1 /*
2 * Copyright © 2019 Raspberry Pi Ltd
3 *
4 * based in part on anv driver which is:
5 * Copyright © 2015 Intel Corporation
6 *
7 * based in part on radv driver which is:
8 * Copyright © 2016 Red Hat.
9 * Copyright © 2016 Bas Nieuwenhuizen
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the next
19 * paragraph) shall be included in all copies or substantial portions of the
20 * Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28 * IN THE SOFTWARE.
29 */
30 #ifndef V3DV_PRIVATE_H
31 #define V3DV_PRIVATE_H
32
33 #include <stdio.h>
34 #include <string.h>
35 #include <vulkan/vulkan.h>
36 #include <vulkan/vk_icd.h>
37 #include <vk_enum_to_str.h>
38
39 #include "vk_device.h"
40 #include "vk_format.h"
41 #include "vk_instance.h"
42 #include "vk_image.h"
43 #include "vk_log.h"
44 #include "vk_physical_device.h"
45 #include "vk_shader_module.h"
46 #include "vk_util.h"
47
48 #include "vk_command_buffer.h"
49 #include "vk_command_pool.h"
50 #include "vk_queue.h"
51
52 #include <xf86drm.h>
53
54 #ifdef HAVE_VALGRIND
55 #include <valgrind.h>
56 #include <memcheck.h>
57 #define VG(x) x
58 #else
59 #define VG(x) ((void)0)
60 #endif
61
62 #include "v3dv_limits.h"
63
64 #include "common/v3d_device_info.h"
65 #include "common/v3d_limits.h"
66 #include "common/v3d_tiling.h"
67 #include "common/v3d_util.h"
68
69 #include "compiler/shader_enums.h"
70 #include "compiler/spirv/nir_spirv.h"
71
72 #include "compiler/v3d_compiler.h"
73
74 #include "vk_debug_report.h"
75 #include "util/set.h"
76 #include "util/hash_table.h"
77 #include "util/sparse_array.h"
78 #include "util/xmlconfig.h"
79 #include "u_atomic.h"
80
81 #include "v3dv_entrypoints.h"
82 #include "v3dv_bo.h"
83
84 #include "drm-uapi/v3d_drm.h"
85
86 #include "vk_alloc.h"
87 #include "simulator/v3d_simulator.h"
88
89 #include "v3dv_cl.h"
90
91 #include "wsi_common.h"
92
93 /* A non-fatal assert. Useful for debugging. */
94 #ifdef DEBUG
95 #define v3dv_assert(x) ({ \
96 if (unlikely(!(x))) \
97 fprintf(stderr, "%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
98 })
99 #else
100 #define v3dv_assert(x)
101 #endif
102
103 #define perf_debug(...) do { \
104 if (unlikely(V3D_DEBUG & V3D_DEBUG_PERF)) \
105 fprintf(stderr, __VA_ARGS__); \
106 } while (0)
107
108 struct v3dv_instance;
109
110 #ifdef USE_V3D_SIMULATOR
111 #define using_v3d_simulator true
112 #else
113 #define using_v3d_simulator false
114 #endif
115
116 struct v3d_simulator_file;
117
118 /* Minimum required by the Vulkan 1.1 spec */
119 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 30)
120
121 struct v3dv_physical_device {
122 struct vk_physical_device vk;
123
124 char *name;
125 int32_t render_fd;
126 int32_t display_fd;
127 int32_t master_fd;
128
129 /* We need these because it is not clear how to detect
130 * valid devids in a portable way
131 */
132 bool has_primary;
133 bool has_render;
134
135 dev_t primary_devid;
136 dev_t render_devid;
137
138 uint8_t driver_build_sha1[20];
139 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
140 uint8_t device_uuid[VK_UUID_SIZE];
141 uint8_t driver_uuid[VK_UUID_SIZE];
142
143 struct disk_cache *disk_cache;
144
145 mtx_t mutex;
146
147 struct wsi_device wsi_device;
148
149 VkPhysicalDeviceMemoryProperties memory;
150
151 struct v3d_device_info devinfo;
152
153 struct v3d_simulator_file *sim_file;
154
155 const struct v3d_compiler *compiler;
156 uint32_t next_program_id;
157
158 /* This array holds all our 'struct v3dv_bo' allocations. We use this
159 * so we can add a refcount to our BOs and check if a particular BO
160 * was already allocated in this device using its GEM handle. This is
161 * necessary to properly manage BO imports, because the kernel doesn't
162 * refcount the underlying BO memory.
163 *
164 * Specifically, when self-importing (i.e. importing a BO into the same
165 * device that created it), the kernel will give us the same BO handle
166 * for both BOs and we must only free it once when both references are
167 * freed. Otherwise, if we are not self-importing, we get two differnt BO
168 * handles, and we want to free each one individually.
169 *
170 * The BOs in this map all have a refcnt with the referece counter and
171 * only self-imported BOs will ever have a refcnt > 1.
172 */
173 struct util_sparse_array bo_map;
174
175 struct {
176 bool merge_jobs;
177 } options;
178
179 struct {
180 bool multisync;
181 } caps;
182 };
183
184 VkResult v3dv_physical_device_acquire_display(struct v3dv_instance *instance,
185 struct v3dv_physical_device *pdevice,
186 VkIcdSurfaceBase *surface);
187
188 static inline struct v3dv_bo *
v3dv_device_lookup_bo(struct v3dv_physical_device * device,uint32_t handle)189 v3dv_device_lookup_bo(struct v3dv_physical_device *device, uint32_t handle)
190 {
191 return (struct v3dv_bo *) util_sparse_array_get(&device->bo_map, handle);
192 }
193
194 VkResult v3dv_wsi_init(struct v3dv_physical_device *physical_device);
195 void v3dv_wsi_finish(struct v3dv_physical_device *physical_device);
196 struct v3dv_image *v3dv_wsi_get_image_from_swapchain(VkSwapchainKHR swapchain,
197 uint32_t index);
198
199 void v3dv_meta_clear_init(struct v3dv_device *device);
200 void v3dv_meta_clear_finish(struct v3dv_device *device);
201
202 void v3dv_meta_blit_init(struct v3dv_device *device);
203 void v3dv_meta_blit_finish(struct v3dv_device *device);
204
205 void v3dv_meta_texel_buffer_copy_init(struct v3dv_device *device);
206 void v3dv_meta_texel_buffer_copy_finish(struct v3dv_device *device);
207
208 bool v3dv_meta_can_use_tlb(struct v3dv_image *image,
209 const VkOffset3D *offset,
210 VkFormat *compat_format);
211
212 struct v3dv_instance {
213 struct vk_instance vk;
214
215 int physicalDeviceCount;
216 struct v3dv_physical_device physicalDevice;
217
218 bool pipeline_cache_enabled;
219 bool default_pipeline_cache_enabled;
220 };
221
222 /* Tracks wait threads spawned from a single vkQueueSubmit call */
223 struct v3dv_queue_submit_wait_info {
224 /* struct vk_object_base base; ?*/
225 struct list_head list_link;
226
227 struct v3dv_device *device;
228
229 /* List of wait threads spawned for any command buffers in a particular
230 * call to vkQueueSubmit.
231 */
232 uint32_t wait_thread_count;
233 struct {
234 pthread_t thread;
235 bool finished;
236 } wait_threads[16];
237
238 /* The master wait thread for the entire submit. This will wait for all
239 * other threads in this submit to complete before processing signal
240 * semaphores and fences.
241 */
242 pthread_t master_wait_thread;
243
244 /* List of semaphores (and fence) to signal after all wait threads completed
245 * and all command buffer jobs in the submission have been sent to the GPU.
246 */
247 uint32_t signal_semaphore_count;
248 VkSemaphore *signal_semaphores;
249 VkFence fence;
250 };
251
252 struct v3dv_queue {
253 struct vk_queue vk;
254
255 struct v3dv_device *device;
256
257 /* A list of active v3dv_queue_submit_wait_info */
258 struct list_head submit_wait_list;
259
260 /* A mutex to prevent concurrent access to the list of wait threads */
261 mtx_t mutex;
262
263 /* A mutex to prevent concurrent noop job submissions */
264 mtx_t noop_mutex;
265
266 struct v3dv_job *noop_job;
267 };
268
269 #define V3DV_META_BLIT_CACHE_KEY_SIZE (4 * sizeof(uint32_t))
270 #define V3DV_META_TEXEL_BUFFER_COPY_CACHE_KEY_SIZE (3 * sizeof(uint32_t) + \
271 sizeof(VkComponentMapping))
272
273 struct v3dv_meta_color_clear_pipeline {
274 VkPipeline pipeline;
275 VkRenderPass pass;
276 bool cached;
277 uint64_t key;
278 };
279
280 struct v3dv_meta_depth_clear_pipeline {
281 VkPipeline pipeline;
282 uint64_t key;
283 };
284
285 struct v3dv_meta_blit_pipeline {
286 VkPipeline pipeline;
287 VkRenderPass pass;
288 VkRenderPass pass_no_load;
289 uint8_t key[V3DV_META_BLIT_CACHE_KEY_SIZE];
290 };
291
292 struct v3dv_meta_texel_buffer_copy_pipeline {
293 VkPipeline pipeline;
294 VkRenderPass pass;
295 VkRenderPass pass_no_load;
296 uint8_t key[V3DV_META_TEXEL_BUFFER_COPY_CACHE_KEY_SIZE];
297 };
298
299 struct v3dv_pipeline_key {
300 bool robust_buffer_access;
301 uint8_t topology;
302 uint8_t logicop_func;
303 bool msaa;
304 bool sample_coverage;
305 bool sample_alpha_to_coverage;
306 bool sample_alpha_to_one;
307 uint8_t cbufs;
308 struct {
309 enum pipe_format format;
310 uint8_t swizzle[4];
311 } color_fmt[V3D_MAX_DRAW_BUFFERS];
312 uint8_t f32_color_rb;
313 uint32_t va_swap_rb_mask;
314 bool has_multiview;
315 };
316
317 struct v3dv_pipeline_cache_stats {
318 uint32_t miss;
319 uint32_t hit;
320 uint32_t count;
321 };
322
323 /* Equivalent to gl_shader_stage, but including the coordinate shaders
324 *
325 * FIXME: perhaps move to common
326 */
327 enum broadcom_shader_stage {
328 BROADCOM_SHADER_VERTEX,
329 BROADCOM_SHADER_VERTEX_BIN,
330 BROADCOM_SHADER_GEOMETRY,
331 BROADCOM_SHADER_GEOMETRY_BIN,
332 BROADCOM_SHADER_FRAGMENT,
333 BROADCOM_SHADER_COMPUTE,
334 };
335
336 #define BROADCOM_SHADER_STAGES (BROADCOM_SHADER_COMPUTE + 1)
337
338 /* Assumes that coordinate shaders will be custom-handled by the caller */
339 static inline enum broadcom_shader_stage
gl_shader_stage_to_broadcom(gl_shader_stage stage)340 gl_shader_stage_to_broadcom(gl_shader_stage stage)
