xref: /netbsd/sys/dev/pci/if_vge.c (revision 8de7985d)
1 /* $NetBSD: if_vge.c,v 1.86 2022/09/24 18:12:43 thorpej Exp $ */
2 
3 /*-
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.86 2022/09/24 18:12:43 thorpej Exp $");
39 
40 /*
41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42  *
43  * Written by Bill Paul <wpaul@windriver.com>
44  * Senior Networking Software Engineer
45  * Wind River Systems
46  */
47 
48 /*
49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50  * combines a tri-speed ethernet MAC and PHY, with the following
51  * features:
52  *
53  *	o Jumbo frame support up to 16K
54  *	o Transmit and receive flow control
55  *	o IPv4 checksum offload
56  *	o VLAN tag insertion and stripping
57  *	o TCP large send
58  *	o 64-bit multicast hash table filter
59  *	o 64 entry CAM filter
60  *	o 16K RX FIFO and 48K TX FIFO memory
61  *	o Interrupt moderation
62  *
63  * The VT6122 supports up to four transmit DMA queues. The descriptors
64  * in the transmit ring can address up to 7 data fragments; frames which
65  * span more than 7 data buffers must be coalesced, but in general the
66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67  * long. The receive descriptors address only a single buffer.
68  *
69  * There are two peculiar design issues with the VT6122. One is that
70  * receive data buffers must be aligned on a 32-bit boundary. This is
71  * not a problem where the VT6122 is used as a LOM device in x86-based
72  * systems, but on architectures that generate unaligned access traps, we
73  * have to do some copying.
74  *
75  * The other issue has to do with the way 64-bit addresses are handled.
76  * The DMA descriptors only allow you to specify 48 bits of addressing
77  * information. The remaining 16 bits are specified using one of the
78  * I/O registers (VGE_DATABUF_HIADDR). If you only have a 32-bit system,
79  * then this isn't an issue, but if you have a 64-bit system and more than
80  * 4GB of memory, you must have to make sure your network data buffers reside
81  * in the same 48-bit 'segment.'
82  *
83  * Furthermore, the descriptors must also all reside within the same 32-bit
84  * 'segment' (see VGE_TXDESC_HIADDR).
85  *
86  * Special thanks to Ryan Fu at VIA Networking for providing documentation
87  * and sample NICs for testing.
88  */
89 
90 
91 #include <sys/param.h>
92 #include <sys/endian.h>
93 #include <sys/systm.h>
94 #include <sys/device.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/if_ether.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 
106 #include <net/bpf.h>
107 
108 #include <sys/bus.h>
109 
110 #include <dev/mii/mii.h>
111 #include <dev/mii/miivar.h>
112 
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116 
117 #include <dev/pci/if_vgereg.h>
118 
119 #define VGE_IFQ_MAXLEN		64
120 
121 #define VGE_RING_ALIGN		256
122 
123 #define VGE_NTXDESC		256
124 #define VGE_NTXDESC_MASK	(VGE_NTXDESC - 1)
125 #define VGE_NEXT_TXDESC(x)	((x + 1) & VGE_NTXDESC_MASK)
126 #define VGE_PREV_TXDESC(x)	((x - 1) & VGE_NTXDESC_MASK)
127 
128 #define VGE_NRXDESC		256	/* Must be a multiple of 4!! */
129 #define VGE_NRXDESC_MASK	(VGE_NRXDESC - 1)
130 #define VGE_NEXT_RXDESC(x)	((x + 1) & VGE_NRXDESC_MASK)
131 #define VGE_PREV_RXDESC(x)	((x - 1) & VGE_NRXDESC_MASK)
132 
133 #define VGE_ADDR_LO(y)		BUS_ADDR_LO32(y)
134 #define VGE_ADDR_HI(y)		BUS_ADDR_HI32(y)
135 #define VGE_BUFLEN(y)		((y) & 0x7FFF)
136 #define ETHER_PAD_LEN		(ETHER_MIN_LEN - ETHER_CRC_LEN)
137 
138 #define VGE_POWER_MANAGEMENT	0	/* disabled for now */
139 
140 /*
141  * Mbuf adjust factor to force 32-bit alignment of IP header.
142  * Drivers should pad ETHER_ALIGN bytes when setting up a
143  * RX mbuf so the upper layers get the IP header properly aligned
144  * past the 14-byte Ethernet header.
145  *
146  * See also comment in vge_encap().
147  */
148 
149 #ifdef __NO_STRICT_ALIGNMENT
150 #define VGE_RX_BUFSIZE		MCLBYTES
151 #else
152 #define VGE_RX_PAD		sizeof(uint32_t)
153 #define VGE_RX_BUFSIZE		(MCLBYTES - VGE_RX_PAD)
154 #endif
155 
156 /*
157  * Control structures are DMA'd to the vge chip. We allocate them in
158  * a single clump that maps to a single DMA segment to make several things
159  * easier.
160  */
161 struct vge_control_data {
162 	/* TX descriptors */
163 	struct vge_txdesc	vcd_txdescs[VGE_NTXDESC];
164 	/* RX descriptors */
165 	struct vge_rxdesc	vcd_rxdescs[VGE_NRXDESC];
166 	/* dummy data for TX padding */
167 	uint8_t			vcd_pad[ETHER_PAD_LEN];
168 };
169 
170 #define VGE_CDOFF(x)	offsetof(struct vge_control_data, x)
171 #define VGE_CDTXOFF(x)	VGE_CDOFF(vcd_txdescs[(x)])
172 #define VGE_CDRXOFF(x)	VGE_CDOFF(vcd_rxdescs[(x)])
173 #define VGE_CDPADOFF()	VGE_CDOFF(vcd_pad[0])
174 
175 /*
176  * Software state for TX jobs.
177  */
178 struct vge_txsoft {
179 	struct mbuf	*txs_mbuf;		/* head of our mbuf chain */
180 	bus_dmamap_t	txs_dmamap;		/* our DMA map */
181 };
182 
183 /*
184  * Software state for RX jobs.
185  */
186 struct vge_rxsoft {
187 	struct mbuf	*rxs_mbuf;		/* head of our mbuf chain */
188 	bus_dmamap_t	rxs_dmamap;		/* our DMA map */
189 };
190 
191 
192 struct vge_softc {
193 	device_t		sc_dev;
194 
195 	bus_space_tag_t		sc_bst;		/* bus space tag */
196 	bus_space_handle_t	sc_bsh;		/* bus space handle */
197 	bus_dma_tag_t		sc_dmat;
198 
199 	struct ethercom		sc_ethercom;	/* interface info */
200 	uint8_t			sc_eaddr[ETHER_ADDR_LEN];
201 
202 	void			*sc_intrhand;
203 	struct mii_data		sc_mii;
204 	uint8_t			sc_type;
205 	u_short			sc_if_flags;
206 	int			sc_link;
207 	int			sc_camidx;
208 	callout_t		sc_timeout;
209 
210 	bus_dmamap_t		sc_cddmamap;
211 #define sc_cddma		sc_cddmamap->dm_segs[0].ds_addr
212 
213 	struct vge_txsoft	sc_txsoft[VGE_NTXDESC];
214 	struct vge_rxsoft	sc_rxsoft[VGE_NRXDESC];
215 	struct vge_control_data	*sc_control_data;
216 #define sc_txdescs		sc_control_data->vcd_txdescs
217 #define sc_rxdescs		sc_control_data->vcd_rxdescs
218 
219 	int			sc_tx_prodidx;
220 	int			sc_tx_considx;
221 	int			sc_tx_free;
222 
223 	struct mbuf		*sc_rx_mhead;
224 	struct mbuf		*sc_rx_mtail;
225 	int			sc_rx_prodidx;
226 	int			sc_rx_consumed;
227 
228 	int			sc_suspended;	/* 0 = normal  1 = suspended */
229 	uint32_t		sc_saved_maps[5];	/* pci data */
230 	uint32_t		sc_saved_biosaddr;
231 	uint8_t			sc_saved_intline;
232 	uint8_t			sc_saved_cachelnsz;
233 	uint8_t			sc_saved_lattimer;
234 };
235 
236 #define VGE_CDTXADDR(sc, x)	((sc)->sc_cddma + VGE_CDTXOFF(x))
237 #define VGE_CDRXADDR(sc, x)	((sc)->sc_cddma + VGE_CDRXOFF(x))
238 #define VGE_CDPADADDR(sc)	((sc)->sc_cddma + VGE_CDPADOFF())
239 
240 #define VGE_TXDESCSYNC(sc, idx, ops)					\
241 	bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,		\
242 	    VGE_CDTXOFF(idx),						\
243 	    offsetof(struct vge_txdesc, td_frag[0]),			\
244 	    (ops))
245 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)				\
246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
247 	    VGE_CDTXOFF(idx) +						\
248 	    offsetof(struct vge_txdesc, td_frag[0]),			\
249 	    sizeof(struct vge_txfrag) * (nsegs),			\
250 	    (ops))
251 #define VGE_RXDESCSYNC(sc, idx, ops)					\
252 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
253 	    VGE_CDRXOFF(idx),						\
254 	    sizeof(struct vge_rxdesc),					\
255 	    (ops))
256 
257 /*
258  * register space access macros
259  */
260 #define CSR_WRITE_4(sc, reg, val)	\
261 	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
262 #define CSR_WRITE_2(sc, reg, val)	\
263 	bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
264 #define CSR_WRITE_1(sc, reg, val)	\
265 	bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
266 
267 #define CSR_READ_4(sc, reg)		\
268 	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
269 #define CSR_READ_2(sc, reg)		\
270 	bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
271 #define CSR_READ_1(sc, reg)		\
272 	bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
273 
274 #define CSR_SETBIT_1(sc, reg, x)	\
275 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
276 #define CSR_SETBIT_2(sc, reg, x)	\
277 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
278 #define CSR_SETBIT_4(sc, reg, x)	\
