1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines ExprEngine's support for C expressions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ExprCXX.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 #include <optional>
18
19 using namespace clang;
20 using namespace ento;
21 using llvm::APSInt;
22
23 /// Optionally conjure and return a symbol for offset when processing
24 /// an expression \p Expression.
25 /// If \p Other is a location, conjure a symbol for \p Symbol
26 /// (offset) if it is unknown so that memory arithmetic always
27 /// results in an ElementRegion.
28 /// \p Count The number of times the current basic block was visited.
conjureOffsetSymbolOnLocation(SVal Symbol,SVal Other,Expr * Expression,SValBuilder & svalBuilder,unsigned Count,const LocationContext * LCtx)29 static SVal conjureOffsetSymbolOnLocation(
30 SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
31 unsigned Count, const LocationContext *LCtx) {
32 QualType Ty = Expression->getType();
33 if (isa<Loc>(Other) && Ty->isIntegralOrEnumerationType() &&
34 Symbol.isUnknown()) {
35 return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
36 }
37 return Symbol;
38 }
39
VisitBinaryOperator(const BinaryOperator * B,ExplodedNode * Pred,ExplodedNodeSet & Dst)40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
41 ExplodedNode *Pred,
42 ExplodedNodeSet &Dst) {
43
44 Expr *LHS = B->getLHS()->IgnoreParens();
45 Expr *RHS = B->getRHS()->IgnoreParens();
46
47 // FIXME: Prechecks eventually go in ::Visit().
48 ExplodedNodeSet CheckedSet;
49 ExplodedNodeSet Tmp2;
50 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
51
52 // With both the LHS and RHS evaluated, process the operation itself.
53 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
54 it != ei; ++it) {
55
56 ProgramStateRef state = (*it)->getState();
57 const LocationContext *LCtx = (*it)->getLocationContext();
58 SVal LeftV = state->getSVal(LHS, LCtx);
59 SVal RightV = state->getSVal(RHS, LCtx);
60
61 BinaryOperator::Opcode Op = B->getOpcode();
62
63 if (Op == BO_Assign) {
64 // EXPERIMENTAL: "Conjured" symbols.
65 // FIXME: Handle structs.
66 if (RightV.isUnknown()) {
67 unsigned Count = currBldrCtx->blockCount();
68 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
69 Count);
70 }
71 // Simulate the effects of a "store": bind the value of the RHS
72 // to the L-Value represented by the LHS.
73 SVal ExprVal = B->isGLValue() ? LeftV : RightV;
74 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
75 LeftV, RightV);
76 continue;
77 }
78
79 if (!B->isAssignmentOp()) {
80 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
81
82 if (B->isAdditiveOp()) {
83 // TODO: This can be removed after we enable history tracking with
84 // SymSymExpr.
85 unsigned Count = currBldrCtx->blockCount();
86 RightV = conjureOffsetSymbolOnLocation(
87 RightV, LeftV, RHS, svalBuilder, Count, LCtx);
88 LeftV = conjureOffsetSymbolOnLocation(
89 LeftV, RightV, LHS, svalBuilder, Count, LCtx);
90 }
91
92 // Although we don't yet model pointers-to-members, we do need to make
93 // sure that the members of temporaries have a valid 'this' pointer for
94 // other checks.
95 if (B->getOpcode() == BO_PtrMemD)
96 state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
97
98 // Process non-assignments except commas or short-circuited
99 // logical expressions (LAnd and LOr).
100 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
101 if (!Result.isUnknown()) {
102 state = state->BindExpr(B, LCtx, Result);
103 } else {
104 // If we cannot evaluate the operation escape the operands.
105 state = escapeValues(state, LeftV, PSK_EscapeOther);
106 state = escapeValues(state, RightV, PSK_EscapeOther);
107 }
108
109 Bldr.generateNode(B, *it, state);
110 continue;
111 }
112
113 assert (B->isCompoundAssignmentOp());
114
115 switch (Op) {
116 default:
117 llvm_unreachable("Invalid opcode for compound assignment.");
118 case BO_MulAssign: Op = BO_Mul; break;
119 case BO_DivAssign: Op = BO_Div; break;
120 case BO_RemAssign: Op = BO_Rem; break;
121 case BO_AddAssign: Op = BO_Add; break;
122 case BO_SubAssign: Op = BO_Sub; break;
123 case BO_ShlAssign: Op = BO_Shl; break;
124 case BO_ShrAssign: Op = BO_Shr; break;
125 case BO_AndAssign: Op = BO_And; break;
126 case BO_XorAssign: Op = BO_Xor; break;
127 case BO_OrAssign: Op = BO_Or; break;
128 }
129
130 // Perform a load (the LHS). This performs the checks for
131 // null dereferences, and so on.
132 ExplodedNodeSet Tmp;
133 SVal location = LeftV;
134 evalLoad(Tmp, B, LHS, *it, state, location);
135
136 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
137 ++I) {
138
139 state = (*I)->getState();
140 const LocationContext *LCtx = (*I)->getLocationContext();
141 SVal V = state->getSVal(LHS, LCtx);
142
143 // Get the computation type.
144 QualType CTy =
145 cast<CompoundAssignOperator>(B)->getComputationResultType();
146 CTy = getContext().getCanonicalType(CTy);
147
148 QualType CLHSTy =
149 cast<CompoundAssignOperator>(B)->getComputationLHSType();
150 CLHSTy = getContext().getCanonicalType(CLHSTy);
151
152 QualType LTy = getContext().getCanonicalType(LHS->getType());
153
154 // Promote LHS.