341 {
342 switch (stage) {
343 case MESA_SHADER_VERTEX:
344 return BROADCOM_SHADER_VERTEX;
345 case MESA_SHADER_GEOMETRY:
346 return BROADCOM_SHADER_GEOMETRY;
347 case MESA_SHADER_FRAGMENT:
348 return BROADCOM_SHADER_FRAGMENT;
349 case MESA_SHADER_COMPUTE:
350 return BROADCOM_SHADER_COMPUTE;
351 default:
352 unreachable("Unknown gl shader stage");
353 }
354 }
355
356 static inline gl_shader_stage
broadcom_shader_stage_to_gl(enum broadcom_shader_stage stage)357 broadcom_shader_stage_to_gl(enum broadcom_shader_stage stage)
358 {
359 switch (stage) {
360 case BROADCOM_SHADER_VERTEX:
361 case BROADCOM_SHADER_VERTEX_BIN:
362 return MESA_SHADER_VERTEX;
363 case BROADCOM_SHADER_GEOMETRY:
364 case BROADCOM_SHADER_GEOMETRY_BIN:
365 return MESA_SHADER_GEOMETRY;
366 case BROADCOM_SHADER_FRAGMENT:
367 return MESA_SHADER_FRAGMENT;
368 case BROADCOM_SHADER_COMPUTE:
369 return MESA_SHADER_COMPUTE;
370 default:
371 unreachable("Unknown broadcom shader stage");
372 }
373 }
374
375 static inline bool
broadcom_shader_stage_is_binning(enum broadcom_shader_stage stage)376 broadcom_shader_stage_is_binning(enum broadcom_shader_stage stage)
377 {
378 switch (stage) {
379 case BROADCOM_SHADER_VERTEX_BIN:
380 case BROADCOM_SHADER_GEOMETRY_BIN:
381 return true;
382 default:
383 return false;
384 }
385 }
386
387 static inline bool
broadcom_shader_stage_is_render_with_binning(enum broadcom_shader_stage stage)388 broadcom_shader_stage_is_render_with_binning(enum broadcom_shader_stage stage)
389 {
390 switch (stage) {
391 case BROADCOM_SHADER_VERTEX:
392 case BROADCOM_SHADER_GEOMETRY:
393 return true;
394 default:
395 return false;
396 }
397 }
398
399 static inline enum broadcom_shader_stage
broadcom_binning_shader_stage_for_render_stage(enum broadcom_shader_stage stage)400 broadcom_binning_shader_stage_for_render_stage(enum broadcom_shader_stage stage)
401 {
402 switch (stage) {
403 case BROADCOM_SHADER_VERTEX:
404 return BROADCOM_SHADER_VERTEX_BIN;
405 case BROADCOM_SHADER_GEOMETRY:
406 return BROADCOM_SHADER_GEOMETRY_BIN;
407 default:
408 unreachable("Invalid shader stage");
409 }
410 }
411
412 static inline const char *
broadcom_shader_stage_name(enum broadcom_shader_stage stage)413 broadcom_shader_stage_name(enum broadcom_shader_stage stage)
414 {
415 switch(stage) {
416 case BROADCOM_SHADER_VERTEX_BIN:
417 return "MESA_SHADER_VERTEX_BIN";
418 case BROADCOM_SHADER_GEOMETRY_BIN:
419 return "MESA_SHADER_GEOMETRY_BIN";
420 default:
421 return gl_shader_stage_name(broadcom_shader_stage_to_gl(stage));
422 }
423 }
424
425 struct v3dv_pipeline_cache {
426 struct vk_object_base base;
427
428 struct v3dv_device *device;
429 mtx_t mutex;
430
431 struct hash_table *nir_cache;
432 struct v3dv_pipeline_cache_stats nir_stats;
433
434 struct hash_table *cache;
435 struct v3dv_pipeline_cache_stats stats;
436
437 /* For VK_EXT_pipeline_creation_cache_control. */
438 bool externally_synchronized;
439 };
440
441 /* FIXME: In addition to tracking the last job submitted by GPU queue (cl, csd,
442 * tfu), we still need a syncobj to track the last overall job submitted
443 * (V3DV_QUEUE_ANY) for the case we don't support multisync. Someday we can
444 * start expecting multisync to be present and drop the legacy implementation
445 * together with this V3DV_QUEUE_ANY tracker.
446 */
447 enum v3dv_queue_type {
448 V3DV_QUEUE_CL = 0,
449 V3DV_QUEUE_CSD,
450 V3DV_QUEUE_TFU,
451 V3DV_QUEUE_ANY,
452 V3DV_QUEUE_COUNT,
453 };
454
455 /* For each GPU queue, we use a syncobj to track the last job submitted. We
456 * set the flag `first` to determine when we are starting a new cmd buffer
457 * batch and therefore a job submitted to a given queue will be the first in a
458 * cmd buf batch.
459 */
460 struct v3dv_last_job_sync {
461 /* If the job is the first submitted to a GPU queue in a cmd buffer batch */
462 bool first[V3DV_QUEUE_COUNT];
463 /* Array of syncobj to track the last job submitted to a GPU queue */
464 uint32_t syncs[V3DV_QUEUE_COUNT];
465 };
466
467 struct v3dv_device {
468 struct vk_device vk;
469
470 struct v3dv_instance *instance;
471 struct v3dv_physical_device *pdevice;
472
473 struct v3d_device_info devinfo;
474 struct v3dv_queue queue;
475
476 /* Syncobjs to track the last job submitted to any GPU queue */
477 struct v3dv_last_job_sync last_job_syncs;
478
479 /* A mutex to prevent concurrent access to last_job_sync from the queue */
480 mtx_t mutex;
481
482 /* Resources used for meta operations */
483 struct {
484 mtx_t mtx;
485 struct {
486 VkPipelineLayout p_layout;
487 struct hash_table *cache; /* v3dv_meta_color_clear_pipeline */
488 } color_clear;
489 struct {
490 VkPipelineLayout p_layout;
491 struct hash_table *cache; /* v3dv_meta_depth_clear_pipeline */
492 } depth_clear;
493 struct {
494 VkDescriptorSetLayout ds_layout;
495 VkPipelineLayout p_layout;
496 struct hash_table *cache[3]; /* v3dv_meta_blit_pipeline for 1d, 2d, 3d */
497 } blit;
498 struct {
499 VkDescriptorSetLayout ds_layout;
500 VkPipelineLayout p_layout;
501 struct hash_table *cache[3]; /* v3dv_meta_texel_buffer_copy_pipeline for 1d, 2d, 3d */
502 } texel_buffer_copy;
503 } meta;
504
505 struct v3dv_bo_cache {
506 /** List of struct v3d_bo freed, by age. */
507 struct list_head time_list;
508 /** List of struct v3d_bo freed, per size, by age. */
509 struct list_head *size_list;
510 uint32_t size_list_size;
511
512 mtx_t lock;
513
514 uint32_t cache_size;
515 uint32_t cache_count;
516 uint32_t max_cache_size;
517 } bo_cache;
518
519 uint32_t bo_size;
520 uint32_t bo_count;
521
522 struct v3dv_pipeline_cache default_pipeline_cache;
523
524 /* GL_SHADER_STATE_RECORD needs to speficy default attribute values. The
525 * following covers the most common case, that is all attributes format
526 * being float being float, allowing us to reuse the same BO for all
527 * pipelines matching this requirement. Pipelines that need integer
528 * attributes will create their own BO.
529 */
530 struct v3dv_bo *default_attribute_float;
531 VkPhysicalDeviceFeatures features;
532
533 #ifdef ANDROID
534 const void *gralloc;
535 enum {
536 V3DV_GRALLOC_UNKNOWN,
537 V3DV_GRALLOC_CROS,
538 V3DV_GRALLOC_OTHER,
539 } gralloc_type;
540 #endif
541 };
542
543 struct v3dv_device_memory {
544 struct vk_object_base base;
545
546 struct v3dv_bo *bo;
547 const VkMemoryType *type;
548 bool is_for_wsi;
549 };
550
551 #define V3D_OUTPUT_IMAGE_FORMAT_NO 255
552 #define TEXTURE_DATA_FORMAT_NO 255
553
554 struct v3dv_format {
555 bool supported;
556
557 /* One of V3D33_OUTPUT_IMAGE_FORMAT_*, or OUTPUT_IMAGE_FORMAT_NO */
558 uint8_t rt_type;
559
560 /* One of V3D33_TEXTURE_DATA_FORMAT_*. */
561 uint8_t tex_type;
562
563 /* Swizzle to apply to the RGBA shader output for storing to the tile
564 * buffer, to the RGBA tile buffer to produce shader input (for
565 * blending), and for turning the rgba8888 texture sampler return
566 * value into shader rgba values.
567 */
568 uint8_t swizzle[4];
569
570 /* Whether the return value is 16F/I/UI or 32F/I/UI. */
571 uint8_t return_size;
572
573 /* If the format supports (linear) filtering when texturing. */
574 bool supports_filtering;
575 };
576
577 struct v3d_resource_slice {
578 uint32_t offset;
579 uint32_t stride;
580 uint32_t padded_height;
581 /* Size of a single pane of the slice. For 3D textures, there will be
582 * a number of panes equal to the minified, power-of-two-aligned
583 * depth.
584 */
585 uint32_t size;
586 uint8_t ub_pad;
587 enum v3d_tiling_mode tiling;
588 uint32_t padded_height_of_output_image_in_uif_blocks;
589 };
590
591 bool v3dv_format_swizzle_needs_rb_swap(const uint8_t *swizzle);
592 bool v3dv_format_swizzle_needs_reverse(const uint8_t *swizzle);
593
594 struct v3dv_image {
595 struct vk_image vk;
596
597 const struct v3dv_format *format;
598 uint32_t cpp;
599 bool tiled;
600
601 struct v3d_resource_slice slices[V3D_MAX_MIP_LEVELS];
602 uint64_t size; /* Total size in bytes */
603 uint32_t cube_map_stride;
604
605 struct v3dv_device_memory *mem;
606 VkDeviceSize mem_offset;
607 uint32_t alignment;
608
609 #ifdef ANDROID
610 /* Image is backed by VK_ANDROID_native_buffer, */
611 bool is_native_buffer_memory;
612 #endif
613 };
614
615 VkImageViewType v3dv_image_type_to_view_type(VkImageType type);
616
617 /* Pre-generating packets needs to consider changes in packet sizes across hw
618 * versions. Keep things simple and allocate enough space for any supported
619 * version. We ensure the size is large enough through static asserts.
620 */
621 #define V3DV_TEXTURE_SHADER_STATE_LENGTH 32
622 #define V3DV_SAMPLER_STATE_LENGTH 24
623 #define V3DV_BLEND_CFG_LENGTH 5
624 #define V3DV_CFG_BITS_LENGTH 4
625 #define V3DV_GL_SHADER_STATE_RECORD_LENGTH 36
626 #define V3DV_VCM_CACHE_SIZE_LENGTH 2
627 #define V3DV_GL_SHADER_STATE_ATTRIBUTE_RECORD_LENGTH 16
628 #define V3DV_STENCIL_CFG_LENGTH 6
629
630 struct v3dv_image_view {
631 struct vk_image_view vk;
632
633 const struct v3dv_format *format;
634 bool swap_rb;
635 bool channel_reverse;
636 uint32_t internal_bpp;
637 uint32_t internal_type;
638 uint32_t offset;
639
640 /* Precomputed (composed from createinfo->components and formar swizzle)
641 * swizzles to pass in to the shader key.
