred.
624 /// This will remove all symbols covered by this MaterializationResponsibilty
625 /// from the target JITDylib, and send an error to any queries waiting on
626 /// these symbols.
627 void failMaterialization();
628
629 /// Transfers responsibility to the given MaterializationUnit for all
630 /// symbols defined by that MaterializationUnit. This allows
631 /// materializers to break up work based on run-time information (e.g.
632 /// by introspecting which symbols have actually been looked up and
633 /// materializing only those).
634 Error replace(std::unique_ptr<MaterializationUnit> MU);
635
636 /// Delegates responsibility for the given symbols to the returned
637 /// materialization responsibility. Useful for breaking up work between
638 /// threads, or different kinds of materialization processes.
639 Expected<std::unique_ptr<MaterializationResponsibility>>
640 delegate(const SymbolNameSet &Symbols);
641
642 void addDependencies(const SymbolStringPtr &Name,
643 const SymbolDependenceMap &Dependencies);
644
645 /// Add dependencies that apply to all symbols covered by this instance.
646 void addDependenciesForAll(const SymbolDependenceMap &Dependencies);
647
648 private:
649 /// Create a MaterializationResponsibility for the given JITDylib and
650 /// initial symbols.
MaterializationResponsibility(ResourceTrackerSP RT,SymbolFlagsMap SymbolFlags,SymbolStringPtr InitSymbol)651 MaterializationResponsibility(ResourceTrackerSP RT,
652 SymbolFlagsMap SymbolFlags,
653 SymbolStringPtr InitSymbol)
654 : JD(RT->getJITDylib()), RT(std::move(RT)),
655 SymbolFlags(std::move(SymbolFlags)), InitSymbol(std::move(InitSymbol)) {
656 assert(!this->SymbolFlags.empty() && "Materializing nothing?");
657 }
658
659 JITDylib &JD;
660 ResourceTrackerSP RT;
661 SymbolFlagsMap SymbolFlags;
662 SymbolStringPtr InitSymbol;
663 };
664
665 /// A MaterializationUnit represents a set of symbol definitions that can
666 /// be materialized as a group, or individually discarded (when
667 /// overriding definitions are encountered).
668 ///
669 /// MaterializationUnits are used when providing lazy definitions of symbols to
670 /// JITDylibs. The JITDylib will call materialize when the address of a symbol
671 /// is requested via the lookup method. The JITDylib will call discard if a
672 /// stronger definition is added or already present.
673 class MaterializationUnit {
674 friend class ExecutionSession;
675 friend class JITDylib;
676
677 public:
678 static char ID;
679
680 struct Interface {
681 Interface() = default;
InterfaceInterface682 Interface(SymbolFlagsMap InitalSymbolFlags, SymbolStringPtr InitSymbol)
683 : SymbolFlags(std::move(InitalSymbolFlags)),
684 InitSymbol(std::move(InitSymbol)) {
685 assert((!this->InitSymbol || this->SymbolFlags.count(this->InitSymbol)) &&
686 "If set, InitSymbol should appear in InitialSymbolFlags map");
687 }
688
689 SymbolFlagsMap SymbolFlags;
690 SymbolStringPtr InitSymbol;
691 };
692
MaterializationUnit(Interface I)693 MaterializationUnit(Interface I)
694 : SymbolFlags(std::move(I.SymbolFlags)),
695 InitSymbol(std::move(I.InitSymbol)) {}
696 virtual ~MaterializationUnit() = default;
697
698 /// Return the name of this materialization unit. Useful for debugging
699 /// output.
700 virtual StringRef getName() const = 0;
701
702 /// Return the set of symbols that this source provides.
getSymbols()703 const SymbolFlagsMap &getSymbols() const { return SymbolFlags; }
704
705 /// Returns the initialization symbol for this MaterializationUnit (if any).
getInitializerSymbol()706 const SymbolStringPtr &getInitializerSymbol() const { return InitSymbol; }
707
708 /// Implementations of this method should materialize all symbols
709 /// in the materialzation unit, except for those that have been
710 /// previously discarded.
711 virtual void
712 materialize(std::unique_ptr<MaterializationResponsibility> R) = 0;
713
714 /// Called by JITDylibs to notify MaterializationUnits that the given symbol
715 /// has been overridden.
doDiscard(const JITDylib & JD,const SymbolStringPtr & Name)716 void doDiscard(const JITDylib &JD, const SymbolStringPtr &Name) {
717 SymbolFlags.erase(Name);
718 if (InitSymbol == Name) {
719 DEBUG_WITH_TYPE("orc", {
720 dbgs() << "In " << getName() << ": discarding init symbol \""
721 << *Name << "\"\n";
722 });
723 InitSymbol = nullptr;
724 }
725 discard(JD, std::move(Name));
726 }
727
728 protected:
729 SymbolFlagsMap SymbolFlags;
730 SymbolStringPtr InitSymbol;
731
732 private:
733 virtual void anchor();
734
735 /// Implementations of this method should discard the given symbol
736 /// from the source (e.g. if the source is an LLVM IR Module and the
737 /// symbol is a function, delete the function body or mark it available
738 /// externally).
739 virtual void discard(const JITDylib &JD, const SymbolStringPtr &Name) = 0;
740 };
741
742 /// A MaterializationUnit implementation for pre-existing absolute symbols.
743 ///
744 /// All symbols will be resolved and marked ready as soon as the unit is
745 /// materialized.
746 class AbsoluteSymbolsMaterializationUnit : public MaterializationUnit {
747 public:
748 AbsoluteSymbolsMaterializationUnit(SymbolMap Symbols);
749
750 StringRef getName() const override;
751
752 private:
753 void materialize(std::unique_ptr<MaterializationResponsibility> R) override;
754 void discard(const JITDylib &JD, const SymbolStringPtr &Name) override;
755 static MaterializationUnit::Interface extractFlags(const SymbolMap &Symbols);
756
757 SymbolMap Symbols;
758 };
759
760 /// Create an AbsoluteSymbolsMaterializationUnit with the given symbols.
761 /// Useful for inserting absolute symbols into a JITDylib. E.g.:
762 /// \code{.cpp}
763 /// JITDylib &JD = ...;
764 /// SymbolStringPtr Foo = ...;
765 /// JITEvaluatedSymbol FooSym = ...;
766 /// if (auto Err = JD.define(absoluteSymbols({{Foo, FooSym}})))
767 /// return Err;
768 /// \endcode
769 ///
770 inline std::unique_ptr<AbsoluteSymbolsMaterializationUnit>
absoluteSymbols(SymbolMap Symbols)771 absoluteSymbols(SymbolMap Symbols) {
772 return std::make_unique<AbsoluteSymbolsMaterializationUnit>(
773 std::move(Symbols));
774 }
775
776 /// A materialization unit for symbol aliases. Allows existing symbols to be
777 /// aliased with alternate flags.
778 class ReExportsMaterializationUnit : public MaterializationUnit {
779 public:
780 /// SourceJD is allowed to be nullptr, in which case the source JITDylib is
781 /// taken to be whatever JITDylib these definitions are materialized in (and
782 /// MatchNonExported has no effect). This is useful for defining aliases
783 /// within a JITDylib.
784 ///
785 /// Note: Care must be taken that no sets of aliases form a cycle, as such
786 /// a cycle will result in a deadlock when any symbol in the cycle is
787 /// resolved.
788 ReExportsMaterializationUnit(JITDylib *SourceJD,
789 JITDylibLookupFlags SourceJDLookupFlags,
790 SymbolAliasMap Aliases);
791
792 StringRef getName() const override;
793
794 private:
795 void materialize(std::unique_ptr<MaterializationResponsibility> R) override;
796 void discard(const JITDylib &JD, const SymbolStringPtr &Name) override;
797 static MaterializationUnit::Interface
798 extractFlags(const SymbolAliasMap &Aliases);
799
800 JITDylib *SourceJD = nullptr;
801 JITDylibLookupFlags SourceJDLookupFlags;
802 SymbolAliasMap Aliases;
803 };
804
805 /// Create a ReExportsMaterializationUnit with the given aliases.