155 V = svalBuilder.evalCast(V, CLHSTy, LTy);
156
157 // Compute the result of the operation.
158 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
159 B->getType(), CTy);
160
161 // EXPERIMENTAL: "Conjured" symbols.
162 // FIXME: Handle structs.
163
164 SVal LHSVal;
165
166 if (Result.isUnknown()) {
167 // The symbolic value is actually for the type of the left-hand side
168 // expression, not the computation type, as this is the value the
169 // LValue on the LHS will bind to.
170 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
171 currBldrCtx->blockCount());
172 // However, we need to convert the symbol to the computation type.
173 Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
174 }
175 else {
176 // The left-hand side may bind to a different value then the
177 // computation type.
178 LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
179 }
180
181 // In C++, assignment and compound assignment operators return an
182 // lvalue.
183 if (B->isGLValue())
184 state = state->BindExpr(B, LCtx, location);
185 else
186 state = state->BindExpr(B, LCtx, Result);
187
188 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
189 }
190 }
191
192 // FIXME: postvisits eventually go in ::Visit()
193 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
194 }
195
VisitBlockExpr(const BlockExpr * BE,ExplodedNode * Pred,ExplodedNodeSet & Dst)196 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
197 ExplodedNodeSet &Dst) {
198
199 CanQualType T = getContext().getCanonicalType(BE->getType());
200
201 const BlockDecl *BD = BE->getBlockDecl();
202 // Get the value of the block itself.
203 SVal V = svalBuilder.getBlockPointer(BD, T,
204 Pred->getLocationContext(),
205 currBldrCtx->blockCount());
206
207 ProgramStateRef State = Pred->getState();
208
209 // If we created a new MemRegion for the block, we should explicitly bind
210 // the captured variables.
211 if (const BlockDataRegion *BDR =
212 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
213
214 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
215 E = BDR->referenced_vars_end();
216
217 auto CI = BD->capture_begin();
218 auto CE = BD->capture_end();
219 for (; I != E; ++I) {
220 const VarRegion *capturedR = I.getCapturedRegion();
221 const TypedValueRegion *originalR = I.getOriginalRegion();
222
223 // If the capture had a copy expression, use the result of evaluating
224 // that expression, otherwise use the original value.
225 // We rely on the invariant that the block declaration's capture variables
226 // are a prefix of the BlockDataRegion's referenced vars (which may include
227 // referenced globals, etc.) to enable fast lookup of the capture for a
228 // given referenced var.
229 const Expr *copyExpr = nullptr;
230 if (CI != CE) {
231 assert(CI->getVariable() == capturedR->getDecl());
232 copyExpr = CI->getCopyExpr();
233 CI++;
234 }
235
236 if (capturedR != originalR) {
237 SVal originalV;
238 const LocationContext *LCtx = Pred->getLocationContext();
239 if (copyExpr) {
240 originalV = State->getSVal(copyExpr, LCtx);
241 } else {
242 originalV = State->getSVal(loc::MemRegionVal(originalR));
243 }
244 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
245 }
246 }
247 }
248
249 ExplodedNodeSet Tmp;
250 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
251 Bldr.generateNode(BE, Pred,
252 State->BindExpr(BE, Pred->getLocationContext(), V),
253 nullptr, ProgramPoint::PostLValueKind);
254
255 // FIXME: Move all post/pre visits to ::Visit().
256 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
257 }
258
handleLValueBitCast(ProgramStateRef state,const Expr * Ex,const LocationContext * LCtx,QualType T,QualType ExTy,const CastExpr * CastE,StmtNodeBuilder & Bldr,ExplodedNode * Pred)259 ProgramStateRef ExprEngine::handleLValueBitCast(
260 ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
261 QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
262 ExplodedNode* Pred) {
263 if (T->isLValueReferenceType()) {
264 assert(!CastE->getType()->isLValueReferenceType());
265 ExTy = getContext().getLValueReferenceType(ExTy);
266 } else if (T->isRValueReferenceType()) {
267 assert(!CastE->getType()->isRValueReferenceType());
268 ExTy = getContext().getRValueReferenceType(ExTy);
269 }
270 // Delegate to SValBuilder to process.
271 SVal OrigV = state->getSVal(Ex, LCtx);
272 SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
273 // Negate the result if we're treating the boolean as a signed i1
274 if (CastE->getCastKind() == CK_BooleanToSignedIntegral && V.isValid())
275 V = svalBuilder.evalMinus(V.castAs<NonLoc>());
276
277 state = state->BindExpr(CastE, LCtx, V);
278 if (V.isUnknown() && !OrigV.isUnknown()) {
279 state = escapeValues(state, OrigV, PSK_EscapeOther);
280 }
281 Bldr.generateNode(CastE, Pred, state);
282
283 return state;
284 }
285
VisitCast(const CastExpr * CastE,const Expr * Ex,ExplodedNode * Pred,ExplodedNodeSet & Dst)286 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
287 ExplodedNode *Pred, ExplodedNodeSet &Dst) {
288
289 ExplodedNodeSet dstPreStmt;
290 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
291
292 if (CastE->getCastKind() == CK_LValueToRValue ||
293 CastE->getCastKind() == CK_LValueToRValueBitCast) {
294 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
295 I!=E; ++I) {
296 ExplodedNode *subExprNode = *I;
297 ProgramStateRef state = subExprNode->getState();
298 const LocationContext *LCtx = subExprNode->getLocationContext();
299 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
300 }
301 return;
302 }
303
304 // All other casts.