642 *
643 * This could be also included on the descriptor bo, but the shader state
644 * packet doesn't need it on a bo, so we can just avoid a memory copy
645 */
646 uint8_t swizzle[4];
647
648 /* Prepacked TEXTURE_SHADER_STATE. It will be copied to the descriptor info
649 * during UpdateDescriptorSets.
650 *
651 * Empirical tests show that cube arrays need a different shader state
652 * depending on whether they are used with a sampler or not, so for these
653 * we generate two states and select the one to use based on the descriptor
654 * type.
655 */
656 uint8_t texture_shader_state[2][V3DV_TEXTURE_SHADER_STATE_LENGTH];
657 };
658
659 uint32_t v3dv_layer_offset(const struct v3dv_image *image, uint32_t level, uint32_t layer);
660
661 struct v3dv_buffer {
662 struct vk_object_base base;
663
664 VkDeviceSize size;
665 VkBufferUsageFlags usage;
666 uint32_t alignment;
667
668 struct v3dv_device_memory *mem;
669 VkDeviceSize mem_offset;
670 };
671
672 struct v3dv_buffer_view {
673 struct vk_object_base base;
674
675 struct v3dv_buffer *buffer;
676
677 VkFormat vk_format;
678 const struct v3dv_format *format;
679 uint32_t internal_bpp;
680 uint32_t internal_type;
681
682 uint32_t offset;
683 uint32_t size;
684 uint32_t num_elements;
685
686 /* Prepacked TEXTURE_SHADER_STATE. */
687 uint8_t texture_shader_state[V3DV_TEXTURE_SHADER_STATE_LENGTH];
688 };
689
690 struct v3dv_subpass_attachment {
691 uint32_t attachment;
692 VkImageLayout layout;
693 };
694
695 struct v3dv_subpass {
696 uint32_t input_count;
697 struct v3dv_subpass_attachment *input_attachments;
698
699 uint32_t color_count;
700 struct v3dv_subpass_attachment *color_attachments;
701 struct v3dv_subpass_attachment *resolve_attachments;
702
703 struct v3dv_subpass_attachment ds_attachment;
704 struct v3dv_subpass_attachment ds_resolve_attachment;
705 bool resolve_depth, resolve_stencil;
706
707 /* If we need to emit the clear of the depth/stencil attachment using a
708 * a draw call instead of using the TLB (GFXH-1461).
709 */
710 bool do_depth_clear_with_draw;
711 bool do_stencil_clear_with_draw;
712
713 /* Multiview */
714 uint32_t view_mask;
715 };
716
717 struct v3dv_render_pass_attachment {
718 VkAttachmentDescription2 desc;
719
720 uint32_t first_subpass;
721 uint32_t last_subpass;
722
723 /* When multiview is enabled, we no longer care about when a particular
724 * attachment is first or last used in a render pass, since not all views
725 * in the attachment will meet that criteria. Instead, we need to track
726 * each individual view (layer) in each attachment and emit our stores,
727 * loads and clears accordingly.
728 */
729 struct {
730 uint32_t first_subpass;
731 uint32_t last_subpass;
732 } views[MAX_MULTIVIEW_VIEW_COUNT];
733
734 /* If this is a multisampled attachment that is going to be resolved,
735 * whether we may be able to use the TLB hardware resolve based on the
736 * attachment format.
737 */
738 bool try_tlb_resolve;
739 };
740
741 struct v3dv_render_pass {
742 struct vk_object_base base;
743
744 bool multiview_enabled;
745
746 uint32_t attachment_count;
747 struct v3dv_render_pass_attachment *attachments;
748
749 uint32_t subpass_count;
750 struct v3dv_subpass *subpasses;
751
752 struct v3dv_subpass_attachment *subpass_attachments;
753 };
754
755 struct v3dv_framebuffer {
756 struct vk_object_base base;
757
758 uint32_t width;
759 uint32_t height;
760 uint32_t layers;
761
762 /* Typically, edge tiles in the framebuffer have padding depending on the
763 * underlying tiling layout. One consequnce of this is that when the
764 * framebuffer dimensions are not aligned to tile boundaries, tile stores
765 * would still write full tiles on the edges and write to the padded area.
766 * If the framebuffer is aliasing a smaller region of a larger image, then
767 * we need to be careful with this though, as we won't have padding on the
768 * edge tiles (which typically means that we need to load the tile buffer
769 * before we store).
770 */
771 bool has_edge_padding;
772
773 uint32_t attachment_count;
774 uint32_t color_attachment_count;
775
776 /* Notice that elements in 'attachments' will be NULL if the framebuffer
777 * was created imageless. The driver is expected to access attachment info
778 * from the command buffer state instead.
779 */
780 struct v3dv_image_view *attachments[0];
781 };
782
783 struct v3dv_frame_tiling {
784 uint32_t width;
785 uint32_t height;
786 uint32_t layers;
787 uint32_t render_target_count;
788 uint32_t internal_bpp;
789 bool msaa;
790 bool double_buffer;
791 uint32_t tile_width;
792 uint32_t tile_height;
793 uint32_t draw_tiles_x;
794 uint32_t draw_tiles_y;
795 uint32_t supertile_width;
796 uint32_t supertile_height;
797 uint32_t frame_width_in_supertiles;
798 uint32_t frame_height_in_supertiles;
799 };
800
801 bool v3dv_subpass_area_is_tile_aligned(struct v3dv_device *device,
802 const VkRect2D *area,
803 struct v3dv_framebuffer *fb,
804 struct v3dv_render_pass *pass,
805 uint32_t subpass_idx);
806
807 /* Checks if we need to emit 2 initial tile clears for double buffer mode.
808 * This happens when we render at least 2 tiles, because in this mode each
809 * tile uses a different half of the tile buffer memory so we can have 2 tiles
810 * in flight (one being stored to memory and the next being rendered). In this
811 * scenario, if we emit a single initial tile clear we would only clear the
812 * first half of the tile buffer.
813 */
814 static inline bool
v3dv_do_double_initial_tile_clear(const struct v3dv_frame_tiling * tiling)815 v3dv_do_double_initial_tile_clear(const struct v3dv_frame_tiling *tiling)
816 {
817 return tiling->double_buffer &&
818 (tiling->draw_tiles_x > 1 || tiling->draw_tiles_y > 1 ||
819 tiling->layers > 1);
820 }
821
822 enum v3dv_cmd_buffer_status {
823 V3DV_CMD_BUFFER_STATUS_NEW = 0,
824 V3DV_CMD_BUFFER_STATUS_INITIALIZED = 1,
825 V3DV_CMD_BUFFER_STATUS_RECORDING = 2,
826 V3DV_CMD_BUFFER_STATUS_EXECUTABLE = 3
827 };
828
829 union v3dv_clear_value {
830 uint32_t color[4];
831 struct {
832 float z;
833 uint8_t s;
834 };
835 };
836
837 struct v3dv_cmd_buffer_attachment_state {
838 /* The original clear value as provided by the Vulkan API */
839 VkClearValue vk_clear_value;
840
841 /* The hardware clear value */
842 union v3dv_clear_value clear_value;
843
844 /* The underlying image view (from the framebuffer or, if imageless
845 * framebuffer is used, from VkRenderPassAttachmentBeginInfo.
846 */
847 struct v3dv_image_view *image_view;
848
849 /* If this is a multisampled attachment with a resolve operation. */
850 bool has_resolve;
851
852 /* If this is a multisampled attachment with a resolve operation,
853 * whether we can use the TLB for the resolve.
854 */
855 bool use_tlb_resolve;
856 };
857
858 struct v3dv_viewport_state {
859 uint32_t count;
860 VkViewport viewports[MAX_VIEWPORTS];
861 float translate[MAX_VIEWPORTS][3];
862 float scale[MAX_VIEWPORTS][3];
863 };
864
865 struct v3dv_scissor_state {
866 uint32_t count;
867 VkRect2D scissors[MAX_SCISSORS];
868 };
869
870 /* Mostly a v3dv mapping of VkDynamicState, used to track which data as
871 * defined as dynamic
872 */
873 enum v3dv_dynamic_state_bits {
874 V3DV_DYNAMIC_VIEWPORT = 1 << 0,
875 V3DV_DYNAMIC_SCISSOR = 1 << 1,
876 V3DV_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 2,
877 V3DV_DYNAMIC_STENCIL_WRITE_MASK = 1 << 3,
878 V3DV_DYNAMIC_STENCIL_REFERENCE = 1 << 4,
879 V3DV_DYNAMIC_BLEND_CONSTANTS = 1 << 5,
880 V3DV_DYNAMIC_DEPTH_BIAS = 1 << 6,
881 V3DV_DYNAMIC_LINE_WIDTH = 1 << 7,
882 V3DV_DYNAMIC_COLOR_WRITE_ENABLE = 1 << 8,
883 V3DV_DYNAMIC_ALL = (1 << 9) - 1,
884 };
885
886 /* Flags for dirty pipeline state.
887 */
888 enum v3dv_cmd_dirty_bits {
889 V3DV_CMD_DIRTY_VIEWPORT = 1 << 0,
890 V3DV_CMD_DIRTY_SCISSOR = 1 << 1,
891 V3DV_CMD_DIRTY_STENCIL_COMPARE_MASK = 1 << 2,
892 V3DV_CMD_DIRTY_STENCIL_WRITE_MASK = 1 << 3,
893 V3DV_CMD_DIRTY_STENCIL_REFERENCE = 1 << 4,
894 V3DV_CMD_DIRTY_PIPELINE = 1 << 5,
895 V3DV_CMD_DIRTY_COMPUTE_PIPELINE = 1 << 6,
896 V3DV_CMD_DIRTY_VERTEX_BUFFER = 1 << 7,
897 V3DV_CMD_DIRTY_INDEX_BUFFER = 1 << 8,
898 V3DV_CMD_DIRTY_DESCRIPTOR_SETS = 1 << 9,
899 V3DV_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS = 1 << 10,
900 V3DV_CMD_DIRTY_PUSH_CONSTANTS = 1 << 11,
901 V3DV_CMD_DIRTY_BLEND_CONSTANTS = 1 << 12,
902 V3DV_CMD_DIRTY_OCCLUSION_QUERY = 1 << 13,
903 V3DV_CMD_DIRTY_DEPTH_BIAS = 1 << 14,
904 V3DV_CMD_DIRTY_LINE_WIDTH = 1 << 15,
905 V3DV_CMD_DIRTY_VIEW_INDEX = 1 << 16,
906 V3DV_CMD_DIRTY_COLOR_WRITE_ENABLE = 1 << 17,
907 };
908
909 struct v3dv_dynamic_state {
910 /**
911 * Bitmask of (1 << VK_DYNAMIC_STATE_*).
912 * Defines the set of saved dynamic state.
