xref: /openbsd/usr.bin/ssh/umac.c (revision f8f708be)
1 /* $OpenBSD: umac.c,v 1.23 2023/03/07 01:30:52 djm Exp $ */
2 /* -----------------------------------------------------------------------
3  *
4  * umac.c -- C Implementation UMAC Message Authentication
5  *
6  * Version 0.93b of rfc4418.txt -- 2006 July 18
7  *
8  * For a full description of UMAC message authentication see the UMAC
9  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10  * Please report bugs and suggestions to the UMAC webpage.
11  *
12  * Copyright (c) 1999-2006 Ted Krovetz
13  *
14  * Permission to use, copy, modify, and distribute this software and
15  * its documentation for any purpose and with or without fee, is hereby
16  * granted provided that the above copyright notice appears in all copies
17  * and in supporting documentation, and that the name of the copyright
18  * holder not be used in advertising or publicity pertaining to
19  * distribution of the software without specific, written prior permission.
20  *
21  * Comments should be directed to Ted Krovetz (tdk@acm.org)
22  *
23  * ---------------------------------------------------------------------- */
24 
25  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26   *
27   * 1) This version does not work properly on messages larger than 16MB
28   *
29   * 2) If you set the switch to use SSE2, then all data must be 16-byte
30   *    aligned
31   *
32   * 3) When calling the function umac(), it is assumed that msg is in
33   * a writable buffer of length divisible by 32 bytes. The message itself
34   * does not have to fill the entire buffer, but bytes beyond msg may be
35   * zeroed.
36   *
37   * 4) Three free AES implementations are supported by this implementation of
38   * UMAC. Paulo Barreto's version is in the public domain and can be found
39   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42   * Public license at http://fp.gladman.plus.com/AES/index.htm. It
43   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44   * the third.
45   *
46   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47   * produced under gcc with optimizations set -O3 or higher. Dunno why.
48   *
49   /////////////////////////////////////////////////////////////////////// */
50 
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
54 
55 #ifndef UMAC_OUTPUT_LEN
56 #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
57 #endif
58 /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
59 /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
60 /* #define SSE2                0  Is SSE2 is available?                   */
61 /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
62 /* #define UMAC_AE_SUPPORT     0  Enable authenticated encryption         */
63 
64 /* ---------------------------------------------------------------------- */
65 /* -- Global Includes --------------------------------------------------- */
66 /* ---------------------------------------------------------------------- */
67 
68 #include <sys/types.h>
69 #include <endian.h>
70 #include <string.h>
71 #include <stdarg.h>
72 #include <stdio.h>
73 #include <stdlib.h>
74 #include <stddef.h>
75 
76 #include "xmalloc.h"
77 #include "umac.h"
78 #include "misc.h"
79 
80 /* ---------------------------------------------------------------------- */
81 /* --- Primitive Data Types ---                                           */
82 /* ---------------------------------------------------------------------- */
83 
84 /* The following assumptions may need change on your system */
85 typedef u_int8_t	UINT8;  /* 1 byte   */
86 typedef u_int16_t	UINT16; /* 2 byte   */
87 typedef u_int32_t	UINT32; /* 4 byte   */
88 typedef u_int64_t	UINT64; /* 8 bytes  */
89 typedef unsigned int	UWORD;  /* Register */
90 
91 /* ---------------------------------------------------------------------- */
92 /* --- Constants -------------------------------------------------------- */
93 /* ---------------------------------------------------------------------- */
94 
95 #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
96 
97 /* Message "words" are read from memory in an endian-specific manner.     */
98 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
99 /* be set true if the host computer is little-endian.                     */
100 
101 #if BYTE_ORDER == LITTLE_ENDIAN
102 #define __LITTLE_ENDIAN__ 1
103 #else
104 #define __LITTLE_ENDIAN__ 0
105 #endif
106 
107 /* ---------------------------------------------------------------------- */
108 /* ---------------------------------------------------------------------- */
109 /* ----- Architecture Specific ------------------------------------------ */
110 /* ---------------------------------------------------------------------- */
111 /* ---------------------------------------------------------------------- */
112 
113 
114 /* ---------------------------------------------------------------------- */
115 /* ---------------------------------------------------------------------- */
116 /* ----- Primitive Routines --------------------------------------------- */
117 /* ---------------------------------------------------------------------- */
118 /* ---------------------------------------------------------------------- */
119 
120 
121 /* ---------------------------------------------------------------------- */
122 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
123 /* ---------------------------------------------------------------------- */
124 
125 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
126 
127 /* ---------------------------------------------------------------------- */
128 /* --- Endian Conversion --- Forcing assembly on some platforms           */
129 /* ---------------------------------------------------------------------- */
130 
131 /* The following definitions use the above reversal-primitives to do the right
132  * thing on endian specific load and stores.
