xref: /linux/include/linux/avf/virtchnl.h (revision 3314f209)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2013-2022, Intel Corporation. */
3 
4 #ifndef _VIRTCHNL_H_
5 #define _VIRTCHNL_H_
6 
7 #include <linux/bitops.h>
8 #include <linux/bits.h>
9 #include <linux/overflow.h>
10 #include <uapi/linux/if_ether.h>
11 
12 /* Description:
13  * This header file describes the Virtual Function (VF) - Physical Function
14  * (PF) communication protocol used by the drivers for all devices starting
15  * from our 40G product line
16  *
17  * Admin queue buffer usage:
18  * desc->opcode is always aqc_opc_send_msg_to_pf
19  * flags, retval, datalen, and data addr are all used normally.
20  * The Firmware copies the cookie fields when sending messages between the
21  * PF and VF, but uses all other fields internally. Due to this limitation,
22  * we must send all messages as "indirect", i.e. using an external buffer.
23  *
24  * All the VSI indexes are relative to the VF. Each VF can have maximum of
25  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
26  * have a maximum of sixteen queues for all of its VSIs.
27  *
28  * The PF is required to return a status code in v_retval for all messages
29  * except RESET_VF, which does not require any response. The returned value
30  * is of virtchnl_status_code type, defined here.
31  *
32  * In general, VF driver initialization should roughly follow the order of
33  * these opcodes. The VF driver must first validate the API version of the
34  * PF driver, then request a reset, then get resources, then configure
35  * queues and interrupts. After these operations are complete, the VF
36  * driver may start its queues, optionally add MAC and VLAN filters, and
37  * process traffic.
38  */
39 
40 /* START GENERIC DEFINES
41  * Need to ensure the following enums and defines hold the same meaning and
42  * value in current and future projects
43  */
44 
45 /* Error Codes */
46 enum virtchnl_status_code {
47 	VIRTCHNL_STATUS_SUCCESS				= 0,
48 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
49 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
50 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
51 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
52 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
53 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
54 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
55 };
56 
57 /* Backward compatibility */
58 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
59 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
60 
61 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
62 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
63 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
64 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
65 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
66 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
67 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
68 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
69 
70 enum virtchnl_link_speed {
71 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
72 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
73 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
75 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
76 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
77 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
78 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
79 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
80 };
81 
82 /* for hsplit_0 field of Rx HMC context */
83 /* deprecated with AVF 1.0 */
84 enum virtchnl_rx_hsplit {
85 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
86 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
87 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
88 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
89 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
90 };
91 
92 /* END GENERIC DEFINES */
93 
94 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
95  * of the virtchnl_msg structure.
96  */
97 enum virtchnl_ops {
98 /* The PF sends status change events to VFs using
99  * the VIRTCHNL_OP_EVENT opcode.
100  * VFs send requests to the PF using the other ops.
101  * Use of "advanced opcode" features must be negotiated as part of capabilities
102  * exchange and are not considered part of base mode feature set.
103  */
104 	VIRTCHNL_OP_UNKNOWN = 0,
105 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
106 	VIRTCHNL_OP_RESET_VF = 2,
107 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
108 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
109 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
110 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
111 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
112 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
113 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
114 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
115 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
116 	VIRTCHNL_OP_ADD_VLAN = 12,
117 	VIRTCHNL_OP_DEL_VLAN = 13,
118 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
119 	VIRTCHNL_OP_GET_STATS = 15,
120 	VIRTCHNL_OP_RSVD = 16,
121 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
122 	VIRTCHNL_OP_CONFIG_RSS_HFUNC = 18,
123 	/* opcode 19 is reserved */
124 	VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
125 	VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP,
126 	VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
127 	VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP,
128 	VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
129 	VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP,
130 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
131 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
132 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
133 	VIRTCHNL_OP_SET_RSS_HENA = 26,
134 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
135 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
136 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
137 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
138 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
139 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
140 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
141 	/* opcode 34 - 43 are reserved */
142 	VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
143 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
144 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
145 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
146 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
147 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
148 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
149 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
150 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
151 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
152 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
153 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
154 	VIRTCHNL_OP_MAX,
155 };
156 
157 /* These macros are used to generate compilation errors if a structure/union
158  * is not exactly the correct length. It gives a divide by zero error if the
159  * structure/union is not of the correct size, otherwise it creates an enum
160  * that is never used.
161  */
162 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
163 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
164 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
165 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
166 
167 /* Message descriptions and data structures. */
168 
169 /* VIRTCHNL_OP_VERSION
170  * VF posts its version number to the PF. PF responds with its version number
171  * in the same format, along with a return code.
172  * Reply from PF has its major/minor versions also in param0 and param1.
173  * If there is a major version mismatch, then the VF cannot operate.
174  * If there is a minor version mismatch, then the VF can operate but should
175  * add a warning to the system log.
176  *
177  * This enum element MUST always be specified as == 1, regardless of other
178  * changes in the API. The PF must always respond to this message without
179  * error regardless of version mismatch.
180  */
181 #define VIRTCHNL_VERSION_MAJOR		1
182 #define VIRTCHNL_VERSION_MINOR		1
183 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
184 
185 struct virtchnl_version_info {
186 	u32 major;
187 	u32 minor;
188 };
189 
190 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
191 
192 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
193 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
194 
195 /* VIRTCHNL_OP_RESET_VF
196  * VF sends this request to PF with no parameters
197  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
198  * until reset completion is indicated. The admin queue must be reinitialized
199  * after this operation.
200  *
201  * When reset is complete, PF must ensure that all queues in all VSIs associated
202  * with the VF are stopped, all queue configurations in the HMC are set to 0,
203  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
204  * are cleared.
205  */
206 
207 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
208  * vsi_type should always be 6 for backward compatibility. Add other fields
209  * as needed.
210  */
211 enum virtchnl_vsi_type {
212 	VIRTCHNL_VSI_TYPE_INVALID = 0,
213 	VIRTCHNL_VSI_SRIOV = 6,
214 };
215 
216 /* VIRTCHNL_OP_GET_VF_RESOURCES
217  * Version 1.0 VF sends this request to PF with no parameters
218  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
219  * PF responds with an indirect message containing
220  * virtchnl_vf_resource and one or more
221  * virtchnl_vsi_resource structures.