279 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
280 
281 #define CSR_CLRBIT_1(sc, reg, x)	\
282 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
283 #define CSR_CLRBIT_2(sc, reg, x)	\
284 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
285 #define CSR_CLRBIT_4(sc, reg, x)	\
286 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
287 
288 #define VGE_TIMEOUT		10000
289 
290 #define VGE_PCI_LOIO		 0x10
291 #define VGE_PCI_LOMEM		 0x14
292 
293 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
294 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
295 
296 static int vge_ifflags_cb(struct ethercom *);
297 
298 static int vge_match(device_t, cfdata_t, void *);
299 static void vge_attach(device_t, device_t, void *);
300 
301 static int vge_encap(struct vge_softc *, struct mbuf *, int);
302 
303 static int vge_allocmem(struct vge_softc *);
304 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
305 #ifndef __NO_STRICT_ALIGNMENT
306 static inline void vge_fixup_rx(struct mbuf *);
307 #endif
308 static void vge_rxeof(struct vge_softc *);
309 static void vge_txeof(struct vge_softc *);
310 static int vge_intr(void *);
311 static void vge_tick(void *);
312 static void vge_start(struct ifnet *);
313 static int vge_ioctl(struct ifnet *, u_long, void *);
314 static int vge_init(struct ifnet *);
315 static void vge_stop(struct ifnet *, int);
316 static void vge_watchdog(struct ifnet *);
317 #if VGE_POWER_MANAGEMENT
318 static int vge_suspend(device_t);
319 static int vge_resume(device_t);
320 #endif
321 static bool vge_shutdown(device_t, int);
322 
323 static uint16_t vge_read_eeprom(struct vge_softc *, int);
324 
325 static void vge_miipoll_start(struct vge_softc *);
326 static void vge_miipoll_stop(struct vge_softc *);
327 static int vge_miibus_readreg(device_t, int, int, uint16_t *);
328 static int vge_miibus_writereg(device_t, int, int, uint16_t);
329 static void vge_miibus_statchg(struct ifnet *);
330 
331 static void vge_cam_clear(struct vge_softc *);
332 static int vge_cam_set(struct vge_softc *, uint8_t *);
333 static void	vge_clrwol(struct vge_softc *);
334 static void vge_setmulti(struct vge_softc *);
335 static void vge_reset(struct vge_softc *);
336 
337 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
338     vge_match, vge_attach, NULL, NULL);
339 
340 static inline void
vge_set_txaddr(struct vge_txfrag * f,bus_addr_t daddr)341 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
342 {
343 
344 	f->tf_addrlo = htole32((uint32_t)daddr);
345 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
346 		f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
347 	else
348 		f->tf_addrhi = 0;
349 }
350 
351 static inline void
vge_set_rxaddr(struct vge_rxdesc * rxd,bus_addr_t daddr)352 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
353 {
354 
355 	rxd->rd_addrlo = htole32((uint32_t)daddr);
356 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
357 		rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
358 	else
359 		rxd->rd_addrhi = 0;
360 }
361 
362 /*
363  * Read a word of data stored in the EEPROM at address 'addr.'
364  */
365 static uint16_t
vge_read_eeprom(struct vge_softc * sc,int addr)366 vge_read_eeprom(struct vge_softc *sc, int addr)
367 {
368 	int i;
369 	uint16_t word = 0;
370 
371 	/*
372 	 * Enter EEPROM embedded programming mode. In order to
373 	 * access the EEPROM at all, we first have to set the
374 	 * EELOAD bit in the CHIPCFG2 register.
375 	 */
376 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
377 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
378 
379 	/* Select the address of the word we want to read */
380 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
381 
382 	/* Issue read command */
383 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
384 
385 	/* Wait for the done bit to be set. */
386 	for (i = 0; i < VGE_TIMEOUT; i++) {
387 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
388 			break;
389 	}
390 
391 	if (i == VGE_TIMEOUT) {
392 		printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
393 		return 0;
394 	}
395 
396 	/* Read the result */
397 	word = CSR_READ_2(sc, VGE_EERDDAT);
398 
399 	/* Turn off EEPROM access mode. */
400 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
401 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
402 
403 	return word;
404 }
405 
406 static void
vge_miipoll_stop(struct vge_softc * sc)407 vge_miipoll_stop(struct vge_softc *sc)
408 {
409 	int i;
410 
411 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
412 
413 	for (i = 0; i < VGE_TIMEOUT; i++) {
414 		DELAY(1);
415 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
416 			break;
417 	}
418 
419 	if (i == VGE_TIMEOUT) {
420 		printf("%s: failed to idle MII autopoll\n",
421 		    device_xname(sc->sc_dev));
422 	}
423 }
424 
425 static void
vge_miipoll_start(struct vge_softc * sc)426 vge_miipoll_start(struct vge_softc *sc)
427 {
428 	int i;
429 
430 	/* First, make sure we're idle. */
431 
432 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
433 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
434 
435 	for (i = 0; i < VGE_TIMEOUT; i++) {
436 		DELAY(1);
437 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
438 			break;
439 	}
440 
441 	if (i == VGE_TIMEOUT) {
442 		printf("%s: failed to idle MII autopoll\n",
443 		    device_xname(sc->sc_dev));
444 		return;
445 	}
446 
447 	/* Now enable auto poll mode. */
448 
449 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
450 
451 	/* And make sure it started. */
452 
453 	for (i = 0; i < VGE_TIMEOUT; i++) {
454 		DELAY(1);
455 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
456 			break;
457 	}
458 
459 	if (i == VGE_TIMEOUT) {
460 		printf("%s: failed to start MII autopoll\n",
461 		    device_xname(sc->sc_dev));
462 	}
463 }
464 
465 static int
vge_miibus_readreg(device_t dev,int phy,int reg,uint16_t * val)466 vge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
467 {
468 	struct vge_softc *sc;
469 	int i, s;
470 	int rv = 0;
471 
472 	sc = device_private(dev);
473 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
474 		return -1;
475 
476 	s = splnet();
477 	vge_miipoll_stop(sc);
478 
479 	/* Specify the register we want to read. */
480 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
481 
482 	/* Issue read command. */
483 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
484 
485 	/* Wait for the read command bit to self-clear. */
486 	for (i = 0; i < VGE_TIMEOUT; i++) {
487 		DELAY(1);
488 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
489 			break;
490 	}
491 
492 	if (i == VGE_TIMEOUT) {
493 		printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
494 		rv = ETIMEDOUT;
495 	} else
496 		*val = CSR_READ_2(sc, VGE_MIIDATA);
497 
498 	vge_miipoll_start(sc);
499 	splx(s);
500 
501 	return rv;
502 }
503 
504 static int
vge_miibus_writereg(device_t dev,int phy,int reg,uint16_t val)505 vge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
506 {
507 	struct vge_softc *sc;
508 	int i, s, rv = 0;
509 
510 	sc = device_private(dev);
511 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
512 		return -1;
513 
514 	s = splnet();
515 	vge_miipoll_stop(sc);
516 
517 	/* Specify the register we want to write. */
518 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
519 
520 	/* Specify the data we want to write. */
521 	CSR_WRITE_2(sc, VGE_MIIDATA, val);
522 
523 	/* Issue write command. */
524 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
525 
526 	/* Wait for the write command bit to self-clear. */
527 	for (i = 0; i < VGE_TIMEOUT; i++) {
528 		DELAY(1);
529 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
530 			break;
531 	}
532 
533 	if (i == VGE_TIMEOUT) {
534 		printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
535 		rv = ETIMEDOUT;
536 	}
537 
538 	vge_miipoll_start(sc);
539 	splx(s);
540 
541 	return rv;
542 }
543 
544 static void
vge_cam_clear(struct vge_softc * sc)545 vge_cam_clear(struct vge_softc *sc)
546 {
547 	int i;
548 
549 	/*
550 	 * Turn off all the mask bits. This tells the chip
551 	 * that none of the entries in the CAM filter are valid.