133  */
134 
135 #if BYTE_ORDER == LITTLE_ENDIAN
136 #define LOAD_UINT32_REVERSED(p)		get_u32(p)
137 #define STORE_UINT32_REVERSED(p,v)	put_u32(p,v)
138 #else
139 #define LOAD_UINT32_REVERSED(p)		get_u32_le(p)
140 #define STORE_UINT32_REVERSED(p,v)	put_u32_le(p,v)
141 #endif
142 
143 #define LOAD_UINT32_LITTLE(p)           (get_u32_le(p))
144 #define STORE_UINT32_BIG(p,v)           put_u32(p, v)
145 
146 
147 
148 /* ---------------------------------------------------------------------- */
149 /* ---------------------------------------------------------------------- */
150 /* ----- Begin KDF & PDF Section ---------------------------------------- */
151 /* ---------------------------------------------------------------------- */
152 /* ---------------------------------------------------------------------- */
153 
154 /* UMAC uses AES with 16 byte block and key lengths */
155 #define AES_BLOCK_LEN  16
156 
157 #ifdef WITH_OPENSSL
158 #include <openssl/aes.h>
159 typedef AES_KEY aes_int_key[1];
160 #define aes_encryption(in,out,int_key)                  \
161   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
162 #define aes_key_setup(key,int_key)                      \
163   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
164 #else
165 #include "rijndael.h"
166 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
167 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */
168 #define aes_encryption(in,out,int_key) \
169   rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
170 #define aes_key_setup(key,int_key) \
171   rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
172   UMAC_KEY_LEN*8)
173 #endif
174 
175 /* The user-supplied UMAC key is stretched using AES in a counter
176  * mode to supply all random bits needed by UMAC. The kdf function takes
177  * an AES internal key representation 'key' and writes a stream of
178  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
179  * 'ndx' causes a distinct byte stream.
180  */
kdf(void * buffer_ptr,aes_int_key key,UINT8 ndx,int nbytes)181 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
182 {
183     UINT8 in_buf[AES_BLOCK_LEN] = {0};
184     UINT8 out_buf[AES_BLOCK_LEN];
185     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
186     int i;
187 
188     /* Setup the initial value */
189     in_buf[AES_BLOCK_LEN-9] = ndx;
190     in_buf[AES_BLOCK_LEN-1] = i = 1;
191 
192     while (nbytes >= AES_BLOCK_LEN) {
193         aes_encryption(in_buf, out_buf, key);
194         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
195         in_buf[AES_BLOCK_LEN-1] = ++i;
196         nbytes -= AES_BLOCK_LEN;
197         dst_buf += AES_BLOCK_LEN;
198     }
199     if (nbytes) {
200         aes_encryption(in_buf, out_buf, key);
201         memcpy(dst_buf,out_buf,nbytes);
202     }
203     explicit_bzero(in_buf, sizeof(in_buf));
204     explicit_bzero(out_buf, sizeof(out_buf));
205 }
206 
207 /* The final UHASH result is XOR'd with the output of a pseudorandom
208  * function. Here, we use AES to generate random output and
209  * xor the appropriate bytes depending on the last bits of nonce.
210  * This scheme is optimized for sequential, increasing big-endian nonces.
211  */
212 
213 typedef struct {
214     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
215     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
216     aes_int_key prf_key;         /* Expanded AES key for PDF          */
217 } pdf_ctx;
218 
pdf_init(pdf_ctx * pc,aes_int_key prf_key)219 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
220 {
221     UINT8 buf[UMAC_KEY_LEN];
222 
223     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
224     aes_key_setup(buf, pc->prf_key);
225 
226     /* Initialize pdf and cache */
227     memset(pc->nonce, 0, sizeof(pc->nonce));
228     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
229     explicit_bzero(buf, sizeof(buf));
230 }
231 
pdf_gen_xor(pdf_ctx * pc,const UINT8 nonce[8],UINT8 buf[UMAC_OUTPUT_LEN])232 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8],
233     UINT8 buf[UMAC_OUTPUT_LEN])
234 {
235     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
236      * of the AES output. If last time around we returned the ndx-1st
237      * element, then we may have the result in the cache already.
238      */
239 
240 #if (UMAC_OUTPUT_LEN == 4)
241 #define LOW_BIT_MASK 3
242 #elif (UMAC_OUTPUT_LEN == 8)
243 #define LOW_BIT_MASK 1
244 #elif (UMAC_OUTPUT_LEN > 8)
245 #define LOW_BIT_MASK 0
246 #endif
247     union {
248         UINT8 tmp_nonce_lo[4];
249         UINT32 align;
250     } t;
251 #if LOW_BIT_MASK != 0
252     int ndx = nonce[7] & LOW_BIT_MASK;
253 #endif
254     *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
255     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
256 
257     if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
258          (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
259     {
260         ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
261         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
262         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
263     }
264 
265 #if (UMAC_OUTPUT_LEN == 4)
266     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
267 #elif (UMAC_OUTPUT_LEN == 8)
268     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
269 #elif (UMAC_OUTPUT_LEN == 12)
270     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
271     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
272 #elif (UMAC_OUTPUT_LEN == 16)
273     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
274     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
275 #endif
276 }
277 
278 /* ---------------------------------------------------------------------- */
279 /* ---------------------------------------------------------------------- */
280 /* ----- Begin NH Hash Section ------------------------------------------ */
281 /* ---------------------------------------------------------------------- */
282 /* ---------------------------------------------------------------------- */
283 
284 /* The NH-based hash functions used in UMAC are described in the UMAC paper
285  * and specification, both of which can be found at the UMAC website.
286  * The interface to this implementation has two
287  * versions, one expects the entire message being hashed to be passed
288  * in a single buffer and returns the hash result immediately. The second
289  * allows the message to be passed in a sequence of buffers. In the
290  * multiple-buffer interface, the client calls the routine nh_update() as
291  * many times as necessary. When there is no more data to be fed to the
292  * hash, the client calls nh_final() which calculates the hash output.
293  * Before beginning another hash calculation the nh_reset() routine
294  * must be called. The single-buffer routine, nh(), is equivalent to
295  * the sequence of calls nh_update() and nh_final(); however it is
296  * optimized and should be preferred whenever the multiple-buffer interface
297  * is not necessary. When using either interface, it is the client's
298  * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
299  *
300  * The routine nh_init() initializes the nh_ctx data structure and
301  * must be called once, before any other PDF routine.