806 /// Useful for defining symbol aliases.: E.g., given a JITDylib JD containing
807 /// symbols "foo" and "bar", we can define aliases "baz" (for "foo") and "qux"
808 /// (for "bar") with: \code{.cpp}
809 /// SymbolStringPtr Baz = ...;
810 /// SymbolStringPtr Qux = ...;
811 /// if (auto Err = JD.define(symbolAliases({
812 /// {Baz, { Foo, JITSymbolFlags::Exported }},
813 /// {Qux, { Bar, JITSymbolFlags::Weak }}}))
814 /// return Err;
815 /// \endcode
816 inline std::unique_ptr<ReExportsMaterializationUnit>
symbolAliases(SymbolAliasMap Aliases)817 symbolAliases(SymbolAliasMap Aliases) {
818 return std::make_unique<ReExportsMaterializationUnit>(
819 nullptr, JITDylibLookupFlags::MatchAllSymbols, std::move(Aliases));
820 }
821
822 /// Create a materialization unit for re-exporting symbols from another JITDylib
823 /// with alternative names/flags.
824 /// SourceJD will be searched using the given JITDylibLookupFlags.
825 inline std::unique_ptr<ReExportsMaterializationUnit>
826 reexports(JITDylib &SourceJD, SymbolAliasMap Aliases,
827 JITDylibLookupFlags SourceJDLookupFlags =
828 JITDylibLookupFlags::MatchExportedSymbolsOnly) {
829 return std::make_unique<ReExportsMaterializationUnit>(
830 &SourceJD, SourceJDLookupFlags, std::move(Aliases));
831 }
832
833 /// Build a SymbolAliasMap for the common case where you want to re-export
834 /// symbols from another JITDylib with the same linkage/flags.
835 Expected<SymbolAliasMap>
836 buildSimpleReexportsAliasMap(JITDylib &SourceJD, const SymbolNameSet &Symbols);
837
838 /// Represents the state that a symbol has reached during materialization.
839 enum class SymbolState : uint8_t {
840 Invalid, /// No symbol should be in this state.
841 NeverSearched, /// Added to the symbol table, never queried.
842 Materializing, /// Queried, materialization begun.
843 Resolved, /// Assigned address, still materializing.
844 Emitted, /// Emitted to memory, but waiting on transitive dependencies.
845 Ready = 0x3f /// Ready and safe for clients to access.
846 };
847
848 /// A symbol query that returns results via a callback when results are
849 /// ready.
850 ///
851 /// makes a callback when all symbols are available.
852 class AsynchronousSymbolQuery {
853 friend class ExecutionSession;
854 friend class InProgressFullLookupState;
855 friend class JITDylib;
856 friend class JITSymbolResolverAdapter;
857 friend class MaterializationResponsibility;
858
859 public:
860 /// Create a query for the given symbols. The NotifyComplete
861 /// callback will be called once all queried symbols reach the given
862 /// minimum state.
863 AsynchronousSymbolQuery(const SymbolLookupSet &Symbols,
864 SymbolState RequiredState,
865 SymbolsResolvedCallback NotifyComplete);
866
867 /// Notify the query that a requested symbol has reached the required state.
868 void notifySymbolMetRequiredState(const SymbolStringPtr &Name,
869 JITEvaluatedSymbol Sym);
870
871 /// Returns true if all symbols covered by this query have been
872 /// resolved.
isComplete()873 bool isComplete() const { return OutstandingSymbolsCount == 0; }
874
875
876 private:
877 void handleComplete(ExecutionSession &ES);
878
getRequiredState()879 SymbolState getRequiredState() { return RequiredState; }
880
881 void addQueryDependence(JITDylib &JD, SymbolStringPtr Name);
882
883 void removeQueryDependence(JITDylib &JD, const SymbolStringPtr &Name);
884
885 void dropSymbol(const SymbolStringPtr &Name);
886
887 void handleFailed(Error Err);
888
889 void detach();
890
891 SymbolsResolvedCallback NotifyComplete;
892 SymbolDependenceMap QueryRegistrations;
893 SymbolMap ResolvedSymbols;
894 size_t OutstandingSymbolsCount;
895 SymbolState RequiredState;
896 };
897
898 /// Wraps state for a lookup-in-progress.
899 /// DefinitionGenerators can optionally take ownership of a LookupState object
900 /// to suspend a lookup-in-progress while they search for definitions.
901 class LookupState {
902 friend class OrcV2CAPIHelper;
903 friend class ExecutionSession;
904
905 public:
906 LookupState();
907 LookupState(LookupState &&);
908 LookupState &operator=(LookupState &&);
909 ~LookupState();
910
911 /// Continue the lookup. This can be called by DefinitionGenerators
912 /// to re-start a captured query-application operation.
913 void continueLookup(Error Err);
914
915 private:
916 LookupState(std::unique_ptr<InProgressLookupState> IPLS);
917
918 // For C API.
919 void reset(InProgressLookupState *IPLS);
920
921 std::unique_ptr<InProgressLookupState> IPLS;
922 };
923
924 /// Definition generators can be attached to JITDylibs to generate new
925 /// definitions for otherwise unresolved symbols during lookup.
926 class DefinitionGenerator {
927 public:
928 virtual ~DefinitionGenerator();
929
930 /// DefinitionGenerators should override this method to insert new
931 /// definitions into the parent JITDylib. K specifies the kind of this
932 /// lookup. JD specifies the target JITDylib being searched, and
933 /// JDLookupFlags specifies whether the search should match against
934 /// hidden symbols. Finally, Symbols describes the set of unresolved
935 /// symbols and their associated lookup flags.
936 virtual Error tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD,
937 JITDylibLookupFlags JDLookupFlags,
938 const SymbolLookupSet &LookupSet) = 0;
939 };
940
941 /// Represents a JIT'd dynamic library.
942 ///
943 /// This class aims to mimic the behavior of a regular dylib or shared object,
944 /// but without requiring the contained program representations to be compiled
945 /// up-front. The JITDylib's content is defined by adding MaterializationUnits,
946 /// and contained MaterializationUnits will typically rely on the JITDylib's
947 /// links-against order to resolve external references (similar to a regular
948 /// dylib).
949 ///
950 /// The JITDylib object is a thin wrapper that references state held by the
951 /// ExecutionSession. JITDylibs can be removed, clearing this underlying state
952 /// and leaving the JITDylib object in a defunct state. In this state the
953 /// JITDylib's name is guaranteed to remain accessible. If the ExecutionSession
954 /// is still alive then other operations are callable but will return an Error
955 /// or null result (depending on the API). It is illegal to call any operation
956 /// other than getName on a JITDylib after the ExecutionSession has been torn
957 /// down.
958 ///
959 /// JITDylibs cannot be moved or copied. Their address is stable, and useful as
960 /// a key in some JIT data structures.
961 class JITDylib : public ThreadSafeRefCountedBase<JITDylib>,
962 public jitlink::JITLinkDylib {
963 friend class AsynchronousSymbolQuery;
964 friend class ExecutionSession;
965 friend class Platform;
966 friend class MaterializationResponsibility;
967 public:
968
969 JITDylib(const JITDylib &) = delete;
970 JITDylib &operator=(const JITDylib &) = delete;
971 JITDylib(JITDylib &&) = delete;
972 JITDylib &operator=(JITDylib &&) = delete;
973 ~JITDylib();
974
975 /// Get a reference to the ExecutionSession for this JITDylib.
976 ///
977 /// It is legal to call this method on a defunct JITDylib, however the result
978 /// will only usable if the ExecutionSession is still alive. If this JITDylib
979 /// is held by an error that may have torn down the JIT then the result
980 /// should not be used.
getExecutionSession()981 ExecutionSession &getExecutionSession() const { return ES; }
982
983 /// Dump current JITDylib state to OS.
984 ///
985 /// It is legal to call this method on a defunct JITDylib.
986 void dump(raw_ostream &OS);
987
988 /// Calls remove on all trackers currently associated with this JITDylib.
989 /// Does not run static deinits.
990 ///
991 /// Note that removal happens outside the session lock, so new code may be
992 /// added concurrently while the clear is underway, and the newly added
993 /// code will *not* be cleared. Adding new code concurrently with a clear
994 /// is usually a bug and should be avoided.
