xref: /reactos/dll/win32/oleaut32/variant.c (revision ae24453e)
1 /*
2  * VARIANT
3  *
4  * Copyright 1998 Jean-Claude Cote
5  * Copyright 2003 Jon Griffiths
6  * Copyright 2005 Daniel Remenak
7  * Copyright 2006 Google (Benjamin Arai)
8  *
9  * The algorithm for conversion from Julian days to day/month/year is based on
10  * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11  * Copyright 1994-7 Regents of the University of California
12  *
13  * This library is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2.1 of the License, or (at your option) any later version.
17  *
18  * This library is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with this library; if not, write to the Free Software
25  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
26  */
27 
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stdarg.h>
31 
32 #define COBJMACROS
33 #define NONAMELESSUNION
34 #define NONAMELESSSTRUCT
35 
36 #include "windef.h"
37 #include "winbase.h"
38 #include "winerror.h"
39 #include "variant.h"
40 #include "resource.h"
41 #include "wine/debug.h"
42 
43 WINE_DEFAULT_DEBUG_CHANNEL(variant);
44 
45 static CRITICAL_SECTION cache_cs;
46 static CRITICAL_SECTION_DEBUG critsect_debug =
47 {
48     0, 0, &cache_cs,
49     { &critsect_debug.ProcessLocksList, &critsect_debug.ProcessLocksList },
50       0, 0, { (DWORD_PTR)(__FILE__ ": cache_cs") }
51 };
52 static CRITICAL_SECTION cache_cs = { &critsect_debug, -1, 0, 0, 0, 0 };
53 
54 /* Convert a variant from one type to another */
VARIANT_Coerce(VARIANTARG * pd,LCID lcid,USHORT wFlags,VARIANTARG * ps,VARTYPE vt)55 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
56                                      VARIANTARG* ps, VARTYPE vt)
57 {
58   HRESULT res = DISP_E_TYPEMISMATCH;
59   VARTYPE vtFrom =  V_TYPE(ps);
60   DWORD dwFlags = 0;
61 
62   TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
63         debugstr_variant(ps), debugstr_vt(vt));
64 
65   if (vt == VT_BSTR || vtFrom == VT_BSTR)
66   {
67     /* All flags passed to low level function are only used for
68      * changing to or from strings. Map these here.
69      */
70     if (wFlags & VARIANT_LOCALBOOL)
71       dwFlags |= VAR_LOCALBOOL;
72     if (wFlags & VARIANT_CALENDAR_HIJRI)
73       dwFlags |= VAR_CALENDAR_HIJRI;
74     if (wFlags & VARIANT_CALENDAR_THAI)
75       dwFlags |= VAR_CALENDAR_THAI;
76     if (wFlags & VARIANT_CALENDAR_GREGORIAN)
77       dwFlags |= VAR_CALENDAR_GREGORIAN;
78     if (wFlags & VARIANT_NOUSEROVERRIDE)
79       dwFlags |= LOCALE_NOUSEROVERRIDE;
80     if (wFlags & VARIANT_USE_NLS)
81       dwFlags |= LOCALE_USE_NLS;
82   }
83 
84   /* Map int/uint to i4/ui4 */
85   if (vt == VT_INT)
86     vt = VT_I4;
87   else if (vt == VT_UINT)
88     vt = VT_UI4;
89 
90   if (vtFrom == VT_INT)
91     vtFrom = VT_I4;
92   else if (vtFrom == VT_UINT)
93     vtFrom = VT_UI4;
94 
95   if (vt == vtFrom)
96      return VariantCopy(pd, ps);
97 
98   if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
99   {
100     /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
101      * accessing the default object property.
102      */
103     return DISP_E_TYPEMISMATCH;
104   }
105 
106   switch (vt)
107   {
108   case VT_EMPTY:
109     if (vtFrom == VT_NULL)
110       return DISP_E_TYPEMISMATCH;
111     /* ... Fall through */
112   case VT_NULL:
113     if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
114     {
115       res = VariantClear( pd );
116       if (vt == VT_NULL && SUCCEEDED(res))
117         V_VT(pd) = VT_NULL;
118     }
119     return res;
120 
121   case VT_I1:
122     switch (vtFrom)
123     {
124     case VT_EMPTY:    V_I1(pd) = 0; return S_OK;
125     case VT_I2:       return VarI1FromI2(V_I2(ps), &V_I1(pd));
126     case VT_I4:       return VarI1FromI4(V_I4(ps), &V_I1(pd));
127     case VT_UI1:      V_I1(pd) = V_UI1(ps); return S_OK;
128     case VT_UI2:      return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
129     case VT_UI4:      return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
130     case VT_I8:       return VarI1FromI8(V_I8(ps), &V_I1(pd));
131     case VT_UI8:      return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
132     case VT_R4:       return VarI1FromR4(V_R4(ps), &V_I1(pd));
133     case VT_R8:       return VarI1FromR8(V_R8(ps), &V_I1(pd));
134     case VT_DATE:     return VarI1FromDate(V_DATE(ps), &V_I1(pd));
135     case VT_BOOL:     return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
136     case VT_CY:       return VarI1FromCy(V_CY(ps), &V_I1(pd));
137     case VT_DECIMAL:  return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
138     case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
139     case VT_BSTR:     return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
140     }
141     break;
142 
143   case VT_I2:
144     switch (vtFrom)
145     {
146     case VT_EMPTY:    V_I2(pd) = 0; return S_OK;
147     case VT_I1:       return VarI2FromI1(V_I1(ps), &V_I2(pd));
148     case VT_I4:       return VarI2FromI4(V_I4(ps), &V_I2(pd));
149     case VT_UI1:      return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
150     case VT_UI2:      V_I2(pd) = V_UI2(ps); return S_OK;
151     case VT_UI4:      return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
152     case VT_I8:       return VarI2FromI8(V_I8(ps), &V_I2(pd));
153     case VT_UI8:      return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
154     case VT_R4:       return VarI2FromR4(V_R4(ps), &V_I2(pd));
155     case VT_R8:       return VarI2FromR8(V_R8(ps), &V_I2(pd));
156     case VT_DATE:     return VarI2FromDate(V_DATE(ps), &V_I2(pd));
157     case VT_BOOL:     return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
158     case VT_CY:       return VarI2FromCy(V_CY(ps), &V_I2(pd));
159     case VT_DECIMAL:  return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
160     case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
161     case VT_BSTR:     return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
162     }
163     break;
164 
165   case VT_I4:
166     switch (vtFrom)
167     {
168     case VT_EMPTY:    V_I4(pd) = 0; return S_OK;
169     case VT_I1:       return VarI4FromI1(V_I1(ps), &V_I4(pd));
170     case VT_I2:       return VarI4FromI2(V_I2(ps), &V_I4(pd));
171     case VT_UI1:      return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
172     case VT_UI2:      return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
173     case VT_UI4:      V_I4(pd) = V_UI4(ps); return S_OK;
174     case VT_I8:       return VarI4FromI8(V_I8(ps), &V_I4(pd));
175     case VT_UI8:      return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
176     case VT_R4:       return VarI4FromR4(V_R4(ps), &V_I4(pd));
177     case VT_R8:       return VarI4FromR8(V_R8(ps), &V_I4(pd));
178     case VT_DATE:     return VarI4FromDate(V_DATE(ps), &V_I4(pd));
179     case VT_BOOL:     return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
180     case VT_CY:       return VarI4FromCy(V_CY(ps), &V_I4(pd));
181     case VT_DECIMAL:  return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
182     case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
183     case VT_BSTR:     return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
184     }
185     break;
186 
187   case VT_UI1:
188     switch (vtFrom)
189     {
190     case VT_EMPTY:    V_UI1(pd) = 0; return S_OK;
191     case VT_I1:       V_UI1(pd) = V_I1(ps); return S_OK;
192     case VT_I2:       return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
193     case VT_I4:       return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
194     case VT_UI2:      return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
195     case VT_UI4:      return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
196     case VT_I8:       return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
197     case VT_UI8:      return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
198     case VT_R4:       return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
199     case VT_R8:       return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
200     case VT_DATE:     return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
201     case VT_BOOL:     return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
202     case VT_CY:       return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
203     case VT_DECIMAL:  return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
204     case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
205     case VT_BSTR:     return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
206     }
207     break;
208 
209   case VT_UI2:
210     switch (vtFrom)
211     {
212     case VT_EMPTY:    V_UI2(pd) = 0; return S_OK;
213     case VT_I1:       return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
214     case VT_I2:       V_UI2(pd) = V_I2(ps); return S_OK;
215     case VT_I4:       return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
216     case VT_UI1:      return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
217     case VT_UI4:      return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
218     case VT_I8:       return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
219     case VT_UI8:      return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
220     case VT_R4:       return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
221     case VT_R8:       return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
222     case VT_DATE:     return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
223     case VT_BOOL:     return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
224     case VT_CY:       return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
225     case VT_DECIMAL:  return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
226     case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
227     case VT_BSTR:     return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
228     }
229     break;
230 
231   case VT_UI4:
232     switch (vtFrom)
233     {
234     case VT_EMPTY:    V_UI4(pd) = 0; return S_OK;
235     case VT_I1:       return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
236     case VT_I2:       return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
237     case VT_I4:       V_UI4(pd) = V_I4(ps); return S_OK;
238     case VT_UI1:      return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
239     case VT_UI2:      return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
240     case VT_I8:       return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
241     case VT_UI8:      return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
242     case VT_R4:       return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
243     case VT_R8:       return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
244     case VT_DATE:     return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
245     case VT_BOOL:     return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
246     case VT_CY:       return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
247     case VT_DECIMAL:  return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
248     case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
249     case VT_BSTR:     return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
250     }
251     break;
252 
253   case VT_UI8:
254     switch (vtFrom)
255     {
256     case VT_EMPTY:    V_UI8(pd) = 0; return S_OK;
257     case VT_I4:       if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
258     case VT_I1:       return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
259     case VT_I2:       return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
260     case VT_UI1:      return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
261     case VT_UI2:      return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
262     case VT_UI4:      return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
263     case VT_I8:       V_UI8(pd) = V_I8(ps); return S_OK;
264     case VT_R4:       return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
265     case VT_R8:       return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
266     case VT_DATE:     return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
267     case VT_BOOL:     return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
268     case VT_CY:       return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
269     case VT_DECIMAL:  return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
270     case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
271     case VT_BSTR:     return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
272     }
273     break;
274 
275   case VT_I8:
276     switch (vtFrom)
277     {
278     case VT_EMPTY:    V_I8(pd) = 0; return S_OK;
279     case VT_I4:       V_I8(pd) = V_I4(ps); return S_OK;
280     case VT_I1:       return VarI8FromI1(V_I1(ps), &V_I8(pd));
281     case VT_I2:       return VarI8FromI2(V_I2(ps), &V_I8(pd));
282     case VT_UI1:      return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
283     case VT_UI2:      return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
284     case VT_UI4:      return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
285     case VT_UI8:      V_I8(pd) = V_UI8(ps); return S_OK;
286     case VT_R4:       return VarI8FromR4(V_R4(ps), &V_I8(pd));
287     case VT_R8:       return VarI8FromR8(V_R8(ps), &V_I8(pd));
288     case VT_DATE:     return VarI8FromDate(V_DATE(ps), &V_I8(pd));
289     case VT_BOOL:     return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
290     case VT_CY:       return VarI8FromCy(V_CY(ps), &V_I8(pd));
291     case VT_DECIMAL:  return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
292     case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
293     case VT_BSTR:     return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
294     }
295     break;
296 
297   case VT_R4:
298     switch (vtFrom)
299     {
300     case VT_EMPTY:    V_R4(pd) = 0.0f; return S_OK;
301     case VT_I1:       return VarR4FromI1(V_I1(ps), &V_R4(pd));
302     case VT_I2:       return VarR4FromI2(V_I2(ps), &V_R4(pd));
303     case VT_I4:       return VarR4FromI4(V_I4(ps), &V_R4(pd));
304     case VT_UI1:      return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
305     case VT_UI2:      return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