222  */
223 
224 struct virtchnl_vsi_resource {
225 	u16 vsi_id;
226 	u16 num_queue_pairs;
227 
228 	/* see enum virtchnl_vsi_type */
229 	s32 vsi_type;
230 	u16 qset_handle;
231 	u8 default_mac_addr[ETH_ALEN];
232 };
233 
234 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
235 
236 /* VF capability flags
237  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
238  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
239  */
240 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
241 #define VIRTCHNL_VF_OFFLOAD_RDMA		BIT(1)
242 #define VIRTCHNL_VF_CAP_RDMA			VIRTCHNL_VF_OFFLOAD_RDMA
243 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
244 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
245 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
246 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
247 /* used to negotiate communicating link speeds in Mbps */
248 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
249 #define  VIRTCHNL_VF_OFFLOAD_CRC		BIT(10)
250 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
251 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
252 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
253 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
254 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
255 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
256 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
257 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
258 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
259 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
260 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC	BIT(26)
261 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
262 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
263 
264 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
265 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
266 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
267 
268 struct virtchnl_vf_resource {
269 	u16 num_vsis;
270 	u16 num_queue_pairs;
271 	u16 max_vectors;
272 	u16 max_mtu;
273 
274 	u32 vf_cap_flags;
275 	u32 rss_key_size;
276 	u32 rss_lut_size;
277 
278 	struct virtchnl_vsi_resource vsi_res[];
279 };
280 
281 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_vf_resource);
282 #define virtchnl_vf_resource_LEGACY_SIZEOF	36
283 
284 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
285  * VF sends this message to set up parameters for one TX queue.
286  * External data buffer contains one instance of virtchnl_txq_info.
287  * PF configures requested queue and returns a status code.
288  */
289 
290 /* Tx queue config info */
291 struct virtchnl_txq_info {
292 	u16 vsi_id;
293 	u16 queue_id;
294 	u16 ring_len;		/* number of descriptors, multiple of 8 */
295 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
296 	u64 dma_ring_addr;
297 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
298 };
299 
300 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
301 
302 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
303  * VF sends this message to set up parameters for one RX queue.
304  * External data buffer contains one instance of virtchnl_rxq_info.
305  * PF configures requested queue and returns a status code. The
306  * crc_disable flag disables CRC stripping on the VF. Setting
307  * the crc_disable flag to 1 will disable CRC stripping for each
308  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
309  * offload must have been set prior to sending this info or the PF
310  * will ignore the request. This flag should be set the same for
311  * all of the queues for a VF.
312  */
313 
314 /* Rx queue config info */
315 struct virtchnl_rxq_info {
316 	u16 vsi_id;
317 	u16 queue_id;
318 	u32 ring_len;		/* number of descriptors, multiple of 32 */
319 	u16 hdr_size;
320 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
321 	u32 databuffer_size;
322 	u32 max_pkt_size;
323 	u8 crc_disable;
324 	u8 rxdid;
325 	u8 pad1[2];
326 	u64 dma_ring_addr;
327 
328 	/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
329 	s32 rx_split_pos;
330 	u32 pad2;
331 };
332 
333 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
334 
335 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
336  * VF sends this message to set parameters for all active TX and RX queues
337  * associated with the specified VSI.
338  * PF configures queues and returns status.
339  * If the number of queues specified is greater than the number of queues
340  * associated with the VSI, an error is returned and no queues are configured.
341  * NOTE: The VF is not required to configure all queues in a single request.
342  * It may send multiple messages. PF drivers must correctly handle all VF
343  * requests.
344  */
345 struct virtchnl_queue_pair_info {
346 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
347 	struct virtchnl_txq_info txq;
348 	struct virtchnl_rxq_info rxq;
349 };
350 
351 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
352 
353 struct virtchnl_vsi_queue_config_info {
354 	u16 vsi_id;
355 	u16 num_queue_pairs;
356 	u32 pad;
357 	struct virtchnl_queue_pair_info qpair[];
358 };
359 
360 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vsi_queue_config_info);
361 #define virtchnl_vsi_queue_config_info_LEGACY_SIZEOF	72
362 
363 /* VIRTCHNL_OP_REQUEST_QUEUES
364  * VF sends this message to request the PF to allocate additional queues to
365  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
366  * additional queues must be negotiated.  This is a best effort request as it
367  * is possible the PF does not have enough queues left to support the request.
368  * If the PF cannot support the number requested it will respond with the
369  * maximum number it is able to support.  If the request is successful, PF will
370  * then reset the VF to institute required changes.
371  */
372 
373 /* VF resource request */
374 struct virtchnl_vf_res_request {
375 	u16 num_queue_pairs;
376 };
377 
378 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
379  * VF uses this message to map vectors to queues.
380  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
381  * are to be associated with the specified vector.
382  * The "other" causes are always mapped to vector 0. The VF may not request
383  * that vector 0 be used for traffic.
384  * PF configures interrupt mapping and returns status.
385  * NOTE: due to hardware requirements, all active queues (both TX and RX)
386  * should be mapped to interrupts, even if the driver intends to operate
387  * only in polling mode. In this case the interrupt may be disabled, but
388  * the ITR timer will still run to trigger writebacks.
389  */
390 struct virtchnl_vector_map {
391 	u16 vsi_id;
392 	u16 vector_id;
393 	u16 rxq_map;
394 	u16 txq_map;
395 	u16 rxitr_idx;
396 	u16 txitr_idx;
397 };
398 
399 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
400 
401 struct virtchnl_irq_map_info {
402 	u16 num_vectors;
403 	struct virtchnl_vector_map vecmap[];
404 };
405 
406 VIRTCHNL_CHECK_STRUCT_LEN(2, virtchnl_irq_map_info);
407 #define virtchnl_irq_map_info_LEGACY_SIZEOF	14
408 
409 /* VIRTCHNL_OP_ENABLE_QUEUES
410  * VIRTCHNL_OP_DISABLE_QUEUES
411  * VF sends these message to enable or disable TX/RX queue pairs.
412  * The queues fields are bitmaps indicating which queues to act upon.
413  * (Currently, we only support 16 queues per VF, but we make the field
414  * u32 to allow for expansion.)
415  * PF performs requested action and returns status.
416  * NOTE: The VF is not required to enable/disable all queues in a single
417  * request. It may send multiple messages.
418  * PF drivers must correctly handle all VF requests.
419  */
420 struct virtchnl_queue_select {
421 	u16 vsi_id;
422 	u16 pad;
423 	u32 rx_queues;
424 	u32 tx_queues;
425 };
426 
427 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
428 
429 /* VIRTCHNL_OP_ADD_ETH_ADDR
430  * VF sends this message in order to add one or more unicast or multicast
431  * address filters for the specified VSI.
432  * PF adds the filters and returns status.
433  */
434 
435 /* VIRTCHNL_OP_DEL_ETH_ADDR
436  * VF sends this message in order to remove one or more unicast or multicast
437  * filters for the specified VSI.