995 ///
996 /// It is illegal to call this method on a defunct JITDylib and the client
997 /// is responsible for ensuring that they do not do so.
998 Error clear();
999
1000 /// Get the default resource tracker for this JITDylib.
1001 ///
1002 /// It is illegal to call this method on a defunct JITDylib and the client
1003 /// is responsible for ensuring that they do not do so.
1004 ResourceTrackerSP getDefaultResourceTracker();
1005
1006 /// Create a resource tracker for this JITDylib.
1007 ///
1008 /// It is illegal to call this method on a defunct JITDylib and the client
1009 /// is responsible for ensuring that they do not do so.
1010 ResourceTrackerSP createResourceTracker();
1011
1012 /// Adds a definition generator to this JITDylib and returns a referenece to
1013 /// it.
1014 ///
1015 /// When JITDylibs are searched during lookup, if no existing definition of
1016 /// a symbol is found, then any generators that have been added are run (in
1017 /// the order that they were added) to potentially generate a definition.
1018 ///
1019 /// It is illegal to call this method on a defunct JITDylib and the client
1020 /// is responsible for ensuring that they do not do so.
1021 template <typename GeneratorT>
1022 GeneratorT &addGenerator(std::unique_ptr<GeneratorT> DefGenerator);
1023
1024 /// Remove a definition generator from this JITDylib.
1025 ///
1026 /// The given generator must exist in this JITDylib's generators list (i.e.
1027 /// have been added and not yet removed).
1028 ///
1029 /// It is illegal to call this method on a defunct JITDylib and the client
1030 /// is responsible for ensuring that they do not do so.
1031 void removeGenerator(DefinitionGenerator &G);
1032
1033 /// Set the link order to be used when fixing up definitions in JITDylib.
1034 /// This will replace the previous link order, and apply to any symbol
1035 /// resolutions made for definitions in this JITDylib after the call to
1036 /// setLinkOrder (even if the definition itself was added before the
1037 /// call).
1038 ///
1039 /// If LinkAgainstThisJITDylibFirst is true (the default) then this JITDylib
1040 /// will add itself to the beginning of the LinkOrder (Clients should not
1041 /// put this JITDylib in the list in this case, to avoid redundant lookups).
1042 ///
1043 /// If LinkAgainstThisJITDylibFirst is false then the link order will be used
1044 /// as-is. The primary motivation for this feature is to support deliberate
1045 /// shadowing of symbols in this JITDylib by a facade JITDylib. For example,
1046 /// the facade may resolve function names to stubs, and the stubs may compile
1047 /// lazily by looking up symbols in this dylib. Adding the facade dylib
1048 /// as the first in the link order (instead of this dylib) ensures that
1049 /// definitions within this dylib resolve to the lazy-compiling stubs,
1050 /// rather than immediately materializing the definitions in this dylib.
1051 ///
1052 /// It is illegal to call this method on a defunct JITDylib and the client
1053 /// is responsible for ensuring that they do not do so.
1054 void setLinkOrder(JITDylibSearchOrder NewSearchOrder,
1055 bool LinkAgainstThisJITDylibFirst = true);
1056
1057 /// Add the given JITDylib to the link order for definitions in this
1058 /// JITDylib.
1059 ///
1060 /// It is illegal to call this method on a defunct JITDylib and the client
1061 /// is responsible for ensuring that they do not do so.
1062 void addToLinkOrder(JITDylib &JD,
1063 JITDylibLookupFlags JDLookupFlags =
1064 JITDylibLookupFlags::MatchExportedSymbolsOnly);
1065
1066 /// Replace OldJD with NewJD in the link order if OldJD is present.
1067 /// Otherwise this operation is a no-op.
1068 ///
1069 /// It is illegal to call this method on a defunct JITDylib and the client
1070 /// is responsible for ensuring that they do not do so.
1071 void replaceInLinkOrder(JITDylib &OldJD, JITDylib &NewJD,
1072 JITDylibLookupFlags JDLookupFlags =
1073 JITDylibLookupFlags::MatchExportedSymbolsOnly);
1074
1075 /// Remove the given JITDylib from the link order for this JITDylib if it is
1076 /// present. Otherwise this operation is a no-op.
1077 ///
1078 /// It is illegal to call this method on a defunct JITDylib and the client
1079 /// is responsible for ensuring that they do not do so.
1080 void removeFromLinkOrder(JITDylib &JD);
1081
1082 /// Do something with the link order (run under the session lock).
1083 ///
1084 /// It is illegal to call this method on a defunct JITDylib and the client
1085 /// is responsible for ensuring that they do not do so.
1086 template <typename Func>
1087 auto withLinkOrderDo(Func &&F)
1088 -> decltype(F(std::declval<const JITDylibSearchOrder &>()));
1089
1090 /// Define all symbols provided by the materialization unit to be part of this
1091 /// JITDylib.
1092 ///
1093 /// If RT is not specified then the default resource tracker will be used.
1094 ///
1095 /// This overload always takes ownership of the MaterializationUnit. If any
1096 /// errors occur, the MaterializationUnit consumed.
1097 ///
1098 /// It is illegal to call this method on a defunct JITDylib and the client
1099 /// is responsible for ensuring that they do not do so.
1100 template <typename MaterializationUnitType>
1101 Error define(std::unique_ptr<MaterializationUnitType> &&MU,
1102 ResourceTrackerSP RT = nullptr);
1103
1104 /// Define all symbols provided by the materialization unit to be part of this
1105 /// JITDylib.
1106 ///
1107 /// This overload only takes ownership of the MaterializationUnit no error is
1108 /// generated. If an error occurs, ownership remains with the caller. This
1109 /// may allow the caller to modify the MaterializationUnit to correct the
1110 /// issue, then re-call define.
1111 ///
1112 /// It is illegal to call this method on a defunct JITDylib and the client
1113 /// is responsible for ensuring that they do not do so.
1114 template <typename MaterializationUnitType>
1115 Error define(std::unique_ptr<MaterializationUnitType> &MU,
1116 ResourceTrackerSP RT = nullptr);
1117
1118 /// Tries to remove the given symbols.
1119 ///
1120 /// If any symbols are not defined in this JITDylib this method will return
1121 /// a SymbolsNotFound error covering the missing symbols.
1122 ///
1123 /// If all symbols are found but some symbols are in the process of being
1124 /// materialized this method will return a SymbolsCouldNotBeRemoved error.
1125 ///
1126 /// On success, all symbols are removed. On failure, the JITDylib state is
1127 /// left unmodified (no symbols are removed).
1128 ///
1129 /// It is illegal to call this method on a defunct JITDylib and the client
1130 /// is responsible for ensuring that they do not do so.
1131 Error remove(const SymbolNameSet &Names);
1132
1133 /// Returns the given JITDylibs and all of their transitive dependencies in
1134 /// DFS order (based on linkage relationships). Each JITDylib will appear
1135 /// only once.
1136 ///
1137 /// If any JITDylib in the order is defunct then this method will return an
1138 /// error, otherwise returns the order.
1139 static Expected<std::vector<JITDylibSP>>
1140 getDFSLinkOrder(ArrayRef<JITDylibSP> JDs);
1141
1142 /// Returns the given JITDylibs and all of their transitive dependencies in
1143 /// reverse DFS order (based on linkage relationships). Each JITDylib will
1144 /// appear only once.
1145 ///
1146 /// If any JITDylib in the order is defunct then this method will return an
1147 /// error, otherwise returns the order.
1148 static Expected<std::vector<JITDylibSP>>
1149 getReverseDFSLinkOrder(ArrayRef<JITDylibSP> JDs);
1150
1151 /// Return this JITDylib and its transitive dependencies in DFS order
1152 /// based on linkage relationships.
1153 ///
1154 /// If any JITDylib in the order is defunct then this method will return an
1155 /// error, otherwise returns the order.
1156 Expected<std::vector<JITDylibSP>> getDFSLinkOrder();
1157
1158 /// Rteurn this JITDylib and its transitive dependencies in reverse DFS order
1159 /// based on linkage relationships.