306     case VT_UI4:      return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
307     case VT_I8:       return VarR4FromI8(V_I8(ps), &V_R4(pd));
308     case VT_UI8:      return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
309     case VT_R8:       return VarR4FromR8(V_R8(ps), &V_R4(pd));
310     case VT_DATE:     return VarR4FromDate(V_DATE(ps), &V_R4(pd));
311     case VT_BOOL:     return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
312     case VT_CY:       return VarR4FromCy(V_CY(ps), &V_R4(pd));
313     case VT_DECIMAL:  return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
314     case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
315     case VT_BSTR:     return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
316     }
317     break;
318 
319   case VT_R8:
320     switch (vtFrom)
321     {
322     case VT_EMPTY:    V_R8(pd) = 0.0; return S_OK;
323     case VT_I1:       return VarR8FromI1(V_I1(ps), &V_R8(pd));
324     case VT_I2:       return VarR8FromI2(V_I2(ps), &V_R8(pd));
325     case VT_I4:       return VarR8FromI4(V_I4(ps), &V_R8(pd));
326     case VT_UI1:      return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
327     case VT_UI2:      return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
328     case VT_UI4:      return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
329     case VT_I8:       return VarR8FromI8(V_I8(ps), &V_R8(pd));
330     case VT_UI8:      return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
331     case VT_R4:       return VarR8FromR4(V_R4(ps), &V_R8(pd));
332     case VT_DATE:     return VarR8FromDate(V_DATE(ps), &V_R8(pd));
333     case VT_BOOL:     return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
334     case VT_CY:       return VarR8FromCy(V_CY(ps), &V_R8(pd));
335     case VT_DECIMAL:  return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
336     case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
337     case VT_BSTR:     return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
338     }
339     break;
340 
341   case VT_DATE:
342     switch (vtFrom)
343     {
344     case VT_EMPTY:    V_DATE(pd) = 0.0; return S_OK;
345     case VT_I1:       return VarDateFromI1(V_I1(ps), &V_DATE(pd));
346     case VT_I2:       return VarDateFromI2(V_I2(ps), &V_DATE(pd));
347     case VT_I4:       return VarDateFromI4(V_I4(ps), &V_DATE(pd));
348     case VT_UI1:      return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
349     case VT_UI2:      return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
350     case VT_UI4:      return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
351     case VT_I8:       return VarDateFromI8(V_I8(ps), &V_DATE(pd));
352     case VT_UI8:      return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
353     case VT_R4:       return VarDateFromR4(V_R4(ps), &V_DATE(pd));
354     case VT_R8:       return VarDateFromR8(V_R8(ps), &V_DATE(pd));
355     case VT_BOOL:     return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
356     case VT_CY:       return VarDateFromCy(V_CY(ps), &V_DATE(pd));
357     case VT_DECIMAL:  return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
358     case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
359     case VT_BSTR:     return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
360     }
361     break;
362 
363   case VT_BOOL:
364     switch (vtFrom)
365     {
366     case VT_EMPTY:    V_BOOL(pd) = 0; return S_OK;
367     case VT_I1:       return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
368     case VT_I2:       return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
369     case VT_I4:       return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
370     case VT_UI1:      return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
371     case VT_UI2:      return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
372     case VT_UI4:      return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
373     case VT_I8:       return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
374     case VT_UI8:      return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
375     case VT_R4:       return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
376     case VT_R8:       return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
377     case VT_DATE:     return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
378     case VT_CY:       return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
379     case VT_DECIMAL:  return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
380     case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
381     case VT_BSTR:     return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
382     }
383     break;
384 
385   case VT_BSTR:
386     switch (vtFrom)
387     {
388     case VT_EMPTY:
389       V_BSTR(pd) = SysAllocStringLen(NULL, 0);
390       return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
391     case VT_BOOL:
392       if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
393          return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
394       return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
395     case VT_I1:       return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
396     case VT_I2:       return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
397     case VT_I4:       return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
398     case VT_UI1:      return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
399     case VT_UI2:      return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
400     case VT_UI4:      return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
401     case VT_I8:       return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
402     case VT_UI8:      return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
403     case VT_R4:       return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
404     case VT_R8:       return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
405     case VT_DATE:     return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
406     case VT_CY:       return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
407     case VT_DECIMAL:  return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
408     case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
409     }
410     break;
411 
412   case VT_CY:
413     switch (vtFrom)
414     {
415     case VT_EMPTY:    V_CY(pd).int64 = 0; return S_OK;
416     case VT_I1:       return VarCyFromI1(V_I1(ps), &V_CY(pd));
417     case VT_I2:       return VarCyFromI2(V_I2(ps), &V_CY(pd));
418     case VT_I4:       return VarCyFromI4(V_I4(ps), &V_CY(pd));
419     case VT_UI1:      return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
420     case VT_UI2:      return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
421     case VT_UI4:      return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
422     case VT_I8:       return VarCyFromI8(V_I8(ps), &V_CY(pd));
423     case VT_UI8:      return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
424     case VT_R4:       return VarCyFromR4(V_R4(ps), &V_CY(pd));
425     case VT_R8:       return VarCyFromR8(V_R8(ps), &V_CY(pd));
426     case VT_DATE:     return VarCyFromDate(V_DATE(ps), &V_CY(pd));
427     case VT_BOOL:     return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
428     case VT_DECIMAL:  return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
429     case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
430     case VT_BSTR:     return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
431     }
432     break;
433 
434   case VT_DECIMAL:
435     switch (vtFrom)
436     {
437     case VT_EMPTY:
438     case VT_BOOL:
439        DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
440        DEC_HI32(&V_DECIMAL(pd)) = 0;
441        DEC_MID32(&V_DECIMAL(pd)) = 0;
442         /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
443          * VT_NULL and VT_EMPTY always give a 0 value.
444          */
445        DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
446        return S_OK;
447     case VT_I1:       return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
448     case VT_I2:       return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
449     case VT_I4:       return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
450     case VT_UI1:      return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
451     case VT_UI2:      return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
452     case VT_UI4:      return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
453     case VT_I8:       return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
454     case VT_UI8:      return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
455     case VT_R4:       return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
456     case VT_R8:       return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
457     case VT_DATE:     return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
458     case VT_CY:       return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
459     case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
460     case VT_BSTR:     return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
461     }
462     break;
463 
464   case VT_UNKNOWN:
465     switch (vtFrom)
466     {
467     case VT_DISPATCH:
468       if (V_DISPATCH(ps) == NULL)
469       {
470         V_UNKNOWN(pd) = NULL;
471         res = S_OK;
472       }
473       else
474         res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
475       break;
476     }
477     break;
478 
479   case VT_DISPATCH:
480     switch (vtFrom)
481     {
482     case VT_UNKNOWN:
483       if (V_UNKNOWN(ps) == NULL)
484       {
485         V_DISPATCH(pd) = NULL;
486         res = S_OK;
487       }
488       else
489         res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
490       break;
491     }
492     break;
493 
494   case VT_RECORD:
495     break;
496   }
497   return res;
498 }
499 
500 /* Coerce to/from an array */
VARIANT_CoerceArray(VARIANTARG * pd,VARIANTARG * ps,VARTYPE vt)501 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
502 {
503   if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
504     return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
505 
506   if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
507     return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
508 
509   if (V_VT(ps) == vt)
510     return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
511 
512   return DISP_E_TYPEMISMATCH;
513 }
514 
VARIANT_FetchDispatchValue(LPVARIANT pvDispatch,LPVARIANT pValue)515 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
516 {
517     HRESULT hres;
518     static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
519 
520     if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
521         if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
522         hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
523             LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
524             NULL, NULL);
525     } else {
526         hres = DISP_E_TYPEMISMATCH;
527     }
528     return hres;
529 }
530 
531 /******************************************************************************
532  * Check if a variants type is valid.
533  */
VARIANT_ValidateType(VARTYPE vt)534 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
535 {
536   VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
537 
538   vt &= VT_TYPEMASK;
539 
540   if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
541   {
542     if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
543     {
544       if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
545         return DISP_E_BADVARTYPE;
546       if (vt != (VARTYPE)15)
547         return S_OK;
548     }
549   }
550   return DISP_E_BADVARTYPE;
551 }
552 
553 /******************************************************************************
554  *		VariantInit	[OLEAUT32.8]
555  *
556  * Initialise a variant.
557  *
558  * PARAMS
559  *  pVarg [O] Variant to initialise
560  *
561  * RETURNS
562  *  Nothing.
563  *
564  * NOTES
565  *  This function simply sets the type of the variant to VT_EMPTY. It does not
566  *  free any existing value, use VariantClear() for that.
567  */
VariantInit(VARIANTARG * pVarg)568 void WINAPI VariantInit(VARIANTARG* pVarg)
569 {
570   TRACE("(%p)\n", pVarg);
571 
572   /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
573   V_VT(pVarg) = VT_EMPTY;
574 }
575 
VARIANT_ClearInd(VARIANTARG * pVarg)576 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
577 {
578     HRESULT hres;
579 
580     TRACE("(%s)\n", debugstr_variant(pVarg));
581 
582     hres = VARIANT_ValidateType(V_VT(pVarg));
583     if (FAILED(hres))
584         return hres;
585 
586     switch (V_VT(pVarg))
587     {
588     case VT_DISPATCH:
589     case VT_UNKNOWN:
590         if (V_UNKNOWN(pVarg))
591             IUnknown_Release(V_UNKNOWN(pVarg));
592         break;
593     case VT_UNKNOWN | VT_BYREF:
594     case VT_DISPATCH | VT_BYREF:
595         if(*V_UNKNOWNREF(pVarg))
596             IUnknown_Release(*V_UNKNOWNREF(pVarg));
597         break;
598     case VT_BSTR:
599         SysFreeString(V_BSTR(pVarg));
600         break;
601     case VT_BSTR | VT_BYREF:
602         SysFreeString(*V_BSTRREF(pVarg));
603         break;
604     case VT_VARIANT | VT_BYREF:
605         VariantClear(V_VARIANTREF(pVarg));
606         break;
607     case VT_RECORD:
608     case VT_RECORD | VT_BYREF:
609     {
610         struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
611         if (pBr->pRecInfo)
612         {
613             IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
614             IRecordInfo_Release(pBr->pRecInfo);
615         }
616         break;
617     }
618     default:
619         if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
620         {
621             if (V_ISBYREF(pVarg))
622             {
623                 if (*V_ARRAYREF(pVarg))
624                     hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
625             }
626             else if (V_ARRAY(pVarg))
627                 hres = SafeArrayDestroy(V_ARRAY(pVarg));
628         }
629         break;
630     }
631 
632     V_VT(pVarg) = VT_EMPTY;
633     return hres;
634 }
635 
636 /******************************************************************************
637  *		VariantClear	[OLEAUT32.9]
638  *
639  * Clear a variant.