302  */
303 
304  /* The "nh_aux" routines do the actual NH hashing work. They
305   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
306   * produce output for all STREAMS NH iterations in one call,
307   * allowing the parallel implementation of the streams.
308   */
309 
310 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
311 #define L1_KEY_LEN         1024     /* Internal key bytes                 */
312 #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
313 #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
314 #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
315 #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
316 
317 typedef struct {
318     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
319     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
320     int next_data_empty;    /* Bookkeeping variable for data buffer.     */
321     int bytes_hashed;       /* Bytes (out of L1_KEY_LEN) incorporated.   */
322     UINT64 state[STREAMS];               /* on-line state     */
323 } nh_ctx;
324 
325 
326 #if (UMAC_OUTPUT_LEN == 4)
327 
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)328 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
329 /* NH hashing primitive. Previous (partial) hash result is loaded and
330 * then stored via hp pointer. The length of the data pointed at by "dp",
331 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
332 * is expected to be endian compensated in memory at key setup.
333 */
334 {
335     UINT64 h;
336     UWORD c = dlen / 32;
337     UINT32 *k = (UINT32 *)kp;
338     const UINT32 *d = (const UINT32 *)dp;
339     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
340     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
341 
342     h = *((UINT64 *)hp);
343     do {
344         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
345         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
346         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
347         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
348         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
349         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
350         h += MUL64((k0 + d0), (k4 + d4));
351         h += MUL64((k1 + d1), (k5 + d5));
352         h += MUL64((k2 + d2), (k6 + d6));
353         h += MUL64((k3 + d3), (k7 + d7));
354 
355         d += 8;
356         k += 8;
357     } while (--c);
358   *((UINT64 *)hp) = h;
359 }
360 
361 #elif (UMAC_OUTPUT_LEN == 8)
362 
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)363 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
364 /* Same as previous nh_aux, but two streams are handled in one pass,
365  * reading and writing 16 bytes of hash-state per call.
366  */
367 {
368   UINT64 h1,h2;
369   UWORD c = dlen / 32;
370   UINT32 *k = (UINT32 *)kp;
371   const UINT32 *d = (const UINT32 *)dp;
372   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
373   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
374         k8,k9,k10,k11;
375 
376   h1 = *((UINT64 *)hp);
377   h2 = *((UINT64 *)hp + 1);
378   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
379   do {
380     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
381     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
382     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
383     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
384     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
385     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
386 
387     h1 += MUL64((k0 + d0), (k4 + d4));
388     h2 += MUL64((k4 + d0), (k8 + d4));
389 
390     h1 += MUL64((k1 + d1), (k5 + d5));
391     h2 += MUL64((k5 + d1), (k9 + d5));
392 
393     h1 += MUL64((k2 + d2), (k6 + d6));
394     h2 += MUL64((k6 + d2), (k10 + d6));
395 
396     h1 += MUL64((k3 + d3), (k7 + d7));
397     h2 += MUL64((k7 + d3), (k11 + d7));
398 
399     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
400 
401     d += 8;
402     k += 8;
403   } while (--c);
404   ((UINT64 *)hp)[0] = h1;
405   ((UINT64 *)hp)[1] = h2;
406 }
407 
408 #elif (UMAC_OUTPUT_LEN == 12)
409 
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)410 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
411 /* Same as previous nh_aux, but two streams are handled in one pass,
412  * reading and writing 24 bytes of hash-state per call.
413 */
414 {
415     UINT64 h1,h2,h3;
416     UWORD c = dlen / 32;
417     UINT32 *k = (UINT32 *)kp;
418     const UINT32 *d = (const UINT32 *)dp;
419     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
420     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
421         k8,k9,k10,k11,k12,k13,k14,k15;
422 
423     h1 = *((UINT64 *)hp);
424     h2 = *((UINT64 *)hp + 1);
425     h3 = *((UINT64 *)hp + 2);
426     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
427     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
428     do {
429         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
430         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
431         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
432         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
433         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
434         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
435 
436         h1 += MUL64((k0 + d0), (k4 + d4));
437         h2 += MUL64((k4 + d0), (k8 + d4));
438         h3 += MUL64((k8 + d0), (k12 + d4));
439 
440         h1 += MUL64((k1 + d1), (k5 + d5));
441         h2 += MUL64((k5 + d1), (k9 + d5));
442         h3 += MUL64((k9 + d1), (k13 + d5));
443 
444         h1 += MUL64((k2 + d2), (k6 + d6));
445         h2 += MUL64((k6 + d2), (k10 + d6));
446         h3 += MUL64((k10 + d2), (k14 + d6));
447 
448         h1 += MUL64((k3 + d3), (k7 + d7));
449         h2 += MUL64((k7 + d3), (k11 + d7));
450         h3 += MUL64((k11 + d3), (k15 + d7));
451 
452         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
453         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
454 
455         d += 8;
456         k += 8;
457     } while (--c);
458     ((UINT64 *)hp)[0] = h1;
459     ((UINT64 *)hp)[1] = h2;
460     ((UINT64 *)hp)[2] = h3;
461 }
462 
463 #elif (UMAC_OUTPUT_LEN == 16)
464 
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)465 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
466 /* Same as previous nh_aux, but two streams are handled in one pass,
467  * reading and writing 24 bytes of hash-state per call.