913 */
914 uint32_t mask;
915
916 struct v3dv_viewport_state viewport;
917
918 struct v3dv_scissor_state scissor;
919
920 struct {
921 uint32_t front;
922 uint32_t back;
923 } stencil_compare_mask;
924
925 struct {
926 uint32_t front;
927 uint32_t back;
928 } stencil_write_mask;
929
930 struct {
931 uint32_t front;
932 uint32_t back;
933 } stencil_reference;
934
935 float blend_constants[4];
936
937 struct {
938 float constant_factor;
939 float depth_bias_clamp;
940 float slope_factor;
941 } depth_bias;
942
943 float line_width;
944
945 uint32_t color_write_enable;
946 };
947
948 void v3dv_viewport_compute_xform(const VkViewport *viewport,
949 float scale[3],
950 float translate[3]);
951
952 enum v3dv_ez_state {
953 V3D_EZ_UNDECIDED = 0,
954 V3D_EZ_GT_GE,
955 V3D_EZ_LT_LE,
956 V3D_EZ_DISABLED,
957 };
958
959 enum v3dv_job_type {
960 V3DV_JOB_TYPE_GPU_CL = 0,
961 V3DV_JOB_TYPE_GPU_CL_SECONDARY,
962 V3DV_JOB_TYPE_GPU_TFU,
963 V3DV_JOB_TYPE_GPU_CSD,
964 V3DV_JOB_TYPE_CPU_RESET_QUERIES,
965 V3DV_JOB_TYPE_CPU_END_QUERY,
966 V3DV_JOB_TYPE_CPU_COPY_QUERY_RESULTS,
967 V3DV_JOB_TYPE_CPU_SET_EVENT,
968 V3DV_JOB_TYPE_CPU_WAIT_EVENTS,
969 V3DV_JOB_TYPE_CPU_COPY_BUFFER_TO_IMAGE,
970 V3DV_JOB_TYPE_CPU_CSD_INDIRECT,
971 V3DV_JOB_TYPE_CPU_TIMESTAMP_QUERY,
972 };
973
974 struct v3dv_reset_query_cpu_job_info {
975 struct v3dv_query_pool *pool;
976 uint32_t first;
977 uint32_t count;
978 };
979
980 struct v3dv_end_query_cpu_job_info {
981 struct v3dv_query_pool *pool;
982 uint32_t query;
983
984 /* This is one unless multiview is used */
985 uint32_t count;
986 };
987
988 struct v3dv_copy_query_results_cpu_job_info {
989 struct v3dv_query_pool *pool;
990 uint32_t first;
991 uint32_t count;
992 struct v3dv_buffer *dst;
993 uint32_t offset;
994 uint32_t stride;
995 VkQueryResultFlags flags;
996 };
997
998 struct v3dv_submit_info_semaphores {
999 /* List of semaphores to wait before running a job */
1000 uint32_t wait_sem_count;
1001 VkSemaphore *wait_sems;
1002
1003 /* List of semaphores to signal when all jobs complete */
1004 uint32_t signal_sem_count;
1005 VkSemaphore *signal_sems;
1006
1007 /* A fence to signal when all jobs complete */
1008 VkFence fence;
1009 };
1010
1011 struct v3dv_event_set_cpu_job_info {
1012 struct v3dv_event *event;
1013 int state;
1014 };
1015
1016 struct v3dv_event_wait_cpu_job_info {
1017 /* List of events to wait on */
1018 uint32_t event_count;
1019 struct v3dv_event **events;
1020 };
1021
1022 struct v3dv_copy_buffer_to_image_cpu_job_info {
1023 struct v3dv_image *image;
1024 struct v3dv_buffer *buffer;
1025 uint32_t buffer_offset;
1026 uint32_t buffer_stride;
1027 uint32_t buffer_layer_stride;
1028 VkOffset3D image_offset;
1029 VkExtent3D image_extent;
1030 uint32_t mip_level;
1031 uint32_t base_layer;
1032 uint32_t layer_count;
1033 };
1034
1035 struct v3dv_csd_indirect_cpu_job_info {
1036 struct v3dv_buffer *buffer;
1037 uint32_t offset;
1038 struct v3dv_job *csd_job;
1039 uint32_t wg_size;
1040 uint32_t *wg_uniform_offsets[3];
1041 bool needs_wg_uniform_rewrite;
1042 };
1043
1044 struct v3dv_timestamp_query_cpu_job_info {
1045 struct v3dv_query_pool *pool;
1046 uint32_t query;
1047
1048 /* This is one unless multiview is used */
1049 uint32_t count;
1050 };
1051
1052 struct v3dv_job {
1053 struct list_head list_link;
1054
1055 /* We only create job clones when executing secondary command buffers into
1056 * primaries. These clones don't make deep copies of the original object
1057 * so we want to flag them to avoid freeing resources they don't own.
1058 */
1059 bool is_clone;
1060
1061 enum v3dv_job_type type;
1062
1063 struct v3dv_device *device;
1064
1065 struct v3dv_cmd_buffer *cmd_buffer;
1066
1067 struct v3dv_cl bcl;
1068 struct v3dv_cl rcl;
1069 struct v3dv_cl indirect;
1070
1071 /* Set of all BOs referenced by the job. This will be used for making
1072 * the list of BOs that the kernel will need to have paged in to
1073 * execute our job.
1074 */
1075 struct set *bos;
1076 uint32_t bo_count;
1077 uint64_t bo_handle_mask;
1078
1079 struct v3dv_bo *tile_alloc;
1080 struct v3dv_bo *tile_state;
1081
1082 bool tmu_dirty_rcl;
1083
1084 uint32_t first_subpass;
1085
1086 /* When the current subpass is split into multiple jobs, this flag is set
1087 * to true for any jobs after the first in the same subpass.
1088 */
1089 bool is_subpass_continue;
1090
1091 /* If this job is the last job emitted for a subpass. */
1092 bool is_subpass_finish;
1093
1094 struct v3dv_frame_tiling frame_tiling;
1095
1096 enum v3dv_ez_state ez_state;
1097 enum v3dv_ez_state first_ez_state;
1098
1099 /* If we have already decided if we need to disable Early Z/S completely
1100 * for this job.
1101 */
1102 bool decided_global_ez_enable;
1103
1104 /* If this job has been configured to use early Z/S clear */
1105 bool early_zs_clear;
1106
1107 /* Number of draw calls recorded into the job */
1108 uint32_t draw_count;
1109
1110 /* A flag indicating whether we want to flush every draw separately. This
1111 * can be used for debugging, or for cases where special circumstances
1112 * require this behavior.
1113 */
1114 bool always_flush;
1115
1116 /* Whether we need to serialize this job in our command stream */
1117 bool serialize;
1118
1119 /* Whether this job is in charge of signalling semaphores */
1120 bool do_sem_signal;
1121
1122 /* If this is a CL job, whether we should sync before binning */
1123 bool needs_bcl_sync;
1124
1125 /* Job specs for CPU jobs */
1126 union {
1127 struct v3dv_reset_query_cpu_job_info query_reset;
1128 struct v3dv_end_query_cpu_job_info query_end;
1129 struct v3dv_copy_query_results_cpu_job_info query_copy_results;
1130 struct v3dv_event_set_cpu_job_info event_set;
1131 struct v3dv_event_wait_cpu_job_info event_wait;
1132 struct v3dv_copy_buffer_to_image_cpu_job_info copy_buffer_to_image;
1133 struct v3dv_csd_indirect_cpu_job_info csd_indirect;
1134 struct v3dv_timestamp_query_cpu_job_info query_timestamp;
1135 } cpu;
1136
1137 /* Job specs for TFU jobs */
1138 struct drm_v3d_submit_tfu tfu;
1139
1140 /* Job specs for CSD jobs */
1141 struct {
1142 struct v3dv_bo *shared_memory;
1143 uint32_t wg_count[3];
1144 uint32_t wg_base[3];
1145 struct drm_v3d_submit_csd submit;
1146 } csd;
1147 };
1148
1149 struct v3dv_wait_thread_info {
1150 struct v3dv_job *job;
1151
1152 /* Semaphores info for any postponed jobs after a wait event */
1153 struct v3dv_submit_info_semaphores *sems_info;
1154 };
1155
1156 void v3dv_job_init(struct v3dv_job *job,
1157 enum v3dv_job_type type,
1158 struct v3dv_device *device,
1159 struct v3dv_cmd_buffer *cmd_buffer,
1160 int32_t subpass_idx);
1161 void v3dv_job_destroy(struct v3dv_job *job);
1162
1163 void v3dv_job_add_bo(struct v3dv_job *job, struct v3dv_bo *bo);
1164 void v3dv_job_add_bo_unchecked(struct v3dv_job *job, struct v3dv_bo *bo);
1165
1166 void v3dv_job_start_frame(struct v3dv_job *job,
1167 uint32_t width,
1168 uint32_t height,
1169 uint32_t layers,
1170 bool allocate_tile_state_for_all_layers,
1171 uint32_t render_target_count,
1172 uint8_t max_internal_bpp,
1173 bool msaa);
1174
1175 bool v3dv_job_type_is_gpu(struct v3dv_job *job);
1176
1177 struct v3dv_job *
1178 v3dv_job_clone_in_cmd_buffer(struct v3dv_job *job,
1179 struct v3dv_cmd_buffer *cmd_buffer);
1180
1181 struct v3dv_job *v3dv_cmd_buffer_create_cpu_job(struct v3dv_device *device,
1182 enum v3dv_job_type type,
1183 struct v3dv_cmd_buffer *cmd_buffer,
1184 uint32_t subpass_idx);
1185
1186 void
1187 v3dv_cmd_buffer_ensure_array_state(struct v3dv_cmd_buffer *cmd_buffer,
1188 uint32_t slot_size,
1189 uint32_t used_count,
1190 uint32_t *alloc_count,
1191 void **ptr);
1192
1193 void v3dv_cmd_buffer_emit_pre_draw(struct v3dv_cmd_buffer *cmd_buffer);
1194
1195 /* FIXME: only used on v3dv_cmd_buffer and v3dvx_cmd_buffer, perhaps move to a
1196 * cmd_buffer specific header?
1197 */
1198 struct v3dv_draw_info {
1199 uint32_t vertex_count;
1200 uint32_t instance_count;
1201 uint32_t first_vertex;
1202 uint32_t first_instance;
1203 };
1204
1205 struct v3dv_vertex_binding {
1206 struct v3dv_buffer *buffer;
1207 VkDeviceSize offset;
1208 };
1209
1210 struct v3dv_descriptor_state {
1211 struct v3dv_descriptor_set *descriptor_sets[MAX_SETS];
1212 uint32_t valid;
1213 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1214 };
1215
1216 struct v3dv_cmd_pipeline_state {
1217 struct v3dv_pipeline *pipeline;
1218
1219 struct v3dv_descriptor_state descriptor_state;
1220 };
1221
1222 struct v3dv_cmd_buffer_state {
1223 struct v3dv_render_pass *pass;
1224 struct v3dv_framebuffer *framebuffer;
1225 VkRect2D render_area;
1226
1227 /* Current job being recorded */
1228 struct v3dv_job *job;
1229
1230 uint32_t subpass_idx;
1231
1232 struct v3dv_cmd_pipeline_state gfx;
1233 struct v3dv_cmd_pipeline_state compute;
1234
1235 struct v3dv_dynamic_state dynamic;
1236
1237 uint32_t dirty;
1238 VkShaderStageFlagBits dirty_descriptor_stages;
1239 VkShaderStageFlagBits dirty_push_constants_stages;
1240
1241 /* Current clip window. We use this to check whether we have an active
1242 * scissor, since in that case we can't use TLB clears and need to fallback
1243 * to drawing rects.