552 	 * desired entries will be enabled as we fill the filter in.
553 	 */
554 
555 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
556 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
557 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
558 	for (i = 0; i < 8; i++)
559 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
560 
561 	/* Clear the VLAN filter too. */
562 
563 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | VGE_CAMADDR_AVSEL);
564 	for (i = 0; i < 8; i++)
565 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
566 
567 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
568 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
569 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
570 
571 	sc->sc_camidx = 0;
572 }
573 
574 static int
vge_cam_set(struct vge_softc * sc,uint8_t * addr)575 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
576 {
577 	int i, error;
578 
579 	error = 0;
580 
581 	if (sc->sc_camidx == VGE_CAM_MAXADDRS)
582 		return ENOSPC;
583 
584 	/* Select the CAM data page. */
585 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
586 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
587 
588 	/* Set the filter entry we want to update and enable writing. */
589 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
590 
591 	/* Write the address to the CAM registers */
592 	for (i = 0; i < ETHER_ADDR_LEN; i++)
593 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
594 
595 	/* Issue a write command. */
596 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
597 
598 	/* Wake for it to clear. */
599 	for (i = 0; i < VGE_TIMEOUT; i++) {
600 		DELAY(1);
601 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
602 			break;
603 	}
604 
605 	if (i == VGE_TIMEOUT) {
606 		printf("%s: setting CAM filter failed\n",
607 		    device_xname(sc->sc_dev));
608 		error = EIO;
609 		goto fail;
610 	}
611 
612 	/* Select the CAM mask page. */
613 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
614 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
615 
616 	/* Set the mask bit that enables this filter. */
617 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
618 	    1 << (sc->sc_camidx & 7));
619 
620 	sc->sc_camidx++;
621 
622  fail:
623 	/* Turn off access to CAM. */
624 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
625 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
626 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
627 
628 	return error;
629 }
630 
631 /*
632  * Program the multicast filter. We use the 64-entry CAM filter
633  * for perfect filtering. If there's more than 64 multicast addresses,
634  * we use the hash filter instead.
635  */
636 static void
vge_setmulti(struct vge_softc * sc)637 vge_setmulti(struct vge_softc *sc)
638 {
639 	struct ethercom *ec = &sc->sc_ethercom;
640 	struct ifnet *ifp = &ec->ec_if;
641 	int error;
642 	uint32_t h, hashes[2] = { 0, 0 };
643 	struct ether_multi *enm;
644 	struct ether_multistep step;
645 
646 	error = 0;
647 
648 	/* First, zot all the multicast entries. */
649 	vge_cam_clear(sc);
650 	CSR_WRITE_4(sc, VGE_MAR0, 0);
651 	CSR_WRITE_4(sc, VGE_MAR1, 0);
652 	ifp->if_flags &= ~IFF_ALLMULTI;
653 
654 	/*
655 	 * If the user wants allmulti or promisc mode, enable reception
656 	 * of all multicast frames.
657 	 */
658 	if (ifp->if_flags & IFF_PROMISC) {
659  allmulti:
660 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
661 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
662 		ifp->if_flags |= IFF_ALLMULTI;
663 		return;
664 	}
665 
666 	/* Now program new ones */
667 	ETHER_LOCK(ec);
668 	ETHER_FIRST_MULTI(step, ec, enm);
669 	while (enm != NULL) {
670 		/*
671 		 * If multicast range, fall back to ALLMULTI.
672 		 */
673 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
674 		    ETHER_ADDR_LEN) != 0) {
675 			ETHER_UNLOCK(ec);
676 			goto allmulti;
677 		}
678 
679 		error = vge_cam_set(sc, enm->enm_addrlo);
680 		if (error)
681 			break;
682 
683 		ETHER_NEXT_MULTI(step, enm);
684 	}
685 	ETHER_UNLOCK(ec);
686 
687 	/* If there were too many addresses, use the hash filter. */
688 	if (error) {
689 		vge_cam_clear(sc);
690 
691 		ETHER_LOCK(ec);
692 		ETHER_FIRST_MULTI(step, ec, enm);
693 		while (enm != NULL) {
694 			/*
695 			 * If multicast range, fall back to ALLMULTI.
696 			 */
697 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
698 			    ETHER_ADDR_LEN) != 0) {
699 				ETHER_UNLOCK(ec);
700 				goto allmulti;
701 			}
702 
703 			h = ether_crc32_be(enm->enm_addrlo,
704 			    ETHER_ADDR_LEN) >> 26;
705 			hashes[h >> 5] |= 1 << (h & 0x1f);
706 
707 			ETHER_NEXT_MULTI(step, enm);
708 		}
709 		ETHER_UNLOCK(ec);
710 
711 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
712 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
713 	}
714 }
715 
716 static void
vge_reset(struct vge_softc * sc)717 vge_reset(struct vge_softc *sc)
718 {
719 	int i;
720 
721 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
722 
723 	for (i = 0; i < VGE_TIMEOUT; i++) {
724 		DELAY(5);
725 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
726 			break;
727 	}
728 
729 	if (i == VGE_TIMEOUT) {
730 		printf("%s: soft reset timed out", device_xname(sc->sc_dev));
731 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
732 		DELAY(2000);
733 	}
734 
735 	DELAY(5000);
736 
737 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
738 
739 	for (i = 0; i < VGE_TIMEOUT; i++) {
740 		DELAY(5);
741 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
742 			break;
743 	}
744 
745 	if (i == VGE_TIMEOUT) {
746 		printf("%s: EEPROM reload timed out\n",
747 		    device_xname(sc->sc_dev));
748 		return;
749 	}
750 
751 	/*
752 	 * On some machine, the first read data from EEPROM could be
753 	 * messed up, so read one dummy data here to avoid the mess.
754 	 */
755 	(void)vge_read_eeprom(sc, 0);
756 
757 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
758 }
759 
760 /*
761  * Probe for a VIA gigabit chip. Check the PCI vendor and device
762  * IDs against our list and return a device name if we find a match.
763  */
764 static int
vge_match(device_t parent,cfdata_t match,void * aux)765 vge_match(device_t parent, cfdata_t match, void *aux)
766 {
767 	struct pci_attach_args *pa = aux;
768 
769 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
770 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
771 		return 1;
772 
773 	return 0;
774 }
775 
776 static int
vge_allocmem(struct vge_softc * sc)777 vge_allocmem(struct vge_softc *sc)
778 {
779 	int error;
780 	int nseg;
781 	int i;
782 	bus_dma_segment_t seg;
783 
784 	/*
785 	 * Allocate memory for control data.
786 	 *
787 	 * NOTE: This must all fit within the same 4GB segment.  The
788 	 * "boundary" argument to bus_dmamem_alloc() will end up as
789 	 * 4GB on 64-bit platforms and 0 ("no boundary constraint") on
790 	 * 32-bit platformds.
791 	 */
792 
793 	error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
794 	     VGE_RING_ALIGN,
795 	     (bus_size_t)(1ULL << 32),
796 	     &seg, 1, &nseg, BUS_DMA_NOWAIT);
797 	if (error) {
798 		aprint_error_dev(sc->sc_dev,
799 		    "could not allocate control data dma memory\n");
800 		goto fail_1;
801 	}
802 
803 	/* Map the memory to kernel VA space */
804 
805 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
806 	    sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
807 	    BUS_DMA_NOWAIT);
808 	if (error) {
809 		aprint_error_dev(sc->sc_dev,
810 		    "could not map control data dma memory\n");
811 		goto fail_2;
812 	}
813 	memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
814 
815 	/*
816 	 * Create map for control data.