438  * PF removes the filters and returns status.
439  */
440 
441 /* VIRTCHNL_ETHER_ADDR_LEGACY
442  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
443  * bytes. Moving forward all VF drivers should not set type to
444  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
445  * behavior. The control plane function (i.e. PF) can use a best effort method
446  * of tracking the primary/device unicast in this case, but there is no
447  * guarantee and functionality depends on the implementation of the PF.
448  */
449 
450 /* VIRTCHNL_ETHER_ADDR_PRIMARY
451  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
452  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
453  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
454  * function (i.e. PF) to accurately track and use this MAC address for
455  * displaying on the host and for VM/function reset.
456  */
457 
458 /* VIRTCHNL_ETHER_ADDR_EXTRA
459  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
460  * unicast and/or multicast filters that are being added/deleted via
461  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
462  */
463 struct virtchnl_ether_addr {
464 	u8 addr[ETH_ALEN];
465 	u8 type;
466 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
467 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
468 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
469 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
470 	u8 pad;
471 };
472 
473 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
474 
475 struct virtchnl_ether_addr_list {
476 	u16 vsi_id;
477 	u16 num_elements;
478 	struct virtchnl_ether_addr list[];
479 };
480 
481 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_ether_addr_list);
482 #define virtchnl_ether_addr_list_LEGACY_SIZEOF	12
483 
484 /* VIRTCHNL_OP_ADD_VLAN
485  * VF sends this message to add one or more VLAN tag filters for receives.
486  * PF adds the filters and returns status.
487  * If a port VLAN is configured by the PF, this operation will return an
488  * error to the VF.
489  */
490 
491 /* VIRTCHNL_OP_DEL_VLAN
492  * VF sends this message to remove one or more VLAN tag filters for receives.
493  * PF removes the filters and returns status.
494  * If a port VLAN is configured by the PF, this operation will return an
495  * error to the VF.
496  */
497 
498 struct virtchnl_vlan_filter_list {
499 	u16 vsi_id;
500 	u16 num_elements;
501 	u16 vlan_id[];
502 };
503 
504 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_vlan_filter_list);
505 #define virtchnl_vlan_filter_list_LEGACY_SIZEOF	6
506 
507 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
508  * structures and opcodes.
509  *
510  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
511  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
512  *
513  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
514  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
515  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
516  *
517  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
518  * by the PF concurrently. For example, if the PF can support
519  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
520  * would OR the following bits:
521  *
522  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
523  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
524  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
525  *
526  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
527  * and 0x88A8 VLAN ethertypes.
528  *
529  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
530  * by the PF concurrently. For example if the PF can support
531  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
532  * offload it would OR the following bits:
533  *
534  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
535  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
536  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
537  *
538  * The VF would interpret this as VLAN stripping can be supported on either
539  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
540  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
541  * the previously set value.
542  *
543  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
544  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
545  *
546  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
547  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
548  *
549  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
550  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
551  *
552  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
553  * VLAN filtering if the underlying PF supports it.
554  *
555  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
556  * certain VLAN capability can be toggled. For example if the underlying PF/CP
557  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
558  * set this bit along with the supported ethertypes.
559  */
560 enum virtchnl_vlan_support {
561 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
562 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		BIT(0),
563 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		BIT(1),
564 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		BIT(2),
565 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	BIT(8),
566 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	BIT(9),
567 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	BIT(10),
568 	VIRTCHNL_VLAN_PRIO =			BIT(24),
569 	VIRTCHNL_VLAN_FILTER_MASK =		BIT(28),
570 	VIRTCHNL_VLAN_ETHERTYPE_AND =		BIT(29),
571 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		BIT(30),
572 	VIRTCHNL_VLAN_TOGGLE =			BIT(31),
573 };
574 
575 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
576  * for filtering, insertion, and stripping capabilities.
577  *
578  * If only outer capabilities are supported (for filtering, insertion, and/or
579  * stripping) then this refers to the outer most or single VLAN from the VF's
580  * perspective.
581  *
582  * If only inner capabilities are supported (for filtering, insertion, and/or
583  * stripping) then this refers to the outer most or single VLAN from the VF's
584  * perspective. Functionally this is the same as if only outer capabilities are
585  * supported. The VF driver is just forced to use the inner fields when
586  * adding/deleting filters and enabling/disabling offloads (if supported).
587  *
588  * If both outer and inner capabilities are supported (for filtering, insertion,
589  * and/or stripping) then outer refers to the outer most or single VLAN and
590  * inner refers to the second VLAN, if it exists, in the packet.
591  *
592  * There is no support for tunneled VLAN offloads, so outer or inner are never
593  * referring to a tunneled packet from the VF's perspective.
594  */
595 struct virtchnl_vlan_supported_caps {
596 	u32 outer;
597 	u32 inner;
598 };
599 
600 /* The PF populates these fields based on the supported VLAN filtering. If a
601  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
602  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
603  * the unsupported fields.
604  *
605  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
606  * VIRTCHNL_VLAN_TOGGLE bit is set.
607  *
608  * The ethertype(s) specified in the ethertype_init field are the ethertypes
609  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
610  * most VLAN from the VF's perspective. If both inner and outer filtering are
611  * allowed then ethertype_init only refers to the outer most VLAN as only
612  * VLAN ethertype supported for inner VLAN filtering is
613  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
614  * when both inner and outer filtering are allowed.
615  *
616  * The max_filters field tells the VF how many VLAN filters it's allowed to have
617  * at any one time. If it exceeds this amount and tries to add another filter,
618  * then the request will be rejected by the PF. To prevent failures, the VF
619  * should keep track of how many VLAN filters it has added and not attempt to
620  * add more than max_filters.
621  */
622 struct virtchnl_vlan_filtering_caps {
623 	struct virtchnl_vlan_supported_caps filtering_support;
624 	u32 ethertype_init;
625 	u16 max_filters;
626 	u8 pad[2];
627 };
628 
629 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
630 
631 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
632  * if the PF supports a different ethertype for stripping and insertion.
633  *
634  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
635  * for stripping affect the ethertype(s) specified for insertion and visa versa
636  * as well. If the VF tries to configure VLAN stripping via
637  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
638  * that will be the ethertype for both stripping and insertion.
639  *
640  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
641  * stripping do not affect the ethertype(s) specified for insertion and visa
642  * versa.