1244 */
1245 VkRect2D clip_window;
1246
1247 /* Whether our render area is aligned to tile boundaries. If this is false
1248 * then we have tiles that are only partially covered by the render area,
1249 * and therefore, we need to be careful with our loads and stores so we don't
1250 * modify pixels for the tile area that is not covered by the render area.
1251 * This means, for example, that we can't use the TLB to clear, since that
1252 * always clears full tiles.
1253 */
1254 bool tile_aligned_render_area;
1255
1256 uint32_t attachment_alloc_count;
1257 struct v3dv_cmd_buffer_attachment_state *attachments;
1258
1259 struct v3dv_vertex_binding vertex_bindings[MAX_VBS];
1260
1261 struct {
1262 VkBuffer buffer;
1263 VkDeviceSize offset;
1264 uint8_t index_size;
1265 } index_buffer;
1266
1267 /* Current uniforms */
1268 struct {
1269 struct v3dv_cl_reloc vs_bin;
1270 struct v3dv_cl_reloc vs;
1271 struct v3dv_cl_reloc gs_bin;
1272 struct v3dv_cl_reloc gs;
1273 struct v3dv_cl_reloc fs;
1274 } uniforms;
1275
1276 /* Current view index for multiview rendering */
1277 uint32_t view_index;
1278
1279 /* Used to flag OOM conditions during command buffer recording */
1280 bool oom;
1281
1282 /* Whether we have recorded a pipeline barrier that we still need to
1283 * process.
1284 */
1285 bool has_barrier;
1286 bool has_bcl_barrier;
1287
1288 /* Secondary command buffer state */
1289 struct {
1290 bool occlusion_query_enable;
1291 } inheritance;
1292
1293 /* Command buffer state saved during a meta operation */
1294 struct {
1295 uint32_t subpass_idx;
1296 VkRenderPass pass;
1297 VkFramebuffer framebuffer;
1298
1299 uint32_t attachment_alloc_count;
1300 uint32_t attachment_count;
1301 struct v3dv_cmd_buffer_attachment_state *attachments;
1302
1303 bool tile_aligned_render_area;
1304 VkRect2D render_area;
1305
1306 struct v3dv_dynamic_state dynamic;
1307
1308 struct v3dv_cmd_pipeline_state gfx;
1309 bool has_descriptor_state;
1310
1311 uint32_t push_constants[MAX_PUSH_CONSTANTS_SIZE / 4];
1312 } meta;
1313
1314 /* Command buffer state for queries */
1315 struct {
1316 /* A list of vkCmdQueryEnd commands recorded in the command buffer during
1317 * a render pass. We queue these here and then schedule the corresponding
1318 * CPU jobs for them at the time we finish the GPU job in which they have
1319 * been recorded.
1320 */
1321 struct {
1322 uint32_t used_count;
1323 uint32_t alloc_count;
1324 struct v3dv_end_query_cpu_job_info *states;
1325 } end;
1326
1327 /* This BO is not NULL if we have an active query, that is, we have
1328 * called vkCmdBeginQuery but not vkCmdEndQuery.
1329 */
1330 struct {
1331 struct v3dv_bo *bo;
1332 uint32_t offset;
1333 } active_query;
1334 } query;
1335 };
1336
1337 /* The following struct represents the info from a descriptor that we store on
1338 * the host memory. They are mostly links to other existing vulkan objects,
1339 * like the image_view in order to access to swizzle info, or the buffer used
1340 * for a UBO/SSBO, for example.
1341 *
1342 * FIXME: revisit if makes sense to just move everything that would be needed
1343 * from a descriptor to the bo.
1344 */
1345 struct v3dv_descriptor {
1346 VkDescriptorType type;
1347
1348 union {
1349 struct {
1350 struct v3dv_image_view *image_view;
1351 struct v3dv_sampler *sampler;
1352 };
1353
1354 struct {
1355 struct v3dv_buffer *buffer;
1356 size_t offset;
1357 size_t range;
1358 };
1359
1360 struct v3dv_buffer_view *buffer_view;
1361 };
1362 };
1363
1364 struct v3dv_query {
1365 bool maybe_available;
1366 union {
1367 /* Used by GPU queries (occlusion) */
1368 struct {
1369 struct v3dv_bo *bo;
1370 uint32_t offset;
1371 };
1372 /* Used by CPU queries (timestamp) */
1373 uint64_t value;
1374 };
1375 };
1376
1377 struct v3dv_query_pool {
1378 struct vk_object_base base;
1379
1380 struct v3dv_bo *bo; /* Only used with GPU queries (occlusion) */
1381
1382 VkQueryType query_type;
1383 uint32_t query_count;
1384 struct v3dv_query *queries;
1385 };
1386
1387 VkResult v3dv_get_query_pool_results_cpu(struct v3dv_device *device,
1388 struct v3dv_query_pool *pool,
1389 uint32_t first,
1390 uint32_t count,
1391 void *data,
1392 VkDeviceSize stride,
1393 VkQueryResultFlags flags);
1394
1395 void v3dv_reset_query_pools(struct v3dv_device *device,
1396 struct v3dv_query_pool *query_pool,
1397 uint32_t first,
1398 uint32_t last);
1399
1400 typedef void (*v3dv_cmd_buffer_private_obj_destroy_cb)(VkDevice device,
1401 uint64_t pobj,
1402 VkAllocationCallbacks *alloc);
1403 struct v3dv_cmd_buffer_private_obj {
1404 struct list_head list_link;
1405 uint64_t obj;
1406 v3dv_cmd_buffer_private_obj_destroy_cb destroy_cb;
1407 };
1408
1409 struct v3dv_cmd_buffer {
1410 struct vk_command_buffer vk;
1411
1412 struct v3dv_device *device;
1413
1414 /* Used at submit time to link command buffers in the submission that have
1415 * spawned wait threads, so we can then wait on all of them to complete
1416 * before we process any signal sempahores or fences.
1417 */
1418 struct list_head list_link;
1419
1420 VkCommandBufferUsageFlags usage_flags;
1421
1422 enum v3dv_cmd_buffer_status status;
1423
1424 struct v3dv_cmd_buffer_state state;
1425
1426 /* FIXME: we have just one client-side and bo for the push constants,
1427 * independently of the stageFlags in vkCmdPushConstants, and the
1428 * pipelineBindPoint in vkCmdBindPipeline. We could probably do more stage
1429 * tunning in the future if it makes sense.
1430 */
1431 uint32_t push_constants_data[MAX_PUSH_CONSTANTS_SIZE / 4];
1432 struct v3dv_cl_reloc push_constants_resource;
1433
1434 /* Collection of Vulkan objects created internally by the driver (typically
1435 * during recording of meta operations) that are part of the command buffer
1436 * and should be destroyed with it.
1437 */
1438 struct list_head private_objs; /* v3dv_cmd_buffer_private_obj */
1439
1440 /* Per-command buffer resources for meta operations. */
1441 struct {
1442 struct {
1443 /* The current descriptor pool for blit sources */
1444 VkDescriptorPool dspool;
1445 } blit;
1446 struct {
1447 /* The current descriptor pool for texel buffer copy sources */
1448 VkDescriptorPool dspool;
1449 } texel_buffer_copy;
1450 } meta;
1451
1452 /* List of jobs in the command buffer. For primary command buffers it
1453 * represents the jobs we want to submit to the GPU. For secondary command
1454 * buffers it represents jobs that will be merged into a primary command
1455 * buffer via vkCmdExecuteCommands.
1456 */
1457 struct list_head jobs;
1458 };
1459
1460 struct v3dv_job *v3dv_cmd_buffer_start_job(struct v3dv_cmd_buffer *cmd_buffer,
1461 int32_t subpass_idx,
1462 enum v3dv_job_type type);
1463 void v3dv_cmd_buffer_finish_job(struct v3dv_cmd_buffer *cmd_buffer);
1464
1465 struct v3dv_job *v3dv_cmd_buffer_subpass_start(struct v3dv_cmd_buffer *cmd_buffer,
1466 uint32_t subpass_idx);
1467 struct v3dv_job *v3dv_cmd_buffer_subpass_resume(struct v3dv_cmd_buffer *cmd_buffer,
1468 uint32_t subpass_idx);
1469
1470 void v3dv_cmd_buffer_subpass_finish(struct v3dv_cmd_buffer *cmd_buffer);
1471
1472 void v3dv_cmd_buffer_meta_state_push(struct v3dv_cmd_buffer *cmd_buffer,
1473 bool push_descriptor_state);
1474 void v3dv_cmd_buffer_meta_state_pop(struct v3dv_cmd_buffer *cmd_buffer,
1475 uint32_t dirty_dynamic_state,
1476 bool needs_subpass_resume);
1477
1478 void v3dv_cmd_buffer_reset_queries(struct v3dv_cmd_buffer *cmd_buffer,
1479 struct v3dv_query_pool *pool,
1480 uint32_t first,
1481 uint32_t count);
1482
1483 void v3dv_cmd_buffer_begin_query(struct v3dv_cmd_buffer *cmd_buffer,
1484 struct v3dv_query_pool *pool,
1485 uint32_t query,
1486 VkQueryControlFlags flags);
1487
1488 void v3dv_cmd_buffer_end_query(struct v3dv_cmd_buffer *cmd_buffer,
1489 struct v3dv_query_pool *pool,
1490 uint32_t query);
1491
1492 void v3dv_cmd_buffer_copy_query_results(struct v3dv_cmd_buffer *cmd_buffer,
1493 struct v3dv_query_pool *pool,
1494 uint32_t first,
1495 uint32_t count,
1496 struct v3dv_buffer *dst,
1497 uint32_t offset,
1498 uint32_t stride,
1499 VkQueryResultFlags flags);
1500
1501 void v3dv_cmd_buffer_add_tfu_job(struct v3dv_cmd_buffer *cmd_buffer,
1502 struct drm_v3d_submit_tfu *tfu);
1503
1504 void v3dv_cmd_buffer_rewrite_indirect_csd_job(struct v3dv_csd_indirect_cpu_job_info *info,
1505 const uint32_t *wg_counts);
1506
1507 void v3dv_cmd_buffer_add_private_obj(struct v3dv_cmd_buffer *cmd_buffer,
1508 uint64_t obj,
1509 v3dv_cmd_buffer_private_obj_destroy_cb destroy_cb);
1510
1511 struct v3dv_semaphore {
1512 struct vk_object_base base;
1513
1514 /* A syncobject handle associated with this semaphore */
1515 uint32_t sync;
1516
1517 /* A temporary syncobject handle produced from a vkImportSemaphoreFd. */
1518 uint32_t temp_sync;
1519 bool has_temp;
1520 };
1521
1522 struct v3dv_fence {
1523 struct vk_object_base base;
1524
1525 /* A syncobject handle associated with this fence */
1526 uint32_t sync;
1527
1528 /* A temporary syncobject handle produced from a vkImportFenceFd. */
1529 uint32_t temp_sync;
1530 bool has_temp;
1531 };
1532
1533 struct v3dv_event {
1534 struct vk_object_base base;
1535 int state;
1536 };
1537
1538 struct v3dv_shader_variant {
1539 enum broadcom_shader_stage stage;
1540
1541 union {
1542 struct v3d_prog_data *base;
1543 struct v3d_vs_prog_data *vs;
1544 struct v3d_gs_prog_data *gs;
1545 struct v3d_fs_prog_data *fs;
1546 struct v3d_compute_prog_data *cs;
1547 } prog_data;
1548
1549 /* We explicitly save the prog_data_size as it would make easier to
1550 * serialize
1551 */
1552 uint32_t prog_data_size;
1553
1554 /* The assembly for this variant will be uploaded to a BO shared with all
1555 * other shader stages in that pipeline. This is the offset in that BO.