817 	 */
818 	error = bus_dmamap_create(sc->sc_dmat,
819 	    sizeof(struct vge_control_data), 1,
820 	    sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
821 	    &sc->sc_cddmamap);
822 	if (error) {
823 		aprint_error_dev(sc->sc_dev,
824 		    "could not create control data dmamap\n");
825 		goto fail_3;
826 	}
827 
828 	/* Load the map for the control data. */
829 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
830 	    sc->sc_control_data, sizeof(struct vge_control_data), NULL,
831 	    BUS_DMA_NOWAIT);
832 	if (error) {
833 		aprint_error_dev(sc->sc_dev,
834 		    "could not load control data dma memory\n");
835 		goto fail_4;
836 	}
837 
838 	/* Create DMA maps for TX buffers */
839 
840 	for (i = 0; i < VGE_NTXDESC; i++) {
841 		error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
842 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
843 		    &sc->sc_txsoft[i].txs_dmamap);
844 		if (error) {
845 			aprint_error_dev(sc->sc_dev,
846 			    "can't create DMA map for TX descs\n");
847 			goto fail_5;
848 		}
849 	}
850 
851 	/* Create DMA maps for RX buffers */
852 
853 	for (i = 0; i < VGE_NRXDESC; i++) {
854 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
855 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
856 		    &sc->sc_rxsoft[i].rxs_dmamap);
857 		if (error) {
858 			aprint_error_dev(sc->sc_dev,
859 			    "can't create DMA map for RX descs\n");
860 			goto fail_6;
861 		}
862 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
863 	}
864 
865 	return 0;
866 
867  fail_6:
868 	for (i = 0; i < VGE_NRXDESC; i++) {
869 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
870 			bus_dmamap_destroy(sc->sc_dmat,
871 			    sc->sc_rxsoft[i].rxs_dmamap);
872 	}
873  fail_5:
874 	for (i = 0; i < VGE_NTXDESC; i++) {
875 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
876 			bus_dmamap_destroy(sc->sc_dmat,
877 			    sc->sc_txsoft[i].txs_dmamap);
878 	}
879 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
880  fail_4:
881 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
882  fail_3:
883 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
884 	    sizeof(struct vge_control_data));
885  fail_2:
886 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
887  fail_1:
888 	return ENOMEM;
889 }
890 
891 /*
892  * Attach the interface. Allocate softc structures, do ifmedia
893  * setup and ethernet/BPF attach.
894  */
895 static void
vge_attach(device_t parent,device_t self,void * aux)896 vge_attach(device_t parent, device_t self, void *aux)
897 {
898 	uint8_t	*eaddr;
899 	struct vge_softc *sc = device_private(self);
900 	struct ifnet *ifp;
901 	struct mii_data * const mii = &sc->sc_mii;
902 	struct pci_attach_args *pa = aux;
903 	pci_chipset_tag_t pc = pa->pa_pc;
904 	const char *intrstr;
905 	pci_intr_handle_t ih;
906 	uint16_t val;
907 	char intrbuf[PCI_INTRSTR_LEN];
908 
909 	sc->sc_dev = self;
910 
911 	pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
912 
913 	/* Make sure bus-mastering is enabled */
914 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
915 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
916 	    PCI_COMMAND_MASTER_ENABLE);
917 
918 	/*
919 	 * Map control/status registers.
920 	 */
921 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
922 	    &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
923 		aprint_error_dev(self, "couldn't map memory\n");
924 		return;
925 	}
926 
927 	/*
928 	 * Map and establish our interrupt.
929 	 */
930 	if (pci_intr_map(pa, &ih)) {
931 		aprint_error_dev(self, "unable to map interrupt\n");
932 		return;
933 	}
934 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
935 	sc->sc_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, vge_intr,
936 	    sc, device_xname(self));
937 	if (sc->sc_intrhand == NULL) {
938 		aprint_error_dev(self, "unable to establish interrupt");
939 		if (intrstr != NULL)
940 			aprint_error(" at %s", intrstr);
941 		aprint_error("\n");
942 		return;
943 	}
944 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
945 
946 	/* Reset the adapter. */
947 	vge_reset(sc);
948 
949 	/*
950 	 * Get station address from the EEPROM.
951 	 */
952 	eaddr = sc->sc_eaddr;
953 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
954 	eaddr[0] = val & 0xff;
955 	eaddr[1] = val >> 8;
956 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
957 	eaddr[2] = val & 0xff;
958 	eaddr[3] = val >> 8;
959 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
960 	eaddr[4] = val & 0xff;
961 	eaddr[5] = val >> 8;
962 
963 	aprint_normal_dev(self, "Ethernet address %s\n",
964 	    ether_sprintf(eaddr));
965 
966 	/* Clear WOL and take hardware from powerdown. */
967 	vge_clrwol(sc);
968 
969 	/*
970 	 * The hardware supports 64-bit DMA addresses, but it's a little
971 	 * complicated (see large comment about the hardware near the top
972 	 * of the file).  TL;DR -- restrict ourselves to 48-bit.
973 	 */
974 	if (pci_dma64_available(pa)) {
975 		if (bus_dmatag_subregion(pa->pa_dmat64,
976 					 0,
977 					 (bus_addr_t)__MASK(48),
978 					 &sc->sc_dmat,
979 					 BUS_DMA_WAITOK) != 0) {
980 			aprint_error_dev(self,
981 			    "WARNING: failed to restrict dma range,"
982 			    " falling back to parent bus dma range\n");
983 			sc->sc_dmat = pa->pa_dmat64;
984 		}
985 	} else {
986 		sc->sc_dmat = pa->pa_dmat;
987 	}
988 
989 	if (vge_allocmem(sc) != 0)
990 		return;
991 
992 	ifp = &sc->sc_ethercom.ec_if;
993 	ifp->if_softc = sc;
994 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
995 	ifp->if_mtu = ETHERMTU;
996 	ifp->if_baudrate = IF_Gbps(1);
997 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
998 	ifp->if_ioctl = vge_ioctl;
999 	ifp->if_start = vge_start;
1000 	ifp->if_init = vge_init;
1001 	ifp->if_stop = vge_stop;
1002 
1003 	/*
1004 	 * We can support 802.1Q VLAN-sized frames and jumbo
1005 	 * Ethernet frames.
1006 	 */
1007 	sc->sc_ethercom.ec_capabilities |=
1008 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
1009 	    ETHERCAP_VLAN_HWTAGGING;
1010 	sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1011 
1012 	/*
1013 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
1014 	 */
1015 	ifp->if_capabilities |=
1016 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1017 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1018 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1019 
1020 #ifdef DEVICE_POLLING
1021 #ifdef IFCAP_POLLING
1022 	ifp->if_capabilities |= IFCAP_POLLING;
1023 #endif
1024 #endif
1025 	ifp->if_watchdog = vge_watchdog;
1026 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
1027 	IFQ_SET_READY(&ifp->if_snd);
1028 
1029 	/*
1030 	 * Initialize our media structures and probe the MII.
1031 	 */
1032 	mii->mii_ifp = ifp;
1033 	mii->mii_readreg = vge_miibus_readreg;
1034 	mii->mii_writereg = vge_miibus_writereg;
1035 	mii->mii_statchg = vge_miibus_statchg;
1036 
1037 	sc->sc_ethercom.ec_mii = mii;
1038 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1039 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1040 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
1041 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1042 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1043 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1044 	} else
1045 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1046 
1047 	/*
1048 	 * Attach the interface.
1049 	 */
1050 	if_attach(ifp);
1051 	if_deferred_start_init(ifp, NULL);
1052 	ether_ifattach(ifp, eaddr);
1053 	ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
1054 
1055 	callout_init(&sc->sc_timeout, 0);
1056 	callout_setfunc(&sc->sc_timeout, vge_tick, sc);
1057 
1058 	/*
1059 	 * Make sure the interface is shutdown during reboot.
1060 	 */
1061 	if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
1062 		pmf_class_network_register(self, ifp);
1063 	else
1064 		aprint_error_dev(self, "couldn't establish power handler\n");
1065 }
1066 
1067 static int
vge_newbuf(struct vge_softc * sc,int idx,struct mbuf * m)1068 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1069 {
1070 	struct mbuf *m_new;
1071 	struct vge_rxdesc *rxd;
1072 	struct vge_rxsoft *rxs;
1073 	bus_dmamap_t map;
1074 	int i;
1075 #ifdef DIAGNOSTIC
1076 	uint32_t rd_sts;
1077 #endif
1078 
1079 	m_new = NULL;
1080 	if (m == NULL) {
1081 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1082 		if (m_new == NULL)
1083 			return ENOBUFS;
1084 
1085 		MCLGET(m_new, M_DONTWAIT);
1086 		if ((m_new->m_flags & M_EXT) == 0) {
1087 			m_freem(m_new);
1088 			return ENOBUFS;
1089 		}
1090 
1091 		m = m_new;
1092 	} else
1093 		m->m_data = m->m_ext.ext_buf;
1094 
1095 
1096 	/*
1097 	 * This is part of an evil trick to deal with non-x86 platforms.
1098 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1099 	 * boundaries, but that will hose non-x86 machines. To get around
1100 	 * this, we leave some empty space at the start of each buffer
1101 	 * and for non-x86 hosts, we copy the buffer back two bytes
1102 	 * to achieve word alignment. This is slightly more efficient
1103 	 * than allocating a new buffer, copying the contents, and
1104 	 * discarding the old buffer.