305 QualType T = CastE->getType();
306 QualType ExTy = Ex->getType();
307
308 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
309 T = ExCast->getTypeAsWritten();
310
311 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
312 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
313 I != E; ++I) {
314
315 Pred = *I;
316 ProgramStateRef state = Pred->getState();
317 const LocationContext *LCtx = Pred->getLocationContext();
318
319 switch (CastE->getCastKind()) {
320 case CK_LValueToRValue:
321 case CK_LValueToRValueBitCast:
322 llvm_unreachable("LValueToRValue casts handled earlier.");
323 case CK_ToVoid:
324 continue;
325 // The analyzer doesn't do anything special with these casts,
326 // since it understands retain/release semantics already.
327 case CK_ARCProduceObject:
328 case CK_ARCConsumeObject:
329 case CK_ARCReclaimReturnedObject:
330 case CK_ARCExtendBlockObject: // Fall-through.
331 case CK_CopyAndAutoreleaseBlockObject:
332 // The analyser can ignore atomic casts for now, although some future
333 // checkers may want to make certain that you're not modifying the same
334 // value through atomic and nonatomic pointers.
335 case CK_AtomicToNonAtomic:
336 case CK_NonAtomicToAtomic:
337 // True no-ops.
338 case CK_NoOp:
339 case CK_ConstructorConversion:
340 case CK_UserDefinedConversion:
341 case CK_FunctionToPointerDecay:
342 case CK_BuiltinFnToFnPtr: {
343 // Copy the SVal of Ex to CastE.
344 ProgramStateRef state = Pred->getState();
345 const LocationContext *LCtx = Pred->getLocationContext();
346 SVal V = state->getSVal(Ex, LCtx);
347 state = state->BindExpr(CastE, LCtx, V);
348 Bldr.generateNode(CastE, Pred, state);
349 continue;
350 }
351 case CK_MemberPointerToBoolean:
352 case CK_PointerToBoolean: {
353 SVal V = state->getSVal(Ex, LCtx);
354 auto PTMSV = V.getAs<nonloc::PointerToMember>();
355 if (PTMSV)
356 V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
357 if (V.isUndef() || PTMSV) {
358 state = state->BindExpr(CastE, LCtx, V);
359 Bldr.generateNode(CastE, Pred, state);
360 continue;
361 }
362 // Explicitly proceed with default handler for this case cascade.
363 state =
364 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
365 continue;
366 }
367 case CK_Dependent:
368 case CK_ArrayToPointerDecay:
369 case CK_BitCast:
370 case CK_AddressSpaceConversion:
371 case CK_BooleanToSignedIntegral:
372 case CK_IntegralToPointer:
373 case CK_PointerToIntegral: {
374 SVal V = state->getSVal(Ex, LCtx);
375 if (isa<nonloc::PointerToMember>(V)) {
376 state = state->BindExpr(CastE, LCtx, UnknownVal());
377 Bldr.generateNode(CastE, Pred, state);
378 continue;
379 }
380 // Explicitly proceed with default handler for this case cascade.
381 state =
382 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
383 continue;
384 }
385 case CK_IntegralToBoolean:
386 case CK_IntegralToFloating:
387 case CK_FloatingToIntegral:
388 case CK_FloatingToBoolean:
389 case CK_FloatingCast:
390 case CK_FloatingRealToComplex:
391 case CK_FloatingComplexToReal:
392 case CK_FloatingComplexToBoolean:
393 case CK_FloatingComplexCast:
394 case CK_FloatingComplexToIntegralComplex:
395 case CK_IntegralRealToComplex:
396 case CK_IntegralComplexToReal:
397 case CK_IntegralComplexToBoolean:
398 case CK_IntegralComplexCast:
399 case CK_IntegralComplexToFloatingComplex:
400 case CK_CPointerToObjCPointerCast:
401 case CK_BlockPointerToObjCPointerCast:
402 case CK_AnyPointerToBlockPointerCast:
403 case CK_ObjCObjectLValueCast:
404 case CK_ZeroToOCLOpaqueType:
405 case CK_IntToOCLSampler:
406 case CK_LValueBitCast:
407 case CK_FloatingToFixedPoint:
408 case CK_FixedPointToFloating:
409 case CK_FixedPointCast:
410 case CK_FixedPointToBoolean:
411 case CK_FixedPointToIntegral:
412 case CK_IntegralToFixedPoint: {
413 state =
414 handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
415 continue;
416 }
417 case CK_IntegralCast: {
418 // Delegate to SValBuilder to process.
419 SVal V = state->getSVal(Ex, LCtx);
420 if (AMgr.options.ShouldSupportSymbolicIntegerCasts)
421 V = svalBuilder.evalCast(V, T, ExTy);
422 else
423 V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
424 state = state->BindExpr(CastE, LCtx, V);
425 Bldr.generateNode(CastE, Pred, state);
426 continue;
427 }
428 case CK_DerivedToBase:
429 case CK_UncheckedDerivedToBase: {
430 // For DerivedToBase cast, delegate to the store manager.
431 SVal val = state->getSVal(Ex, LCtx);
432 val = getStoreManager().evalDerivedToBase(val, CastE);
433 state = state->BindExpr(CastE, LCtx, val);
434 Bldr.generateNode(CastE, Pred, state);
435 continue;
436 }
437 // Handle C++ dyn_cast.