643  */
644 enum virtchnl_vlan_ethertype_match {
645 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
646 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
647 };
648 
649 /* The PF populates these fields based on the supported VLAN offloads. If a
650  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
651  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
652  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
653  *
654  * Also, a VF is only allowed to toggle its VLAN offload setting if the
655  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
656  *
657  * The VF driver needs to be aware of how the tags are stripped by hardware and
658  * inserted by the VF driver based on the level of offload support. The PF will
659  * populate these fields based on where the VLAN tags are expected to be
660  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
661  * interpret these fields. See the definition of the
662  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
663  * enumeration.
664  */
665 struct virtchnl_vlan_offload_caps {
666 	struct virtchnl_vlan_supported_caps stripping_support;
667 	struct virtchnl_vlan_supported_caps insertion_support;
668 	u32 ethertype_init;
669 	u8 ethertype_match;
670 	u8 pad[3];
671 };
672 
673 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
674 
675 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
676  * VF sends this message to determine its VLAN capabilities.
677  *
678  * PF will mark which capabilities it supports based on hardware support and
679  * current configuration. For example, if a port VLAN is configured the PF will
680  * not allow outer VLAN filtering, stripping, or insertion to be configured so
681  * it will block these features from the VF.
682  *
683  * The VF will need to cross reference its capabilities with the PFs
684  * capabilities in the response message from the PF to determine the VLAN
685  * support.
686  */
687 struct virtchnl_vlan_caps {
688 	struct virtchnl_vlan_filtering_caps filtering;
689 	struct virtchnl_vlan_offload_caps offloads;
690 };
691 
692 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
693 
694 struct virtchnl_vlan {
695 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
696 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
697 			 * filtering caps
698 			 */
699 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
700 			 * filtering caps. Note that tpid here does not refer to
701 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
702 			 * actual 2-byte VLAN TPID
703 			 */
704 	u8 pad[2];
705 };
706 
707 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
708 
709 struct virtchnl_vlan_filter {
710 	struct virtchnl_vlan inner;
711 	struct virtchnl_vlan outer;
712 	u8 pad[16];
713 };
714 
715 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
716 
717 /* VIRTCHNL_OP_ADD_VLAN_V2
718  * VIRTCHNL_OP_DEL_VLAN_V2
719  *
720  * VF sends these messages to add/del one or more VLAN tag filters for Rx
721  * traffic.
722  *
723  * The PF attempts to add the filters and returns status.
724  *
725  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
726  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
727  */
728 struct virtchnl_vlan_filter_list_v2 {
729 	u16 vport_id;
730 	u16 num_elements;
731 	u8 pad[4];
732 	struct virtchnl_vlan_filter filters[];
733 };
734 
735 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan_filter_list_v2);
736 #define virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF	40
737 
738 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
739  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
740  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
741  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
742  *
743  * VF sends this message to enable or disable VLAN stripping or insertion. It
744  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
745  * allowed and whether or not it's allowed to enable/disable the specific
746  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
747  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
748  * messages are allowed.
749  *
750  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
751  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
752  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
753  * case means the outer most or single VLAN from the VF's perspective. This is
754  * because no outer offloads are supported. See the comments above the
755  * virtchnl_vlan_supported_caps structure for more details.
756  *
757  * virtchnl_vlan_caps.offloads.stripping_support.inner =
758  *			VIRTCHNL_VLAN_TOGGLE |
759  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
760  *
761  * virtchnl_vlan_caps.offloads.insertion_support.inner =
762  *			VIRTCHNL_VLAN_TOGGLE |
763  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
764  *
765  * In order to enable inner (again note that in this case inner is the outer
766  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
767  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
768  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
769  *
770  * virtchnl_vlan_setting.inner_ethertype_setting =
771  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
772  *
773  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
774  * initialization.
775  *
776  * The reason that VLAN TPID(s) are not being used for the
777  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
778  * possible a device could support VLAN insertion and/or stripping offload on
779  * multiple ethertypes concurrently, so this method allows a VF to request
780  * multiple ethertypes in one message using the virtchnl_vlan_support
781  * enumeration.
782  *
783  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
784  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
785  * VLAN insertion and stripping simultaneously. The
786  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
787  * populated based on what the PF can support.
788  *
789  * virtchnl_vlan_caps.offloads.stripping_support.outer =
790  *			VIRTCHNL_VLAN_TOGGLE |
791  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
792  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
793  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
794  *
795  * virtchnl_vlan_caps.offloads.insertion_support.outer =
796  *			VIRTCHNL_VLAN_TOGGLE |
797  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
798  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
799  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
800  *
801  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
802  * would populate the virthcnl_vlan_offload_structure in the following manner
803  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
804  *
805  * virtchnl_vlan_setting.outer_ethertype_setting =
806  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
807  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
808  *
809  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
810  * initialization.
811  *
812  * There is also the case where a PF and the underlying hardware can support
813  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
814  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
815  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
816  * offloads. The ethertypes must match for stripping and insertion.
817  *
818  * virtchnl_vlan_caps.offloads.stripping_support.outer =
819  *			VIRTCHNL_VLAN_TOGGLE |
820  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
821  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
822  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
823  *
824  * virtchnl_vlan_caps.offloads.insertion_support.outer =
825  *			VIRTCHNL_VLAN_TOGGLE |
826  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
827  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
828  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
829  *
830  * virtchnl_vlan_caps.offloads.ethertype_match =
831  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
832  *
833  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
834  * populate the virtchnl_vlan_setting structure in the following manner and send
835  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
836  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
837  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
838  *
839  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
840  *
841  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
842  * initialization.
843  */
844 struct virtchnl_vlan_setting {
845 	u32 outer_ethertype_setting;
846 	u32 inner_ethertype_setting;
847 	u16 vport_id;
848 	u8 pad[6];
849 };
850 
851 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
852 
853 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
854  * VF sends VSI id and flags.
855  * PF returns status code in retval.
856  * Note: we assume that broadcast accept mode is always enabled.
857  */
858 struct virtchnl_promisc_info {
859 	u16 vsi_id;
860 	u16 flags;
861 };
862 
863 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
864 
865 #define FLAG_VF_UNICAST_PROMISC	0x00000001
866 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
867 
868 /* VIRTCHNL_OP_GET_STATS
869  * VF sends this message to request stats for the selected VSI. VF uses
870  * the virtchnl_queue_select struct to specify the VSI. The queue_id
871  * field is ignored by the PF.
872  *
873  * PF replies with struct eth_stats in an external buffer.
874  */
875 
876 /* VIRTCHNL_OP_CONFIG_RSS_KEY
877  * VIRTCHNL_OP_CONFIG_RSS_LUT
878  * VF sends these messages to configure RSS. Only supported if both PF
879  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
880  * configuration negotiation. If this is the case, then the RSS fields in
881  * the VF resource struct are valid.