1556 */
1557 uint32_t assembly_offset;
1558
1559 /* Note: it is really likely that qpu_insts would be NULL, as it will be
1560 * used only temporarily, to upload it to the shared bo, as we compile the
1561 * different stages individually.
1562 */
1563 uint64_t *qpu_insts;
1564 uint32_t qpu_insts_size;
1565 };
1566
1567 /*
1568 * Per-stage info for each stage, useful so shader_module_compile_to_nir and
1569 * other methods doesn't have so many parameters.
1570 *
1571 * FIXME: for the case of the coordinate shader and the vertex shader, module,
1572 * entrypoint, spec_info and nir are the same. There are also info only
1573 * relevant to some stages. But seemed too much a hassle to create a new
1574 * struct only to handle that. Revisit if such kind of info starts to grow.
1575 */
1576 struct v3dv_pipeline_stage {
1577 struct v3dv_pipeline *pipeline;
1578
1579 enum broadcom_shader_stage stage;
1580
1581 const struct vk_shader_module *module;
1582 const char *entrypoint;
1583 const VkSpecializationInfo *spec_info;
1584
1585 nir_shader *nir;
1586
1587 /* The following is the combined hash of module+entrypoint+spec_info+nir */
1588 unsigned char shader_sha1[20];
1589
1590 /** A name for this program, so you can track it in shader-db output. */
1591 uint32_t program_id;
1592
1593 VkPipelineCreationFeedbackEXT feedback;
1594 };
1595
1596 /* We are using the descriptor pool entry for two things:
1597 * * Track the allocated sets, so we can properly free it if needed
1598 * * Track the suballocated pool bo regions, so if some descriptor set is
1599 * freed, the gap could be reallocated later.
1600 *
1601 * Those only make sense if the pool was not created with the flag
1602 * VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT
1603 */
1604 struct v3dv_descriptor_pool_entry
1605 {
1606 struct v3dv_descriptor_set *set;
1607 /* Offset and size of the subregion allocated for this entry from the
1608 * pool->bo
1609 */
1610 uint32_t offset;
1611 uint32_t size;
1612 };
1613
1614 struct v3dv_descriptor_pool {
1615 struct vk_object_base base;
1616
1617 /* If this descriptor pool has been allocated for the driver for internal
1618 * use, typically to implement meta operations.
1619 */
1620 bool is_driver_internal;
1621
1622 struct v3dv_bo *bo;
1623 /* Current offset at the descriptor bo. 0 means that we didn't use it for
1624 * any descriptor. If the descriptor bo is NULL, current offset is
1625 * meaningless
1626 */
1627 uint32_t current_offset;
1628
1629 /* If VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT is not set the
1630 * descriptor sets are handled as a whole as pool memory and handled by the
1631 * following pointers. If set, they are not used, and individually
1632 * descriptor sets are allocated/freed.
1633 */
1634 uint8_t *host_memory_base;
1635 uint8_t *host_memory_ptr;
1636 uint8_t *host_memory_end;
1637
1638 uint32_t entry_count;
1639 uint32_t max_entry_count;
1640 struct v3dv_descriptor_pool_entry entries[0];
1641 };
1642
1643 struct v3dv_descriptor_set {
1644 struct vk_object_base base;
1645
1646 struct v3dv_descriptor_pool *pool;
1647
1648 struct v3dv_descriptor_set_layout *layout;
1649
1650 /* Offset relative to the descriptor pool bo for this set */
1651 uint32_t base_offset;
1652
1653 /* The descriptors below can be indexed (set/binding) using the set_layout
1654 */
1655 struct v3dv_descriptor descriptors[0];
1656 };
1657
1658 struct v3dv_descriptor_set_binding_layout {
1659 VkDescriptorType type;
1660
1661 /* Number of array elements in this binding */
1662 uint32_t array_size;
1663
1664 /* Index into the flattend descriptor set */
1665 uint32_t descriptor_index;
1666
1667 uint32_t dynamic_offset_count;
1668 uint32_t dynamic_offset_index;
1669
1670 /* Offset into the descriptor set where this descriptor lives (final offset
1671 * on the descriptor bo need to take into account set->base_offset)
1672 */
1673 uint32_t descriptor_offset;
1674
1675 /* Offset in the v3dv_descriptor_set_layout of the immutable samplers, or 0
1676 * if there are no immutable samplers.
1677 */
1678 uint32_t immutable_samplers_offset;
1679 };
1680
1681 struct v3dv_descriptor_set_layout {
1682 struct vk_object_base base;
1683
1684 VkDescriptorSetLayoutCreateFlags flags;
1685
1686 /* Number of bindings in this descriptor set */
1687 uint32_t binding_count;
1688
1689 /* Total bo size needed for this descriptor set
1690 */
1691 uint32_t bo_size;
1692
1693 /* Shader stages affected by this descriptor set */
1694 uint16_t shader_stages;
1695
1696 /* Number of descriptors in this descriptor set */
1697 uint32_t descriptor_count;
1698
1699 /* Number of dynamic offsets used by this descriptor set */
1700 uint16_t dynamic_offset_count;
1701
1702 /* Descriptor set layouts can be destroyed even if they are still being
1703 * used.
1704 */
1705 uint32_t ref_cnt;
1706
1707 /* Bindings in this descriptor set */
1708 struct v3dv_descriptor_set_binding_layout binding[0];
1709 };
1710
1711 void
1712 v3dv_descriptor_set_layout_destroy(struct v3dv_device *device,
1713 struct v3dv_descriptor_set_layout *set_layout);
1714
1715 static inline void
v3dv_descriptor_set_layout_ref(struct v3dv_descriptor_set_layout * set_layout)1716 v3dv_descriptor_set_layout_ref(struct v3dv_descriptor_set_layout *set_layout)
1717 {
1718 assert(set_layout && set_layout->ref_cnt >= 1);
1719 p_atomic_inc(&set_layout->ref_cnt);
1720 }
1721
1722 static inline void
v3dv_descriptor_set_layout_unref(struct v3dv_device * device,struct v3dv_descriptor_set_layout * set_layout)1723 v3dv_descriptor_set_layout_unref(struct v3dv_device *device,
1724 struct v3dv_descriptor_set_layout *set_layout)
1725 {
1726 assert(set_layout && set_layout->ref_cnt >= 1);
1727 if (p_atomic_dec_zero(&set_layout->ref_cnt))
1728 v3dv_descriptor_set_layout_destroy(device, set_layout);
1729 }
1730
1731 struct v3dv_pipeline_layout {
1732 struct vk_object_base base;
1733
1734 struct {
1735 struct v3dv_descriptor_set_layout *layout;
1736 uint32_t dynamic_offset_start;
1737 } set[MAX_SETS];
1738
1739 uint32_t num_sets;
1740
1741 /* Shader stages that are declared to use descriptors from this layout */
1742 uint32_t shader_stages;
1743
1744 uint32_t dynamic_offset_count;
1745 uint32_t push_constant_size;
1746 };
1747
1748 /*
1749 * We are using descriptor maps for ubo/ssbo and texture/samplers, so we need
1750 * it to be big enough to include the max value for all of them.
1751 *
1752 * FIXME: one alternative would be to allocate the map as big as you need for
1753 * each descriptor type. That would means more individual allocations.
1754 */
1755 #define DESCRIPTOR_MAP_SIZE MAX3(V3D_MAX_TEXTURE_SAMPLERS, \
1756 MAX_UNIFORM_BUFFERS + MAX_INLINE_UNIFORM_BUFFERS, \
1757 MAX_STORAGE_BUFFERS)
1758
1759
1760 struct v3dv_descriptor_map {
1761 /* TODO: avoid fixed size array/justify the size */
1762 unsigned num_desc; /* Number of descriptors */
1763 int set[DESCRIPTOR_MAP_SIZE];
1764 int binding[DESCRIPTOR_MAP_SIZE];
1765 int array_index[DESCRIPTOR_MAP_SIZE];
1766 int array_size[DESCRIPTOR_MAP_SIZE];
1767 bool used[DESCRIPTOR_MAP_SIZE];
1768
1769 /* NOTE: the following is only for sampler, but this is the easier place to
1770 * put it.
1771 */
1772 uint8_t return_size[DESCRIPTOR_MAP_SIZE];
1773 };
1774
1775 struct v3dv_sampler {
1776 struct vk_object_base base;
1777
1778 bool compare_enable;
1779 bool unnormalized_coordinates;
1780 bool clamp_to_transparent_black_border;
1781
1782 /* Prepacked SAMPLER_STATE, that is referenced as part of the tmu
1783 * configuration. If needed it will be copied to the descriptor info during
1784 * UpdateDescriptorSets
1785 */
1786 uint8_t sampler_state[V3DV_SAMPLER_STATE_LENGTH];
1787 };
1788
1789 struct v3dv_descriptor_template_entry {
1790 /* The type of descriptor in this entry */
1791 VkDescriptorType type;
1792
1793 /* Binding in the descriptor set */
1794 uint32_t binding;
1795
1796 /* Offset at which to write into the descriptor set binding */
1797 uint32_t array_element;
1798
1799 /* Number of elements to write into the descriptor set binding */
1800 uint32_t array_count;
1801
1802 /* Offset into the user provided data */
1803 size_t offset;
1804
1805 /* Stride between elements into the user provided data */
1806 size_t stride;
1807 };
1808
1809 struct v3dv_descriptor_update_template {
1810 struct vk_object_base base;
1811
1812 VkPipelineBindPoint bind_point;
1813
1814 /* The descriptor set this template corresponds to. This value is only
1815 * valid if the template was created with the templateType
1816 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1817 */
1818 uint8_t set;
1819
1820 /* Number of entries in this template */
1821 uint32_t entry_count;
1822
1823 /* Entries of the template */
1824 struct v3dv_descriptor_template_entry entries[0];
1825 };
1826
1827
1828 /* We keep two special values for the sampler idx that represents exactly when a
1829 * sampler is not needed/provided. The main use is that even if we don't have
1830 * sampler, we still need to do the output unpacking (through
1831 * nir_lower_tex). The easier way to do this is to add those special "no
1832 * sampler" in the sampler_map, and then use the proper unpacking for that
1833 * case.
1834 *
1835 * We have one when we want a 16bit output size, and other when we want a
1836 * 32bit output size. We use the info coming from the RelaxedPrecision
1837 * decoration to decide between one and the other.