438 case CK_Dynamic: {
439 SVal val = state->getSVal(Ex, LCtx);
440
441 // Compute the type of the result.
442 QualType resultType = CastE->getType();
443 if (CastE->isGLValue())
444 resultType = getContext().getPointerType(resultType);
445
446 bool Failed = true;
447
448 // Check if the value being cast does not evaluates to 0.
449 if (!val.isZeroConstant())
450 if (std::optional<SVal> V =
451 StateMgr.getStoreManager().evalBaseToDerived(val, T)) {
452 val = *V;
453 Failed = false;
454 }
455
456 if (Failed) {
457 if (T->isReferenceType()) {
458 // A bad_cast exception is thrown if input value is a reference.
459 // Currently, we model this, by generating a sink.
460 Bldr.generateSink(CastE, Pred, state);
461 continue;
462 } else {
463 // If the cast fails on a pointer, bind to 0.
464 state = state->BindExpr(CastE, LCtx,
465 svalBuilder.makeNullWithType(resultType));
466 }
467 } else {
468 // If we don't know if the cast succeeded, conjure a new symbol.
469 if (val.isUnknown()) {
470 DefinedOrUnknownSVal NewSym =
471 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
472 currBldrCtx->blockCount());
473 state = state->BindExpr(CastE, LCtx, NewSym);
474 } else
475 // Else, bind to the derived region value.
476 state = state->BindExpr(CastE, LCtx, val);
477 }
478 Bldr.generateNode(CastE, Pred, state);
479 continue;
480 }
481 case CK_BaseToDerived: {
482 SVal val = state->getSVal(Ex, LCtx);
483 QualType resultType = CastE->getType();
484 if (CastE->isGLValue())
485 resultType = getContext().getPointerType(resultType);
486
487 if (!val.isConstant()) {
488 std::optional<SVal> V = getStoreManager().evalBaseToDerived(val, T);
489 val = V ? *V : UnknownVal();
490 }
491
492 // Failed to cast or the result is unknown, fall back to conservative.
493 if (val.isUnknown()) {
494 val =
495 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
496 currBldrCtx->blockCount());
497 }
498 state = state->BindExpr(CastE, LCtx, val);
499 Bldr.generateNode(CastE, Pred, state);
500 continue;
501 }
502 case CK_NullToPointer: {
503 SVal V = svalBuilder.makeNullWithType(CastE->getType());
504 state = state->BindExpr(CastE, LCtx, V);
505 Bldr.generateNode(CastE, Pred, state);
506 continue;
507 }
508 case CK_NullToMemberPointer: {
509 SVal V = svalBuilder.getMemberPointer(nullptr);
510 state = state->BindExpr(CastE, LCtx, V);
511 Bldr.generateNode(CastE, Pred, state);
512 continue;
513 }
514 case CK_DerivedToBaseMemberPointer:
515 case CK_BaseToDerivedMemberPointer:
516 case CK_ReinterpretMemberPointer: {
517 SVal V = state->getSVal(Ex, LCtx);
518 if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
519 SVal CastedPTMSV =
520 svalBuilder.makePointerToMember(getBasicVals().accumCXXBase(
521 CastE->path(), *PTMSV, CastE->getCastKind()));
522 state = state->BindExpr(CastE, LCtx, CastedPTMSV);
523 Bldr.generateNode(CastE, Pred, state);
524 continue;
525 }
526 // Explicitly proceed with default handler for this case cascade.
527 }
528 [[fallthrough]];
529 // Various C++ casts that are not handled yet.
530 case CK_ToUnion:
531 case CK_MatrixCast:
532 case CK_VectorSplat: {
533 QualType resultType = CastE->getType();
534 if (CastE->isGLValue())
535 resultType = getContext().getPointerType(resultType);
536 SVal result = svalBuilder.conjureSymbolVal(
537 /*symbolTag=*/nullptr, CastE, LCtx, resultType,
538 currBldrCtx->blockCount());
539 state = state->BindExpr(CastE, LCtx, result);
540 Bldr.generateNode(CastE, Pred, state);
541 continue;
542 }
543 }
544 }
545 }
546
VisitCompoundLiteralExpr(const CompoundLiteralExpr * CL,ExplodedNode * Pred,ExplodedNodeSet & Dst)547 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
548 ExplodedNode *Pred,
549 ExplodedNodeSet &Dst) {
550 StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
551
552 ProgramStateRef State = Pred->getState();
553 const LocationContext *LCtx = Pred->getLocationContext();
554
555 const Expr *Init = CL->getInitializer();
556 SVal V = State->getSVal(CL->getInitializer(), LCtx);
557
558 if (isa<CXXConstructExpr, CXXStdInitializerListExpr>(Init)) {
559 // No work needed. Just pass the value up to this expression.
560 } else {
561 assert(isa<InitListExpr>(Init));
562 Loc CLLoc = State->getLValue(CL, LCtx);
563 State = State->bindLoc(CLLoc, V, LCtx);
564
565 if (CL->isGLValue())
566 V = CLLoc;
567 }
568
569 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
570 }
571
VisitDeclStmt(const DeclStmt * DS,ExplodedNode * Pred,ExplodedNodeSet & Dst)572 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
573 ExplodedNodeSet &Dst) {
574 if (isa<TypedefNameDecl>(*DS->decl_begin())) {
575 // C99 6.7.7 "Any array size expressions associated with variable length
576 // array declarators are evaluated each time the declaration of the typedef
577 // name is reached in the order of execution."