1160 ///
1161 /// If any JITDylib in the order is defunct then this method will return an
1162 /// error, otherwise returns the order.
1163 Expected<std::vector<JITDylibSP>> getReverseDFSLinkOrder();
1164
1165 private:
1166 using AsynchronousSymbolQuerySet =
1167 std::set<std::shared_ptr<AsynchronousSymbolQuery>>;
1168
1169 using AsynchronousSymbolQueryList =
1170 std::vector<std::shared_ptr<AsynchronousSymbolQuery>>;
1171
1172 struct UnmaterializedInfo {
UnmaterializedInfoUnmaterializedInfo1173 UnmaterializedInfo(std::unique_ptr<MaterializationUnit> MU,
1174 ResourceTracker *RT)
1175 : MU(std::move(MU)), RT(RT) {}
1176
1177 std::unique_ptr<MaterializationUnit> MU;
1178 ResourceTracker *RT;
1179 };
1180
1181 using UnmaterializedInfosMap =
1182 DenseMap<SymbolStringPtr, std::shared_ptr<UnmaterializedInfo>>;
1183
1184 using UnmaterializedInfosList =
1185 std::vector<std::shared_ptr<UnmaterializedInfo>>;
1186
1187 struct MaterializingInfo {
1188 SymbolDependenceMap Dependants;
1189 SymbolDependenceMap UnemittedDependencies;
1190
1191 void addQuery(std::shared_ptr<AsynchronousSymbolQuery> Q);
1192 void removeQuery(const AsynchronousSymbolQuery &Q);
1193 AsynchronousSymbolQueryList takeQueriesMeeting(SymbolState RequiredState);
takeAllPendingQueriesMaterializingInfo1194 AsynchronousSymbolQueryList takeAllPendingQueries() {
1195 return std::move(PendingQueries);
1196 }
hasQueriesPendingMaterializingInfo1197 bool hasQueriesPending() const { return !PendingQueries.empty(); }
pendingQueriesMaterializingInfo1198 const AsynchronousSymbolQueryList &pendingQueries() const {
1199 return PendingQueries;
1200 }
1201 private:
1202 AsynchronousSymbolQueryList PendingQueries;
1203 };
1204
1205 using MaterializingInfosMap = DenseMap<SymbolStringPtr, MaterializingInfo>;
1206
1207 class SymbolTableEntry {
1208 public:
1209 SymbolTableEntry() = default;
SymbolTableEntry(JITSymbolFlags Flags)1210 SymbolTableEntry(JITSymbolFlags Flags)
1211 : Flags(Flags), State(static_cast<uint8_t>(SymbolState::NeverSearched)),
1212 MaterializerAttached(false), PendingRemoval(false) {}
1213
getAddress()1214 JITTargetAddress getAddress() const { return Addr; }
getFlags()1215 JITSymbolFlags getFlags() const { return Flags; }
getState()1216 SymbolState getState() const { return static_cast<SymbolState>(State); }
1217
hasMaterializerAttached()1218 bool hasMaterializerAttached() const { return MaterializerAttached; }
isPendingRemoval()1219 bool isPendingRemoval() const { return PendingRemoval; }
1220
setAddress(JITTargetAddress Addr)1221 void setAddress(JITTargetAddress Addr) { this->Addr = Addr; }
setFlags(JITSymbolFlags Flags)1222 void setFlags(JITSymbolFlags Flags) { this->Flags = Flags; }
setState(SymbolState State)1223 void setState(SymbolState State) {
1224 assert(static_cast<uint8_t>(State) < (1 << 6) &&
1225 "State does not fit in bitfield");
1226 this->State = static_cast<uint8_t>(State);
1227 }
1228
setMaterializerAttached(bool MaterializerAttached)1229 void setMaterializerAttached(bool MaterializerAttached) {
1230 this->MaterializerAttached = MaterializerAttached;
1231 }
1232
setPendingRemoval(bool PendingRemoval)1233 void setPendingRemoval(bool PendingRemoval) {
1234 this->PendingRemoval = PendingRemoval;
1235 }
1236
getSymbol()1237 JITEvaluatedSymbol getSymbol() const {
1238 return JITEvaluatedSymbol(Addr, Flags);
1239 }
1240
1241 private:
1242 JITTargetAddress Addr = 0;
1243 JITSymbolFlags Flags;
1244 uint8_t State : 6;
1245 uint8_t MaterializerAttached : 1;
1246 uint8_t PendingRemoval : 1;
1247 };
1248
1249 using SymbolTable = DenseMap<SymbolStringPtr, SymbolTableEntry>;
1250
1251 JITDylib(ExecutionSession &ES, std::string Name);
1252
1253 std::pair<AsynchronousSymbolQuerySet, std::shared_ptr<SymbolDependenceMap>>
1254 removeTracker(ResourceTracker &RT);
1255
1256 void transferTracker(ResourceTracker &DstRT, ResourceTracker &SrcRT);
1257
1258 Error defineImpl(MaterializationUnit &MU);
1259
1260 void installMaterializationUnit(std::unique_ptr<MaterializationUnit> MU,
1261 ResourceTracker &RT);
1262
1263 void detachQueryHelper(AsynchronousSymbolQuery &Q,
1264 const SymbolNameSet &QuerySymbols);
1265
1266 void transferEmittedNodeDependencies(MaterializingInfo &DependantMI,
1267 const SymbolStringPtr &DependantName,
1268 MaterializingInfo &EmittedMI);
1269
1270 Expected<SymbolFlagsMap> defineMaterializing(SymbolFlagsMap SymbolFlags);
1271
1272 Error replace(MaterializationResponsibility &FromMR,
1273 std::unique_ptr<MaterializationUnit> MU);
1274
1275 Expected<std::unique_ptr<MaterializationResponsibility>>
1276 delegate(MaterializationResponsibility &FromMR, SymbolFlagsMap SymbolFlags,
1277 SymbolStringPtr InitSymbol);
1278
1279 SymbolNameSet getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const;
1280
1281 void addDependencies(const SymbolStringPtr &Name,
1282 const SymbolDependenceMap &Dependants);
1283
1284 Error resolve(MaterializationResponsibility &MR, const SymbolMap &Resolved);
1285
1286 Error emit(MaterializationResponsibility &MR, const SymbolFlagsMap &Emitted);
1287
1288 void unlinkMaterializationResponsibility(MaterializationResponsibility &MR);
1289
1290 using FailedSymbolsWorklist =
1291 std::vector<std::pair<JITDylib *, SymbolStringPtr>>;
1292
1293 static std::pair<AsynchronousSymbolQuerySet,
1294 std::shared_ptr<SymbolDependenceMap>>
1295 failSymbols(FailedSymbolsWorklist);
1296
1297 ExecutionSession &ES;
1298 enum { Open, Closing, Closed } State = Open;
1299 std::mutex GeneratorsMutex;
1300 SymbolTable Symbols;
1301 UnmaterializedInfosMap UnmaterializedInfos;
1302 MaterializingInfosMap MaterializingInfos;
1303 std::vector<std::shared_ptr<DefinitionGenerator>> DefGenerators;
1304 JITDylibSearchOrder LinkOrder;
1305 ResourceTrackerSP DefaultTracker;
1306
1307 // Map trackers to sets of symbols tracked.
1308 DenseMap<ResourceTracker *, SymbolNameVector> TrackerSymbols;
1309 DenseMap<ResourceTracker *, DenseSet<MaterializationResponsibility *>>
1310 TrackerMRs;
1311 };
1312
1313 /// Platforms set up standard symbols and mediate interactions between dynamic
1314 /// initializers (e.g. C++ static constructors) and ExecutionSession state.
1315 /// Note that Platforms do not automatically run initializers: clients are still
1316 /// responsible for doing this.
1317 class Platform {
1318 public:
1319 virtual ~Platform();
1320
1321 /// This method will be called outside the session lock each time a JITDylib
1322 /// is created (unless it is created with EmptyJITDylib set) to allow the
1323 /// Platform to install any JITDylib specific standard symbols (e.g
1324 /// __dso_handle).