468 */
469 {
470     UINT64 h1,h2,h3,h4;
471     UWORD c = dlen / 32;
472     UINT32 *k = (UINT32 *)kp;
473     const UINT32 *d = (const UINT32 *)dp;
474     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
475     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
476         k8,k9,k10,k11,k12,k13,k14,k15,
477         k16,k17,k18,k19;
478 
479     h1 = *((UINT64 *)hp);
480     h2 = *((UINT64 *)hp + 1);
481     h3 = *((UINT64 *)hp + 2);
482     h4 = *((UINT64 *)hp + 3);
483     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
484     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
485     do {
486         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
487         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
488         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
489         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
490         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
491         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
492         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
493 
494         h1 += MUL64((k0 + d0), (k4 + d4));
495         h2 += MUL64((k4 + d0), (k8 + d4));
496         h3 += MUL64((k8 + d0), (k12 + d4));
497         h4 += MUL64((k12 + d0), (k16 + d4));
498 
499         h1 += MUL64((k1 + d1), (k5 + d5));
500         h2 += MUL64((k5 + d1), (k9 + d5));
501         h3 += MUL64((k9 + d1), (k13 + d5));
502         h4 += MUL64((k13 + d1), (k17 + d5));
503 
504         h1 += MUL64((k2 + d2), (k6 + d6));
505         h2 += MUL64((k6 + d2), (k10 + d6));
506         h3 += MUL64((k10 + d2), (k14 + d6));
507         h4 += MUL64((k14 + d2), (k18 + d6));
508 
509         h1 += MUL64((k3 + d3), (k7 + d7));
510         h2 += MUL64((k7 + d3), (k11 + d7));
511         h3 += MUL64((k11 + d3), (k15 + d7));
512         h4 += MUL64((k15 + d3), (k19 + d7));
513 
514         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
515         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
516         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
517 
518         d += 8;
519         k += 8;
520     } while (--c);
521     ((UINT64 *)hp)[0] = h1;
522     ((UINT64 *)hp)[1] = h2;
523     ((UINT64 *)hp)[2] = h3;
524     ((UINT64 *)hp)[3] = h4;
525 }
526 
527 /* ---------------------------------------------------------------------- */
528 #endif  /* UMAC_OUTPUT_LENGTH */
529 /* ---------------------------------------------------------------------- */
530 
531 
532 /* ---------------------------------------------------------------------- */
533 
nh_transform(nh_ctx * hc,const UINT8 * buf,UINT32 nbytes)534 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
535 /* This function is a wrapper for the primitive NH hash functions. It takes
536  * as argument "hc" the current hash context and a buffer which must be a
537  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
538  * appropriately according to how much message has been hashed already.
539  */
540 {
541     UINT8 *key;
542 
543     key = hc->nh_key + hc->bytes_hashed;
544     nh_aux(key, buf, hc->state, nbytes);
545 }
546 
547 /* ---------------------------------------------------------------------- */
548 
549 #if (__LITTLE_ENDIAN__)
endian_convert(void * buf,UWORD bpw,UINT32 num_bytes)550 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
551 /* We endian convert the keys on little-endian computers to               */
552 /* compensate for the lack of big-endian memory reads during hashing.     */
553 {
554     UWORD iters = num_bytes / bpw;
555     if (bpw == 4) {
556         UINT32 *p = (UINT32 *)buf;
557         do {
558             *p = LOAD_UINT32_REVERSED(p);
559             p++;
560         } while (--iters);
561     } else if (bpw == 8) {
562         UINT32 *p = (UINT32 *)buf;
563         UINT32 t;
564         do {
565             t = LOAD_UINT32_REVERSED(p+1);
566             p[1] = LOAD_UINT32_REVERSED(p);
567             p[0] = t;
568             p += 2;
569         } while (--iters);
570     }
571 }
572 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
573 #else
574 #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
575 #endif
576 
577 /* ---------------------------------------------------------------------- */
578 
nh_reset(nh_ctx * hc)579 static void nh_reset(nh_ctx *hc)
580 /* Reset nh_ctx to ready for hashing of new data */
581 {
582     hc->bytes_hashed = 0;
583     hc->next_data_empty = 0;
584     hc->state[0] = 0;
585 #if (UMAC_OUTPUT_LEN >= 8)
586     hc->state[1] = 0;
587 #endif
588 #if (UMAC_OUTPUT_LEN >= 12)
589     hc->state[2] = 0;
590 #endif
591 #if (UMAC_OUTPUT_LEN == 16)
592     hc->state[3] = 0;
593 #endif
594 
595 }
596 
597 /* ---------------------------------------------------------------------- */
598 
nh_init(nh_ctx * hc,aes_int_key prf_key)599 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
600 /* Generate nh_key, endian convert and reset to be ready for hashing.   */
601 {
602     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
603     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
604     nh_reset(hc);
605 }
606 
607 /* ---------------------------------------------------------------------- */
608 
nh_update(nh_ctx * hc,const UINT8 * buf,UINT32 nbytes)609 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
610 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
611 /* even multiple of HASH_BUF_BYTES.                                       */
612 {
613     UINT32 i,j;
614 
615     j = hc->next_data_empty;