578 // The checkers should know about typedef to be able to handle VLA size
579 // expressions.
580 ExplodedNodeSet DstPre;
581 getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this);
582 getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this);
583 return;
584 }
585
586 // Assumption: The CFG has one DeclStmt per Decl.
587 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
588
589 if (!VD) {
590 //TODO:AZ: remove explicit insertion after refactoring is done.
591 Dst.insert(Pred);
592 return;
593 }
594
595 // FIXME: all pre/post visits should eventually be handled by ::Visit().
596 ExplodedNodeSet dstPreVisit;
597 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
598
599 ExplodedNodeSet dstEvaluated;
600 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
601 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
602 I!=E; ++I) {
603 ExplodedNode *N = *I;
604 ProgramStateRef state = N->getState();
605 const LocationContext *LC = N->getLocationContext();
606
607 // Decls without InitExpr are not initialized explicitly.
608 if (const Expr *InitEx = VD->getInit()) {
609
610 // Note in the state that the initialization has occurred.
611 ExplodedNode *UpdatedN = N;
612 SVal InitVal = state->getSVal(InitEx, LC);
613
614 assert(DS->isSingleDecl());
615 if (getObjectUnderConstruction(state, DS, LC)) {
616 state = finishObjectConstruction(state, DS, LC);
617 // We constructed the object directly in the variable.
618 // No need to bind anything.
619 B.generateNode(DS, UpdatedN, state);
620 } else {
621 // Recover some path-sensitivity if a scalar value evaluated to
622 // UnknownVal.
623 if (InitVal.isUnknown()) {
624 QualType Ty = InitEx->getType();
625 if (InitEx->isGLValue()) {
626 Ty = getContext().getPointerType(Ty);
627 }
628
629 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
630 currBldrCtx->blockCount());
631 }
632
633
634 B.takeNodes(UpdatedN);
635 ExplodedNodeSet Dst2;
636 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
637 B.addNodes(Dst2);
638 }
639 }
640 else {
641 B.generateNode(DS, N, state);
642 }
643 }
644
645 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
646 }
647
VisitLogicalExpr(const BinaryOperator * B,ExplodedNode * Pred,ExplodedNodeSet & Dst)648 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
649 ExplodedNodeSet &Dst) {
650 // This method acts upon CFG elements for logical operators && and ||
651 // and attaches the value (true or false) to them as expressions.
652 // It doesn't produce any state splits.
653 // If we made it that far, we're past the point when we modeled the short
654 // circuit. It means that we should have precise knowledge about whether
655 // we've short-circuited. If we did, we already know the value we need to
656 // bind. If we didn't, the value of the RHS (casted to the boolean type)
657 // is the answer.
658 // Currently this method tries to figure out whether we've short-circuited
659 // by looking at the ExplodedGraph. This method is imperfect because there
660 // could inevitably have been merges that would have resulted in multiple
661 // potential path traversal histories. We bail out when we fail.
662 // Due to this ambiguity, a more reliable solution would have been to
663 // track the short circuit operation history path-sensitively until
664 // we evaluate the respective logical operator.
665 assert(B->getOpcode() == BO_LAnd ||
666 B->getOpcode() == BO_LOr);
667
668 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
669 ProgramStateRef state = Pred->getState();
670
671 if (B->getType()->isVectorType()) {
672 // FIXME: We do not model vector arithmetic yet. When adding support for
673 // that, note that the CFG-based reasoning below does not apply, because
674 // logical operators on vectors are not short-circuit. Currently they are
675 // modeled as short-circuit in Clang CFG but this is incorrect.
676 // Do not set the value for the expression. It'd be UnknownVal by default.
677 Bldr.generateNode(B, Pred, state);
678 return;
679 }
680
681 ExplodedNode *N = Pred;
682 while (!N->getLocation().getAs<BlockEntrance>()) {
683 ProgramPoint P = N->getLocation();
684 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
685 (void) P;
686 if (N->pred_size() != 1) {
687 // We failed to track back where we came from.
688 Bldr.generateNode(B, Pred, state);
689 return;
690 }
691 N = *N->pred_begin();
692 }
693
694 if (N->pred_size() != 1) {
695 // We failed to track back where we came from.
696 Bldr.generateNode(B, Pred, state);
697 return;
698 }
699
700 N = *N->pred_begin();
701 BlockEdge BE = N->getLocation().castAs<BlockEdge>();
702 SVal X;
703
704 // Determine the value of the expression by introspecting how we
705 // got this location in the CFG. This requires looking at the previous
706 // block we were in and what kind of control-flow transfer was involved.
707 const CFGBlock *SrcBlock = BE.getSrc();
708 // The only terminator (if there is one) that makes sense is a logical op.
709 CFGTerminator T = SrcBlock->getTerminator();
710 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
711 (void) Term;
712 assert(Term->isLogicalOp());
713 assert(SrcBlock->succ_size() == 2);
714 // Did we take the true or false branch?
715 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
716 X = svalBuilder.makeIntVal(constant, B->getType());
717 }
718 else {
719 // If there is no terminator, by construction the last statement
720 // in SrcBlock is the value of the enclosing expression.
721 // However, we still need to constrain that value to be 0 or 1.