1325 virtual Error setupJITDylib(JITDylib &JD) = 0;
1326
1327 /// This method will be called outside the session lock each time a JITDylib
1328 /// is removed to allow the Platform to remove any JITDylib-specific data.
1329 virtual Error teardownJITDylib(JITDylib &JD) = 0;
1330
1331 /// This method will be called under the ExecutionSession lock each time a
1332 /// MaterializationUnit is added to a JITDylib.
1333 virtual Error notifyAdding(ResourceTracker &RT,
1334 const MaterializationUnit &MU) = 0;
1335
1336 /// This method will be called under the ExecutionSession lock when a
1337 /// ResourceTracker is removed.
1338 virtual Error notifyRemoving(ResourceTracker &RT) = 0;
1339
1340 /// A utility function for looking up initializer symbols. Performs a blocking
1341 /// lookup for the given symbols in each of the given JITDylibs.
1342 ///
1343 /// Note: This function is deprecated and will be removed in the near future.
1344 static Expected<DenseMap<JITDylib *, SymbolMap>>
1345 lookupInitSymbols(ExecutionSession &ES,
1346 const DenseMap<JITDylib *, SymbolLookupSet> &InitSyms);
1347
1348 /// Performs an async lookup for the given symbols in each of the given
1349 /// JITDylibs, calling the given handler once all lookups have completed.
1350 static void
1351 lookupInitSymbolsAsync(unique_function<void(Error)> OnComplete,
1352 ExecutionSession &ES,
1353 const DenseMap<JITDylib *, SymbolLookupSet> &InitSyms);
1354 };
1355
1356 /// A materialization task.
1357 class MaterializationTask : public RTTIExtends<MaterializationTask, Task> {
1358 public:
1359 static char ID;
1360
MaterializationTask(std::unique_ptr<MaterializationUnit> MU,std::unique_ptr<MaterializationResponsibility> MR)1361 MaterializationTask(std::unique_ptr<MaterializationUnit> MU,
1362 std::unique_ptr<MaterializationResponsibility> MR)
1363 : MU(std::move(MU)), MR(std::move(MR)) {}
1364 void printDescription(raw_ostream &OS) override;
1365 void run() override;
1366
1367 private:
1368 std::unique_ptr<MaterializationUnit> MU;
1369 std::unique_ptr<MaterializationResponsibility> MR;
1370 };
1371
1372 /// An ExecutionSession represents a running JIT program.
1373 class ExecutionSession {
1374 friend class InProgressLookupFlagsState;
1375 friend class InProgressFullLookupState;
1376 friend class JITDylib;
1377 friend class LookupState;
1378 friend class MaterializationResponsibility;
1379 friend class ResourceTracker;
1380
1381 public:
1382 /// For reporting errors.
1383 using ErrorReporter = std::function<void(Error)>;
1384
1385 /// Send a result to the remote.
1386 using SendResultFunction = unique_function<void(shared::WrapperFunctionResult)>;
1387
1388 /// For dispatching ORC tasks (typically materialization tasks).
1389 using DispatchTaskFunction = unique_function<void(std::unique_ptr<Task> T)>;
1390
1391 /// An asynchronous wrapper-function callable from the executor via
1392 /// jit-dispatch.
1393 using JITDispatchHandlerFunction = unique_function<void(
1394 SendResultFunction SendResult,
1395 const char *ArgData, size_t ArgSize)>;
1396
1397 /// A map associating tag names with asynchronous wrapper function
1398 /// implementations in the JIT.
1399 using JITDispatchHandlerAssociationMap =
1400 DenseMap<SymbolStringPtr, JITDispatchHandlerFunction>;
1401
1402 /// Construct an ExecutionSession with the given ExecutorProcessControl
1403 /// object.
1404 ExecutionSession(std::unique_ptr<ExecutorProcessControl> EPC);
1405
1406 /// Destroy an ExecutionSession. Verifies that endSession was called prior to
1407 /// destruction.
1408 ~ExecutionSession();
1409
1410 /// End the session. Closes all JITDylibs and disconnects from the
1411 /// executor. Clients must call this method before destroying the session.
1412 Error endSession();
1413
1414 /// Get the ExecutorProcessControl object associated with this
1415 /// ExecutionSession.
getExecutorProcessControl()1416 ExecutorProcessControl &getExecutorProcessControl() { return *EPC; }
1417
1418 /// Get the SymbolStringPool for this instance.
getSymbolStringPool()1419 std::shared_ptr<SymbolStringPool> getSymbolStringPool() {
1420 return EPC->getSymbolStringPool();
1421 }
1422
1423 /// Add a symbol name to the SymbolStringPool and return a pointer to it.
intern(StringRef SymName)1424 SymbolStringPtr intern(StringRef SymName) { return EPC->intern(SymName); }
1425
1426 /// Set the Platform for this ExecutionSession.
setPlatform(std::unique_ptr<Platform> P)1427 void setPlatform(std::unique_ptr<Platform> P) { this->P = std::move(P); }
1428
1429 /// Get the Platform for this session.
1430 /// Will return null if no Platform has been set for this ExecutionSession.
getPlatform()1431 Platform *getPlatform() { return P.get(); }
1432
1433 /// Run the given lambda with the session mutex locked.
decltype(auto)1434 template <typename Func> decltype(auto) runSessionLocked(Func &&F) {
1435 std::lock_guard<std::recursive_mutex> Lock(SessionMutex);
1436 return F();
1437 }
1438
1439 /// Register the given ResourceManager with this ExecutionSession.
1440 /// Managers will be notified of events in reverse order of registration.
1441 void registerResourceManager(ResourceManager &RM);
1442
1443 /// Deregister the given ResourceManager with this ExecutionSession.
1444 /// Manager must have been previously registered.
1445 void deregisterResourceManager(ResourceManager &RM);
1446
1447 /// Return a pointer to the "name" JITDylib.
1448 /// Ownership of JITDylib remains within Execution Session
1449 JITDylib *getJITDylibByName(StringRef Name);
1450
1451 /// Add a new bare JITDylib to this ExecutionSession.
1452 ///
1453 /// The JITDylib Name is required to be unique. Clients should verify that
1454 /// names are not being re-used (E.g. by calling getJITDylibByName) if names
1455 /// are based on user input.
1456 ///
1457 /// This call does not install any library code or symbols into the newly
1458 /// created JITDylib. The client is responsible for all configuration.
1459 JITDylib &createBareJITDylib(std::string Name);
1460
1461 /// Add a new JITDylib to this ExecutionSession.
1462 ///
1463 /// The JITDylib Name is required to be unique. Clients should verify that
1464 /// names are not being re-used (e.g. by calling getJITDylibByName) if names
1465 /// are based on user input.
1466 ///
1467 /// If a Platform is attached then Platform::setupJITDylib will be called to
1468 /// install standard platform symbols (e.g. standard library interposes).
1469 /// If no Platform is attached this call is equivalent to createBareJITDylib.
1470 Expected<JITDylib &> createJITDylib(std::string Name);
1471
1472 /// Closes the given JITDylib.
1473 ///
1474 /// This method clears all resources held for the JITDylib, puts it in the
1475 /// closed state, and clears all references held by the ExecutionSession and
1476 /// other JITDylibs. No further code can be added to the JITDylib, and the
1477 /// object will be freed once any remaining JITDylibSPs to it are destroyed.
1478 ///
1479 /// This method does *not* run static destructors.
1480 ///
1481 /// This method can only be called once for each JITDylib.
1482 Error removeJITDylib(JITDylib &JD);
1483
1484 /// Set the error reporter function.
setErrorReporter(ErrorReporter ReportError)1485 ExecutionSession &setErrorReporter(ErrorReporter ReportError) {
1486 this->ReportError = std::move(ReportError);
1487 return *this;
1488 }
1489
1490 /// Report a error for this execution session.
1491 ///
1492 /// Unhandled errors can be sent here to log them.
reportError(Error Err)1493 void reportError(Error Err) { ReportError(std::move(Err)); }
1494
1495 /// Set the task dispatch function.
setDispatchTask(DispatchTaskFunction DispatchTask)1496 ExecutionSession &setDispatchTask(DispatchTaskFunction DispatchTask) {
1497 this->DispatchTask = std::move(DispatchTask);
1498 return *this;
1499 }
1500
1501 /// Search the given JITDylibs to find the flags associated with each of the
1502 /// given symbols.