616     if ((j + nbytes) >= HASH_BUF_BYTES) {
617         if (j) {
618             i = HASH_BUF_BYTES - j;
619             memcpy(hc->data+j, buf, i);
620             nh_transform(hc,hc->data,HASH_BUF_BYTES);
621             nbytes -= i;
622             buf += i;
623             hc->bytes_hashed += HASH_BUF_BYTES;
624         }
625         if (nbytes >= HASH_BUF_BYTES) {
626             i = nbytes & ~(HASH_BUF_BYTES - 1);
627             nh_transform(hc, buf, i);
628             nbytes -= i;
629             buf += i;
630             hc->bytes_hashed += i;
631         }
632         j = 0;
633     }
634     memcpy(hc->data + j, buf, nbytes);
635     hc->next_data_empty = j + nbytes;
636 }
637 
638 /* ---------------------------------------------------------------------- */
639 
zero_pad(UINT8 * p,int nbytes)640 static void zero_pad(UINT8 *p, int nbytes)
641 {
642 /* Write "nbytes" of zeroes, beginning at "p" */
643     if (nbytes >= (int)sizeof(UWORD)) {
644         while ((ptrdiff_t)p % sizeof(UWORD)) {
645             *p = 0;
646             nbytes--;
647             p++;
648         }
649         while (nbytes >= (int)sizeof(UWORD)) {
650             *(UWORD *)p = 0;
651             nbytes -= sizeof(UWORD);
652             p += sizeof(UWORD);
653         }
654     }
655     while (nbytes) {
656         *p = 0;
657         nbytes--;
658         p++;
659     }
660 }
661 
662 /* ---------------------------------------------------------------------- */
663 
nh_final(nh_ctx * hc,UINT8 * result)664 static void nh_final(nh_ctx *hc, UINT8 *result)
665 /* After passing some number of data buffers to nh_update() for integration
666  * into an NH context, nh_final is called to produce a hash result. If any
667  * bytes are in the buffer hc->data, incorporate them into the
668  * NH context. Finally, add into the NH accumulation "state" the total number
669  * of bits hashed. The resulting numbers are written to the buffer "result".
670  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
671  */
672 {
673     int nh_len, nbits;
674 
675     if (hc->next_data_empty != 0) {
676         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
677                                                 ~(L1_PAD_BOUNDARY - 1));
678         zero_pad(hc->data + hc->next_data_empty,
679                                           nh_len - hc->next_data_empty);
680         nh_transform(hc, hc->data, nh_len);
681         hc->bytes_hashed += hc->next_data_empty;
682     } else if (hc->bytes_hashed == 0) {
683 	nh_len = L1_PAD_BOUNDARY;
684         zero_pad(hc->data, L1_PAD_BOUNDARY);
685         nh_transform(hc, hc->data, nh_len);
686     }
687 
688     nbits = (hc->bytes_hashed << 3);
689     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
690 #if (UMAC_OUTPUT_LEN >= 8)
691     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
692 #endif
693 #if (UMAC_OUTPUT_LEN >= 12)
694     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
695 #endif
696 #if (UMAC_OUTPUT_LEN == 16)
697     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
698 #endif
699     nh_reset(hc);
700 }
701 
702 /* ---------------------------------------------------------------------- */
703 
nh(nh_ctx * hc,const UINT8 * buf,UINT32 padded_len,UINT32 unpadded_len,UINT8 * result)704 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
705                UINT32 unpadded_len, UINT8 *result)
706 /* All-in-one nh_update() and nh_final() equivalent.
707  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
708  * well aligned
709  */
710 {
711     UINT32 nbits;
712 
713     /* Initialize the hash state */
714     nbits = (unpadded_len << 3);
715 
716     ((UINT64 *)result)[0] = nbits;
717 #if (UMAC_OUTPUT_LEN >= 8)
718     ((UINT64 *)result)[1] = nbits;
719 #endif
720 #if (UMAC_OUTPUT_LEN >= 12)
721     ((UINT64 *)result)[2] = nbits;
722 #endif
723 #if (UMAC_OUTPUT_LEN == 16)
724     ((UINT64 *)result)[3] = nbits;
725 #endif
726 
727     nh_aux(hc->nh_key, buf, result, padded_len);
728 }
729 
730 /* ---------------------------------------------------------------------- */
731 /* ---------------------------------------------------------------------- */
732 /* ----- Begin UHASH Section -------------------------------------------- */
733 /* ---------------------------------------------------------------------- */
734 /* ---------------------------------------------------------------------- */
735 
736 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
737  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
738  * unless the initial data to be hashed is short. After the polynomial-
739  * layer, an inner-product hash is used to produce the final UHASH output.
740  *
741  * UHASH provides two interfaces, one all-at-once and another where data
742  * buffers are presented sequentially. In the sequential interface, the
743  * UHASH client calls the routine uhash_update() as many times as necessary.
744  * When there is no more data to be fed to UHASH, the client calls
745  * uhash_final() which
746  * calculates the UHASH output. Before beginning another UHASH calculation
747  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
748  * uhash(), is equivalent to the sequence of calls uhash_update() and
749  * uhash_final(); however it is optimized and should be
750  * used whenever the sequential interface is not necessary.
751  *
752  * The routine uhash_init() initializes the uhash_ctx data structure and
753  * must be called once, before any other UHASH routine.