722 assert(!SrcBlock->empty());
723 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
724 const Expr *RHS = cast<Expr>(Elem.getStmt());
725 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
726
727 if (RHSVal.isUndef()) {
728 X = RHSVal;
729 } else {
730 // We evaluate "RHSVal != 0" expression which result in 0 if the value is
731 // known to be false, 1 if the value is known to be true and a new symbol
732 // when the assumption is unknown.
733 nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
734 X = evalBinOp(N->getState(), BO_NE,
735 svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
736 Zero, B->getType());
737 }
738 }
739 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
740 }
741
VisitInitListExpr(const InitListExpr * IE,ExplodedNode * Pred,ExplodedNodeSet & Dst)742 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
743 ExplodedNode *Pred,
744 ExplodedNodeSet &Dst) {
745 StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
746
747 ProgramStateRef state = Pred->getState();
748 const LocationContext *LCtx = Pred->getLocationContext();
749 QualType T = getContext().getCanonicalType(IE->getType());
750 unsigned NumInitElements = IE->getNumInits();
751
752 if (!IE->isGLValue() && !IE->isTransparent() &&
753 (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
754 T->isAnyComplexType())) {
755 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
756
757 // Handle base case where the initializer has no elements.
758 // e.g: static int* myArray[] = {};
759 if (NumInitElements == 0) {
760 SVal V = svalBuilder.makeCompoundVal(T, vals);
761 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
762 return;
763 }
764
765 for (const Stmt *S : llvm::reverse(*IE)) {
766 SVal V = state->getSVal(cast<Expr>(S), LCtx);
767 vals = getBasicVals().prependSVal(V, vals);
768 }
769
770 B.generateNode(IE, Pred,
771 state->BindExpr(IE, LCtx,
772 svalBuilder.makeCompoundVal(T, vals)));
773 return;
774 }
775
776 // Handle scalars: int{5} and int{} and GLvalues.
777 // Note, if the InitListExpr is a GLvalue, it means that there is an address
778 // representing it, so it must have a single init element.
779 assert(NumInitElements <= 1);
780
781 SVal V;
782 if (NumInitElements == 0)
783 V = getSValBuilder().makeZeroVal(T);
784 else
785 V = state->getSVal(IE->getInit(0), LCtx);
786
787 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
788 }
789
VisitGuardedExpr(const Expr * Ex,const Expr * L,const Expr * R,ExplodedNode * Pred,ExplodedNodeSet & Dst)790 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
791 const Expr *L,
792 const Expr *R,
793 ExplodedNode *Pred,
794 ExplodedNodeSet &Dst) {
795 assert(L && R);
796
797 StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
798 ProgramStateRef state = Pred->getState();
799 const LocationContext *LCtx = Pred->getLocationContext();
800 const CFGBlock *SrcBlock = nullptr;
801
802 // Find the predecessor block.
803 ProgramStateRef SrcState = state;
804 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
805 ProgramPoint PP = N->getLocation();
806 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
807 // If the state N has multiple predecessors P, it means that successors
808 // of P are all equivalent.
809 // In turn, that means that all nodes at P are equivalent in terms
810 // of observable behavior at N, and we can follow any of them.
811 // FIXME: a more robust solution which does not walk up the tree.
812 continue;
813 }
814 SrcBlock = PP.castAs<BlockEdge>().getSrc();
815 SrcState = N->getState();
816 break;
817 }
818
819 assert(SrcBlock && "missing function entry");
820
821 // Find the last expression in the predecessor block. That is the
822 // expression that is used for the value of the ternary expression.
823 bool hasValue = false;
824 SVal V;
825
826 for (CFGElement CE : llvm::reverse(*SrcBlock)) {
827 if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
828 const Expr *ValEx = cast<Expr>(CS->getStmt());
829 ValEx = ValEx->IgnoreParens();
830
831 // For GNU extension '?:' operator, the left hand side will be an
832 // OpaqueValueExpr, so get the underlying expression.
833 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
834 L = OpaqueEx->getSourceExpr();
835
836 // If the last expression in the predecessor block matches true or false
837 // subexpression, get its the value.
838 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
839 hasValue = true;
840 V = SrcState->getSVal(ValEx, LCtx);
841 }
842 break;
843 }
844 }
845
846 if (!hasValue)
847 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
848 currBldrCtx->blockCount());
849
850 // Generate a new node with the binding from the appropriate path.
851 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
852 }
853
854 void ExprEngine::
VisitOffsetOfExpr(const OffsetOfExpr * OOE,ExplodedNode * Pred,ExplodedNodeSet & Dst)855 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
856 ExplodedNode *Pred, ExplodedNodeSet &Dst) {
857 StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
858 Expr::EvalResult Result;
859 if (OOE->EvaluateAsInt(Result, getContext())) {
860 APSInt IV = Result.Val.getInt();
861 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
862 assert(OOE->getType()->castAs<BuiltinType>()->isInteger());
863 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
864 SVal X = svalBuilder.makeIntVal(IV);
865 B.generateNode(OOE, Pred,
866 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
867 X));
868 }
869 // FIXME: Handle the case where __builtin_offsetof is not a constant.
870 }
871
872
873 void ExprEngine::
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * Ex,ExplodedNode * Pred,ExplodedNodeSet & Dst)874 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
875 ExplodedNode *Pred,
876 ExplodedNodeSet &Dst) {
877 // FIXME: Prechecks eventually go in ::Visit().