1105 	 */
1106 	m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
1107 #ifndef __NO_STRICT_ALIGNMENT
1108 	m->m_data += VGE_RX_PAD;
1109 #endif
1110 	rxs = &sc->sc_rxsoft[idx];
1111 	map = rxs->rxs_dmamap;
1112 
1113 	if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
1114 		goto out;
1115 
1116 	rxd = &sc->sc_rxdescs[idx];
1117 
1118 #ifdef DIAGNOSTIC
1119 	/* If this descriptor is still owned by the chip, bail. */
1120 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1121 	rd_sts = le32toh(rxd->rd_sts);
1122 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1123 	if (rd_sts & VGE_RDSTS_OWN) {
1124 		panic("%s: tried to map busy RX descriptor",
1125 		    device_xname(sc->sc_dev));
1126 	}
1127 #endif
1128 
1129 	rxs->rxs_mbuf = m;
1130 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1131 	    BUS_DMASYNC_PREREAD);
1132 
1133 	rxd->rd_buflen =
1134 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
1135 	vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
1136 	rxd->rd_sts = 0;
1137 	rxd->rd_ctl = 0;
1138 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1139 
1140 	/*
1141 	 * Note: the manual fails to document the fact that for
1142 	 * proper operation, the driver needs to replentish the RX
1143 	 * DMA ring 4 descriptors at a time (rather than one at a
1144 	 * time, like most chips). We can allocate the new buffers
1145 	 * but we should not set the OWN bits until we're ready
1146 	 * to hand back 4 of them in one shot.
1147 	 */
1148 
1149 #define VGE_RXCHUNK 4
1150 	sc->sc_rx_consumed++;
1151 	if (sc->sc_rx_consumed == VGE_RXCHUNK) {
1152 		for (i = idx; i != idx - VGE_RXCHUNK; i--) {
1153 			KASSERT(i >= 0);
1154 			sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
1155 			VGE_RXDESCSYNC(sc, i,
1156 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1157 		}
1158 		sc->sc_rx_consumed = 0;
1159 	}
1160 
1161 	return 0;
1162  out:
1163 	if (m_new != NULL)
1164 		m_freem(m_new);
1165 	return ENOMEM;
1166 }
1167 
1168 #ifndef __NO_STRICT_ALIGNMENT
1169 static inline void
vge_fixup_rx(struct mbuf * m)1170 vge_fixup_rx(struct mbuf *m)
1171 {
1172 	int i;
1173 	uint16_t *src, *dst;
1174 
1175 	src = mtod(m, uint16_t *);
1176 	dst = src - 1;
1177 
1178 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1179 		*dst++ = *src++;
1180 
1181 	m->m_data -= ETHER_ALIGN;
1182 }
1183 #endif
1184 
1185 /*
1186  * RX handler. We support the reception of jumbo frames that have
1187  * been fragmented across multiple 2K mbuf cluster buffers.
1188  */
1189 static void
vge_rxeof(struct vge_softc * sc)1190 vge_rxeof(struct vge_softc *sc)
1191 {
1192 	struct mbuf *m;
1193 	struct ifnet *ifp;
1194 	int idx, total_len, lim;
1195 	struct vge_rxdesc *cur_rxd;
1196 	struct vge_rxsoft *rxs;
1197 	uint32_t rxstat, rxctl;
1198 
1199 	ifp = &sc->sc_ethercom.ec_if;
1200 	lim = 0;
1201 
1202 	/* Invalidate the descriptor memory */
1203 
1204 	for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
1205 		cur_rxd = &sc->sc_rxdescs[idx];
1206 
1207 		VGE_RXDESCSYNC(sc, idx,
1208 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1209 		rxstat = le32toh(cur_rxd->rd_sts);
1210 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
1211 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1212 			break;
1213 		}
1214 
1215 		rxctl = le32toh(cur_rxd->rd_ctl);
1216 		rxs = &sc->sc_rxsoft[idx];
1217 		m = rxs->rxs_mbuf;
1218 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
1219 
1220 		/* Invalidate the RX mbuf and unload its map */
1221 
1222 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
1223 		    0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1224 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1225 
1226 		/*
1227 		 * If the 'start of frame' bit is set, this indicates
1228 		 * either the first fragment in a multi-fragment receive,
1229 		 * or an intermediate fragment. Either way, we want to
1230 		 * accumulate the buffers.
1231 		 */
1232 		if (rxstat & VGE_RXPKT_SOF) {
1233 			m->m_len = VGE_RX_BUFSIZE;
1234 			if (sc->sc_rx_mhead == NULL)
1235 				sc->sc_rx_mhead = sc->sc_rx_mtail = m;
1236 			else {
1237 				m->m_flags &= ~M_PKTHDR;
1238 				sc->sc_rx_mtail->m_next = m;
1239 				sc->sc_rx_mtail = m;
1240 			}
1241 			vge_newbuf(sc, idx, NULL);
1242 			continue;
1243 		}
1244 
1245 		/*
1246 		 * Bad/error frames will have the RXOK bit cleared.
1247 		 * However, there's one error case we want to allow:
1248 		 * if a VLAN tagged frame arrives and the chip can't
1249 		 * match it against the CAM filter, it considers this
1250 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1251 		 * We don't want to drop the frame though: our VLAN
1252 		 * filtering is done in software.
1253 		 */
1254 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1255 		    (rxstat & VGE_RDSTS_VIDM) == 0 &&
1256 		    (rxstat & VGE_RDSTS_CSUMERR) == 0) {
1257 			if_statinc(ifp, if_ierrors);
1258 			/*
1259 			 * If this is part of a multi-fragment packet,
1260 			 * discard all the pieces.
1261 			 */
1262 			if (sc->sc_rx_mhead != NULL) {
1263 				m_freem(sc->sc_rx_mhead);
1264 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1265 			}
1266 			vge_newbuf(sc, idx, m);
1267 			continue;
1268 		}
1269 
1270 		/*
1271 		 * If allocating a replacement mbuf fails,
1272 		 * reload the current one.
1273 		 */
1274 
1275 		if (vge_newbuf(sc, idx, NULL)) {
1276 			if_statinc(ifp, if_ierrors);
1277 			if (sc->sc_rx_mhead != NULL) {
1278 				m_freem(sc->sc_rx_mhead);
1279 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1280 			}
1281 			vge_newbuf(sc, idx, m);
1282 			continue;
1283 		}
1284 
1285 		if (sc->sc_rx_mhead != NULL) {
1286 			m->m_len = total_len % VGE_RX_BUFSIZE;
1287 			/*
1288 			 * Special case: if there's 4 bytes or less
1289 			 * in this buffer, the mbuf can be discarded:
1290 			 * the last 4 bytes is the CRC, which we don't
1291 			 * care about anyway.
1292 			 */
1293 			if (m->m_len <= ETHER_CRC_LEN) {
1294 				sc->sc_rx_mtail->m_len -=
1295 				    (ETHER_CRC_LEN - m->m_len);
1296 				m_freem(m);
1297 			} else {
1298 				m->m_len -= ETHER_CRC_LEN;
1299 				m->m_flags &= ~M_PKTHDR;
1300 				sc->sc_rx_mtail->m_next = m;
1301 			}
1302 			m = sc->sc_rx_mhead;
1303 			sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1304 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1305 		} else
1306 			m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1307 
1308 #ifndef __NO_STRICT_ALIGNMENT
1309 		vge_fixup_rx(m);
1310 #endif
1311 		m_set_rcvif(m, ifp);
1312 
1313 		/* Do RX checksumming if enabled */
1314 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1315 
1316 			/* Check IP header checksum */
1317 			if (rxctl & VGE_RDCTL_IPPKT)
1318 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1319 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1320 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1321 		}
1322 
1323 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1324 			/* Check UDP checksum */
1325 			if (rxctl & VGE_RDCTL_TCPPKT)
1326 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1327 
1328 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1329 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1330 		}
1331 
1332 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1333 			/* Check UDP checksum */
1334 			if (rxctl & VGE_RDCTL_UDPPKT)
1335 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1336 
1337 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1338 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1339 		}
1340 
1341 		if (rxstat & VGE_RDSTS_VTAG) {
1342 			/*
1343 			 * We use bswap16() here because:
1344 			 * On LE machines, tag is stored in BE as stream data.
1345 			 * On BE machines, tag is stored in BE as stream data
1346 			 *  but it was already swapped by le32toh() above.