754  */
755 
756 /* ---------------------------------------------------------------------- */
757 /* ----- Constants and uhash_ctx ---------------------------------------- */
758 /* ---------------------------------------------------------------------- */
759 
760 /* ---------------------------------------------------------------------- */
761 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
762 /* ---------------------------------------------------------------------- */
763 
764 /* Primes and masks */
765 #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
766 #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
767 #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
768 
769 
770 /* ---------------------------------------------------------------------- */
771 
772 typedef struct uhash_ctx {
773     nh_ctx hash;                          /* Hash context for L1 NH hash  */
774     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
775     UINT64 poly_accum[STREAMS];           /* poly hash result             */
776     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
777     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
778     UINT32 msg_len;                       /* Total length of data passed  */
779                                           /* to uhash */
780 } uhash_ctx;
781 typedef struct uhash_ctx *uhash_ctx_t;
782 
783 /* ---------------------------------------------------------------------- */
784 
785 
786 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
787  * word at a time. As described in the specification, poly32 and poly64
788  * require keys from special domains. The following implementations exploit
789  * the special domains to avoid overflow. The results are not guaranteed to
790  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
791  * patches any errant values.
792  */
793 
poly64(UINT64 cur,UINT64 key,UINT64 data)794 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
795 {
796     UINT32 key_hi = (UINT32)(key >> 32),
797            key_lo = (UINT32)key,
798            cur_hi = (UINT32)(cur >> 32),
799            cur_lo = (UINT32)cur,
800            x_lo,
801            x_hi;
802     UINT64 X,T,res;
803 
804     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
805     x_lo = (UINT32)X;
806     x_hi = (UINT32)(X >> 32);
807 
808     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
809 
810     T = ((UINT64)x_lo << 32);
811     res += T;
812     if (res < T)
813         res += 59;
814 
815     res += data;
816     if (res < data)
817         res += 59;
818 
819     return res;
820 }
821 
822 
823 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
824  * implementation does not handle all ramp levels. Because we don't handle
825  * the ramp up to p128 modulus in this implementation, we are limited to
826  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
827  * bytes input to UMAC per tag, ie. 16MB).
828  */
poly_hash(uhash_ctx_t hc,UINT32 data_in[])829 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
830 {
831     int i;
832     UINT64 *data=(UINT64*)data_in;
833 
834     for (i = 0; i < STREAMS; i++) {
835         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
836             hc->poly_accum[i] = poly64(hc->poly_accum[i],
837                                        hc->poly_key_8[i], p64 - 1);
838             hc->poly_accum[i] = poly64(hc->poly_accum[i],
839                                        hc->poly_key_8[i], (data[i] - 59));
840         } else {
841             hc->poly_accum[i] = poly64(hc->poly_accum[i],
842                                        hc->poly_key_8[i], data[i]);
843         }
844     }
845 }
846 
847 
848 /* ---------------------------------------------------------------------- */
849 
850 
851 /* The final step in UHASH is an inner-product hash. The poly hash
852  * produces a result not necessarily WORD_LEN bytes long. The inner-
853  * product hash breaks the polyhash output into 16-bit chunks and
854  * multiplies each with a 36 bit key.
855  */
856 
ip_aux(UINT64 t,UINT64 * ipkp,UINT64 data)857 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
858 {
859     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
860     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
861     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
862     t = t + ipkp[3] * (UINT64)(UINT16)(data);
863 
864     return t;
865 }
866 
ip_reduce_p36(UINT64 t)867 static UINT32 ip_reduce_p36(UINT64 t)
868 {
869 /* Divisionless modular reduction */
870     UINT64 ret;
871 
872     ret = (t & m36) + 5 * (t >> 36);
873     if (ret >= p36)
874         ret -= p36;
875 
876     /* return least significant 32 bits */
877     return (UINT32)(ret);
878 }
879 
880 
881 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
882  * the polyhash stage is skipped and ip_short is applied directly to the
883  * NH output.
884  */
ip_short(uhash_ctx_t ahc,UINT8 * nh_res,u_char * res)885 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
886 {
887     UINT64 t;
888     UINT64 *nhp = (UINT64 *)nh_res;
889 
890     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
891     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
892 #if (UMAC_OUTPUT_LEN >= 8)
893     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
894     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
895 #endif
896 #if (UMAC_OUTPUT_LEN >= 12)
897     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
898     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
899 #endif
900 #if (UMAC_OUTPUT_LEN == 16)
901     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
902     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
903 #endif
904 }
905 
906 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
907  * the polyhash stage is not skipped and ip_long is applied to the
908  * polyhash output.
909  */
ip_long(uhash_ctx_t ahc,u_char * res)910 static void ip_long(uhash_ctx_t ahc, u_char *res)
911 {
912     int i;
913     UINT64 t;
914 
915     for (i = 0; i < STREAMS; i++) {
916         /* fix polyhash output not in Z_p64 */
917         if (ahc->poly_accum[i] >= p64)
918             ahc->poly_accum[i] -= p64;
919         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
920         STORE_UINT32_BIG((UINT32 *)res+i,
921                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
922     }
923 }
924 
925 
926 /* ---------------------------------------------------------------------- */
927 
928 /* ---------------------------------------------------------------------- */
929 
930 /* Reset uhash context for next hash session */
uhash_reset(uhash_ctx_t pc)931 static int uhash_reset(uhash_ctx_t pc)
932 {
933     nh_reset(&pc->hash);
934     pc->msg_len = 0;
935     pc->poly_accum[0] = 1;
936 #if (UMAC_OUTPUT_LEN >= 8)
937     pc->poly_accum[1] = 1;
938 #endif
939 #if (UMAC_OUTPUT_LEN >= 12)
940     pc->poly_accum[2] = 1;
941 #endif
942 #if (UMAC_OUTPUT_LEN == 16)
943     pc->poly_accum[3] = 1;
944 #endif
945     return 1;
946 }
947 
948 /* ---------------------------------------------------------------------- */
949 
950 /* Given a pointer to the internal key needed by kdf() and a uhash context,
951  * initialize the NH context and generate keys needed for poly and inner-
952  * product hashing. All keys are endian adjusted in memory so that native
953  * loads cause correct keys to be in registers during calculation.