1838 */
1839 #define V3DV_NO_SAMPLER_16BIT_IDX 0
1840 #define V3DV_NO_SAMPLER_32BIT_IDX 1
1841
1842 /*
1843 * Following two methods are using on the combined to/from texture/sampler
1844 * indices maps at v3dv_pipeline.
1845 */
1846 static inline uint32_t
v3dv_pipeline_combined_index_key_create(uint32_t texture_index,uint32_t sampler_index)1847 v3dv_pipeline_combined_index_key_create(uint32_t texture_index,
1848 uint32_t sampler_index)
1849 {
1850 return texture_index << 24 | sampler_index;
1851 }
1852
1853 static inline void
v3dv_pipeline_combined_index_key_unpack(uint32_t combined_index_key,uint32_t * texture_index,uint32_t * sampler_index)1854 v3dv_pipeline_combined_index_key_unpack(uint32_t combined_index_key,
1855 uint32_t *texture_index,
1856 uint32_t *sampler_index)
1857 {
1858 uint32_t texture = combined_index_key >> 24;
1859 uint32_t sampler = combined_index_key & 0xffffff;
1860
1861 if (texture_index)
1862 *texture_index = texture;
1863
1864 if (sampler_index)
1865 *sampler_index = sampler;
1866 }
1867
1868 struct v3dv_descriptor_maps {
1869 struct v3dv_descriptor_map ubo_map;
1870 struct v3dv_descriptor_map ssbo_map;
1871 struct v3dv_descriptor_map sampler_map;
1872 struct v3dv_descriptor_map texture_map;
1873 };
1874
1875 /* The structure represents data shared between different objects, like the
1876 * pipeline and the pipeline cache, so we ref count it to know when it should
1877 * be freed.
1878 */
1879 struct v3dv_pipeline_shared_data {
1880 uint32_t ref_cnt;
1881
1882 unsigned char sha1_key[20];
1883
1884 struct v3dv_descriptor_maps *maps[BROADCOM_SHADER_STAGES];
1885 struct v3dv_shader_variant *variants[BROADCOM_SHADER_STAGES];
1886
1887 struct v3dv_bo *assembly_bo;
1888 };
1889
1890 struct v3dv_pipeline {
1891 struct vk_object_base base;
1892
1893 struct v3dv_device *device;
1894
1895 VkShaderStageFlags active_stages;
1896
1897 struct v3dv_render_pass *pass;
1898 struct v3dv_subpass *subpass;
1899
1900 /* Note: We can't use just a MESA_SHADER_STAGES array because we also need
1901 * to track binning shaders. Note these will be freed once the pipeline
1902 * has been compiled.
1903 */
1904 struct v3dv_pipeline_stage *vs;
1905 struct v3dv_pipeline_stage *vs_bin;
1906 struct v3dv_pipeline_stage *gs;
1907 struct v3dv_pipeline_stage *gs_bin;
1908 struct v3dv_pipeline_stage *fs;
1909 struct v3dv_pipeline_stage *cs;
1910
1911 /* Flags for whether optional pipeline stages are present, for convenience */
1912 bool has_gs;
1913
1914 /* Spilling memory requirements */
1915 struct {
1916 struct v3dv_bo *bo;
1917 uint32_t size_per_thread;
1918 } spill;
1919
1920 struct v3dv_dynamic_state dynamic_state;
1921
1922 struct v3dv_pipeline_layout *layout;
1923
1924 /* Whether this pipeline enables depth writes */
1925 bool z_updates_enable;
1926
1927 enum v3dv_ez_state ez_state;
1928
1929 bool msaa;
1930 bool sample_rate_shading;
1931 uint32_t sample_mask;
1932
1933 bool primitive_restart;
1934
1935 /* Accessed by binding. So vb[binding]->stride is the stride of the vertex
1936 * array with such binding
1937 */
1938 struct v3dv_pipeline_vertex_binding {
1939 uint32_t stride;
1940 uint32_t instance_divisor;
1941 } vb[MAX_VBS];
1942 uint32_t vb_count;
1943
1944 /* Note that a lot of info from VkVertexInputAttributeDescription is
1945 * already prepacked, so here we are only storing those that need recheck
1946 * later. The array must be indexed by driver location, since that is the
1947 * order in which we need to emit the attributes.
1948 */
1949 struct v3dv_pipeline_vertex_attrib {
1950 uint32_t binding;
1951 uint32_t offset;
1952 VkFormat vk_format;
1953 } va[MAX_VERTEX_ATTRIBS];
1954 uint32_t va_count;
1955
1956 enum pipe_prim_type topology;
1957
1958 struct v3dv_pipeline_shared_data *shared_data;
1959
1960 /* It is the combined stages sha1, plus the pipeline key sha1. */
1961 unsigned char sha1[20];
1962
1963 /* In general we can reuse v3dv_device->default_attribute_float, so note
1964 * that the following can be NULL.
1965 *
1966 * FIXME: the content of this BO will be small, so it could be improved to
1967 * be uploaded to a common BO. But as in most cases it will be NULL, it is
1968 * not a priority.
1969 */
1970 struct v3dv_bo *default_attribute_values;
1971
1972 struct vpm_config vpm_cfg;
1973 struct vpm_config vpm_cfg_bin;
1974
1975 /* If the pipeline should emit any of the stencil configuration packets */
1976 bool emit_stencil_cfg[2];
1977
1978 /* Blend state */
1979 struct {
1980 /* Per-RT bit mask with blend enables */
1981 uint8_t enables;
1982 /* Per-RT prepacked blend config packets */
1983 uint8_t cfg[V3D_MAX_DRAW_BUFFERS][V3DV_BLEND_CFG_LENGTH];
1984 /* Flag indicating whether the blend factors in use require
1985 * color constants.
1986 */
1987 bool needs_color_constants;
1988 /* Mask with enabled color channels for each RT (4 bits per RT) */
1989 uint32_t color_write_masks;
1990 } blend;
1991
1992 /* Depth bias */
1993 struct {
1994 bool enabled;
1995 bool is_z16;
1996 } depth_bias;
1997
1998 /* Packets prepacked during pipeline creation
1999 */
2000 uint8_t cfg_bits[V3DV_CFG_BITS_LENGTH];
2001 uint8_t shader_state_record[V3DV_GL_SHADER_STATE_RECORD_LENGTH];
2002 uint8_t vcm_cache_size[V3DV_VCM_CACHE_SIZE_LENGTH];
2003 uint8_t vertex_attrs[V3DV_GL_SHADER_STATE_ATTRIBUTE_RECORD_LENGTH *
2004 MAX_VERTEX_ATTRIBS];
2005 uint8_t stencil_cfg[2][V3DV_STENCIL_CFG_LENGTH];
2006 };
2007
2008 static inline VkPipelineBindPoint
v3dv_pipeline_get_binding_point(struct v3dv_pipeline * pipeline)2009 v3dv_pipeline_get_binding_point(struct v3dv_pipeline *pipeline)
2010 {
2011 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT ||
2012 !(pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT));
2013 return pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT ?
2014 VK_PIPELINE_BIND_POINT_COMPUTE : VK_PIPELINE_BIND_POINT_GRAPHICS;
2015 }
2016
2017 static inline struct v3dv_descriptor_state*
v3dv_cmd_buffer_get_descriptor_state(struct v3dv_cmd_buffer * cmd_buffer,struct v3dv_pipeline * pipeline)2018 v3dv_cmd_buffer_get_descriptor_state(struct v3dv_cmd_buffer *cmd_buffer,
2019 struct v3dv_pipeline *pipeline)
2020 {
2021 if (v3dv_pipeline_get_binding_point(pipeline) == VK_PIPELINE_BIND_POINT_COMPUTE)
2022 return &cmd_buffer->state.compute.descriptor_state;
2023 else
2024 return &cmd_buffer->state.gfx.descriptor_state;
2025 }
2026
2027 const nir_shader_compiler_options *v3dv_pipeline_get_nir_options(void);
2028
2029 uint32_t v3dv_physical_device_vendor_id(struct v3dv_physical_device *dev);
2030 uint32_t v3dv_physical_device_device_id(struct v3dv_physical_device *dev);
2031
2032 #define v3dv_debug_ignored_stype(sType) \
2033 mesa_logd("%s: ignored VkStructureType %u:%s\n\n", __func__, (sType), vk_StructureType_to_str(sType))
2034
2035 const uint8_t *v3dv_get_format_swizzle(struct v3dv_device *device, VkFormat f);
2036 uint8_t v3dv_get_tex_return_size(const struct v3dv_format *vf, bool compare_enable);
2037 const struct v3dv_format *
2038 v3dv_get_compatible_tfu_format(struct v3dv_device *device,
2039 uint32_t bpp, VkFormat *out_vk_format);
2040 bool v3dv_buffer_format_supports_features(struct v3dv_device *device,
2041 VkFormat vk_format,
2042 VkFormatFeatureFlags features);
2043
2044 struct v3dv_cl_reloc v3dv_write_uniforms(struct v3dv_cmd_buffer *cmd_buffer,
2045 struct v3dv_pipeline *pipeline,
2046 struct v3dv_shader_variant *variant);
2047
2048 struct v3dv_cl_reloc v3dv_write_uniforms_wg_offsets(struct v3dv_cmd_buffer *cmd_buffer,
2049 struct v3dv_pipeline *pipeline,
2050 struct v3dv_shader_variant *variant,
2051 uint32_t **wg_count_offsets);
2052
2053 struct v3dv_shader_variant *
2054 v3dv_get_shader_variant(struct v3dv_pipeline_stage *p_stage,
2055 struct v3dv_pipeline_cache *cache,
2056 struct v3d_key *key,
2057 size_t key_size,
2058 const VkAllocationCallbacks *pAllocator,
2059 VkResult *out_vk_result);
2060
2061 struct v3dv_shader_variant *
2062 v3dv_shader_variant_create(struct v3dv_device *device,
2063 enum broadcom_shader_stage stage,
2064 struct v3d_prog_data *prog_data,
2065 uint32_t prog_data_size,
2066 uint32_t assembly_offset,
2067 uint64_t *qpu_insts,
2068 uint32_t qpu_insts_size,
2069 VkResult *out_vk_result);
2070
2071 void
2072 v3dv_shader_variant_destroy(struct v3dv_device *device,
2073 struct v3dv_shader_variant *variant);
2074
2075 static inline void
v3dv_pipeline_shared_data_ref(struct v3dv_pipeline_shared_data * shared_data)2076 v3dv_pipeline_shared_data_ref(struct v3dv_pipeline_shared_data *shared_data)
2077 {
2078 assert(shared_data && shared_data->ref_cnt >= 1);
2079 p_atomic_inc(&shared_data->ref_cnt);
2080 }
2081
2082 void
2083 v3dv_pipeline_shared_data_destroy(struct v3dv_device *device,
2084 struct v3dv_pipeline_shared_data *shared_data);
2085
2086 static inline void
v3dv_pipeline_shared_data_unref(struct v3dv_device * device,struct v3dv_pipeline_shared_data * shared_data)2087 v3dv_pipeline_shared_data_unref(struct v3dv_device *device,
2088 struct v3dv_pipeline_shared_data *shared_data)
2089 {
2090 assert(shared_data && shared_data->ref_cnt >= 1);
2091 if (p_atomic_dec_zero(&shared_data->ref_cnt))