1503 void lookupFlags(LookupKind K, JITDylibSearchOrder SearchOrder,
1504 SymbolLookupSet Symbols,
1505 unique_function<void(Expected<SymbolFlagsMap>)> OnComplete);
1506
1507 /// Blocking version of lookupFlags.
1508 Expected<SymbolFlagsMap> lookupFlags(LookupKind K,
1509 JITDylibSearchOrder SearchOrder,
1510 SymbolLookupSet Symbols);
1511
1512 /// Search the given JITDylibs for the given symbols.
1513 ///
1514 /// SearchOrder lists the JITDylibs to search. For each dylib, the associated
1515 /// boolean indicates whether the search should match against non-exported
1516 /// (hidden visibility) symbols in that dylib (true means match against
1517 /// non-exported symbols, false means do not match).
1518 ///
1519 /// The NotifyComplete callback will be called once all requested symbols
1520 /// reach the required state.
1521 ///
1522 /// If all symbols are found, the RegisterDependencies function will be called
1523 /// while the session lock is held. This gives clients a chance to register
1524 /// dependencies for on the queried symbols for any symbols they are
1525 /// materializing (if a MaterializationResponsibility instance is present,
1526 /// this can be implemented by calling
1527 /// MaterializationResponsibility::addDependencies). If there are no
1528 /// dependenant symbols for this query (e.g. it is being made by a top level
1529 /// client to get an address to call) then the value NoDependenciesToRegister
1530 /// can be used.
1531 void lookup(LookupKind K, const JITDylibSearchOrder &SearchOrder,
1532 SymbolLookupSet Symbols, SymbolState RequiredState,
1533 SymbolsResolvedCallback NotifyComplete,
1534 RegisterDependenciesFunction RegisterDependencies);
1535
1536 /// Blocking version of lookup above. Returns the resolved symbol map.
1537 /// If WaitUntilReady is true (the default), will not return until all
1538 /// requested symbols are ready (or an error occurs). If WaitUntilReady is
1539 /// false, will return as soon as all requested symbols are resolved,
1540 /// or an error occurs. If WaitUntilReady is false and an error occurs
1541 /// after resolution, the function will return a success value, but the
1542 /// error will be reported via reportErrors.
1543 Expected<SymbolMap> lookup(const JITDylibSearchOrder &SearchOrder,
1544 SymbolLookupSet Symbols,
1545 LookupKind K = LookupKind::Static,
1546 SymbolState RequiredState = SymbolState::Ready,
1547 RegisterDependenciesFunction RegisterDependencies =
1548 NoDependenciesToRegister);
1549
1550 /// Convenience version of blocking lookup.
1551 /// Searches each of the JITDylibs in the search order in turn for the given
1552 /// symbol.
1553 Expected<JITEvaluatedSymbol>
1554 lookup(const JITDylibSearchOrder &SearchOrder, SymbolStringPtr Symbol,
1555 SymbolState RequiredState = SymbolState::Ready);
1556
1557 /// Convenience version of blocking lookup.
1558 /// Searches each of the JITDylibs in the search order in turn for the given
1559 /// symbol. The search will not find non-exported symbols.
1560 Expected<JITEvaluatedSymbol>
1561 lookup(ArrayRef<JITDylib *> SearchOrder, SymbolStringPtr Symbol,
1562 SymbolState RequiredState = SymbolState::Ready);
1563
1564 /// Convenience version of blocking lookup.
1565 /// Searches each of the JITDylibs in the search order in turn for the given
1566 /// symbol. The search will not find non-exported symbols.
1567 Expected<JITEvaluatedSymbol>
1568 lookup(ArrayRef<JITDylib *> SearchOrder, StringRef Symbol,
1569 SymbolState RequiredState = SymbolState::Ready);
1570
1571 /// Materialize the given unit.
dispatchTask(std::unique_ptr<Task> T)1572 void dispatchTask(std::unique_ptr<Task> T) {
1573 assert(T && "T must be non-null");
1574 DEBUG_WITH_TYPE("orc", dumpDispatchInfo(*T));
1575 DispatchTask(std::move(T));
1576 }
1577
1578 /// Run a wrapper function in the executor.
1579 ///
1580 /// The wrapper function should be callable as:
1581 ///
1582 /// \code{.cpp}
1583 /// CWrapperFunctionResult fn(uint8_t *Data, uint64_t Size);
1584 /// \endcode{.cpp}
1585 ///
1586 /// The given OnComplete function will be called to return the result.
1587 template <typename... ArgTs>
callWrapperAsync(ArgTs &&...Args)1588 void callWrapperAsync(ArgTs &&... Args) {
1589 EPC->callWrapperAsync(std::forward<ArgTs>(Args)...);
1590 }
1591
1592 /// Run a wrapper function in the executor. The wrapper function should be
1593 /// callable as:
1594 ///
1595 /// \code{.cpp}
1596 /// CWrapperFunctionResult fn(uint8_t *Data, uint64_t Size);
1597 /// \endcode{.cpp}
callWrapper(ExecutorAddr WrapperFnAddr,ArrayRef<char> ArgBuffer)1598 shared::WrapperFunctionResult callWrapper(ExecutorAddr WrapperFnAddr,
1599 ArrayRef<char> ArgBuffer) {
1600 return EPC->callWrapper(WrapperFnAddr, ArgBuffer);
1601 }
1602
1603 /// Run a wrapper function using SPS to serialize the arguments and
1604 /// deserialize the results.
1605 template <typename SPSSignature, typename SendResultT, typename... ArgTs>
callSPSWrapperAsync(ExecutorAddr WrapperFnAddr,SendResultT && SendResult,const ArgTs &...Args)1606 void callSPSWrapperAsync(ExecutorAddr WrapperFnAddr, SendResultT &&SendResult,
1607 const ArgTs &...Args) {
1608 EPC->callSPSWrapperAsync<SPSSignature, SendResultT, ArgTs...>(
1609 WrapperFnAddr, std::forward<SendResultT>(SendResult), Args...);
1610 }
1611
1612 /// Run a wrapper function using SPS to serialize the arguments and
1613 /// deserialize the results.
1614 ///
1615 /// If SPSSignature is a non-void function signature then the second argument
1616 /// (the first in the Args list) should be a reference to a return value.
1617 template <typename SPSSignature, typename... WrapperCallArgTs>
callSPSWrapper(ExecutorAddr WrapperFnAddr,WrapperCallArgTs &&...WrapperCallArgs)1618 Error callSPSWrapper(ExecutorAddr WrapperFnAddr,
1619 WrapperCallArgTs &&...WrapperCallArgs) {
1620 return EPC->callSPSWrapper<SPSSignature, WrapperCallArgTs...>(
1621 WrapperFnAddr, std::forward<WrapperCallArgTs>(WrapperCallArgs)...);
1622 }
1623
1624 /// Wrap a handler that takes concrete argument types (and a sender for a
1625 /// concrete return type) to produce an AsyncHandlerWrapperFunction. Uses SPS
1626 /// to unpack the arguments and pack the result.
1627 ///
1628 /// This function is intended to support easy construction of
1629 /// AsyncHandlerWrapperFunctions that can be associated with a tag
1630 /// (using registerJITDispatchHandler) and called from the executor.
1631 template <typename SPSSignature, typename HandlerT>
wrapAsyncWithSPS(HandlerT && H)1632 static JITDispatchHandlerFunction wrapAsyncWithSPS(HandlerT &&H) {
1633 return [H = std::forward<HandlerT>(H)](
1634 SendResultFunction SendResult,
1635 const char *ArgData, size_t ArgSize) mutable {
1636 shared::WrapperFunction<SPSSignature>::handleAsync(ArgData, ArgSize, H,
1637 std::move(SendResult));
1638 };
1639 }
1640
1641 /// Wrap a class method that takes concrete argument types (and a sender for
1642 /// a concrete return type) to produce an AsyncHandlerWrapperFunction. Uses
1643 /// SPS to unpack teh arguments and pack the result.