878 ExplodedNodeSet CheckedSet;
879 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
880
881 ExplodedNodeSet EvalSet;
882 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
883
884 QualType T = Ex->getTypeOfArgument();
885
886 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
887 I != E; ++I) {
888 if (Ex->getKind() == UETT_SizeOf) {
889 if (!T->isIncompleteType() && !T->isConstantSizeType()) {
890 assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
891
892 // FIXME: Add support for VLA type arguments and VLA expressions.
893 // When that happens, we should probably refactor VLASizeChecker's code.
894 continue;
895 } else if (T->getAs<ObjCObjectType>()) {
896 // Some code tries to take the sizeof an ObjCObjectType, relying that
897 // the compiler has laid out its representation. Just report Unknown
898 // for these.
899 continue;
900 }
901 }
902
903 APSInt Value = Ex->EvaluateKnownConstInt(getContext());
904 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
905
906 ProgramStateRef state = (*I)->getState();
907 state = state->BindExpr(Ex, (*I)->getLocationContext(),
908 svalBuilder.makeIntVal(amt.getQuantity(),
909 Ex->getType()));
910 Bldr.generateNode(Ex, *I, state);
911 }
912
913 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
914 }
915
handleUOExtension(ExplodedNodeSet::iterator I,const UnaryOperator * U,StmtNodeBuilder & Bldr)916 void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
917 const UnaryOperator *U,
918 StmtNodeBuilder &Bldr) {
919 // FIXME: We can probably just have some magic in Environment::getSVal()
920 // that propagates values, instead of creating a new node here.
921 //
922 // Unary "+" is a no-op, similar to a parentheses. We still have places
923 // where it may be a block-level expression, so we need to
924 // generate an extra node that just propagates the value of the
925 // subexpression.
926 const Expr *Ex = U->getSubExpr()->IgnoreParens();
927 ProgramStateRef state = (*I)->getState();
928 const LocationContext *LCtx = (*I)->getLocationContext();
929 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
930 state->getSVal(Ex, LCtx)));
931 }
932
VisitUnaryOperator(const UnaryOperator * U,ExplodedNode * Pred,ExplodedNodeSet & Dst)933 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
934 ExplodedNodeSet &Dst) {
935 // FIXME: Prechecks eventually go in ::Visit().
936 ExplodedNodeSet CheckedSet;
937 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
938
939 ExplodedNodeSet EvalSet;
940 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
941
942 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
943 I != E; ++I) {
944 switch (U->getOpcode()) {
945 default: {
946 Bldr.takeNodes(*I);
947 ExplodedNodeSet Tmp;
948 VisitIncrementDecrementOperator(U, *I, Tmp);
949 Bldr.addNodes(Tmp);
950 break;
951 }
952 case UO_Real: {
953 const Expr *Ex = U->getSubExpr()->IgnoreParens();
954
955 // FIXME: We don't have complex SValues yet.
956 if (Ex->getType()->isAnyComplexType()) {
957 // Just report "Unknown."
958 break;
959 }
960
961 // For all other types, UO_Real is an identity operation.
962 assert (U->getType() == Ex->getType());
963 ProgramStateRef state = (*I)->getState();
964 const LocationContext *LCtx = (*I)->getLocationContext();
965 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
966 state->getSVal(Ex, LCtx)));
967 break;
968 }
969
970 case UO_Imag: {
971 const Expr *Ex = U->getSubExpr()->IgnoreParens();
972 // FIXME: We don't have complex SValues yet.
973 if (Ex->getType()->isAnyComplexType()) {
974 // Just report "Unknown."
975 break;
976 }
977 // For all other types, UO_Imag returns 0.
978 ProgramStateRef state = (*I)->getState();
979 const LocationContext *LCtx = (*I)->getLocationContext();
980 SVal X = svalBuilder.makeZeroVal(Ex->getType());
981 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
982 break;
983 }
984
985 case UO_AddrOf: {
986 // Process pointer-to-member address operation.
987 const Expr *Ex = U->getSubExpr()->IgnoreParens();
988 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
989 const ValueDecl *VD = DRE->getDecl();
990
991 if (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(VD)) {
992 ProgramStateRef State = (*I)->getState();
993 const LocationContext *LCtx = (*I)->getLocationContext();
994 SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD));
995 Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
996 break;
997 }
998 }
999 // Explicitly proceed with default handler for this case cascade.
1000 handleUOExtension(I, U, Bldr);
1001 break;
1002 }
1003 case UO_Plus:
1004 assert(!U->isGLValue());
1005 [[fallthrough]];
1006 case UO_Deref:
1007 case UO_Extension: {
1008 handleUOExtension(I, U, Bldr);
1009 break;
1010 }
1011
1012 case UO_LNot:
1013 case UO_Minus:
1014 case UO_Not: {
1015 assert (!U->isGLValue());
1016 const Expr *Ex = U->getSubExpr()->IgnoreParens();
1017 ProgramStateRef state = (*I)->getState();
1018 const LocationContext *LCtx = (*I)->getLocationContext();
1019
1020 // Get the value of the subexpression.
1021 SVal V = state->getSVal(Ex, LCtx);
1022
1023 if (V.isUnknownOrUndef()) {
1024 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
1025 break;
1026 }
1027
1028 switch (U->getOpcode()) {
1029 default:
1030 llvm_unreachable("Invalid Opcode.");
1031 case UO_Not:
1032 // FIXME: Do we need to handle promotions?