882  * Both the key and LUT are initialized to 0 by the PF, meaning that
883  * RSS is effectively disabled until set up by the VF.
884  */
885 struct virtchnl_rss_key {
886 	u16 vsi_id;
887 	u16 key_len;
888 	u8 key[];          /* RSS hash key, packed bytes */
889 };
890 
891 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_key);
892 #define virtchnl_rss_key_LEGACY_SIZEOF	6
893 
894 struct virtchnl_rss_lut {
895 	u16 vsi_id;
896 	u16 lut_entries;
897 	u8 lut[];         /* RSS lookup table */
898 };
899 
900 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_lut);
901 #define virtchnl_rss_lut_LEGACY_SIZEOF	6
902 
903 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
904  * VIRTCHNL_OP_SET_RSS_HENA
905  * VF sends these messages to get and set the hash filter enable bits for RSS.
906  * By default, the PF sets these to all possible traffic types that the
907  * hardware supports. The VF can query this value if it wants to change the
908  * traffic types that are hashed by the hardware.
909  */
910 struct virtchnl_rss_hena {
911 	u64 hena;
912 };
913 
914 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
915 
916 /* Type of RSS algorithm */
917 enum virtchnl_rss_algorithm {
918 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
919 	VIRTCHNL_RSS_ALG_R_ASYMMETRIC		= 1,
920 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
921 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
922 };
923 
924 /* VIRTCHNL_OP_CONFIG_RSS_HFUNC
925  * VF sends this message to configure the RSS hash function. Only supported
926  * if both PF and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
927  * configuration negotiation.
928  * The hash function is initialized to VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC
929  * by the PF.
930  */
931 struct virtchnl_rss_hfunc {
932 	u16 vsi_id;
933 	u16 rss_algorithm; /* enum virtchnl_rss_algorithm */
934 	u32 reserved;
935 };
936 
937 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hfunc);
938 
939 /* VIRTCHNL_OP_ENABLE_CHANNELS
940  * VIRTCHNL_OP_DISABLE_CHANNELS
941  * VF sends these messages to enable or disable channels based on
942  * the user specified queue count and queue offset for each traffic class.
943  * This struct encompasses all the information that the PF needs from
944  * VF to create a channel.
945  */
946 struct virtchnl_channel_info {
947 	u16 count; /* number of queues in a channel */
948 	u16 offset; /* queues in a channel start from 'offset' */
949 	u32 pad;
950 	u64 max_tx_rate;
951 };
952 
953 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
954 
955 struct virtchnl_tc_info {
956 	u32	num_tc;
957 	u32	pad;
958 	struct virtchnl_channel_info list[];
959 };
960 
961 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_tc_info);
962 #define virtchnl_tc_info_LEGACY_SIZEOF	24
963 
964 /* VIRTCHNL_ADD_CLOUD_FILTER
965  * VIRTCHNL_DEL_CLOUD_FILTER
966  * VF sends these messages to add or delete a cloud filter based on the
967  * user specified match and action filters. These structures encompass
968  * all the information that the PF needs from the VF to add/delete a
969  * cloud filter.
970  */
971 
972 struct virtchnl_l4_spec {
973 	u8	src_mac[ETH_ALEN];
974 	u8	dst_mac[ETH_ALEN];
975 	__be16	vlan_id;
976 	__be16	pad; /* reserved for future use */
977 	__be32	src_ip[4];
978 	__be32	dst_ip[4];
979 	__be16	src_port;
980 	__be16	dst_port;
981 };
982 
983 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
984 
985 union virtchnl_flow_spec {
986 	struct	virtchnl_l4_spec tcp_spec;
987 	u8	buffer[128]; /* reserved for future use */
988 };
989 
990 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
991 
992 enum virtchnl_action {
993 	/* action types */
994 	VIRTCHNL_ACTION_DROP = 0,
995 	VIRTCHNL_ACTION_TC_REDIRECT,
996 	VIRTCHNL_ACTION_PASSTHRU,
997 	VIRTCHNL_ACTION_QUEUE,
998 	VIRTCHNL_ACTION_Q_REGION,
999 	VIRTCHNL_ACTION_MARK,
1000 	VIRTCHNL_ACTION_COUNT,
1001 };
1002 
1003 enum virtchnl_flow_type {
1004 	/* flow types */
1005 	VIRTCHNL_TCP_V4_FLOW = 0,
1006 	VIRTCHNL_TCP_V6_FLOW,
1007 };
1008 
1009 struct virtchnl_filter {
1010 	union	virtchnl_flow_spec data;
1011 	union	virtchnl_flow_spec mask;
1012 
1013 	/* see enum virtchnl_flow_type */
1014 	s32	flow_type;
1015 
1016 	/* see enum virtchnl_action */
1017 	s32	action;
1018 	u32	action_meta;
1019 	u8	field_flags;
1020 	u8	pad[3];
1021 };
1022 
1023 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
1024 
1025 struct virtchnl_supported_rxdids {
1026 	u64 supported_rxdids;
1027 };
1028 
1029 /* VIRTCHNL_OP_EVENT
1030  * PF sends this message to inform the VF driver of events that may affect it.
1031  * No direct response is expected from the VF, though it may generate other
1032  * messages in response to this one.
1033  */
1034 enum virtchnl_event_codes {
1035 	VIRTCHNL_EVENT_UNKNOWN = 0,
1036 	VIRTCHNL_EVENT_LINK_CHANGE,
1037 	VIRTCHNL_EVENT_RESET_IMPENDING,
1038 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1039 };
1040 
1041 #define PF_EVENT_SEVERITY_INFO		0
1042 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1043 
1044 struct virtchnl_pf_event {
1045 	/* see enum virtchnl_event_codes */
1046 	s32 event;
1047 	union {
1048 		/* If the PF driver does not support the new speed reporting
1049 		 * capabilities then use link_event else use link_event_adv to
1050 		 * get the speed and link information. The ability to understand
1051 		 * new speeds is indicated by setting the capability flag
1052 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1053 		 * in virtchnl_vf_resource struct and can be used to determine
1054 		 * which link event struct to use below.
1055 		 */
1056 		struct {
1057 			enum virtchnl_link_speed link_speed;
1058 			bool link_status;
1059 			u8 pad[3];
1060 		} link_event;
1061 		struct {
1062 			/* link_speed provided in Mbps */
1063 			u32 link_speed;
1064 			u8 link_status;
1065 			u8 pad[3];
1066 		} link_event_adv;
1067 	} event_data;
1068 
1069 	s32 severity;
1070 };
1071 
1072 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1073 
1074 /* used to specify if a ceq_idx or aeq_idx is invalid */
1075 #define VIRTCHNL_RDMA_INVALID_QUEUE_IDX	0xFFFF
1076 /* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP
1077  * VF uses this message to request PF to map RDMA vectors to RDMA queues.