1644 ///
1645 /// This function is intended to support easy construction of
1646 /// AsyncHandlerWrapperFunctions that can be associated with a tag
1647 /// (using registerJITDispatchHandler) and called from the executor.
1648 template <typename SPSSignature, typename ClassT, typename... MethodArgTs>
1649 static JITDispatchHandlerFunction
wrapAsyncWithSPS(ClassT * Instance,void (ClassT::* Method)(MethodArgTs...))1650 wrapAsyncWithSPS(ClassT *Instance, void (ClassT::*Method)(MethodArgTs...)) {
1651 return wrapAsyncWithSPS<SPSSignature>(
1652 [Instance, Method](MethodArgTs &&...MethodArgs) {
1653 (Instance->*Method)(std::forward<MethodArgTs>(MethodArgs)...);
1654 });
1655 }
1656
1657 /// For each tag symbol name, associate the corresponding
1658 /// AsyncHandlerWrapperFunction with the address of that symbol. The
1659 /// handler becomes callable from the executor using the ORC runtime
1660 /// __orc_rt_jit_dispatch function and the given tag.
1661 ///
1662 /// Tag symbols will be looked up in JD using LookupKind::Static,
1663 /// JITDylibLookupFlags::MatchAllSymbols (hidden tags will be found), and
1664 /// LookupFlags::WeaklyReferencedSymbol. Missing tag definitions will not
1665 /// cause an error, the handler will simply be dropped.
1666 Error registerJITDispatchHandlers(JITDylib &JD,
1667 JITDispatchHandlerAssociationMap WFs);
1668
1669 /// Run a registered jit-side wrapper function.
1670 /// This should be called by the ExecutorProcessControl instance in response
1671 /// to incoming jit-dispatch requests from the executor.
1672 void
1673 runJITDispatchHandler(SendResultFunction SendResult,
1674 JITTargetAddress HandlerFnTagAddr,
1675 ArrayRef<char> ArgBuffer);
1676
1677 /// Dump the state of all the JITDylibs in this session.
1678 void dump(raw_ostream &OS);
1679
1680 private:
logErrorsToStdErr(Error Err)1681 static void logErrorsToStdErr(Error Err) {
1682 logAllUnhandledErrors(std::move(Err), errs(), "JIT session error: ");
1683 }
1684
runOnCurrentThread(std::unique_ptr<Task> T)1685 static void runOnCurrentThread(std::unique_ptr<Task> T) { T->run(); }
1686
1687 void dispatchOutstandingMUs();
1688
1689 static std::unique_ptr<MaterializationResponsibility>
createMaterializationResponsibility(ResourceTracker & RT,SymbolFlagsMap Symbols,SymbolStringPtr InitSymbol)1690 createMaterializationResponsibility(ResourceTracker &RT,
1691 SymbolFlagsMap Symbols,
1692 SymbolStringPtr InitSymbol) {
1693 auto &JD = RT.getJITDylib();
1694 std::unique_ptr<MaterializationResponsibility> MR(
1695 new MaterializationResponsibility(&RT, std::move(Symbols),
1696 std::move(InitSymbol)));
1697 JD.TrackerMRs[&RT].insert(MR.get());
1698 return MR;
1699 }
1700
1701 Error removeResourceTracker(ResourceTracker &RT);
1702 void transferResourceTracker(ResourceTracker &DstRT, ResourceTracker &SrcRT);
1703 void destroyResourceTracker(ResourceTracker &RT);
1704
1705 // State machine functions for query application..
1706
1707 /// IL_updateCandidatesFor is called to remove already-defined symbols that
1708 /// match a given query from the set of candidate symbols to generate
1709 /// definitions for (no need to generate a definition if one already exists).
1710 Error IL_updateCandidatesFor(JITDylib &JD, JITDylibLookupFlags JDLookupFlags,
1711 SymbolLookupSet &Candidates,
1712 SymbolLookupSet *NonCandidates);
1713
1714 /// OL_applyQueryPhase1 is an optionally re-startable loop for triggering
1715 /// definition generation. It is called when a lookup is performed, and again
1716 /// each time that LookupState::continueLookup is called.
1717 void OL_applyQueryPhase1(std::unique_ptr<InProgressLookupState> IPLS,
1718 Error Err);
1719
1720 /// OL_completeLookup is run once phase 1 successfully completes for a lookup
1721 /// call. It attempts to attach the symbol to all symbol table entries and
1722 /// collect all MaterializationUnits to dispatch. If this method fails then
1723 /// all MaterializationUnits will be left un-materialized.
1724 void OL_completeLookup(std::unique_ptr<InProgressLookupState> IPLS,
1725 std::shared_ptr<AsynchronousSymbolQuery> Q,
1726 RegisterDependenciesFunction RegisterDependencies);
1727
1728 /// OL_completeLookupFlags is run once phase 1 successfully completes for a
1729 /// lookupFlags call.
1730 void OL_completeLookupFlags(
1731 std::unique_ptr<InProgressLookupState> IPLS,
1732 unique_function<void(Expected<SymbolFlagsMap>)> OnComplete);
1733
1734 // State machine functions for MaterializationResponsibility.
1735 void OL_destroyMaterializationResponsibility(
1736 MaterializationResponsibility &MR);
1737 SymbolNameSet OL_getRequestedSymbols(const MaterializationResponsibility &MR);
1738 Error OL_notifyResolved(MaterializationResponsibility &MR,
1739 const SymbolMap &Symbols);
1740 Error OL_notifyEmitted(MaterializationResponsibility &MR);
1741 Error OL_defineMaterializing(MaterializationResponsibility &MR,
1742 SymbolFlagsMap SymbolFlags);
1743 void OL_notifyFailed(MaterializationResponsibility &MR);
1744 Error OL_replace(MaterializationResponsibility &MR,
1745 std::unique_ptr<MaterializationUnit> MU);
1746 Expected<std::unique_ptr<MaterializationResponsibility>>
1747 OL_delegate(MaterializationResponsibility &MR, const SymbolNameSet &Symbols);
1748 void OL_addDependencies(MaterializationResponsibility &MR,
1749 const SymbolStringPtr &Name,
1750 const SymbolDependenceMap &Dependencies);
1751 void OL_addDependenciesForAll(MaterializationResponsibility &MR,
1752 const SymbolDependenceMap &Dependencies);
1753
1754 #ifndef NDEBUG
1755 void dumpDispatchInfo(Task &T);
1756 #endif // NDEBUG
1757
1758 mutable std::recursive_mutex SessionMutex;
1759 bool SessionOpen = true;
1760 std::unique_ptr<ExecutorProcessControl> EPC;
1761 std::unique_ptr<Platform> P;
1762 ErrorReporter ReportError = logErrorsToStdErr;
1763 DispatchTaskFunction DispatchTask = runOnCurrentThread;
1764
1765 std::vector<ResourceManager *> ResourceManagers;
1766
1767 std::vector<JITDylibSP> JDs;
1768
1769 // FIXME: Remove this (and runOutstandingMUs) once the linking layer works
1770 // with callbacks from asynchronous queries.