640  *
641  * PARAMS
642  *  pVarg [I/O] Variant to clear
643  *
644  * RETURNS
645  *  Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
646  *  Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
647  */
VariantClear(VARIANTARG * pVarg)648 HRESULT WINAPI DECLSPEC_HOTPATCH VariantClear(VARIANTARG* pVarg)
649 {
650   HRESULT hres;
651 
652   TRACE("(%s)\n", debugstr_variant(pVarg));
653 
654   hres = VARIANT_ValidateType(V_VT(pVarg));
655 
656   if (SUCCEEDED(hres))
657   {
658     if (!V_ISBYREF(pVarg))
659     {
660       if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
661       {
662         hres = SafeArrayDestroy(V_ARRAY(pVarg));
663       }
664       else if (V_VT(pVarg) == VT_BSTR)
665       {
666         SysFreeString(V_BSTR(pVarg));
667       }
668       else if (V_VT(pVarg) == VT_RECORD)
669       {
670         struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
671         if (pBr->pRecInfo)
672         {
673           IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
674           IRecordInfo_Release(pBr->pRecInfo);
675         }
676       }
677       else if (V_VT(pVarg) == VT_DISPATCH ||
678                V_VT(pVarg) == VT_UNKNOWN)
679       {
680         if (V_UNKNOWN(pVarg))
681           IUnknown_Release(V_UNKNOWN(pVarg));
682       }
683     }
684     V_VT(pVarg) = VT_EMPTY;
685   }
686   return hres;
687 }
688 
689 /******************************************************************************
690  * Copy an IRecordInfo object contained in a variant.
691  */
VARIANT_CopyIRecordInfo(VARIANT * dest,VARIANT * src)692 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
693 {
694   struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
695   struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
696   HRESULT hr = S_OK;
697   ULONG size;
698 
699   if (!src_rec->pRecInfo)
700   {
701     if (src_rec->pvRecord) return E_INVALIDARG;
702     return S_OK;
703   }
704 
705   hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
706   if (FAILED(hr)) return hr;
707 
708   /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
709      Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
710      could free it later. */
711   dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
712   if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
713 
714   dest_rec->pRecInfo = src_rec->pRecInfo;
715   IRecordInfo_AddRef(src_rec->pRecInfo);
716 
717   return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
718 }
719 
720 /******************************************************************************
721  *    VariantCopy  [OLEAUT32.10]
722  *
723  * Copy a variant.
724  *
725  * PARAMS
726  *  pvargDest [O] Destination for copy
727  *  pvargSrc  [I] Source variant to copy
728  *
729  * RETURNS
730  *  Success: S_OK. pvargDest contains a copy of pvargSrc.
731  *  Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
732  *           E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
733  *           HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
734  *           or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
735  *
736  * NOTES
737  *  - If pvargSrc == pvargDest, this function does nothing, and succeeds if
738  *    pvargSrc is valid. Otherwise, pvargDest is always cleared using
739  *    VariantClear() before pvargSrc is copied to it. If clearing pvargDest
740  *    fails, so does this function.
741  *  - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
742  *  - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
743  *    is copied rather than just any pointers to it.
744  *  - For by-value object types the object pointer is copied and the objects
745  *    reference count increased using IUnknown_AddRef().
746  *  - For all by-reference types, only the referencing pointer is copied.
747  */
VariantCopy(VARIANTARG * pvargDest,VARIANTARG * pvargSrc)748 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
749 {
750   HRESULT hres = S_OK;
751 
752   TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
753 
754   if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
755       FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
756     return DISP_E_BADVARTYPE;
757 
758   if (pvargSrc != pvargDest &&
759       SUCCEEDED(hres = VariantClear(pvargDest)))
760   {
761     *pvargDest = *pvargSrc; /* Shallow copy the value */
762 
763     if (!V_ISBYREF(pvargSrc))
764     {
765       switch (V_VT(pvargSrc))
766       {
767       case VT_BSTR:
768         V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
769         if (!V_BSTR(pvargDest))
770           hres = E_OUTOFMEMORY;
771         break;
772       case VT_RECORD:
773         hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
774         break;
775       case VT_DISPATCH:
776       case VT_UNKNOWN:
777         V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
778         if (V_UNKNOWN(pvargSrc))
779           IUnknown_AddRef(V_UNKNOWN(pvargSrc));
780         break;
781       default:
782         if (V_ISARRAY(pvargSrc))
783           hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
784       }
785     }
786   }
787   return hres;
788 }
789 
790 /* Return the byte size of a variants data */
VARIANT_DataSize(const VARIANT * pv)791 static inline size_t VARIANT_DataSize(const VARIANT* pv)
792 {
793   switch (V_TYPE(pv))
794   {
795   case VT_I1:
796   case VT_UI1:   return sizeof(BYTE);
797   case VT_I2:
798   case VT_UI2:   return sizeof(SHORT);
799   case VT_INT:
800   case VT_UINT:
801   case VT_I4:
802   case VT_UI4:   return sizeof(LONG);
803   case VT_I8:
804   case VT_UI8:   return sizeof(LONGLONG);
805   case VT_R4:    return sizeof(float);
806   case VT_R8:    return sizeof(double);
807   case VT_DATE:  return sizeof(DATE);
808   case VT_BOOL:  return sizeof(VARIANT_BOOL);
809   case VT_DISPATCH:
810   case VT_UNKNOWN:
811   case VT_BSTR:  return sizeof(void*);
812   case VT_CY:    return sizeof(CY);
813   case VT_ERROR: return sizeof(SCODE);
814   }
815   TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
816   return 0;
817 }
818 
819 /******************************************************************************
820  *    VariantCopyInd  [OLEAUT32.11]
821  *
822  * Copy a variant, dereferencing it if it is by-reference.
823  *
824  * PARAMS
825  *  pvargDest [O] Destination for copy
826  *  pvargSrc  [I] Source variant to copy
827  *
828  * RETURNS
829  *  Success: S_OK. pvargDest contains a copy of pvargSrc.
830  *  Failure: An HRESULT error code indicating the error.
831  *
832  * NOTES
833  *  Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
834  *           E_INVALIDARG, if pvargSrc  is an invalid by-reference type.
835  *           E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
836  *           HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
837  *           or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
838  *
839  * NOTES
840  *  - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
841  *  - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
842  *    value.
843  *  - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
844  *    pvargDest is always cleared using VariantClear() before pvargSrc is copied
845  *    to it. If clearing pvargDest fails, so does this function.
846  */
VariantCopyInd(VARIANT * pvargDest,VARIANTARG * pvargSrc)847 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
848 {
849   VARIANTARG vTmp, *pSrc = pvargSrc;
850   VARTYPE vt;
851   HRESULT hres = S_OK;
852 
853   TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
854 
855   if (!V_ISBYREF(pvargSrc))
856     return VariantCopy(pvargDest, pvargSrc);
857 
858   /* Argument checking is more lax than VariantCopy()... */
859   vt = V_TYPE(pvargSrc);
860   if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
861      (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
862      !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
863   {
864     /* OK */
865   }
866   else
867     return E_INVALIDARG; /* ...And the return value for invalid types differs too */
868 
869   if (pvargSrc == pvargDest)
870   {
871     /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
872      * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
873      */
874     vTmp = *pvargSrc;
875     pSrc = &vTmp;
876     V_VT(pvargDest) = VT_EMPTY;
877   }
878   else
879   {
880     /* Copy into another variant. Free the variant in pvargDest */
881     if (FAILED(hres = VariantClear(pvargDest)))
882     {
883       TRACE("VariantClear() of destination failed\n");
884       return hres;
885     }
886   }
887 
888   if (V_ISARRAY(pSrc))
889   {
890     /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
891     hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
892   }
893   else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
894   {
895     /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
896     V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
897   }
898   else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
899   {
900     hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
901   }
902   else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
903            V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
904   {
905     /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
906     V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
907     if (*V_UNKNOWNREF(pSrc))
908       IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
909   }
910   else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
911   {
912     /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
913     if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
914       hres = E_INVALIDARG; /* Don't dereference more than one level */
915     else
916       hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
917 
918     /* Use the dereferenced variants type value, not VT_VARIANT */
919     goto VariantCopyInd_Return;
920   }
921   else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
922   {
923     memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
924            sizeof(DECIMAL) - sizeof(USHORT));
925   }
926   else
927   {
928     /* Copy the pointed to data into this variant */
929     memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
930   }
931 
932   V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
933 
934 VariantCopyInd_Return:
935 
936   if (pSrc != pvargSrc)
937     VariantClear(pSrc);
938 
939   TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
940   return hres;
941 }
942 
943 /******************************************************************************
944  *    VariantChangeType  [OLEAUT32.12]
945  *
946  * Change the type of a variant.
947  *
948  * PARAMS
949  *  pvargDest [O] Destination for the converted variant
950  *  pvargSrc  [O] Source variant to change the type of
951  *  wFlags    [I] VARIANT_ flags from "oleauto.h"
952  *  vt        [I] Variant type to change pvargSrc into
953  *
954  * RETURNS
955  *  Success: S_OK. pvargDest contains the converted value.
956  *  Failure: An HRESULT error code describing the failure.
957  *
958  * NOTES
959  *  The LCID used for the conversion is LOCALE_USER_DEFAULT.
960  *  See VariantChangeTypeEx.
961  */
VariantChangeType(VARIANTARG * pvargDest,VARIANTARG * pvargSrc,USHORT wFlags,VARTYPE vt)962 HRESULT WINAPI DECLSPEC_HOTPATCH VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
963                                                    USHORT wFlags, VARTYPE vt)
964 {
965   return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
966 }
967 
968 /******************************************************************************
969  *    VariantChangeTypeEx  [OLEAUT32.147]
970  *
971  * Change the type of a variant.
972  *
973  * PARAMS
974  *  pvargDest [O] Destination for the converted variant
975  *  pvargSrc  [O] Source variant to change the type of
976  *  lcid      [I] LCID for the conversion
977  *  wFlags    [I] VARIANT_ flags from "oleauto.h"
978  *  vt        [I] Variant type to change pvargSrc into
979  *
980  * RETURNS
981  *  Success: S_OK. pvargDest contains the converted value.