1078  * The request for this originates from the VF RDMA driver through
1079  * a client interface between VF LAN and VF RDMA driver.
1080  * A vector could have an AEQ and CEQ attached to it although
1081  * there is a single AEQ per VF RDMA instance in which case
1082  * most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid
1083  * idx for ceqs There will never be a case where there will be multiple CEQs
1084  * attached to a single vector.
1085  * PF configures interrupt mapping and returns status.
1086  */
1087 
1088 struct virtchnl_rdma_qv_info {
1089 	u32 v_idx; /* msix_vector */
1090 	u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1091 	u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1092 	u8 itr_idx;
1093 	u8 pad[3];
1094 };
1095 
1096 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info);
1097 
1098 struct virtchnl_rdma_qvlist_info {
1099 	u32 num_vectors;
1100 	struct virtchnl_rdma_qv_info qv_info[];
1101 };
1102 
1103 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rdma_qvlist_info);
1104 #define virtchnl_rdma_qvlist_info_LEGACY_SIZEOF	16
1105 
1106 /* VF reset states - these are written into the RSTAT register:
1107  * VFGEN_RSTAT on the VF
1108  * When the PF initiates a reset, it writes 0
1109  * When the reset is complete, it writes 1
1110  * When the PF detects that the VF has recovered, it writes 2
1111  * VF checks this register periodically to determine if a reset has occurred,
1112  * then polls it to know when the reset is complete.
1113  * If either the PF or VF reads the register while the hardware
1114  * is in a reset state, it will return DEADBEEF, which, when masked
1115  * will result in 3.
1116  */
1117 enum virtchnl_vfr_states {
1118 	VIRTCHNL_VFR_INPROGRESS = 0,
1119 	VIRTCHNL_VFR_COMPLETED,
1120 	VIRTCHNL_VFR_VFACTIVE,
1121 };
1122 
1123 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1124 #define PROTO_HDR_SHIFT			5
1125 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT)
1126 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1127 
1128 /* VF use these macros to configure each protocol header.
1129  * Specify which protocol headers and protocol header fields base on
1130  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1131  * @param hdr: a struct of virtchnl_proto_hdr
1132  * @param hdr_type: ETH/IPV4/TCP, etc
1133  * @param field: SRC/DST/TEID/SPI, etc
1134  */
1135 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1136 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1137 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1138 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1139 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1140 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1141 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1142 
1143 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1144 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1145 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1146 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1147 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1148 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1149 
1150 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1151 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1152 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1153 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1154 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1155 	((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT)))
1156 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1157 	(VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \
1158 	 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val)))
1159 
1160 /* Protocol header type within a packet segment. A segment consists of one or
1161  * more protocol headers that make up a logical group of protocol headers. Each
1162  * logical group of protocol headers encapsulates or is encapsulated using/by
1163  * tunneling or encapsulation protocols for network virtualization.
1164  */
1165 enum virtchnl_proto_hdr_type {
1166 	VIRTCHNL_PROTO_HDR_NONE,
1167 	VIRTCHNL_PROTO_HDR_ETH,
1168 	VIRTCHNL_PROTO_HDR_S_VLAN,
1169 	VIRTCHNL_PROTO_HDR_C_VLAN,
1170 	VIRTCHNL_PROTO_HDR_IPV4,
1171 	VIRTCHNL_PROTO_HDR_IPV6,
1172 	VIRTCHNL_PROTO_HDR_TCP,
1173 	VIRTCHNL_PROTO_HDR_UDP,
1174 	VIRTCHNL_PROTO_HDR_SCTP,
1175 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1176 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1177 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1178 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1179 	VIRTCHNL_PROTO_HDR_PPPOE,
1180 	VIRTCHNL_PROTO_HDR_L2TPV3,
1181 	VIRTCHNL_PROTO_HDR_ESP,
1182 	VIRTCHNL_PROTO_HDR_AH,
1183 	VIRTCHNL_PROTO_HDR_PFCP,
1184 };
1185 
1186 /* Protocol header field within a protocol header. */
1187 enum virtchnl_proto_hdr_field {
1188 	/* ETHER */
1189 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1190 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1191 	VIRTCHNL_PROTO_HDR_ETH_DST,
1192 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1193 	/* S-VLAN */
1194 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1195 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1196 	/* C-VLAN */
1197 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1198 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1199 	/* IPV4 */
1200 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1201 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1202 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1203 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1204 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1205 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1206 	/* IPV6 */
1207 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1208 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1209 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1210 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1211 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1212 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1213 	/* TCP */
1214 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1215 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1216 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1217 	/* UDP */
1218 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1219 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1220 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1221 	/* SCTP */
1222 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1223 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1224 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1225 	/* GTPU_IP */
1226 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1227 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1228 	/* GTPU_EH */
1229 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1230 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1231 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1232 	/* PPPOE */
1233 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1234 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1235 	/* L2TPV3 */
1236 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1237 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1238 	/* ESP */
1239 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1240 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1241 	/* AH */
1242 	VIRTCHNL_PROTO_HDR_AH_SPI =
1243 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1244 	/* PFCP */
1245 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1246 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1247 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1248 };
1249 
1250 struct virtchnl_proto_hdr {
1251 	/* see enum virtchnl_proto_hdr_type */
1252 	s32 type;
1253 	u32 field_selector; /* a bit mask to select field for header type */
1254 	u8 buffer[64];
1255 	/**
1256 	 * binary buffer in network order for specific header type.
1257 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1258 	 * header is expected to be copied into the buffer.
1259 	 */
1260 };
1261 
1262 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1263 
1264 struct virtchnl_proto_hdrs {
1265 	u8 tunnel_level;
1266 	u8 pad[3];
1267 	/**
1268 	 * specify where protocol header start from.
1269 	 * 0 - from the outer layer
1270 	 * 1 - from the first inner layer
1271 	 * 2 - from the second inner layer
1272 	 * ....