1347 			 */
1348 			vlan_set_tag(m, bswap16(rxctl & VGE_RDCTL_VLANID));
1349 		}
1350 
1351 		if_percpuq_enqueue(ifp->if_percpuq, m);
1352 
1353 		lim++;
1354 		if (lim == VGE_NRXDESC)
1355 			break;
1356 	}
1357 
1358 	sc->sc_rx_prodidx = idx;
1359 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1360 }
1361 
1362 static void
vge_txeof(struct vge_softc * sc)1363 vge_txeof(struct vge_softc *sc)
1364 {
1365 	struct ifnet *ifp;
1366 	struct vge_txsoft *txs;
1367 	uint32_t txstat;
1368 	int idx;
1369 
1370 	ifp = &sc->sc_ethercom.ec_if;
1371 
1372 	for (idx = sc->sc_tx_considx;
1373 	    sc->sc_tx_free < VGE_NTXDESC;
1374 	    idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
1375 		VGE_TXDESCSYNC(sc, idx,
1376 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1377 		txstat = le32toh(sc->sc_txdescs[idx].td_sts);
1378 		VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1379 		if (txstat & VGE_TDSTS_OWN) {
1380 			break;
1381 		}
1382 
1383 		txs = &sc->sc_txsoft[idx];
1384 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1385 		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1386 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1387 		m_freem(txs->txs_mbuf);
1388 		txs->txs_mbuf = NULL;
1389 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1390 		if (txstat & (VGE_TDSTS_EXCESSCOLL | VGE_TDSTS_COLL))
1391 			if_statinc_ref(nsr, if_collisions);
1392 		if (txstat & VGE_TDSTS_TXERR)
1393 			if_statinc_ref(nsr, if_oerrors);
1394 		else
1395 			if_statinc_ref(nsr, if_opackets);
1396 		IF_STAT_PUTREF(ifp);
1397 	}
1398 
1399 	sc->sc_tx_considx = idx;
1400 
1401 	/*
1402 	 * If not all descriptors have been released reaped yet,
1403 	 * reload the timer so that we will eventually get another
1404 	 * interrupt that will cause us to re-enter this routine.
1405 	 * This is done in case the transmitter has gone idle.
1406 	 */
1407 	if (sc->sc_tx_free < VGE_NTXDESC)
1408 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1409 	else
1410 		ifp->if_timer = 0;
1411 }
1412 
1413 static void
vge_tick(void * arg)1414 vge_tick(void *arg)
1415 {
1416 	struct vge_softc *sc;
1417 	struct ifnet *ifp;
1418 	struct mii_data *mii;
1419 	int s;
1420 
1421 	sc = arg;
1422 	ifp = &sc->sc_ethercom.ec_if;
1423 	mii = &sc->sc_mii;
1424 
1425 	s = splnet();
1426 
1427 	callout_schedule(&sc->sc_timeout, hz);
1428 
1429 	mii_tick(mii);
1430 	if (sc->sc_link) {
1431 		if ((mii->mii_media_status & IFM_ACTIVE) == 0)
1432 			sc->sc_link = 0;
1433 	} else {
1434 		if (mii->mii_media_status & IFM_ACTIVE &&
1435 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1436 			sc->sc_link = 1;
1437 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1438 				vge_start(ifp);
1439 		}
1440 	}
1441 
1442 	splx(s);
1443 }
1444 
1445 static int
vge_intr(void * arg)1446 vge_intr(void *arg)
1447 {
1448 	struct vge_softc *sc;
1449 	struct ifnet *ifp;
1450 	uint32_t status;
1451 	int claim;
1452 
1453 	sc = arg;
1454 	claim = 0;
1455 	if (sc->sc_suspended) {
1456 		return claim;
1457 	}
1458 
1459 	ifp = &sc->sc_ethercom.ec_if;
1460 
1461 	if ((ifp->if_flags & IFF_UP) == 0) {
1462 		return claim;
1463 	}
1464 
1465 	/* Disable interrupts */
1466 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1467 
1468 	for (;;) {
1469 
1470 		status = CSR_READ_4(sc, VGE_ISR);
1471 		/* If the card has gone away the read returns 0xffffffff. */
1472 		if (status == 0xFFFFFFFF)
1473 			break;
1474 
1475 		if (status) {
1476 			claim = 1;
1477 			CSR_WRITE_4(sc, VGE_ISR, status);
1478 		}
1479 
1480 		if ((status & VGE_INTRS) == 0)
1481 			break;
1482 
1483 		if (status & (VGE_ISR_RXOK | VGE_ISR_RXOK_HIPRIO))
1484 			vge_rxeof(sc);
1485 
1486 		if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
1487 			vge_rxeof(sc);
1488 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1489 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1490 		}
1491 
1492 		if (status & (VGE_ISR_TXOK0 | VGE_ISR_TIMER0))
1493 			vge_txeof(sc);
1494 
1495 		if (status & (VGE_ISR_TXDMA_STALL | VGE_ISR_RXDMA_STALL))
1496 			vge_init(ifp);
1497 
1498 		if (status & VGE_ISR_LINKSTS)
1499 			vge_tick(sc);
1500 	}
1501 
1502 	/* Re-enable interrupts */
1503 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1504 
1505 	if (claim)
1506 		if_schedule_deferred_start(ifp);
1507 
1508 	return claim;
1509 }
1510 
1511 static int
vge_encap(struct vge_softc * sc,struct mbuf * m_head,int idx)1512 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1513 {
1514 	struct vge_txsoft *txs;
1515 	struct vge_txdesc *txd;
1516 	struct vge_txfrag *f;
1517 	struct mbuf *m_new;
1518 	bus_dmamap_t map;
1519 	int m_csumflags, seg, error, flags;
1520 	size_t sz;
1521 	uint32_t td_sts, td_ctl;
1522 
1523 	KASSERT(sc->sc_tx_free > 0);
1524 
1525 	txd = &sc->sc_txdescs[idx];
1526 
1527 #ifdef DIAGNOSTIC
1528 	/* If this descriptor is still owned by the chip, bail. */
1529 	VGE_TXDESCSYNC(sc, idx,
1530 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1531 	td_sts = le32toh(txd->td_sts);
1532 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1533 	if (td_sts & VGE_TDSTS_OWN) {
1534 		return ENOBUFS;
1535 	}
1536 #endif
1537 
1538 	/*
1539 	 * Preserve m_pkthdr.csum_flags here since m_head might be
1540 	 * updated by m_defrag()
1541 	 */
1542 	m_csumflags = m_head->m_pkthdr.csum_flags;
1543 
1544 	txs = &sc->sc_txsoft[idx];
1545 	map = txs->txs_dmamap;
1546 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
1547 
1548 	/* If too many segments to map, coalesce */
1549 	if (error == EFBIG ||
1550 	    (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
1551 	     map->dm_nsegs == VGE_TX_FRAGS)) {
1552 		m_new = m_defrag(m_head, M_DONTWAIT);
1553 		if (m_new == NULL)
1554 			return EFBIG;
1555 
1556 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1557 		    m_new, BUS_DMA_NOWAIT);
1558 		if (error) {
1559 			m_freem(m_new);
1560 			return error;
1561 		}
1562 
1563 		m_head = m_new;
1564 	} else if (error)
1565 		return error;
1566 
1567 	txs->txs_mbuf = m_head;
1568 
1569 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1570 	    BUS_DMASYNC_PREWRITE);
1571 
1572 	for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
1573 		f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
1574 		vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
1575 	}
1576 
1577 	/* Argh. This chip does not autopad short frames */
1578 	sz = m_head->m_pkthdr.len;
1579 	if (sz < ETHER_PAD_LEN) {
1580 		f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
1581 		vge_set_txaddr(f, VGE_CDPADADDR(sc));
1582 		sz = ETHER_PAD_LEN;
1583 		seg++;
1584 	}
1585 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
1586 
1587 	/*
1588 	 * When telling the chip how many segments there are, we
1589 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1590 	 * know why.
1591 	 */
1592 	seg++;
1593 
1594 	flags = 0;
1595 	if (m_csumflags & M_CSUM_IPv4)
1596 		flags |= VGE_TDCTL_IPCSUM;
1597 	if (m_csumflags & M_CSUM_TCPv4)
1598 		flags |= VGE_TDCTL_TCPCSUM;
1599 	if (m_csumflags & M_CSUM_UDPv4)
1600 		flags |= VGE_TDCTL_UDPCSUM;
1601 	td_sts = sz << 16;
1602 	td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
1603 
1604 	if (sz > ETHERMTU + ETHER_HDR_LEN)
1605 		td_ctl |= VGE_TDCTL_JUMBO;
1606 
1607 	/*
1608 	 * Set up hardware VLAN tagging.
1609 	 */
1610 	if (vlan_has_tag(m_head)) {
1611 		/*
1612 		 * No need htons() here since vge(4) chip assumes
1613 		 * that tags are written in little endian and
1614 		 * we already use htole32() here.
1615 		 */
1616 		td_ctl |= vlan_get_tag(m_head) | VGE_TDCTL_VTAG;
1617 	}
1618 	txd->td_ctl = htole32(td_ctl);
1619 	txd->td_sts = htole32(td_sts);
1620 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1621 
1622 	txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
1623 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1624 
1625 	sc->sc_tx_free--;
1626 
1627 	return 0;
1628 }
1629 
1630 /*
1631  * Main transmit routine.