2092 v3dv_pipeline_shared_data_destroy(device, shared_data);
2093 }
2094
2095 struct v3dv_descriptor *
2096 v3dv_descriptor_map_get_descriptor(struct v3dv_descriptor_state *descriptor_state,
2097 struct v3dv_descriptor_map *map,
2098 struct v3dv_pipeline_layout *pipeline_layout,
2099 uint32_t index,
2100 uint32_t *dynamic_offset);
2101
2102 struct v3dv_cl_reloc
2103 v3dv_descriptor_map_get_descriptor_bo(struct v3dv_device *device,
2104 struct v3dv_descriptor_state *descriptor_state,
2105 struct v3dv_descriptor_map *map,
2106 struct v3dv_pipeline_layout *pipeline_layout,
2107 uint32_t index,
2108 VkDescriptorType *out_type);
2109
2110 const struct v3dv_sampler *
2111 v3dv_descriptor_map_get_sampler(struct v3dv_descriptor_state *descriptor_state,
2112 struct v3dv_descriptor_map *map,
2113 struct v3dv_pipeline_layout *pipeline_layout,
2114 uint32_t index);
2115
2116 struct v3dv_cl_reloc
2117 v3dv_descriptor_map_get_sampler_state(struct v3dv_device *device,
2118 struct v3dv_descriptor_state *descriptor_state,
2119 struct v3dv_descriptor_map *map,
2120 struct v3dv_pipeline_layout *pipeline_layout,
2121 uint32_t index);
2122
2123 struct v3dv_cl_reloc
2124 v3dv_descriptor_map_get_texture_shader_state(struct v3dv_device *device,
2125 struct v3dv_descriptor_state *descriptor_state,
2126 struct v3dv_descriptor_map *map,
2127 struct v3dv_pipeline_layout *pipeline_layout,
2128 uint32_t index);
2129
2130 struct v3dv_bo*
2131 v3dv_descriptor_map_get_texture_bo(struct v3dv_descriptor_state *descriptor_state,
2132 struct v3dv_descriptor_map *map,
2133 struct v3dv_pipeline_layout *pipeline_layout,
2134 uint32_t index);
2135
2136 static inline const struct v3dv_sampler *
v3dv_immutable_samplers(const struct v3dv_descriptor_set_layout * set,const struct v3dv_descriptor_set_binding_layout * binding)2137 v3dv_immutable_samplers(const struct v3dv_descriptor_set_layout *set,
2138 const struct v3dv_descriptor_set_binding_layout *binding)
2139 {
2140 assert(binding->immutable_samplers_offset);
2141 return (const struct v3dv_sampler *) ((const char *) set + binding->immutable_samplers_offset);
2142 }
2143
2144 void v3dv_pipeline_cache_init(struct v3dv_pipeline_cache *cache,
2145 struct v3dv_device *device,
2146 VkPipelineCacheCreateFlags,
2147 bool cache_enabled);
2148
2149 void v3dv_pipeline_cache_finish(struct v3dv_pipeline_cache *cache);
2150
2151 void v3dv_pipeline_cache_upload_nir(struct v3dv_pipeline *pipeline,
2152 struct v3dv_pipeline_cache *cache,
2153 nir_shader *nir,
2154 unsigned char sha1_key[20]);
2155
2156 nir_shader* v3dv_pipeline_cache_search_for_nir(struct v3dv_pipeline *pipeline,
2157 struct v3dv_pipeline_cache *cache,
2158 const nir_shader_compiler_options *nir_options,
2159 unsigned char sha1_key[20]);
2160
2161 struct v3dv_pipeline_shared_data *
2162 v3dv_pipeline_cache_search_for_pipeline(struct v3dv_pipeline_cache *cache,
2163 unsigned char sha1_key[20],
2164 bool *cache_hit);
2165
2166 void
2167 v3dv_pipeline_cache_upload_pipeline(struct v3dv_pipeline *pipeline,
2168 struct v3dv_pipeline_cache *cache);
2169
2170 struct v3dv_bo *
2171 v3dv_pipeline_create_default_attribute_values(struct v3dv_device *device,
2172 struct v3dv_pipeline *pipeline);
2173
2174 void v3dv_shader_module_internal_init(struct v3dv_device *device,
2175 struct vk_shader_module *module,
2176 nir_shader *nir);
2177
2178 #define V3DV_FROM_HANDLE(__v3dv_type, __name, __handle) \
2179 VK_FROM_HANDLE(__v3dv_type, __name, __handle)
2180
2181 VK_DEFINE_HANDLE_CASTS(v3dv_cmd_buffer, vk.base, VkCommandBuffer,
2182 VK_OBJECT_TYPE_COMMAND_BUFFER)
2183 VK_DEFINE_HANDLE_CASTS(v3dv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
2184 VK_DEFINE_HANDLE_CASTS(v3dv_instance, vk.base, VkInstance,
2185 VK_OBJECT_TYPE_INSTANCE)
2186 VK_DEFINE_HANDLE_CASTS(v3dv_physical_device, vk.base, VkPhysicalDevice,
2187 VK_OBJECT_TYPE_PHYSICAL_DEVICE)
2188 VK_DEFINE_HANDLE_CASTS(v3dv_queue, vk.base, VkQueue, VK_OBJECT_TYPE_QUEUE)
2189
VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_buffer,base,VkBuffer,VK_OBJECT_TYPE_BUFFER)2190 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_buffer, base, VkBuffer,
2191 VK_OBJECT_TYPE_BUFFER)
2192 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_buffer_view, base, VkBufferView,
2193 VK_OBJECT_TYPE_BUFFER_VIEW)
2194 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_device_memory, base, VkDeviceMemory,
2195 VK_OBJECT_TYPE_DEVICE_MEMORY)
2196 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_descriptor_pool, base, VkDescriptorPool,
2197 VK_OBJECT_TYPE_DESCRIPTOR_POOL)
2198 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_descriptor_set, base, VkDescriptorSet,
2199 VK_OBJECT_TYPE_DESCRIPTOR_SET)
2200 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_descriptor_set_layout, base,
2201 VkDescriptorSetLayout,
2202 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
2203 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_descriptor_update_template, base,
2204 VkDescriptorUpdateTemplate,
2205 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
2206 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
2207 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_fence, base, VkFence, VK_OBJECT_TYPE_FENCE)
2208 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_framebuffer, base, VkFramebuffer,
2209 VK_OBJECT_TYPE_FRAMEBUFFER)
2210 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_image, vk.base, VkImage,
2211 VK_OBJECT_TYPE_IMAGE)
2212 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_image_view, vk.base, VkImageView,
2213 VK_OBJECT_TYPE_IMAGE_VIEW)
2214 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_pipeline, base, VkPipeline,
2215 VK_OBJECT_TYPE_PIPELINE)
2216 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_pipeline_cache, base, VkPipelineCache,
2217 VK_OBJECT_TYPE_PIPELINE_CACHE)
2218 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_pipeline_layout, base, VkPipelineLayout,
2219 VK_OBJECT_TYPE_PIPELINE_LAYOUT)
2220 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_query_pool, base, VkQueryPool,
2221 VK_OBJECT_TYPE_QUERY_POOL)
2222 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_render_pass, base, VkRenderPass,
2223 VK_OBJECT_TYPE_RENDER_PASS)
2224 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_sampler, base, VkSampler,
2225 VK_OBJECT_TYPE_SAMPLER)
2226 VK_DEFINE_NONDISP_HANDLE_CASTS(v3dv_semaphore, base, VkSemaphore,
2227 VK_OBJECT_TYPE_SEMAPHORE)
2228
2229 static inline int
2230 v3dv_ioctl(int fd, unsigned long request, void *arg)
2231 {
2232 if (using_v3d_simulator)
2233 return v3d_simulator_ioctl(fd, request, arg);
2234 else
2235 return drmIoctl(fd, request, arg);
2236 }
2237
2238 /* Flags OOM conditions in command buffer state.
2239 *
2240 * Note: notice that no-op jobs don't have a command buffer reference.
2241 */
2242 static inline void
v3dv_flag_oom(struct v3dv_cmd_buffer * cmd_buffer,struct v3dv_job * job)2243 v3dv_flag_oom(struct v3dv_cmd_buffer *cmd_buffer, struct v3dv_job *job)
2244 {
2245 if (cmd_buffer) {
2246 cmd_buffer->state.oom = true;
2247 } else {
2248 assert(job);
2249 if (job->cmd_buffer)
2250 job->cmd_buffer->state.oom = true;
2251 }
2252 }
2253
2254 #define v3dv_return_if_oom(_cmd_buffer, _job) do { \
2255 const struct v3dv_cmd_buffer *__cmd_buffer = _cmd_buffer; \
2256 if (__cmd_buffer && __cmd_buffer->state.oom) \
2257 return; \
2258 const struct v3dv_job *__job = _job; \
2259 if (__job && __job->cmd_buffer && __job->cmd_buffer->state.oom) \
2260 return; \
2261 } while(0) \
2262
2263 static inline uint32_t
u64_hash(const void * key)2264 u64_hash(const void *key)
2265 {
2266 return _mesa_hash_data(key, sizeof(uint64_t));
2267 }
2268
2269 static inline bool
u64_compare(const void * key1,const void * key2)2270 u64_compare(const void *key1, const void *key2)
2271 {
2272 return memcmp(key1, key2, sizeof(uint64_t)) == 0;
2273 }
2274
2275 /* Helper to call hw ver speficic functions */
2276 #define v3dv_X(device, thing) ({ \
2277 __typeof(&v3d42_##thing) v3d_X_thing; \
2278 switch (device->devinfo.ver) { \
2279 case 42: \
2280 v3d_X_thing = &v3d42_##thing; \
2281 break; \
2282 default: \
2283 unreachable("Unsupported hardware generation"); \
2284 } \
2285 v3d_X_thing; \
2286 })
2287
2288
2289 /* v3d_macros from common requires v3dX and V3DX definitions. Below we need to
2290 * define v3dX for each version supported, because when we compile code that
2291 * is not version-specific, all version-specific macros need to be already
2292 * defined.
2293 */
2294 #ifdef v3dX
2295 # include "v3dvx_private.h"
2296 #else
2297 # define v3dX(x) v3d42_##x
2298 # include "v3dvx_private.h"
2299 # undef v3dX
2300 #endif
2301
2302 #ifdef ANDROID
2303 VkResult
2304 v3dv_gralloc_info(struct v3dv_device *device,
2305 const VkNativeBufferANDROID *gralloc_info,
2306 int *out_dmabuf,
2307 int *out_stride,
2308 int *out_size,
2309 uint64_t *out_modifier);
2310
2311 VkResult
2312 v3dv_import_native_buffer_fd(VkDevice device_h,
2313 int dma_buf,
2314 const VkAllocationCallbacks *alloc,
2315 VkImage image_h);
2316 #endif /* ANDROID */
2317
2318 #endif /* V3DV_PRIVATE_H */
2319