1771 mutable std::recursive_mutex OutstandingMUsMutex;
1772 std::vector<std::pair<std::unique_ptr<MaterializationUnit>,
1773 std::unique_ptr<MaterializationResponsibility>>>
1774 OutstandingMUs;
1775
1776 mutable std::mutex JITDispatchHandlersMutex;
1777 DenseMap<JITTargetAddress, std::shared_ptr<JITDispatchHandlerFunction>>
1778 JITDispatchHandlers;
1779 };
1780
withResourceKeyDo(Func && F)1781 template <typename Func> Error ResourceTracker::withResourceKeyDo(Func &&F) {
1782 return getJITDylib().getExecutionSession().runSessionLocked([&]() -> Error {
1783 if (isDefunct())
1784 return make_error<ResourceTrackerDefunct>(this);
1785 F(getKeyUnsafe());
1786 return Error::success();
1787 });
1788 }
1789
1790 inline ExecutionSession &
getExecutionSession()1791 MaterializationResponsibility::getExecutionSession() const {
1792 return JD.getExecutionSession();
1793 }
1794
1795 template <typename GeneratorT>
addGenerator(std::unique_ptr<GeneratorT> DefGenerator)1796 GeneratorT &JITDylib::addGenerator(std::unique_ptr<GeneratorT> DefGenerator) {
1797 auto &G = *DefGenerator;
1798 ES.runSessionLocked([&] {
1799 assert(State == Open && "Cannot add generator to closed JITDylib");
1800 DefGenerators.push_back(std::move(DefGenerator));
1801 });
1802 return G;
1803 }
1804
1805 template <typename Func>
1806 auto JITDylib::withLinkOrderDo(Func &&F)
1807 -> decltype(F(std::declval<const JITDylibSearchOrder &>())) {
1808 assert(State == Open && "Cannot use link order of closed JITDylib");
1809 return ES.runSessionLocked([&]() { return F(LinkOrder); });
1810 }
1811
1812 template <typename MaterializationUnitType>
define(std::unique_ptr<MaterializationUnitType> && MU,ResourceTrackerSP RT)1813 Error JITDylib::define(std::unique_ptr<MaterializationUnitType> &&MU,
1814 ResourceTrackerSP RT) {
1815 assert(MU && "Can not define with a null MU");
1816
1817 if (MU->getSymbols().empty()) {
1818 // Empty MUs are allowable but pathological, so issue a warning.
1819 DEBUG_WITH_TYPE("orc", {
1820 dbgs() << "Warning: Discarding empty MU " << MU->getName() << " for "
1821 << getName() << "\n";
1822 });
1823 return Error::success();
1824 } else
1825 DEBUG_WITH_TYPE("orc", {
1826 dbgs() << "Defining MU " << MU->getName() << " for " << getName()
1827 << " (tracker: ";
1828 if (RT == getDefaultResourceTracker())
1829 dbgs() << "default)";
1830 else if (RT)
1831 dbgs() << RT.get() << ")\n";
1832 else
1833 dbgs() << "0x0, default will be used)\n";
1834 });
1835
1836 return ES.runSessionLocked([&, this]() -> Error {
1837 assert(State == Open && "JD is defunct");
1838
1839 if (auto Err = defineImpl(*MU))
1840 return Err;
1841
1842 if (!RT)
1843 RT = getDefaultResourceTracker();
1844
1845 if (auto *P = ES.getPlatform()) {
1846 if (auto Err = P->notifyAdding(*RT, *MU))
1847 return Err;
1848 }
1849
1850 installMaterializationUnit(std::move(MU), *RT);
1851 return Error::success();
1852 });
1853 }
1854
1855 template <typename MaterializationUnitType>
define(std::unique_ptr<MaterializationUnitType> & MU,ResourceTrackerSP RT)1856 Error JITDylib::define(std::unique_ptr<MaterializationUnitType> &MU,
1857 ResourceTrackerSP RT) {
1858 assert(MU && "Can not define with a null MU");
1859
1860 if (MU->getSymbols().empty()) {
1861 // Empty MUs are allowable but pathological, so issue a warning.
1862 DEBUG_WITH_TYPE("orc", {
1863 dbgs() << "Warning: Discarding empty MU " << MU->getName() << getName()
1864 << "\n";
1865 });
1866 return Error::success();
1867 } else
1868 DEBUG_WITH_TYPE("orc", {
1869 dbgs() << "Defining MU " << MU->getName() << " for " << getName()
1870 << " (tracker: ";
1871 if (RT == getDefaultResourceTracker())
1872 dbgs() << "default)";
1873 else if (RT)
1874 dbgs() << RT.get() << ")\n";
1875 else
1876 dbgs() << "0x0, default will be used)\n";
1877 });
1878
1879 return ES.runSessionLocked([&, this]() -> Error {
1880 assert(State == Open && "JD is defunct");
1881
1882 if (auto Err = defineImpl(*MU))
1883 return Err;
1884
1885 if (!RT)
1886 RT = getDefaultResourceTracker();
1887
1888 if (auto *P = ES.getPlatform()) {
1889 if (auto Err = P->notifyAdding(*RT, *MU))
1890 return Err;
1891 }
1892
1893 installMaterializationUnit(std::move(MU), *RT);
1894 return Error::success();
1895 });
1896 }
1897
1898 /// ReexportsGenerator can be used with JITDylib::addGenerator to automatically
1899 /// re-export a subset of the source JITDylib's symbols in the target.
1900 class ReexportsGenerator : public DefinitionGenerator {
1901 public:
1902 using SymbolPredicate = std::function<bool(SymbolStringPtr)>;
1903
1904 /// Create a reexports generator. If an Allow predicate is passed, only
1905 /// symbols for which the predicate returns true will be reexported. If no
1906 /// Allow predicate is passed, all symbols will be exported.
1907 ReexportsGenerator(JITDylib &SourceJD,
1908 JITDylibLookupFlags SourceJDLookupFlags,
1909 SymbolPredicate Allow = SymbolPredicate());
1910
1911 Error tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD,
1912 JITDylibLookupFlags JDLookupFlags,
1913 const SymbolLookupSet &LookupSet) override;
1914
1915 private:
1916 JITDylib &SourceJD;
1917 JITDylibLookupFlags SourceJDLookupFlags;
1918 SymbolPredicate Allow;
1919 };
1920
1921 // --------------- IMPLEMENTATION --------------
1922 // Implementations for inline functions/methods.
1923 // ---------------------------------------------
1924
~MaterializationResponsibility()1925 inline MaterializationResponsibility::~MaterializationResponsibility() {
1926 getExecutionSession().OL_destroyMaterializationResponsibility(*this);
1927 }
1928
getRequestedSymbols()1929 inline SymbolNameSet MaterializationResponsibility::getRequestedSymbols() const {
1930 return getExecutionSession().OL_getRequestedSymbols(*this);
1931 }
1932
notifyResolved(const SymbolMap & Symbols)1933 inline Error MaterializationResponsibility::notifyResolved(
1934 const SymbolMap &Symbols) {
1935 return getExecutionSession().OL_notifyResolved(*this, Symbols);
1936 }
1937
notifyEmitted()1938 inline Error MaterializationResponsibility::notifyEmitted() {
1939 return getExecutionSession().OL_notifyEmitted(*this);
1940 }
1941
defineMaterializing(SymbolFlagsMap SymbolFlags)1942 inline Error MaterializationResponsibility::defineMaterializing(
1943 SymbolFlagsMap SymbolFlags) {
1944 return getExecutionSession().OL_defineMaterializing(*this,
1945 std::move(SymbolFlags));
1946 }
1947
failMaterialization()1948 inline void MaterializationResponsibility::failMaterialization() {
1949 getExecutionSession().OL_notifyFailed(*this);
1950 }
1951
replace(std::unique_ptr<MaterializationUnit> MU)1952 inline Error MaterializationResponsibility::replace(
1953 std::unique_ptr<MaterializationUnit> MU) {
1954 return getExecutionSession().OL_replace(*this, std::move(MU));
1955 }
1956
1957 inline Expected<std::unique_ptr<MaterializationResponsibility>>
delegate(const SymbolNameSet & Symbols)1958 MaterializationResponsibility::delegate(const SymbolNameSet &Symbols) {
1959 return getExecutionSession().OL_delegate(*this, Symbols);
1960 }
1961
addDependencies(const SymbolStringPtr & Name,const SymbolDependenceMap & Dependencies)1962 inline void MaterializationResponsibility::addDependencies(
1963 const SymbolStringPtr &Name, const SymbolDependenceMap &Dependencies) {
1964 getExecutionSession().OL_addDependencies(*this, Name, Dependencies);
1965 }
1966
addDependenciesForAll(const SymbolDependenceMap & Dependencies)1967 inline void MaterializationResponsibility::addDependenciesForAll(
1968 const SymbolDependenceMap &Dependencies) {
1969 getExecutionSession().OL_addDependenciesForAll(*this, Dependencies);
1970 }
1971
1972 } // End namespace orc
1973 } // End namespace llvm
1974
1975 #endif // LLVM_EXECUTIONENGINE_ORC_CORE_H
1976