1632  */
1633 
1634 static void
vge_start(struct ifnet * ifp)1635 vge_start(struct ifnet *ifp)
1636 {
1637 	struct vge_softc *sc;
1638 	struct vge_txsoft *txs;
1639 	struct mbuf *m_head;
1640 	int idx, pidx, ofree, error;
1641 
1642 	sc = ifp->if_softc;
1643 
1644 	if (!sc->sc_link ||
1645 	    (ifp->if_flags & IFF_RUNNING) == 0) {
1646 		return;
1647 	}
1648 
1649 	m_head = NULL;
1650 	idx = sc->sc_tx_prodidx;
1651 	pidx = VGE_PREV_TXDESC(idx);
1652 	ofree = sc->sc_tx_free;
1653 
1654 	/*
1655 	 * Loop through the send queue, setting up transmit descriptors
1656 	 * until we drain the queue, or use up all available transmit
1657 	 * descriptors.
1658 	 */
1659 	while (sc->sc_tx_free != 0) {
1660 		/* Grab a packet off the queue. */
1661 		IFQ_POLL(&ifp->if_snd, m_head);
1662 		if (m_head == NULL)
1663 			break;
1664 
1665 		txs = &sc->sc_txsoft[idx];
1666 		KASSERT(txs->txs_mbuf == NULL);
1667 
1668 		if ((error = vge_encap(sc, m_head, idx))) {
1669 			if (error == EFBIG) {
1670 				printf("%s: Tx packet consumes too many "
1671 				    "DMA segments, dropping...\n",
1672 				    device_xname(sc->sc_dev));
1673 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
1674 				m_freem(m_head);
1675 				continue;
1676 			}
1677 
1678 			/*
1679 			 * Short on resources, just stop for now.
1680 			 */
1681 			break;
1682 		}
1683 
1684 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1685 
1686 		/*
1687 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1688 		 */
1689 
1690 		sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
1691 		    htole16(VGE_TXDESC_Q);
1692 		VGE_TXFRAGSYNC(sc, pidx, 1,
1693 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1694 
1695 		if (txs->txs_mbuf != m_head) {
1696 			m_freem(m_head);
1697 			m_head = txs->txs_mbuf;
1698 		}
1699 
1700 		pidx = idx;
1701 		idx = VGE_NEXT_TXDESC(idx);
1702 
1703 		/*
1704 		 * If there's a BPF listener, bounce a copy of this frame
1705 		 * to him.
1706 		 */
1707 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1708 	}
1709 
1710 	if (sc->sc_tx_free < ofree) {
1711 		/* TX packet queued */
1712 
1713 		sc->sc_tx_prodidx = idx;
1714 
1715 		/* Issue a transmit command. */
1716 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1717 
1718 		/*
1719 		 * Use the countdown timer for interrupt moderation.
1720 		 * 'TX done' interrupts are disabled. Instead, we reset the
1721 		 * countdown timer, which will begin counting until it hits
1722 		 * the value in the SSTIMER register, and then trigger an
1723 		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1724 		 * the timer count is reloaded. Only when the transmitter
1725 		 * is idle will the timer hit 0 and an interrupt fire.
1726 		 */
1727 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1728 
1729 		/*
1730 		 * Set a timeout in case the chip goes out to lunch.
1731 		 */
1732 		ifp->if_timer = 5;
1733 	}
1734 }
1735 
1736 static int
vge_init(struct ifnet * ifp)1737 vge_init(struct ifnet *ifp)
1738 {
1739 	struct vge_softc *sc;
1740 	int i, rc = 0;
1741 
1742 	sc = ifp->if_softc;
1743 
1744 	/*
1745 	 * Cancel pending I/O and free all RX/TX buffers.
1746 	 */
1747 	vge_stop(ifp, 0);
1748 	vge_reset(sc);
1749 
1750 	/* Initialize the RX descriptors and mbufs. */
1751 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
1752 	sc->sc_rx_consumed = 0;
1753 	for (i = 0; i < VGE_NRXDESC; i++) {
1754 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1755 			printf("%s: unable to allocate or map rx buffer\n",
1756 			    device_xname(sc->sc_dev));
1757 			return 1; /* XXX */
1758 		}
1759 	}
1760 	sc->sc_rx_prodidx = 0;
1761 	sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1762 
1763 	/* Initialize the  TX descriptors and mbufs. */
1764 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1765 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
1766 	    VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
1767 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1768 	for (i = 0; i < VGE_NTXDESC; i++)
1769 		sc->sc_txsoft[i].txs_mbuf = NULL;
1770 
1771 	sc->sc_tx_prodidx = 0;
1772 	sc->sc_tx_considx = 0;
1773 	sc->sc_tx_free = VGE_NTXDESC;
1774 
1775 	/* Set our station address */
1776 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1777 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
1778 
1779 	/*
1780 	 * Set receive FIFO threshold. Also allow transmission and
1781 	 * reception of VLAN tagged frames.
1782 	 */
1783 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR | VGE_RXCFG_VTAGOPT);
1784 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES | VGE_VTAG_OPT2);
1785 
1786 	/* Set DMA burst length */
1787 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1788 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1789 
1790 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO | VGE_TXCFG_NONBLK);
1791 
1792 	/* Set collision backoff algorithm */
1793 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM |
1794 	    VGE_CHIPCFG1_CAP | VGE_CHIPCFG1_MBA | VGE_CHIPCFG1_BAKOPT);
1795 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFFSET);
1796 
1797 	/* Disable LPSEL field in priority resolution */
1798 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1799 
1800 	/*
1801 	 * Load the addresses of the DMA queues into the chip.
1802 	 * Note that we only use one transmit queue.
1803 	 */
1804 
1805 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR, VGE_ADDR_HI(VGE_CDTXADDR(sc, 0)));
1806 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
1807 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
1808 
1809 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
1810 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
1811 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
1812 
1813 	/* Enable and wake up the RX descriptor queue */
1814 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1815 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1816 
1817 	/* Enable the TX descriptor queue */
1818 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1819 
1820 	/* Set up the receive filter -- allow large frames for VLANs. */
1821 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST | VGE_RXCTL_RX_GIANT);
1822 
1823 	/* If we want promiscuous mode, set the allframes bit. */
1824 	if (ifp->if_flags & IFF_PROMISC) {
1825 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1826 	}
1827 
1828 	/* Set capture broadcast bit to capture broadcast frames. */
1829 	if (ifp->if_flags & IFF_BROADCAST) {
1830 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1831 	}
1832 
1833 	/* Set multicast bit to capture multicast frames. */
1834 	if (ifp->if_flags & IFF_MULTICAST) {
1835 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1836 	}
1837 
1838 	/* Init the cam filter. */
1839 	vge_cam_clear(sc);
1840 
1841 	/* Init the multicast filter. */
1842 	vge_setmulti(sc);
1843 
1844 	/* Enable flow control */
1845 
1846 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1847 
1848 	/* Enable jumbo frame reception (if desired) */
1849 
1850 	/* Start the MAC. */
1851 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1852 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1853 	CSR_WRITE_1(sc, VGE_CRS0,
1854 	    VGE_CR0_TX_ENABLE | VGE_CR0_RX_ENABLE | VGE_CR0_START);
1855 
1856 	/*
1857 	 * Configure one-shot timer for microsecond
1858 	 * resulution and load it for 500 usecs.
1859 	 */
1860 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1861 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1862 
1863 	/*
1864 	 * Configure interrupt moderation for receive. Enable
1865 	 * the holdoff counter and load it, and set the RX
1866 	 * suppression count to the number of descriptors we
1867 	 * want to allow before triggering an interrupt.
1868 	 * The holdoff timer is in units of 20 usecs.
1869 	 */
1870 
1871 #ifdef notyet
1872 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1873 	/* Select the interrupt holdoff timer page. */
1874 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1875 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1876 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1877 
1878 	/* Enable use of the holdoff timer. */
1879 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1880 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1881 
1882 	/* Select the RX suppression threshold page. */
1883 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1884 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1885 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1886 
1887 	/* Restore the page select bits. */
1888 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1889 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1890 #endif
1891 
1892 #ifdef DEVICE_POLLING
1893 	/*
1894 	 * Disable interrupts if we are polling.
1895 	 */
1896 	if (ifp->if_flags & IFF_POLLING) {
1897 		CSR_WRITE_4(sc, VGE_IMR, 0);
1898 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1899 	} else	/* otherwise ... */
1900 #endif /* DEVICE_POLLING */
1901 	{
1902 	/*
1903 	 * Enable interrupts.
1904 	 */
1905 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1906 		CSR_WRITE_4(sc, VGE_ISR, 0);
1907 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1908 	}
1909 
1910 	if ((rc = ether_mediachange(ifp)) != 0)
1911 		goto out;
1912 
1913 	ifp->if_flags |= IFF_RUNNING;
1914 
1915 	sc->sc_if_flags = 0;
1916 	sc->sc_link = 0;
1917 
1918 	callout_schedule(&sc->sc_timeout, hz);
1919 
1920 out:
1921 	return rc;
1922 }
1923 
1924 static void
vge_miibus_statchg(struct ifnet * ifp)1925 vge_miibus_statchg(struct ifnet *ifp)
1926 {
1927 	struct vge_softc *sc = ifp->if_softc;
1928 	struct mii_data *mii = &sc->sc_mii;
1929 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
1930 	uint8_t dctl;
1931 
1932 	/*
1933 	 * If the user manually selects a media mode, we need to turn
1934 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1935 	 * user happens to choose a full duplex mode, we also need to
1936 	 * set the 'force full duplex' bit. This applies only to
1937 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1938 	 * mode is disabled, and in 1000baseT mode, full duplex is
1939 	 * always implied, so we turn on the forced mode bit but leave
1940 	 * the FDX bit cleared.