1273 	 **/
1274 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1275 	struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1276 };
1277 
1278 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1279 
1280 struct virtchnl_rss_cfg {
1281 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1282 
1283 	/* see enum virtchnl_rss_algorithm; rss algorithm type */
1284 	s32 rss_algorithm;
1285 	u8 reserved[128];                          /* reserve for future */
1286 };
1287 
1288 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1289 
1290 /* action configuration for FDIR */
1291 struct virtchnl_filter_action {
1292 	/* see enum virtchnl_action type */
1293 	s32 type;
1294 	union {
1295 		/* used for queue and qgroup action */
1296 		struct {
1297 			u16 index;
1298 			u8 region;
1299 		} queue;
1300 		/* used for count action */
1301 		struct {
1302 			/* share counter ID with other flow rules */
1303 			u8 shared;
1304 			u32 id; /* counter ID */
1305 		} count;
1306 		/* used for mark action */
1307 		u32 mark_id;
1308 		u8 reserve[32];
1309 	} act_conf;
1310 };
1311 
1312 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1313 
1314 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1315 
1316 struct virtchnl_filter_action_set {
1317 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1318 	int count;
1319 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1320 };
1321 
1322 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1323 
1324 /* pattern and action for FDIR rule */
1325 struct virtchnl_fdir_rule {
1326 	struct virtchnl_proto_hdrs proto_hdrs;
1327 	struct virtchnl_filter_action_set action_set;
1328 };
1329 
1330 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1331 
1332 /* Status returned to VF after VF requests FDIR commands
1333  * VIRTCHNL_FDIR_SUCCESS
1334  * VF FDIR related request is successfully done by PF
1335  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1336  *
1337  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1338  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1339  *
1340  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1341  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1342  *
1343  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1344  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1345  *
1346  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1347  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1348  *
1349  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1350  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1351  * or HW doesn't support.
1352  *
1353  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1354  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1355  * for programming.
1356  *
1357  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1358  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1359  * for example, VF query counter of a rule who has no counter action.
1360  */
1361 enum virtchnl_fdir_prgm_status {
1362 	VIRTCHNL_FDIR_SUCCESS = 0,
1363 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1364 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1365 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1366 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1367 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1368 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1369 	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1370 };
1371 
1372 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1373  * VF sends this request to PF by filling out vsi_id,
1374  * validate_only and rule_cfg. PF will return flow_id
1375  * if the request is successfully done and return add_status to VF.
1376  */
1377 struct virtchnl_fdir_add {
1378 	u16 vsi_id;  /* INPUT */
1379 	/*
1380 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1381 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1382 	 */
1383 	u16 validate_only; /* INPUT */
1384 	u32 flow_id;       /* OUTPUT */
1385 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1386 
1387 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1388 	s32 status;
1389 };
1390 
1391 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1392 
1393 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1394  * VF sends this request to PF by filling out vsi_id
1395  * and flow_id. PF will return del_status to VF.
1396  */
1397 struct virtchnl_fdir_del {
1398 	u16 vsi_id;  /* INPUT */
1399 	u16 pad;
1400 	u32 flow_id; /* INPUT */
1401 
1402 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1403 	s32 status;
1404 };
1405 
1406 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1407 
1408 #define __vss_byone(p, member, count, old)				      \
1409 	(struct_size(p, member, count) + (old - 1 - struct_size(p, member, 0)))
1410 
1411 #define __vss_byelem(p, member, count, old)				      \
1412 	(struct_size(p, member, count - 1) + (old - struct_size(p, member, 0)))
1413 
1414 #define __vss_full(p, member, count, old)				      \
1415 	(struct_size(p, member, count) + (old - struct_size(p, member, 0)))
1416 
1417 #define __vss(type, func, p, member, count)		\
1418 	struct type: func(p, member, count, type##_LEGACY_SIZEOF)
1419 
1420 #define virtchnl_struct_size(p, m, c)					      \
1421 	_Generic(*p,							      \
1422 		 __vss(virtchnl_vf_resource, __vss_full, p, m, c),	      \
1423 		 __vss(virtchnl_vsi_queue_config_info, __vss_full, p, m, c),  \
1424 		 __vss(virtchnl_irq_map_info, __vss_full, p, m, c),	      \
1425 		 __vss(virtchnl_ether_addr_list, __vss_full, p, m, c),	      \
1426 		 __vss(virtchnl_vlan_filter_list, __vss_full, p, m, c),	      \
1427 		 __vss(virtchnl_vlan_filter_list_v2, __vss_byelem, p, m, c),  \
1428 		 __vss(virtchnl_tc_info, __vss_byelem, p, m, c),	      \
1429 		 __vss(virtchnl_rdma_qvlist_info, __vss_byelem, p, m, c),     \
1430 		 __vss(virtchnl_rss_key, __vss_byone, p, m, c),		      \
1431 		 __vss(virtchnl_rss_lut, __vss_byone, p, m, c))
1432 
1433 /**
1434  * virtchnl_vc_validate_vf_msg
1435  * @ver: Virtchnl version info
1436  * @v_opcode: Opcode for the message
1437  * @msg: pointer to the msg buffer
1438  * @msglen: msg length
1439  *
1440  * validate msg format against struct for each opcode
1441  */
1442 static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info * ver,u32 v_opcode,u8 * msg,u16 msglen)1443 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1444 			    u8 *msg, u16 msglen)
1445 {
1446 	bool err_msg_format = false;
1447 	u32 valid_len = 0;
1448 
1449 	/* Validate message length. */
1450 	switch (v_opcode) {
1451 	case VIRTCHNL_OP_VERSION:
1452 		valid_len = sizeof(struct virtchnl_version_info);
1453 		break;
1454 	case VIRTCHNL_OP_RESET_VF:
1455 		break;
1456 	case VIRTCHNL_OP_GET_VF_RESOURCES:
1457 		if (VF_IS_V11(ver))