982  *  Failure: An HRESULT error code describing the failure.
983  *
984  * NOTES
985  *  pvargDest and pvargSrc can point to the same variant to perform an in-place
986  *  conversion. If the conversion is successful, pvargSrc will be freed.
987  */
VariantChangeTypeEx(VARIANTARG * pvargDest,VARIANTARG * pvargSrc,LCID lcid,USHORT wFlags,VARTYPE vt)988 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
989                                    LCID lcid, USHORT wFlags, VARTYPE vt)
990 {
991   HRESULT res = S_OK;
992 
993   TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
994         debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
995 
996   if (vt == VT_CLSID)
997     res = DISP_E_BADVARTYPE;
998   else
999   {
1000     res = VARIANT_ValidateType(V_VT(pvargSrc));
1001 
1002     if (SUCCEEDED(res))
1003     {
1004       res = VARIANT_ValidateType(vt);
1005 
1006       if (SUCCEEDED(res))
1007       {
1008         VARIANTARG vTmp, vSrcDeref;
1009 
1010         if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1011           res = DISP_E_TYPEMISMATCH;
1012         else
1013         {
1014           V_VT(&vTmp) = VT_EMPTY;
1015           V_VT(&vSrcDeref) = VT_EMPTY;
1016           VariantClear(&vTmp);
1017           VariantClear(&vSrcDeref);
1018         }
1019 
1020         if (SUCCEEDED(res))
1021         {
1022           res = VariantCopyInd(&vSrcDeref, pvargSrc);
1023           if (SUCCEEDED(res))
1024           {
1025             if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1026               res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1027             else
1028               res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1029 
1030             if (SUCCEEDED(res)) {
1031                 V_VT(&vTmp) = vt;
1032                 res = VariantCopy(pvargDest, &vTmp);
1033             }
1034             VariantClear(&vTmp);
1035             VariantClear(&vSrcDeref);
1036           }
1037         }
1038       }
1039     }
1040   }
1041 
1042   TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1043   return res;
1044 }
1045 
1046 /* Date Conversions */
1047 
1048 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1049 
1050 /* Convert a VT_DATE value to a Julian Date */
VARIANT_JulianFromDate(int dateIn)1051 static inline int VARIANT_JulianFromDate(int dateIn)
1052 {
1053   int julianDays = dateIn;
1054 
1055   julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1056   julianDays += 1757585;  /* Convert to + days from 23 Nov 4713 BC (Julian) */
1057   return julianDays;
1058 }
1059 
1060 /* Convert a Julian Date to a VT_DATE value */
VARIANT_DateFromJulian(int dateIn)1061 static inline int VARIANT_DateFromJulian(int dateIn)
1062 {
1063   int julianDays = dateIn;
1064 
1065   julianDays -= 1757585;  /* Convert to + days from 1 Jan 100 AD */
1066   julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1067   return julianDays;
1068 }
1069 
1070 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
VARIANT_DMYFromJulian(int jd,USHORT * year,USHORT * month,USHORT * day)1071 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1072 {
1073   int j, i, l, n;
1074 
1075   l = jd + 68569;
1076   n = l * 4 / 146097;
1077   l -= (n * 146097 + 3) / 4;
1078   i = (4000 * (l + 1)) / 1461001;
1079   l += 31 - (i * 1461) / 4;
1080   j = (l * 80) / 2447;
1081   *day = l - (j * 2447) / 80;
1082   l = j / 11;
1083   *month = (j + 2) - (12 * l);
1084   *year = 100 * (n - 49) + i + l;
1085 }
1086 
1087 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
VARIANT_JulianFromDMY(USHORT year,USHORT month,USHORT day)1088 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1089 {
1090   int m12 = (month - 14) / 12;
1091 
1092   return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1093            (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1094 }
1095 
1096 /* Macros for accessing DOS format date/time fields */
1097 #define DOS_YEAR(x)   (1980 + (x >> 9))
1098 #define DOS_MONTH(x)  ((x >> 5) & 0xf)
1099 #define DOS_DAY(x)    (x & 0x1f)
1100 #define DOS_HOUR(x)   (x >> 11)
1101 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1102 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1103 /* Create a DOS format date/time */
1104 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1105 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1106 
1107 /* Roll a date forwards or backwards to correct it */
VARIANT_RollUdate(UDATE * lpUd)1108 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1109 {
1110   static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1111   short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1112 
1113   /* interpret values signed */
1114   iYear   = lpUd->st.wYear;
1115   iMonth  = lpUd->st.wMonth;
1116   iDay    = lpUd->st.wDay;
1117   iHour   = lpUd->st.wHour;
1118   iMinute = lpUd->st.wMinute;
1119   iSecond = lpUd->st.wSecond;
1120 
1121   TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1122         iYear, iHour, iMinute, iSecond);
1123 
1124   if (iYear > 9999 || iYear < -9999)
1125     return E_INVALIDARG; /* Invalid value */
1126   /* Year 0 to 29 are treated as 2000 + year */
1127   if (iYear >= 0 && iYear < 30)
1128     iYear += 2000;
1129   /* Remaining years < 100 are treated as 1900 + year */
1130   else if (iYear >= 30 && iYear < 100)
1131     iYear += 1900;
1132 
1133   iMinute += iSecond / 60;
1134   iSecond  = iSecond % 60;
1135   iHour   += iMinute / 60;
1136   iMinute  = iMinute % 60;
1137   iDay    += iHour / 24;
1138   iHour    = iHour % 24;
1139   iYear   += iMonth / 12;
1140   iMonth   = iMonth % 12;
1141   if (iMonth<=0) {iMonth+=12; iYear--;}
1142   while (iDay > days[iMonth])
1143   {
1144     if (iMonth == 2 && IsLeapYear(iYear))
1145       iDay -= 29;
1146     else
1147       iDay -= days[iMonth];
1148     iMonth++;
1149     iYear += iMonth / 12;
1150     iMonth = iMonth % 12;
1151   }
1152   while (iDay <= 0)
1153   {
1154     iMonth--;
1155     if (iMonth<=0) {iMonth+=12; iYear--;}
1156     if (iMonth == 2 && IsLeapYear(iYear))
1157       iDay += 29;
1158     else
1159       iDay += days[iMonth];
1160   }
1161 
1162   if (iSecond<0){iSecond+=60; iMinute--;}
1163   if (iMinute<0){iMinute+=60; iHour--;}
1164   if (iHour<0)  {iHour+=24; iDay--;}
1165   if (iYear<=0)  iYear+=2000;
1166 
1167   lpUd->st.wYear   = iYear;
1168   lpUd->st.wMonth  = iMonth;
1169   lpUd->st.wDay    = iDay;
1170   lpUd->st.wHour   = iHour;
1171   lpUd->st.wMinute = iMinute;
1172   lpUd->st.wSecond = iSecond;
1173 
1174   TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1175         lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1176   return S_OK;
1177 }
1178 
1179 /**********************************************************************
1180  *              DosDateTimeToVariantTime [OLEAUT32.14]
1181  *
1182  * Convert a Dos format date and time into variant VT_DATE format.
1183  *
1184  * PARAMS
1185  *  wDosDate [I] Dos format date
1186  *  wDosTime [I] Dos format time
1187  *  pDateOut [O] Destination for VT_DATE format
1188  *
1189  * RETURNS
1190  *  Success: TRUE. pDateOut contains the converted time.
1191  *  Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1192  *
1193  * NOTES
1194  * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1195  * - Dos format times are accurate to only 2 second precision.
1196  * - The format of a Dos Date is:
1197  *| Bits   Values  Meaning
1198  *| ----   ------  -------
1199  *| 0-4    1-31    Day of the week. 0 rolls back one day. A value greater than
1200  *|                the days in the month rolls forward the extra days.
1201  *| 5-8    1-12    Month of the year. 0 rolls back to December of the previous
1202  *|                year. 13-15 are invalid.
1203  *| 9-15   0-119   Year based from 1980 (Max 2099). 120-127 are invalid.
1204  * - The format of a Dos Time is:
1205  *| Bits   Values  Meaning
1206  *| ----   ------  -------
1207  *| 0-4    0-29    Seconds/2. 30 and 31 are invalid.
1208  *| 5-10   0-59    Minutes. 60-63 are invalid.
1209  *| 11-15  0-23    Hours (24 hour clock). 24-32 are invalid.
1210  */
DosDateTimeToVariantTime(USHORT wDosDate,USHORT wDosTime,double * pDateOut)1211 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1212                                     double *pDateOut)
1213 {
1214   UDATE ud;
1215 
1216   TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1217         wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1218         wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1219         pDateOut);
1220 
1221   ud.st.wYear = DOS_YEAR(wDosDate);
1222   ud.st.wMonth = DOS_MONTH(wDosDate);
1223   if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1224     return FALSE;
1225   ud.st.wDay = DOS_DAY(wDosDate);
1226   ud.st.wHour = DOS_HOUR(wDosTime);
1227   ud.st.wMinute = DOS_MINUTE(wDosTime);
1228   ud.st.wSecond = DOS_SECOND(wDosTime);
1229   ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1230   if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1231     return FALSE; /* Invalid values in Dos*/
1232 
1233   return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1234 }
1235 
1236 /**********************************************************************
1237  *              VariantTimeToDosDateTime [OLEAUT32.13]
1238  *
1239  * Convert a variant format date into a Dos format date and time.
1240  *
1241  *  dateIn    [I] VT_DATE time format
1242  *  pwDosDate [O] Destination for Dos format date
1243  *  pwDosTime [O] Destination for Dos format time
1244  *
1245  * RETURNS
1246  *  Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1247  *  Failure: FALSE, if dateIn cannot be represented in Dos format.
1248  *
1249  * NOTES
1250  *   See DosDateTimeToVariantTime() for Dos format details and bugs.
1251  */
VariantTimeToDosDateTime(double dateIn,USHORT * pwDosDate,USHORT * pwDosTime)1252 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1253 {
1254   UDATE ud;
1255 
1256   TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1257 
1258   if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1259     return FALSE;
1260 
1261   if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1262     return FALSE;
1263 
1264   *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1265   *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1266 
1267   TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1268         *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1269         *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1270   return TRUE;
1271 }
1272 
1273 /***********************************************************************
1274  *              SystemTimeToVariantTime [OLEAUT32.184]
1275  *
1276  * Convert a System format date and time into variant VT_DATE format.
1277  *
1278  * PARAMS
1279  *  lpSt     [I] System format date and time
1280  *  pDateOut [O] Destination for VT_DATE format date
1281  *
1282  * RETURNS
1283  *  Success: TRUE. *pDateOut contains the converted value.