954  */
uhash_init(uhash_ctx_t ahc,aes_int_key prf_key)955 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
956 {
957     int i;
958     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
959 
960     /* Zero the entire uhash context */
961     memset(ahc, 0, sizeof(uhash_ctx));
962 
963     /* Initialize the L1 hash */
964     nh_init(&ahc->hash, prf_key);
965 
966     /* Setup L2 hash variables */
967     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
968     for (i = 0; i < STREAMS; i++) {
969         /* Fill keys from the buffer, skipping bytes in the buffer not
970          * used by this implementation. Endian reverse the keys if on a
971          * little-endian computer.
972          */
973         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
974         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
975         /* Mask the 64-bit keys to their special domain */
976         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
977         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
978     }
979 
980     /* Setup L3-1 hash variables */
981     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
982     for (i = 0; i < STREAMS; i++)
983           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
984                                                  4*sizeof(UINT64));
985     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
986                                                   sizeof(ahc->ip_keys));
987     for (i = 0; i < STREAMS*4; i++)
988         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
989 
990     /* Setup L3-2 hash variables    */
991     /* Fill buffer with index 4 key */
992     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
993     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
994                          STREAMS * sizeof(UINT32));
995     explicit_bzero(buf, sizeof(buf));
996 }
997 
998 /* ---------------------------------------------------------------------- */
999 
1000 #if 0
1001 static uhash_ctx_t uhash_alloc(u_char key[])
1002 {
1003 /* Allocate memory and force to a 16-byte boundary. */
1004     uhash_ctx_t ctx;
1005     u_char bytes_to_add;
1006     aes_int_key prf_key;
1007 
1008     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1009     if (ctx) {
1010         if (ALLOC_BOUNDARY) {
1011             bytes_to_add = ALLOC_BOUNDARY -
1012                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1013             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1014             *((u_char *)ctx - 1) = bytes_to_add;
1015         }
1016         aes_key_setup(key,prf_key);
1017         uhash_init(ctx, prf_key);
1018     }
1019     return (ctx);
1020 }
1021 #endif
1022 
1023 /* ---------------------------------------------------------------------- */
1024 
1025 #if 0
1026 static int uhash_free(uhash_ctx_t ctx)
1027 {
1028 /* Free memory allocated by uhash_alloc */
1029     u_char bytes_to_sub;
1030 
1031     if (ctx) {
1032         if (ALLOC_BOUNDARY) {
1033             bytes_to_sub = *((u_char *)ctx - 1);
1034             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1035         }
1036         free(ctx);
1037     }
1038     return (1);
1039 }
1040 #endif
1041 /* ---------------------------------------------------------------------- */
1042 
uhash_update(uhash_ctx_t ctx,const u_char * input,long len)1043 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1044 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1045  * hash each one with NH, calling the polyhash on each NH output.
1046  */
1047 {
1048     UWORD bytes_hashed, bytes_remaining;
1049     UINT64 result_buf[STREAMS];
1050     UINT8 *nh_result = (UINT8 *)&result_buf;
1051 
1052     if (ctx->msg_len + len <= L1_KEY_LEN) {
1053         nh_update(&ctx->hash, (const UINT8 *)input, len);
1054         ctx->msg_len += len;
1055     } else {
1056 
1057          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1058          if (ctx->msg_len == L1_KEY_LEN)
1059              bytes_hashed = L1_KEY_LEN;
1060 
1061          if (bytes_hashed + len >= L1_KEY_LEN) {
1062 
1063              /* If some bytes have been passed to the hash function      */
1064              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1065              /* bytes to complete the current nh_block.                  */
1066              if (bytes_hashed) {
1067                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1068                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1069                  nh_final(&ctx->hash, nh_result);
1070                  ctx->msg_len += bytes_remaining;
1071                  poly_hash(ctx,(UINT32 *)nh_result);
1072                  len -= bytes_remaining;
1073                  input += bytes_remaining;
1074              }
1075 
1076              /* Hash directly from input stream if enough bytes */
1077              while (len >= L1_KEY_LEN) {
1078                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1079                                    L1_KEY_LEN, nh_result);
1080                  ctx->msg_len += L1_KEY_LEN;
1081                  len -= L1_KEY_LEN;
1082                  input += L1_KEY_LEN;
1083                  poly_hash(ctx,(UINT32 *)nh_result);
1084              }
1085          }
1086 
1087          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1088          if (len) {
1089              nh_update(&ctx->hash, (const UINT8 *)input, len);
1090              ctx->msg_len += len;
1091          }
1092      }
1093 
1094     return (1);
1095 }
1096 
1097 /* ---------------------------------------------------------------------- */
1098 
uhash_final(uhash_ctx_t ctx,u_char * res)1099 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1100 /* Incorporate any pending data, pad, and generate tag */
1101 {
1102     UINT64 result_buf[STREAMS];
1103     UINT8 *nh_result = (UINT8 *)&result_buf;
1104 
1105     if (ctx->msg_len > L1_KEY_LEN) {
1106         if (ctx->msg_len % L1_KEY_LEN) {
1107             nh_final(&ctx->hash, nh_result);
1108             poly_hash(ctx,(UINT32 *)nh_result);
1109         }
1110         ip_long(ctx, res);
1111     } else {
1112         nh_final(&ctx->hash, nh_result);
1113         ip_short(ctx,nh_result, res);
1114     }
1115     uhash_reset(ctx);
1116     return (1);
1117 }
1118 
1119 /* ---------------------------------------------------------------------- */
1120 
1121 #if 0
1122 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1123 /* assumes that msg is in a writable buffer of length divisible by */
1124 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1125 {
1126     UINT8 nh_result[STREAMS*sizeof(UINT64)];
1127     UINT32 nh_len;
1128     int extra_zeroes_needed;
1129 
1130     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1131      * the polyhash.