1458 			valid_len = sizeof(u32);
1459 		break;
1460 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1461 		valid_len = sizeof(struct virtchnl_txq_info);
1462 		break;
1463 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1464 		valid_len = sizeof(struct virtchnl_rxq_info);
1465 		break;
1466 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1467 		valid_len = virtchnl_vsi_queue_config_info_LEGACY_SIZEOF;
1468 		if (msglen >= valid_len) {
1469 			struct virtchnl_vsi_queue_config_info *vqc =
1470 			    (struct virtchnl_vsi_queue_config_info *)msg;
1471 			valid_len = virtchnl_struct_size(vqc, qpair,
1472 							 vqc->num_queue_pairs);
1473 			if (vqc->num_queue_pairs == 0)
1474 				err_msg_format = true;
1475 		}
1476 		break;
1477 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1478 		valid_len = virtchnl_irq_map_info_LEGACY_SIZEOF;
1479 		if (msglen >= valid_len) {
1480 			struct virtchnl_irq_map_info *vimi =
1481 			    (struct virtchnl_irq_map_info *)msg;
1482 			valid_len = virtchnl_struct_size(vimi, vecmap,
1483 							 vimi->num_vectors);
1484 			if (vimi->num_vectors == 0)
1485 				err_msg_format = true;
1486 		}
1487 		break;
1488 	case VIRTCHNL_OP_ENABLE_QUEUES:
1489 	case VIRTCHNL_OP_DISABLE_QUEUES:
1490 		valid_len = sizeof(struct virtchnl_queue_select);
1491 		break;
1492 	case VIRTCHNL_OP_ADD_ETH_ADDR:
1493 	case VIRTCHNL_OP_DEL_ETH_ADDR:
1494 		valid_len = virtchnl_ether_addr_list_LEGACY_SIZEOF;
1495 		if (msglen >= valid_len) {
1496 			struct virtchnl_ether_addr_list *veal =
1497 			    (struct virtchnl_ether_addr_list *)msg;
1498 			valid_len = virtchnl_struct_size(veal, list,
1499 							 veal->num_elements);
1500 			if (veal->num_elements == 0)
1501 				err_msg_format = true;
1502 		}
1503 		break;
1504 	case VIRTCHNL_OP_ADD_VLAN:
1505 	case VIRTCHNL_OP_DEL_VLAN:
1506 		valid_len = virtchnl_vlan_filter_list_LEGACY_SIZEOF;
1507 		if (msglen >= valid_len) {
1508 			struct virtchnl_vlan_filter_list *vfl =
1509 			    (struct virtchnl_vlan_filter_list *)msg;
1510 			valid_len = virtchnl_struct_size(vfl, vlan_id,
1511 							 vfl->num_elements);
1512 			if (vfl->num_elements == 0)
1513 				err_msg_format = true;
1514 		}
1515 		break;
1516 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1517 		valid_len = sizeof(struct virtchnl_promisc_info);
1518 		break;
1519 	case VIRTCHNL_OP_GET_STATS:
1520 		valid_len = sizeof(struct virtchnl_queue_select);
1521 		break;
1522 	case VIRTCHNL_OP_RDMA:
1523 		/* These messages are opaque to us and will be validated in
1524 		 * the RDMA client code. We just need to check for nonzero
1525 		 * length. The firmware will enforce max length restrictions.
1526 		 */
1527 		if (msglen)
1528 			valid_len = msglen;
1529 		else
1530 			err_msg_format = true;
1531 		break;
1532 	case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP:
1533 		break;
1534 	case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP:
1535 		valid_len = virtchnl_rdma_qvlist_info_LEGACY_SIZEOF;
1536 		if (msglen >= valid_len) {
1537 			struct virtchnl_rdma_qvlist_info *qv =
1538 				(struct virtchnl_rdma_qvlist_info *)msg;
1539 
1540 			valid_len = virtchnl_struct_size(qv, qv_info,
1541 							 qv->num_vectors);
1542 		}
1543 		break;
1544 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
1545 		valid_len = virtchnl_rss_key_LEGACY_SIZEOF;
1546 		if (msglen >= valid_len) {
1547 			struct virtchnl_rss_key *vrk =
1548 				(struct virtchnl_rss_key *)msg;
1549 			valid_len = virtchnl_struct_size(vrk, key,
1550 							 vrk->key_len);
1551 		}
1552 		break;
1553 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
1554 		valid_len = virtchnl_rss_lut_LEGACY_SIZEOF;
1555 		if (msglen >= valid_len) {
1556 			struct virtchnl_rss_lut *vrl =
1557 				(struct virtchnl_rss_lut *)msg;
1558 			valid_len = virtchnl_struct_size(vrl, lut,
1559 							 vrl->lut_entries);
1560 		}
1561 		break;
1562 	case VIRTCHNL_OP_CONFIG_RSS_HFUNC:
1563 		valid_len = sizeof(struct virtchnl_rss_hfunc);
1564 		break;
1565 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1566 		break;
1567 	case VIRTCHNL_OP_SET_RSS_HENA:
1568 		valid_len = sizeof(struct virtchnl_rss_hena);
1569 		break;
1570 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1571 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1572 		break;
1573 	case VIRTCHNL_OP_REQUEST_QUEUES:
1574 		valid_len = sizeof(struct virtchnl_vf_res_request);
1575 		break;
1576 	case VIRTCHNL_OP_ENABLE_CHANNELS:
1577 		valid_len = virtchnl_tc_info_LEGACY_SIZEOF;
1578 		if (msglen >= valid_len) {
1579 			struct virtchnl_tc_info *vti =
1580 				(struct virtchnl_tc_info *)msg;
1581 			valid_len = virtchnl_struct_size(vti, list,
1582 							 vti->num_tc);
1583 			if (vti->num_tc == 0)
1584 				err_msg_format = true;
1585 		}
1586 		break;
1587 	case VIRTCHNL_OP_DISABLE_CHANNELS:
1588 		break;
1589 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
1590 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
1591 		valid_len = sizeof(struct virtchnl_filter);
1592 		break;
1593 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
1594 		break;
1595 	case VIRTCHNL_OP_ADD_RSS_CFG:
1596 	case VIRTCHNL_OP_DEL_RSS_CFG:
1597 		valid_len = sizeof(struct virtchnl_rss_cfg);
1598 		break;
1599 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
1600 		valid_len = sizeof(struct virtchnl_fdir_add);
1601 		break;
1602 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
1603 		valid_len = sizeof(struct virtchnl_fdir_del);
1604 		break;
1605 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
1606 		break;
1607 	case VIRTCHNL_OP_ADD_VLAN_V2:
1608 	case VIRTCHNL_OP_DEL_VLAN_V2:
1609 		valid_len = virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF;
1610 		if (msglen >= valid_len) {
1611 			struct virtchnl_vlan_filter_list_v2 *vfl =
1612 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
1613 
1614 			valid_len = virtchnl_struct_size(vfl, filters,
1615 							 vfl->num_elements);
1616 
1617 			if (vfl->num_elements == 0) {
1618 				err_msg_format = true;
1619 				break;
1620 			}
1621 		}
1622 		break;
1623 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
1624 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
1625 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
1626 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
1627 		valid_len = sizeof(struct virtchnl_vlan_setting);
1628 		break;
1629 	/* These are always errors coming from the VF. */
1630 	case VIRTCHNL_OP_EVENT:
1631 	case VIRTCHNL_OP_UNKNOWN:
1632 	default:
1633 		return VIRTCHNL_STATUS_ERR_PARAM;
1634 	}
1635 	/* few more checks */
1636 	if (err_msg_format || valid_len != msglen)
1637 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
1638 
1639 	return 0;
1640 }
1641 #endif /* _VIRTCHNL_H_ */
1642