1284  *  Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1285  */
SystemTimeToVariantTime(LPSYSTEMTIME lpSt,double * pDateOut)1286 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1287 {
1288   UDATE ud;
1289 
1290   TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1291         lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1292 
1293   if (lpSt->wMonth > 12)
1294     return FALSE;
1295   if (lpSt->wDay > 31)
1296     return FALSE;
1297   if ((short)lpSt->wYear < 0)
1298     return FALSE;
1299 
1300   ud.st = *lpSt;
1301   return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1302 }
1303 
1304 /***********************************************************************
1305  *              VariantTimeToSystemTime [OLEAUT32.185]
1306  *
1307  * Convert a variant VT_DATE into a System format date and time.
1308  *
1309  * PARAMS
1310  *  datein [I] Variant VT_DATE format date
1311  *  lpSt   [O] Destination for System format date and time
1312  *
1313  * RETURNS
1314  *  Success: TRUE. *lpSt contains the converted value.
1315  *  Failure: FALSE, if dateIn is too large or small.
1316  */
VariantTimeToSystemTime(double dateIn,LPSYSTEMTIME lpSt)1317 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1318 {
1319   UDATE ud;
1320 
1321   TRACE("(%g,%p)\n", dateIn, lpSt);
1322 
1323   if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1324     return FALSE;
1325 
1326   *lpSt = ud.st;
1327   return TRUE;
1328 }
1329 
1330 /***********************************************************************
1331  *              VarDateFromUdateEx [OLEAUT32.319]
1332  *
1333  * Convert an unpacked format date and time to a variant VT_DATE.
1334  *
1335  * PARAMS
1336  *  pUdateIn [I] Unpacked format date and time to convert
1337  *  lcid     [I] Locale identifier for the conversion
1338  *  dwFlags  [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1339  *  pDateOut [O] Destination for variant VT_DATE.
1340  *
1341  * RETURNS
1342  *  Success: S_OK. *pDateOut contains the converted value.
1343  *  Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1344  */
VarDateFromUdateEx(UDATE * pUdateIn,LCID lcid,ULONG dwFlags,DATE * pDateOut)1345 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1346 {
1347   UDATE ud;
1348   double dateVal = 0;
1349 
1350   TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1351         pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1352         pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1353         pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1354         pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1355 
1356   if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1357     FIXME("lcid possibly not handled, treating as en-us\n");
1358   if (dwFlags & ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
1359     FIXME("unsupported flags: %x\n", dwFlags);
1360 
1361   ud = *pUdateIn;
1362 
1363   if (dwFlags & VAR_VALIDDATE)
1364     WARN("Ignoring VAR_VALIDDATE\n");
1365 
1366   if (FAILED(VARIANT_RollUdate(&ud)))
1367     return E_INVALIDARG;
1368 
1369   /* Date */
1370   if (!(dwFlags & VAR_TIMEVALUEONLY))
1371     dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1372 
1373   if ((dwFlags & VAR_TIMEVALUEONLY) || !(dwFlags & VAR_DATEVALUEONLY))
1374   {
1375     double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1376 
1377     /* Time */
1378     dateVal += ud.st.wHour / 24.0 * dateSign;
1379     dateVal += ud.st.wMinute / 1440.0 * dateSign;
1380     dateVal += ud.st.wSecond / 86400.0 * dateSign;
1381   }
1382 
1383   TRACE("Returning %g\n", dateVal);
1384   *pDateOut = dateVal;
1385   return S_OK;
1386 }
1387 
1388 /***********************************************************************
1389  *              VarDateFromUdate [OLEAUT32.330]
1390  *
1391  * Convert an unpacked format date and time to a variant VT_DATE.
1392  *
1393  * PARAMS
1394  *  pUdateIn [I] Unpacked format date and time to convert
1395  *  dwFlags  [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1396  *  pDateOut [O] Destination for variant VT_DATE.
1397  *
1398  * RETURNS
1399  *  Success: S_OK. *pDateOut contains the converted value.
1400  *  Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1401  *
1402  * NOTES
1403  *  This function uses the United States English locale for the conversion. Use
1404  *  VarDateFromUdateEx() for alternate locales.
1405  */
VarDateFromUdate(UDATE * pUdateIn,ULONG dwFlags,DATE * pDateOut)1406 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1407 {
1408   LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1409 
1410   return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1411 }
1412 
1413 /***********************************************************************
1414  *              VarUdateFromDate [OLEAUT32.331]
1415  *
1416  * Convert a variant VT_DATE into an unpacked format date and time.
1417  *
1418  * PARAMS
1419  *  datein    [I] Variant VT_DATE format date
1420  *  dwFlags   [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1421  *  lpUdate   [O] Destination for unpacked format date and time
1422  *
1423  * RETURNS
1424  *  Success: S_OK. *lpUdate contains the converted value.
1425  *  Failure: E_INVALIDARG, if dateIn is too large or small.
1426  */
VarUdateFromDate(DATE dateIn,ULONG dwFlags,UDATE * lpUdate)1427 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1428 {
1429   /* Cumulative totals of days per month */
1430   static const USHORT cumulativeDays[] =
1431   {
1432     0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1433   };
1434   double datePart, timePart;
1435   int julianDays;
1436 
1437   TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1438 
1439   if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1440     return E_INVALIDARG;
1441 
1442   datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1443   /* Compensate for int truncation (always downwards) */
1444   timePart = fabs(dateIn - datePart) + 0.00000000001;
1445   if (timePart >= 1.0)
1446     timePart -= 0.00000000001;
1447 
1448   /* Date */
1449   julianDays = VARIANT_JulianFromDate(dateIn);
1450   VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1451                         &lpUdate->st.wDay);
1452 
1453   datePart = (datePart + 1.5) / 7.0;
1454   lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1455   if (lpUdate->st.wDayOfWeek == 0)
1456     lpUdate->st.wDayOfWeek = 5;
1457   else if (lpUdate->st.wDayOfWeek == 1)
1458     lpUdate->st.wDayOfWeek = 6;
1459   else
1460     lpUdate->st.wDayOfWeek -= 2;
1461 
1462   if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1463     lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1464   else
1465     lpUdate->wDayOfYear = 0;
1466 
1467   lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1468   lpUdate->wDayOfYear += lpUdate->st.wDay;
1469 
1470   /* Time */
1471   timePart *= 24.0;
1472   lpUdate->st.wHour = timePart;
1473   timePart -= lpUdate->st.wHour;
1474   timePart *= 60.0;
1475   lpUdate->st.wMinute = timePart;
1476   timePart -= lpUdate->st.wMinute;
1477   timePart *= 60.0;
1478   lpUdate->st.wSecond = timePart;
1479   timePart -= lpUdate->st.wSecond;
1480   lpUdate->st.wMilliseconds = 0;
1481   if (timePart > 0.5)
1482   {
1483     /* Round the milliseconds, adjusting the time/date forward if needed */
1484     if (lpUdate->st.wSecond < 59)
1485       lpUdate->st.wSecond++;
1486     else
1487     {
1488       lpUdate->st.wSecond = 0;
1489       if (lpUdate->st.wMinute < 59)
1490         lpUdate->st.wMinute++;
1491       else
1492       {
1493         lpUdate->st.wMinute = 0;
1494         if (lpUdate->st.wHour < 23)
1495           lpUdate->st.wHour++;
1496         else
1497         {
1498           lpUdate->st.wHour = 0;
1499           /* Roll over a whole day */
1500           if (++lpUdate->st.wDay > 28)
1501             VARIANT_RollUdate(lpUdate);
1502         }
1503       }
1504     }
1505   }
1506   return S_OK;
1507 }
1508 
1509 #define GET_NUMBER_TEXT(fld,name) \
1510   buff[0] = 0; \
1511   if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1512     WARN("buffer too small for " #fld "\n"); \
1513   else \
1514     if (buff[0]) lpChars->name = buff[0]; \
1515   TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1516 
1517 /* Get the valid number characters for an lcid */
VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS * lpChars,LCID lcid,DWORD dwFlags)1518 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1519 {
1520   static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1521   static VARIANT_NUMBER_CHARS lastChars;
1522   static LCID lastLcid = -1;
1523   static DWORD lastFlags = 0;
1524   LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1525   WCHAR buff[4];
1526 
1527   /* To make caching thread-safe, a critical section is needed */
1528   EnterCriticalSection(&cache_cs);
1529 
1530   /* Asking for default locale entries is very expensive: It is a registry
1531      server call. So cache one locally, as Microsoft does it too */
1532   if(lcid == lastLcid && dwFlags == lastFlags)
1533   {
1534     memcpy(lpChars, &lastChars, sizeof(defaultChars));
1535     LeaveCriticalSection(&cache_cs);
1536     return;
1537   }
1538 
1539   memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1540   GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1541   GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1542   GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1543   GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1544   GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1545   GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1546 
1547   /* Local currency symbols are often 2 characters */
1548   lpChars->cCurrencyLocal2 = '\0';
1549   switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, ARRAY_SIZE(buff)))
1550   {
1551     case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1552     case 2: lpChars->cCurrencyLocal  = buff[0];
1553             break;
1554     default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1555   }
1556   TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1557         lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1558 
1559   memcpy(&lastChars, lpChars, sizeof(defaultChars));
1560   lastLcid = lcid;
1561   lastFlags = dwFlags;
1562   LeaveCriticalSection(&cache_cs);
1563 }
1564 
1565 /* Number Parsing States */
1566 #define B_PROCESSING_EXPONENT 0x1
1567 #define B_NEGATIVE_EXPONENT   0x2
1568 #define B_EXPONENT_START      0x4
1569 #define B_INEXACT_ZEROS       0x8
1570 #define B_LEADING_ZERO        0x10
1571 #define B_PROCESSING_HEX      0x20
1572 #define B_PROCESSING_OCT      0x40
1573 
1574 /**********************************************************************
1575  *              VarParseNumFromStr [OLEAUT32.46]
1576  *
1577  * Parse a string containing a number into a NUMPARSE structure.
1578  *
1579  * PARAMS
1580  *  lpszStr [I]   String to parse number from
1581  *  lcid    [I]   Locale Id for the conversion
1582  *  dwFlags [I]   0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1583  *  pNumprs [I/O] Destination for parsed number
1584  *  rgbDig  [O]   Destination for digits read in
1585  *
1586  * RETURNS
1587  *  Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1588  *           the number.
1589  *  Failure: E_INVALIDARG, if any parameter is invalid.
1590  *           DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1591  *           incorrectly.
1592  *           DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1593  *
1594  * NOTES
1595  *  pNumprs must have the following fields set:
1596  *   cDig: Set to the size of rgbDig.
1597  *   dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1598  *            from "oleauto.h".
1599  *
1600  * FIXME
1601  *  - I am unsure if this function should parse non-Arabic (e.g. Thai)
1602  *   numerals, so this has not been implemented.