1132      */
1133     if (len <= L1_KEY_LEN) {
1134 	if (len == 0)                  /* If zero length messages will not */
1135 		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1136 	else
1137 		nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1138         extra_zeroes_needed = nh_len - len;
1139         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1140         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1141         ip_short(ahc,nh_result, res);
1142     } else {
1143         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1144          * output to poly_hash().
1145          */
1146         do {
1147             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1148             poly_hash(ahc,(UINT32 *)nh_result);
1149             len -= L1_KEY_LEN;
1150             msg += L1_KEY_LEN;
1151         } while (len >= L1_KEY_LEN);
1152         if (len) {
1153             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1154             extra_zeroes_needed = nh_len - len;
1155             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1156             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1157             poly_hash(ahc,(UINT32 *)nh_result);
1158         }
1159 
1160         ip_long(ahc, res);
1161     }
1162 
1163     uhash_reset(ahc);
1164     return 1;
1165 }
1166 #endif
1167 
1168 /* ---------------------------------------------------------------------- */
1169 /* ---------------------------------------------------------------------- */
1170 /* ----- Begin UMAC Section --------------------------------------------- */
1171 /* ---------------------------------------------------------------------- */
1172 /* ---------------------------------------------------------------------- */
1173 
1174 /* The UMAC interface has two interfaces, an all-at-once interface where
1175  * the entire message to be authenticated is passed to UMAC in one buffer,
1176  * and a sequential interface where the message is presented a little at a
1177  * time. The all-at-once is more optimized than the sequential version and
1178  * should be preferred when the sequential interface is not required.
1179  */
1180 struct umac_ctx {
1181     uhash_ctx hash;          /* Hash function for message compression    */
1182     pdf_ctx pdf;             /* PDF for hashed output                    */
1183     void *free_ptr;          /* Address to free this struct via          */
1184 } umac_ctx;
1185 
1186 /* ---------------------------------------------------------------------- */
1187 
1188 #if 0
1189 int umac_reset(struct umac_ctx *ctx)
1190 /* Reset the hash function to begin a new authentication.        */
1191 {
1192     uhash_reset(&ctx->hash);
1193     return (1);
1194 }
1195 #endif
1196 
1197 /* ---------------------------------------------------------------------- */
1198 
umac_delete(struct umac_ctx * ctx)1199 int umac_delete(struct umac_ctx *ctx)
1200 /* Deallocate the ctx structure */
1201 {
1202     if (ctx) {
1203         if (ALLOC_BOUNDARY)
1204             ctx = (struct umac_ctx *)ctx->free_ptr;
1205         freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
1206     }
1207     return (1);
1208 }
1209 
1210 /* ---------------------------------------------------------------------- */
1211 
umac_new(const u_char key[])1212 struct umac_ctx *umac_new(const u_char key[])
1213 /* Dynamically allocate a umac_ctx struct, initialize variables,
1214  * generate subkeys from key. Align to 16-byte boundary.
1215  */
1216 {
1217     struct umac_ctx *ctx, *octx;
1218     size_t bytes_to_add;
1219     aes_int_key prf_key;
1220 
1221     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1222     if (ctx) {
1223         if (ALLOC_BOUNDARY) {
1224             bytes_to_add = ALLOC_BOUNDARY -
1225                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1226             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1227         }
1228         ctx->free_ptr = octx;
1229         aes_key_setup(key, prf_key);
1230         pdf_init(&ctx->pdf, prf_key);
1231         uhash_init(&ctx->hash, prf_key);
1232         explicit_bzero(prf_key, sizeof(prf_key));
1233     }
1234 
1235     return (ctx);
1236 }
1237 
1238 /* ---------------------------------------------------------------------- */
1239 
umac_final(struct umac_ctx * ctx,u_char tag[],const u_char nonce[8])1240 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1241 /* Incorporate any pending data, pad, and generate tag */
1242 {
1243     uhash_final(&ctx->hash, (u_char *)tag);
1244     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1245 
1246     return (1);
1247 }
1248 
1249 /* ---------------------------------------------------------------------- */
1250 
umac_update(struct umac_ctx * ctx,const u_char * input,long len)1251 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1252 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1253 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1254 /* output buffer is full.                                                 */
1255 {
1256     uhash_update(&ctx->hash, input, len);
1257     return (1);
1258 }
1259 
1260 /* ---------------------------------------------------------------------- */
1261 
1262 #if 0
1263 int umac(struct umac_ctx *ctx, u_char *input,
1264          long len, u_char tag[],
1265          u_char nonce[8])
1266 /* All-in-one version simply calls umac_update() and umac_final().        */
1267 {
1268     uhash(&ctx->hash, input, len, (u_char *)tag);
1269     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1270 
1271     return (1);
1272 }
1273 #endif
1274 
1275 /* ---------------------------------------------------------------------- */
1276 /* ---------------------------------------------------------------------- */
1277 /* ----- End UMAC Section ----------------------------------------------- */
1278 /* ---------------------------------------------------------------------- */
1279 /* ---------------------------------------------------------------------- */
1280