1033 state = state->BindExpr(
1034 U, LCtx, svalBuilder.evalComplement(V.castAs<NonLoc>()));
1035 break;
1036 case UO_Minus:
1037 // FIXME: Do we need to handle promotions?
1038 state = state->BindExpr(U, LCtx,
1039 svalBuilder.evalMinus(V.castAs<NonLoc>()));
1040 break;
1041 case UO_LNot:
1042 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
1043 //
1044 // Note: technically we do "E == 0", but this is the same in the
1045 // transfer functions as "0 == E".
1046 SVal Result;
1047 if (std::optional<Loc> LV = V.getAs<Loc>()) {
1048 Loc X = svalBuilder.makeNullWithType(Ex->getType());
1049 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
1050 } else if (Ex->getType()->isFloatingType()) {
1051 // FIXME: handle floating point types.
1052 Result = UnknownVal();
1053 } else {
1054 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
1055 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, U->getType());
1056 }
1057
1058 state = state->BindExpr(U, LCtx, Result);
1059 break;
1060 }
1061 Bldr.generateNode(U, *I, state);
1062 break;
1063 }
1064 }
1065 }
1066
1067 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
1068 }
1069
VisitIncrementDecrementOperator(const UnaryOperator * U,ExplodedNode * Pred,ExplodedNodeSet & Dst)1070 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
1071 ExplodedNode *Pred,
1072 ExplodedNodeSet &Dst) {
1073 // Handle ++ and -- (both pre- and post-increment).
1074 assert (U->isIncrementDecrementOp());
1075 const Expr *Ex = U->getSubExpr()->IgnoreParens();
1076
1077 const LocationContext *LCtx = Pred->getLocationContext();
1078 ProgramStateRef state = Pred->getState();
1079 SVal loc = state->getSVal(Ex, LCtx);
1080
1081 // Perform a load.
1082 ExplodedNodeSet Tmp;
1083 evalLoad(Tmp, U, Ex, Pred, state, loc);
1084
1085 ExplodedNodeSet Dst2;
1086 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
1087 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
1088
1089 state = (*I)->getState();
1090 assert(LCtx == (*I)->getLocationContext());
1091 SVal V2_untested = state->getSVal(Ex, LCtx);
1092
1093 // Propagate unknown and undefined values.
1094 if (V2_untested.isUnknownOrUndef()) {
1095 state = state->BindExpr(U, LCtx, V2_untested);
1096
1097 // Perform the store, so that the uninitialized value detection happens.
1098 Bldr.takeNodes(*I);
1099 ExplodedNodeSet Dst3;
1100 evalStore(Dst3, U, Ex, *I, state, loc, V2_untested);
1101 Bldr.addNodes(Dst3);
1102
1103 continue;
1104 }
1105 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
1106
1107 // Handle all other values.
1108 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
1109
1110 // If the UnaryOperator has non-location type, use its type to create the
1111 // constant value. If the UnaryOperator has location type, create the
1112 // constant with int type and pointer width.
1113 SVal RHS;
1114 SVal Result;
1115
1116 if (U->getType()->isAnyPointerType())
1117 RHS = svalBuilder.makeArrayIndex(1);
1118 else if (U->getType()->isIntegralOrEnumerationType())
1119 RHS = svalBuilder.makeIntVal(1, U->getType());
1120 else
1121 RHS = UnknownVal();
1122
1123 // The use of an operand of type bool with the ++ operators is deprecated
1124 // but valid until C++17. And if the operand of the ++ operator is of type
1125 // bool, it is set to true until C++17. Note that for '_Bool', it is also
1126 // set to true when it encounters ++ operator.
1127 if (U->getType()->isBooleanType() && U->isIncrementOp())
1128 Result = svalBuilder.makeTruthVal(true, U->getType());
1129 else
1130 Result = evalBinOp(state, Op, V2, RHS, U->getType());
1131
1132 // Conjure a new symbol if necessary to recover precision.
1133 if (Result.isUnknown()){
1134 DefinedOrUnknownSVal SymVal =
1135 svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
1136 currBldrCtx->blockCount());
1137 Result = SymVal;
1138
1139 // If the value is a location, ++/-- should always preserve
1140 // non-nullness. Check if the original value was non-null, and if so
1141 // propagate that constraint.
1142 if (Loc::isLocType(U->getType())) {
1143 DefinedOrUnknownSVal Constraint =
1144 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
1145
1146 if (!state->assume(Constraint, true)) {
1147 // It isn't feasible for the original value to be null.
1148 // Propagate this constraint.
1149 Constraint = svalBuilder.evalEQ(state, SymVal,
1150 svalBuilder.makeZeroVal(U->getType()));
1151
1152 state = state->assume(Constraint, false);
1153 assert(state);
1154 }
1155 }
1156 }
1157
1158 // Since the lvalue-to-rvalue conversion is explicit in the AST,
1159 // we bind an l-value if the operator is prefix and an lvalue (in C++).
1160 if (U->isGLValue())
1161 state = state->BindExpr(U, LCtx, loc);
1162 else
1163 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
1164
1165 // Perform the store.
1166 Bldr.takeNodes(*I);
1167 ExplodedNodeSet Dst3;
1168 evalStore(Dst3, U, Ex, *I, state, loc, Result);
1169 Bldr.addNodes(Dst3);
1170 }
1171 Dst.insert(Dst2);
1172 }
1173