1603  */
VarParseNumFromStr(OLECHAR * lpszStr,LCID lcid,ULONG dwFlags,NUMPARSE * pNumprs,BYTE * rgbDig)1604 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1605                                   NUMPARSE *pNumprs, BYTE *rgbDig)
1606 {
1607   VARIANT_NUMBER_CHARS chars;
1608   BYTE rgbTmp[1024];
1609   DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1610   int iMaxDigits = ARRAY_SIZE(rgbTmp);
1611   int cchUsed = 0;
1612 
1613   TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1614 
1615   if (!pNumprs || !rgbDig)
1616     return E_INVALIDARG;
1617 
1618   if (pNumprs->cDig < iMaxDigits)
1619     iMaxDigits = pNumprs->cDig;
1620 
1621   pNumprs->cDig = 0;
1622   pNumprs->dwOutFlags = 0;
1623   pNumprs->cchUsed = 0;
1624   pNumprs->nBaseShift = 0;
1625   pNumprs->nPwr10 = 0;
1626 
1627   if (!lpszStr)
1628     return DISP_E_TYPEMISMATCH;
1629 
1630   VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1631 
1632   /* First consume all the leading symbols and space from the string */
1633   while (1)
1634   {
1635     if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && iswspace(*lpszStr))
1636     {
1637       pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1638       do
1639       {
1640         cchUsed++;
1641         lpszStr++;
1642       } while (iswspace(*lpszStr));
1643     }
1644     else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1645              *lpszStr == chars.cPositiveSymbol &&
1646              !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1647     {
1648       pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1649       cchUsed++;
1650       lpszStr++;
1651     }
1652     else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1653              *lpszStr == chars.cNegativeSymbol &&
1654              !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1655     {
1656       pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1657       cchUsed++;
1658       lpszStr++;
1659     }
1660     else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1661              !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1662              *lpszStr == chars.cCurrencyLocal &&
1663              (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1664     {
1665       pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1666       cchUsed++;
1667       lpszStr++;
1668       /* Only accept currency characters */
1669       chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1670       chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1671     }
1672     else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1673              !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1674     {
1675       pNumprs->dwOutFlags |= NUMPRS_PARENS;
1676       cchUsed++;
1677       lpszStr++;
1678     }
1679     else
1680       break;
1681   }
1682 
1683   if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1684   {
1685     /* Only accept non-currency characters */
1686     chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1687     chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1688   }
1689 
1690   if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1691     pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1692   {
1693       dwState |= B_PROCESSING_HEX;
1694       pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1695       cchUsed=cchUsed+2;
1696       lpszStr=lpszStr+2;
1697   }
1698   else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1699     pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1700   {
1701       dwState |= B_PROCESSING_OCT;
1702       pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1703       cchUsed=cchUsed+2;
1704       lpszStr=lpszStr+2;
1705   }
1706 
1707   /* Strip Leading zeros */
1708   while (*lpszStr == '0')
1709   {
1710     dwState |= B_LEADING_ZERO;
1711     cchUsed++;
1712     lpszStr++;
1713   }
1714 
1715   while (*lpszStr)
1716   {
1717     if (iswdigit(*lpszStr))
1718     {
1719       if (dwState & B_PROCESSING_EXPONENT)
1720       {
1721         int exponentSize = 0;
1722         if (dwState & B_EXPONENT_START)
1723         {
1724           if (!iswdigit(*lpszStr))
1725             break; /* No exponent digits - invalid */
1726           while (*lpszStr == '0')
1727           {
1728             /* Skip leading zero's in the exponent */
1729             cchUsed++;
1730             lpszStr++;
1731           }
1732         }
1733 
1734         while (iswdigit(*lpszStr))
1735         {
1736           exponentSize *= 10;
1737           exponentSize += *lpszStr - '0';
1738           cchUsed++;
1739           lpszStr++;
1740         }
1741         if (dwState & B_NEGATIVE_EXPONENT)
1742           exponentSize = -exponentSize;
1743         /* Add the exponent into the powers of 10 */
1744         pNumprs->nPwr10 += exponentSize;
1745         dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1746         lpszStr--; /* back up to allow processing of next char */
1747       }
1748       else
1749       {
1750         if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1751           && !(dwState & B_PROCESSING_OCT))
1752         {
1753           pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1754 
1755           if (*lpszStr != '0')
1756             dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1757 
1758           /* This digit can't be represented, but count it in nPwr10 */
1759           if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1760             pNumprs->nPwr10--;
1761           else
1762             pNumprs->nPwr10++;
1763         }
1764         else
1765         {
1766           if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9')))
1767             break;
1768 
1769           if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1770             pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1771 
1772           rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1773         }
1774         pNumprs->cDig++;
1775         cchUsed++;
1776       }
1777     }
1778     else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1779     {
1780       pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1781       cchUsed++;
1782     }
1783     else if (*lpszStr == chars.cDecimalPoint &&
1784              pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1785              !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1786     {
1787       pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1788       cchUsed++;
1789 
1790       /* If we have no digits so far, skip leading zeros */
1791       if (!pNumprs->cDig)
1792       {
1793         while (lpszStr[1] == '0')
1794         {
1795           dwState |= B_LEADING_ZERO;
1796           cchUsed++;
1797           lpszStr++;
1798           pNumprs->nPwr10--;
1799         }
1800       }
1801     }
1802     else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1803              (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1804              dwState & B_PROCESSING_HEX)
1805     {
1806       if (pNumprs->cDig >= iMaxDigits)
1807       {
1808         return DISP_E_OVERFLOW;
1809       }
1810       else
1811       {
1812         if (*lpszStr >= 'a')
1813           rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1814         else
1815           rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1816       }
1817       pNumprs->cDig++;
1818       cchUsed++;
1819     }
1820     else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1821              pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1822              !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1823     {
1824       dwState |= B_PROCESSING_EXPONENT;
1825       pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1826       cchUsed++;
1827     }
1828     else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1829     {
1830       cchUsed++; /* Ignore positive exponent */
1831     }
1832     else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1833     {
1834       dwState |= B_NEGATIVE_EXPONENT;
1835       cchUsed++;
1836     }
1837     else
1838       break; /* Stop at an unrecognised character */
1839 
1840     lpszStr++;
1841   }
1842 
1843   if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1844   {
1845     /* Ensure a 0 on its own gets stored */
1846     pNumprs->cDig = 1;
1847     rgbTmp[0] = 0;
1848   }
1849 
1850   if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1851   {
1852     pNumprs->cchUsed = cchUsed;
1853     WARN("didn't completely parse exponent\n");
1854     return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1855   }
1856 
1857   if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1858   {
1859     if (dwState & B_INEXACT_ZEROS)
1860       pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1861   } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1862   {
1863     /* copy all of the digits into the output digit buffer */
1864     /* this is exactly what windows does although it also returns */
1865     /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1866     memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1867 
1868     if (dwState & B_PROCESSING_HEX) {
1869       /* hex numbers have always the same format */
1870       pNumprs->nPwr10=0;
1871       pNumprs->nBaseShift=4;
1872     } else {
1873       if (dwState & B_PROCESSING_OCT) {
1874         /* oct numbers have always the same format */
1875         pNumprs->nPwr10=0;
1876         pNumprs->nBaseShift=3;
1877       } else {
1878         while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1879         {
1880           pNumprs->nPwr10++;
1881           pNumprs->cDig--;
1882         }
1883       }
1884     }
1885   } else
1886   {
1887     /* Remove trailing zeros from the last (whole number or decimal) part */
1888     while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1889     {
1890       pNumprs->nPwr10++;
1891       pNumprs->cDig--;
1892     }
1893   }
1894 
1895   if (pNumprs->cDig <= iMaxDigits)
1896     pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1897   else
1898     pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1899 
1900   /* Copy the digits we processed into rgbDig */
1901   memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1902 
1903   /* Consume any trailing symbols and space */
1904   while (1)
1905   {
1906     if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && iswspace(*lpszStr))
1907     {
1908       pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1909       do
1910       {
1911         cchUsed++;
1912         lpszStr++;
1913       } while (iswspace(*lpszStr));
1914     }
1915     else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1916              !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1917              *lpszStr == chars.cPositiveSymbol)
1918     {
1919       pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1920       cchUsed++;
1921       lpszStr++;
1922     }
1923     else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1924              !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1925              *lpszStr == chars.cNegativeSymbol)
1926     {
1927       pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1928       cchUsed++;
1929       lpszStr++;
1930     }
1931     else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1932              pNumprs->dwOutFlags & NUMPRS_PARENS)
1933     {
1934       cchUsed++;
1935       lpszStr++;
1936       pNumprs->dwOutFlags |= NUMPRS_NEG;
1937     }
1938     else
1939       break;
1940   }
1941 
1942   if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1943   {
1944     pNumprs->cchUsed = cchUsed;
1945     return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1946   }
1947 
1948   if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1949     return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1950 
1951   if (!pNumprs->cDig)
1952     return DISP_E_TYPEMISMATCH; /* No Number found */
1953 
1954   pNumprs->cchUsed = cchUsed;
1955   return S_OK;
1956 }
1957 
1958 /* VTBIT flags indicating an integer value */
1959 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1960 /* VTBIT flags indicating a real number value */
1961 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1962 
1963 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1964 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1965 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1966 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1967 
1968 /**********************************************************************
1969  *              VarNumFromParseNum [OLEAUT32.47]
1970  *
1971  * Convert a NUMPARSE structure into a numeric Variant type.
1972  *
1973  * PARAMS
1974  *  pNumprs  [I] Source for parsed number. cDig must be set to the size of rgbDig
1975  *  rgbDig   [I] Source for the numbers digits
1976  *  dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1977  *  pVarDst  [O] Destination for the converted Variant value.
1978  *
1979  * RETURNS
1980  *  Success: S_OK. pVarDst contains the converted value.
1981  *  Failure: E_INVALIDARG, if any parameter is invalid.
1982  *           DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1983  *
1984  * NOTES
1985  *  - The smallest favoured type present in dwVtBits that can represent the
1986  *    number in pNumprs without losing precision is used.
1987  *  - Signed types are preferred over unsigned types of the same size.
1988  *  - Preferred types in order are: integer, float, double, currency then decimal.
1989  *  - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1990  *    for details of the rounding method.
1991  *  - pVarDst is not cleared before the result is stored in it.
1992  *  - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1993  *    design?): If some other VTBIT's for integers are specified together
1994  *    with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1995  *    the number to the smallest requested integer truncating this way the
1996  *    number.  Wine doesn't implement this "feature" (yet?).