1941 	 */
1942 	dctl = CSR_READ_1(sc, VGE_DIAGCTL);
1943 
1944 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
1945 		dctl &= ~VGE_DIAGCTL_MACFORCE;
1946 		dctl &= ~VGE_DIAGCTL_FDXFORCE;
1947 	} else {
1948 		u_int ifmword;
1949 
1950 		/* If the link is up, use the current active media. */
1951 		if ((mii->mii_media_status & IFM_ACTIVE) != 0)
1952 			ifmword = mii->mii_media_active;
1953 		else
1954 			ifmword = ife->ifm_media;
1955 
1956 		dctl |= VGE_DIAGCTL_MACFORCE;
1957 		if ((ifmword & IFM_FDX) != 0)
1958 			dctl |= VGE_DIAGCTL_FDXFORCE;
1959 		else
1960 			dctl &= ~VGE_DIAGCTL_FDXFORCE;
1961 
1962 		if (IFM_SUBTYPE(ifmword) == IFM_1000_T) {
1963 			/*
1964 			 * It means the user setting is not auto but it's
1965 			 * 1000baseT-FDX or 1000baseT.
1966 			 */
1967 			dctl |= VGE_DIAGCTL_GMII;
1968 		} else
1969 			dctl &= ~VGE_DIAGCTL_GMII;
1970 	}
1971 
1972 	CSR_WRITE_1(sc, VGE_DIAGCTL, dctl);
1973 }
1974 
1975 static int
vge_ifflags_cb(struct ethercom * ec)1976 vge_ifflags_cb(struct ethercom *ec)
1977 {
1978 	struct ifnet *ifp = &ec->ec_if;
1979 	struct vge_softc *sc = ifp->if_softc;
1980 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
1981 
1982 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1983 		return ENETRESET;
1984 	else if ((change & IFF_PROMISC) == 0)
1985 		return 0;
1986 
1987 	if ((ifp->if_flags & IFF_PROMISC) == 0)
1988 		CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1989 	else
1990 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1991 	vge_setmulti(sc);
1992 	return 0;
1993 }
1994 
1995 static int
vge_ioctl(struct ifnet * ifp,u_long command,void * data)1996 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
1997 {
1998 	struct vge_softc *sc;
1999 	int s, error;
2000 
2001 	sc = ifp->if_softc;
2002 	error = 0;
2003 
2004 	s = splnet();
2005 
2006 	if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
2007 		error = 0;
2008 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2009 			;
2010 		else if (ifp->if_flags & IFF_RUNNING) {
2011 			/*
2012 			 * Multicast list has changed; set the hardware filter
2013 			 * accordingly.
2014 			 */
2015 			vge_setmulti(sc);
2016 		}
2017 	}
2018 	sc->sc_if_flags = ifp->if_flags;
2019 
2020 	splx(s);
2021 	return error;
2022 }
2023 
2024 static void
vge_watchdog(struct ifnet * ifp)2025 vge_watchdog(struct ifnet *ifp)
2026 {
2027 	struct vge_softc *sc;
2028 	int s;
2029 
2030 	sc = ifp->if_softc;
2031 	s = splnet();
2032 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2033 	if_statinc(ifp, if_oerrors);
2034 
2035 	vge_txeof(sc);
2036 	vge_rxeof(sc);
2037 
2038 	vge_init(ifp);
2039 
2040 	splx(s);
2041 }
2042 
2043 /*
2044  * Stop the adapter and free any mbufs allocated to the
2045  * RX and TX lists.
2046  */
2047 static void
vge_stop(struct ifnet * ifp,int disable)2048 vge_stop(struct ifnet *ifp, int disable)
2049 {
2050 	struct vge_softc *sc = ifp->if_softc;
2051 	struct vge_txsoft *txs;
2052 	struct vge_rxsoft *rxs;
2053 	int i, s;
2054 
2055 	s = splnet();
2056 	ifp->if_timer = 0;
2057 
2058 	ifp->if_flags &= ~IFF_RUNNING;
2059 #ifdef DEVICE_POLLING
2060 	ether_poll_deregister(ifp);
2061 #endif /* DEVICE_POLLING */
2062 
2063 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2064 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2065 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2066 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2067 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2068 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2069 
2070 	if (sc->sc_rx_mhead != NULL) {
2071 		m_freem(sc->sc_rx_mhead);
2072 		sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
2073 	}
2074 
2075 	/* Free the TX list buffers. */
2076 
2077 	for (i = 0; i < VGE_NTXDESC; i++) {
2078 		txs = &sc->sc_txsoft[i];
2079 		if (txs->txs_mbuf != NULL) {
2080 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2081 			m_freem(txs->txs_mbuf);
2082 			txs->txs_mbuf = NULL;
2083 		}
2084 	}
2085 
2086 	/* Free the RX list buffers. */
2087 
2088 	for (i = 0; i < VGE_NRXDESC; i++) {
2089 		rxs = &sc->sc_rxsoft[i];
2090 		if (rxs->rxs_mbuf != NULL) {
2091 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2092 			m_freem(rxs->rxs_mbuf);
2093 			rxs->rxs_mbuf = NULL;
2094 		}
2095 	}
2096 
2097 	splx(s);
2098 }
2099 
2100 #if VGE_POWER_MANAGEMENT
2101 /*
2102  * Device suspend routine.  Stop the interface and save some PCI
2103  * settings in case the BIOS doesn't restore them properly on
2104  * resume.
2105  */
2106 static int
vge_suspend(device_t dev)2107 vge_suspend(device_t dev)
2108 {
2109 	struct vge_softc *sc;
2110 	int i;
2111 
2112 	sc = device_get_softc(dev);
2113 
2114 	vge_stop(sc);
2115 
2116 	for (i = 0; i < 5; i++)
2117 		sc->sc_saved_maps[i] =
2118 		    pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2119 	sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2120 	sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2121 	sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2122 	sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2123 
2124 	sc->suspended = 1;
2125 
2126 	return 0;
2127 }
2128 
2129 /*
2130  * Device resume routine.  Restore some PCI settings in case the BIOS
2131  * doesn't, re-enable busmastering, and restart the interface if
2132  * appropriate.
2133  */
2134 static int
vge_resume(device_t dev)2135 vge_resume(device_t dev)
2136 {
2137 	struct vge_softc *sc;
2138 	struct ifnet *ifp;
2139 	int i;
2140 
2141 	sc = device_private(dev);
2142 	ifp = &sc->sc_ethercom.ec_if;
2143 
2144 	/* better way to do this? */
2145 	for (i = 0; i < 5; i++)
2146 		pci_write_config(dev, PCIR_MAPS + i * 4,
2147 		    sc->sc_saved_maps[i], 4);
2148 	pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
2149 	pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
2150 	pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
2151 	pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
2152 
2153 	/* reenable busmastering */
2154 	pci_enable_busmaster(dev);
2155 	pci_enable_io(dev, SYS_RES_MEMORY);
2156 
2157 	/* reinitialize interface if necessary */
2158 	if (ifp->if_flags & IFF_UP)
2159 		vge_init(sc);
2160 
2161 	sc->suspended = 0;
2162 
2163 	return 0;
2164 }
2165 #endif
2166 
2167 /*
2168  * Stop all chip I/O so that the kernel's probe routines don't
2169  * get confused by errant DMAs when rebooting.
2170  */
2171 static bool
vge_shutdown(device_t self,int howto)2172 vge_shutdown(device_t self, int howto)
2173 {
2174 	struct vge_softc *sc;
2175 
2176 	sc = device_private(self);
2177 	vge_stop(&sc->sc_ethercom.ec_if, 1);
2178 
2179 	return true;
2180 }
2181 
2182 static void
vge_clrwol(struct vge_softc * sc)2183 vge_clrwol(struct vge_softc *sc)
2184 {
2185 	uint8_t val;
2186 
2187 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2188 	val &= ~VGE_STICKHW_SWPTAG;
2189 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2190 	/* Disable WOL and clear power state indicator. */
2191 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2192 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2193 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2194 
2195 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2196 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2197 
2198 	/* Clear WOL on pattern match. */
2199 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2200 	/* Disable WOL on magic/unicast packet. */
2201 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2202 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2203 	    VGE_WOLCFG_PMEOVR);
2204 	/* Clear WOL status on pattern match. */
2205 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2206 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2207 }
2208