1997  */
VarNumFromParseNum(NUMPARSE * pNumprs,BYTE * rgbDig,ULONG dwVtBits,VARIANT * pVarDst)1998 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1999                                   ULONG dwVtBits, VARIANT *pVarDst)
2000 {
2001   /* Scale factors and limits for double arithmetic */
2002   static const double dblMultipliers[11] = {
2003     1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2004     1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2005   };
2006   static const double dblMinimums[11] = {
2007     R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2008     R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2009     R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2010   };
2011   static const double dblMaximums[11] = {
2012     R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2013     R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2014     R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2015   };
2016 
2017   int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2018 
2019   TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2020 
2021   if (pNumprs->nBaseShift)
2022   {
2023     /* nBaseShift indicates a hex or octal number */
2024     ULONG64 ul64 = 0;
2025     LONG64 l64;
2026     int i;
2027 
2028     /* Convert the hex or octal number string into a UI64 */
2029     for (i = 0; i < pNumprs->cDig; i++)
2030     {
2031       if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2032       {
2033         TRACE("Overflow multiplying digits\n");
2034         return DISP_E_OVERFLOW;
2035       }
2036       ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2037     }
2038 
2039     /* also make a negative representation */
2040     l64=-ul64;
2041 
2042     /* Try signed and unsigned types in size order */
2043     if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2044     {
2045       V_VT(pVarDst) = VT_I1;
2046       V_I1(pVarDst) = ul64;
2047       return S_OK;
2048     }
2049     else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2050     {
2051       V_VT(pVarDst) = VT_UI1;
2052       V_UI1(pVarDst) = ul64;
2053       return S_OK;
2054     }
2055     else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2056     {
2057       V_VT(pVarDst) = VT_I2;
2058       V_I2(pVarDst) = ul64;
2059       return S_OK;
2060     }
2061     else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2062     {
2063       V_VT(pVarDst) = VT_UI2;
2064       V_UI2(pVarDst) = ul64;
2065       return S_OK;
2066     }
2067     else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2068     {
2069       V_VT(pVarDst) = VT_I4;
2070       V_I4(pVarDst) = ul64;
2071       return S_OK;
2072     }
2073     else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2074     {
2075       V_VT(pVarDst) = VT_UI4;
2076       V_UI4(pVarDst) = ul64;
2077       return S_OK;
2078     }
2079     else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2080     {
2081       V_VT(pVarDst) = VT_I8;
2082       V_I8(pVarDst) = ul64;
2083       return S_OK;
2084     }
2085     else if (dwVtBits & VTBIT_UI8)
2086     {
2087       V_VT(pVarDst) = VT_UI8;
2088       V_UI8(pVarDst) = ul64;
2089       return S_OK;
2090     }
2091     else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2092     {
2093       V_VT(pVarDst) = VT_DECIMAL;
2094       DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2095       DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2096       DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2097       return S_OK;
2098     }
2099     else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2100     {
2101       V_VT(pVarDst) = VT_R4;
2102       if (ul64 <= I4_MAX)
2103           V_R4(pVarDst) = ul64;
2104       else
2105           V_R4(pVarDst) = l64;
2106       return S_OK;
2107     }
2108     else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2109     {
2110       V_VT(pVarDst) = VT_R8;
2111       if (ul64 <= I4_MAX)
2112           V_R8(pVarDst) = ul64;
2113       else
2114           V_R8(pVarDst) = l64;
2115       return S_OK;
2116     }
2117 
2118     TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2119     return DISP_E_OVERFLOW;
2120   }
2121 
2122   /* Count the number of relevant fractional and whole digits stored,
2123    * And compute the divisor/multiplier to scale the number by.
2124    */
2125   if (pNumprs->nPwr10 < 0)
2126   {
2127     if (-pNumprs->nPwr10 >= pNumprs->cDig)
2128     {
2129       /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2130       wholeNumberDigits = 0;
2131       fractionalDigits = pNumprs->cDig;
2132       divisor10 = -pNumprs->nPwr10;
2133     }
2134     else
2135     {
2136       /* An exactly represented real number e.g. 1.024 */
2137       wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2138       fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2139       divisor10 = pNumprs->cDig - wholeNumberDigits;
2140     }
2141   }
2142   else if (pNumprs->nPwr10 == 0)
2143   {
2144     /* An exactly represented whole number e.g. 1024 */
2145     wholeNumberDigits = pNumprs->cDig;
2146     fractionalDigits = 0;
2147   }
2148   else /* pNumprs->nPwr10 > 0 */
2149   {
2150     /* A whole number followed by nPwr10 0's e.g. 102400 */
2151     wholeNumberDigits = pNumprs->cDig;
2152     fractionalDigits = 0;
2153     multiplier10 = pNumprs->nPwr10;
2154   }
2155 
2156   TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2157         pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2158         multiplier10, divisor10);
2159 
2160   if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2161       (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL))))
2162   {
2163     /* We have one or more integer output choices, and either:
2164      *  1) An integer input value, or
2165      *  2) A real number input value but no floating output choices.
2166      * Alternately, we have a DECIMAL output available and an integer input.
2167      *
2168      * So, place the integer value into pVarDst, using the smallest type
2169      * possible and preferring signed over unsigned types.
2170      */
2171     BOOL bOverflow = FALSE, bNegative;
2172     ULONG64 ul64 = 0;
2173     int i;
2174 
2175     /* Convert the integer part of the number into a UI8 */
2176     for (i = 0; i < wholeNumberDigits; i++)
2177     {
2178       if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2179       {
2180         TRACE("Overflow multiplying digits\n");
2181         bOverflow = TRUE;
2182         break;
2183       }
2184       ul64 = ul64 * 10 + rgbDig[i];
2185     }
2186 
2187     /* Account for the scale of the number */
2188     if (!bOverflow && multiplier10)
2189     {
2190       for (i = 0; i < multiplier10; i++)
2191       {
2192         if (ul64 > (UI8_MAX / 10))
2193         {
2194           TRACE("Overflow scaling number\n");
2195           bOverflow = TRUE;
2196           break;
2197         }
2198         ul64 = ul64 * 10;
2199       }
2200     }
2201 
2202     /* If we have any fractional digits, round the value.
2203      * Note we don't have to do this if divisor10 is < 1,
2204      * because this means the fractional part must be < 0.5
2205      */
2206     if (!bOverflow && fractionalDigits && divisor10 > 0)
2207     {
2208       const BYTE* fracDig = rgbDig + wholeNumberDigits;
2209       BOOL bAdjust = FALSE;
2210 
2211       TRACE("first decimal value is %d\n", *fracDig);
2212 
2213       if (*fracDig > 5)
2214         bAdjust = TRUE; /* > 0.5 */
2215       else if (*fracDig == 5)
2216       {
2217         for (i = 1; i < fractionalDigits; i++)
2218         {
2219           if (fracDig[i])
2220           {
2221             bAdjust = TRUE; /* > 0.5 */
2222             break;
2223           }
2224         }
2225         /* If exactly 0.5, round only odd values */
2226         if (i == fractionalDigits && (ul64 & 1))
2227           bAdjust = TRUE;
2228       }
2229 
2230       if (bAdjust)
2231       {
2232         if (ul64 == UI8_MAX)
2233         {
2234           TRACE("Overflow after rounding\n");
2235           bOverflow = TRUE;
2236         }
2237         ul64++;
2238       }
2239     }
2240 
2241     /* Zero is not a negative number */
2242     bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2243 
2244     TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2245 
2246     /* For negative integers, try the signed types in size order */
2247     if (!bOverflow && bNegative)
2248     {
2249       if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2250       {
2251         if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2252         {
2253           V_VT(pVarDst) = VT_I1;
2254           V_I1(pVarDst) = -ul64;
2255           return S_OK;
2256         }
2257         else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2258         {
2259           V_VT(pVarDst) = VT_I2;
2260           V_I2(pVarDst) = -ul64;
2261           return S_OK;
2262         }
2263         else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2264         {
2265           V_VT(pVarDst) = VT_I4;
2266           V_I4(pVarDst) = -ul64;
2267           return S_OK;
2268         }
2269         else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2270         {
2271           V_VT(pVarDst) = VT_I8;
2272           V_I8(pVarDst) = -ul64;
2273           return S_OK;
2274         }
2275         else if ((dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL)) == VTBIT_DECIMAL)
2276         {
2277           /* Decimal is only output choice left - fast path */
2278           V_VT(pVarDst) = VT_DECIMAL;
2279           DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2280           DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2281           DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2282           return S_OK;
2283         }
2284       }
2285     }
2286     else if (!bOverflow)
2287     {
2288       /* For positive integers, try signed then unsigned types in size order */
2289       if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2290       {
2291         V_VT(pVarDst) = VT_I1;
2292         V_I1(pVarDst) = ul64;
2293         return S_OK;
2294       }
2295       else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2296       {
2297         V_VT(pVarDst) = VT_UI1;
2298         V_UI1(pVarDst) = ul64;
2299         return S_OK;
2300       }
2301       else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2302       {
2303         V_VT(pVarDst) = VT_I2;
2304         V_I2(pVarDst) = ul64;
2305         return S_OK;
2306       }
2307       else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2308       {
2309         V_VT(pVarDst) = VT_UI2;
2310         V_UI2(pVarDst) = ul64;
2311         return S_OK;
2312       }
2313       else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2314       {
2315         V_VT(pVarDst) = VT_I4;
2316         V_I4(pVarDst) = ul64;
2317         return S_OK;
2318       }
2319       else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2320       {
2321         V_VT(pVarDst) = VT_UI4;
2322         V_UI4(pVarDst) = ul64;
2323         return S_OK;
2324       }
2325       else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2326       {
2327         V_VT(pVarDst) = VT_I8;
2328         V_I8(pVarDst) = ul64;
2329         return S_OK;
2330       }
2331       else if (dwVtBits & VTBIT_UI8)
2332       {
2333         V_VT(pVarDst) = VT_UI8;
2334         V_UI8(pVarDst) = ul64;
2335         return S_OK;
2336       }
2337       else if ((dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL)) == VTBIT_DECIMAL)
2338       {
2339         /* Decimal is only output choice left - fast path */
2340         V_VT(pVarDst) = VT_DECIMAL;
2341         DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2342         DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2343         DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2344         return S_OK;
2345       }
2346     }
2347   }
2348 
2349   if (dwVtBits & REAL_VTBITS)
2350   {
2351     /* Try to put the number into a float or real */
2352     BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2353     double whole = 0.0;
2354     int i;
2355 
2356     /* Convert the number into a double */
2357     for (i = 0; i < pNumprs->cDig; i++)
2358       whole = whole * 10.0 + rgbDig[i];
2359 
2360     TRACE("Whole double value is %16.16g\n", whole);
2361 
2362     /* Account for the scale */
2363     while (multiplier10 > 10)
2364     {
2365       if (whole > dblMaximums[10])
2366       {
2367         dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2368         bOverflow = TRUE;
2369         break;
2370       }
2371       whole = whole * dblMultipliers[10];
2372       multiplier10 -= 10;
2373     }
2374     if (multiplier10 && !bOverflow)
2375     {
2376       if (whole > dblMaximums[multiplier10])
2377       {
2378         dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2379         bOverflow = TRUE;
2380       }
2381       else
2382         whole = whole * dblMultipliers[multiplier10];
2383     }
2384 
2385     if (!bOverflow)
2386         TRACE("Scaled double value is %16.16g\n", whole);
2387 
2388     while (divisor10 > 10 && !bOverflow)
2389     {
2390       if (whole < dblMinimums[10] && whole != 0)
2391       {
2392         whole = 0; /* ignore underflow */
2393         divisor10 = 0;
2394         break;
2395       }
2396       whole = whole / dblMultipliers[10];
2397       divisor10 -= 10;
2398     }
2399     if (divisor10 && !bOverflow)
2400     {
2401       if (whole < dblMinimums[divisor10] && whole != 0)
2402       {
2403         whole = 0; /* ignore underflow */
2404         divisor10 = 0;
2405       }
2406       else
2407         whole = whole / dblMultipliers[divisor10];
2408     }
2409     if (!bOverflow)
2410       TRACE("Final double value is %16.16g\n", whole);
2411 
2412     if (dwVtBits & VTBIT_R4 &&
2413         ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2414     {
2415       TRACE("Set R4 to final value\n");
2416       V_VT(pVarDst) = VT_R4; /* Fits into a float */
2417       V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2418       return S_OK;
2419     }
2420 
2421     if (dwVtBits & VTBIT_R8)
2422     {
2423       TRACE("Set R8 to final value\n");
2424       V_VT(pVarDst) = VT_R8; /* Fits into a double */
2425       V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2426       return S_OK;
2427     }
2428 
2429     if (dwVtBits & VTBIT_CY)
2430     {
2431       if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2432       {
2433         V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2434         TRACE("Set CY to final value\n");
2435         return S_OK;
2436       }
2437       TRACE("Value Overflows CY\n");
2438     }
2439   }
2440 
2441   if (dwVtBits & VTBIT_DECIMAL)
2442   {
2443     int i;
2444     ULONG carry;
2445     ULONG64 tmp;
2446     DECIMAL* pDec = &V_DECIMAL(pVarDst);
2447 
2448     DECIMAL_SETZERO(*pDec);
2449     DEC_LO32(pDec) = 0;
2450 
2451     if (pNumprs->dwOutFlags & NUMPRS_NEG)
2452       DEC_SIGN(pDec) = DECIMAL_NEG;
2453     else
2454       DEC_SIGN(pDec) = DECIMAL_POS;
2455 
2456     /* Factor the significant digits */
2457     for (i = 0; i < pNumprs->cDig; i++)
2458     {
2459       tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2460       carry = (ULONG)(tmp >> 32);
2461       DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2462       tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2463       carry = (ULONG)(tmp >> 32);
2464       DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2465       tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2466       DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2467 
2468       if (tmp >> 32 & UI4_MAX)
2469       {
2470 VarNumFromParseNum_DecOverflow:
2471         TRACE("Overflow\n");
2472         DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2473         return DISP_E_OVERFLOW;
2474       }
2475     }
2476 
2477     /* Account for the scale of the number */
2478     while (multiplier10 > 0)
2479     {
2480       tmp = (ULONG64)DEC_LO32(pDec) * 10;
2481       carry = (ULONG)(tmp >> 32);
2482       DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2483       tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2484       carry = (ULONG)(tmp >> 32);
2485       DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2486       tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2487       DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2488 
2489       if (tmp >> 32 & UI4_MAX)
2490         goto VarNumFromParseNum_DecOverflow;
2491       multiplier10--;
2492     }
2493     DEC_SCALE(pDec) = divisor10;
2494 
2495     V_VT(pVarDst) = VT_DECIMAL;
2496     return S_OK;
2497   }
2498   return DISP_E_OVERFLOW; /* No more output choices */
2499 }
2500 
2501 /**********************************************************************
2502  *              VarCat [OLEAUT32.318]
2503  *
2504  * Concatenates one variant onto another.
2505  *
2506  * PARAMS
2507  *  left    [I] First variant
2508  *  right   [I] Second variant
2509  *  result  [O] Result variant
2510  *
2511  * RETURNS
2512  *  Success: S_OK.
2513  *  Failure: An HRESULT error code indicating the error.
2514  */
VarCat(LPVARIANT left,LPVARIANT right,LPVARIANT out)2515 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2516 {
2517     BSTR left_str = NULL, right_str = NULL;
2518     VARTYPE leftvt, rightvt;
2519     HRESULT hres;
2520 
2521     TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2522 
2523     leftvt = V_VT(left);
2524     rightvt = V_VT(right);
2525 
2526     /* when both left and right are NULL the result is NULL */
2527     if (leftvt == VT_NULL && rightvt == VT_NULL)
2528     {
2529         V_VT(out) = VT_NULL;
2530         return S_OK;
2531     }
2532 
2533     /* There are many special case for errors and return types */
2534     if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2535         rightvt == VT_DATE || rightvt == VT_DECIMAL))
2536         hres = DISP_E_TYPEMISMATCH;
2537     else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2538         leftvt == VT_R4 || leftvt == VT_R8 ||
2539         leftvt == VT_CY || leftvt == VT_BOOL ||
2540         leftvt == VT_BSTR || leftvt == VT_I1 ||
2541         leftvt == VT_UI1 || leftvt == VT_UI2 ||
2542         leftvt == VT_UI4 || leftvt == VT_I8 ||
2543         leftvt == VT_UI8 || leftvt == VT_INT ||
2544         leftvt == VT_UINT || leftvt == VT_EMPTY ||
2545         leftvt == VT_NULL || leftvt == VT_DATE ||
2546         leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2547         &&
2548         (rightvt == VT_I2 || rightvt == VT_I4 ||
2549         rightvt == VT_R4 || rightvt == VT_R8 ||
2550         rightvt == VT_CY || rightvt == VT_BOOL ||
2551         rightvt == VT_BSTR || rightvt == VT_I1 ||
2552         rightvt == VT_UI1 || rightvt == VT_UI2 ||
2553         rightvt == VT_UI4 || rightvt == VT_I8 ||
2554         rightvt == VT_UI8 || rightvt == VT_INT ||
2555         rightvt == VT_UINT || rightvt == VT_EMPTY ||
2556         rightvt == VT_NULL || rightvt == VT_DATE ||
2557         rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2558         hres = S_OK;
2559     else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2560         hres = DISP_E_TYPEMISMATCH;
2561     else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2562         rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2563         hres = DISP_E_TYPEMISMATCH;
2564     else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2565         rightvt == VT_DECIMAL)
2566         hres = DISP_E_BADVARTYPE;
2567     else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2568         hres = DISP_E_TYPEMISMATCH;
2569     else if (leftvt == VT_VARIANT)
2570         hres = DISP_E_TYPEMISMATCH;
2571     else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2572         leftvt == VT_NULL || leftvt ==  VT_I2 ||
2573         leftvt == VT_I4 || leftvt == VT_R4 ||
2574         leftvt == VT_R8 || leftvt == VT_CY ||
2575         leftvt == VT_DATE || leftvt == VT_BSTR ||
2576         leftvt == VT_BOOL ||  leftvt == VT_DECIMAL ||
2577         leftvt == VT_I1 || leftvt == VT_UI1 ||
2578         leftvt == VT_UI2 || leftvt == VT_UI4 ||
2579         leftvt == VT_I8 || leftvt == VT_UI8 ||
2580         leftvt == VT_INT || leftvt == VT_UINT))
2581         hres = DISP_E_TYPEMISMATCH;
2582     else
2583         hres = DISP_E_BADVARTYPE;
2584 
2585     /* if result type is not S_OK, then no need to go further */
2586     if (hres != S_OK)
2587     {
2588         V_VT(out) = VT_EMPTY;
2589         return hres;
2590     }
2591 
2592     if (leftvt == VT_BSTR)
2593         left_str = V_BSTR(left);
2594     else
2595     {
2596         VARIANT converted, *tmp = left;
2597 
2598         VariantInit(&converted);
2599         if(leftvt == VT_DISPATCH)
2600         {
2601             hres = VARIANT_FetchDispatchValue(left, &converted);
2602             if(FAILED(hres))
2603                 goto failed;
2604 
2605             tmp = &converted;
2606         }
2607 
2608         hres = VariantChangeTypeEx(&converted, tmp, 0, VARIANT_ALPHABOOL|VARIANT_LOCALBOOL, VT_BSTR);
2609         if (SUCCEEDED(hres))
2610             left_str = V_BSTR(&converted);
2611         else if (hres != DISP_E_TYPEMISMATCH)
2612         {
2613             VariantClear(&converted);
2614             goto failed;
2615         }
2616     }
2617 
2618     if (rightvt == VT_BSTR)
2619         right_str = V_BSTR(right);
2620     else
2621     {
2622         VARIANT converted, *tmp = right;
2623 
2624         VariantInit(&converted);
2625         if(rightvt == VT_DISPATCH)
2626         {
2627             hres = VARIANT_FetchDispatchValue(right, &converted);
2628             if(FAILED(hres))
2629                 goto failed;
2630 
2631             tmp = &converted;
2632         }
2633 
2634         hres = VariantChangeTypeEx(&converted, tmp, 0, VARIANT_ALPHABOOL|VARIANT_LOCALBOOL, VT_BSTR);
2635         if (SUCCEEDED(hres))
2636             right_str = V_BSTR(&converted);
2637         else if (hres != DISP_E_TYPEMISMATCH)
2638         {
2639             VariantClear(&converted);
2640             goto failed;
2641         }
2642     }
2643 
2644 
2645     V_VT(out) = VT_BSTR;
2646     hres = VarBstrCat(left_str, right_str, &V_BSTR(out));
2647 
2648 failed:
2649     if(V_VT(left) != VT_BSTR)
2650         SysFreeString(left_str);
2651     if(V_VT(right) != VT_BSTR)
2652         SysFreeString(right_str);
2653     return hres;
2654 }
2655 
2656 
2657 /* Wrapper around VariantChangeTypeEx() which permits changing a
2658    variant with VT_RESERVED flag set. Needed by VarCmp. */
_VarChangeTypeExWrap(VARIANTARG * pvargDest,VARIANTARG * pvargSrc,LCID lcid,USHORT wFlags,VARTYPE vt)2659 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2660                     VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2661 {
2662     VARIANTARG vtmpsrc = *pvargSrc;
2663 
2664     V_VT(&vtmpsrc) &= ~VT_RESERVED;
2665     return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2666 }
2667 
2668 /**********************************************************************
2669  *              VarCmp [OLEAUT32.176]
2670  *
2671  * Compare two variants.
2672  *
2673  * PARAMS
2674  *  left    [I] First variant
2675  *  right   [I] Second variant
2676  *  lcid    [I] LCID (locale identifier) for the comparison
2677  *  flags   [I] Flags to be used in the comparison:
2678  *              NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2679  *              NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2680  *
2681  * RETURNS
2682  *  VARCMP_LT:   left variant is less than right variant.
2683  *  VARCMP_EQ:   input variants are equal.
2684  *  VARCMP_GT:   left variant is greater than right variant.
2685  *  VARCMP_NULL: either one of the input variants is NULL.
2686  *  Failure:     An HRESULT error code indicating the error.
2687  *
2688  * NOTES
2689  *  Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2690  *  UI8 and UINT as input variants. INT is accepted only as left variant.
2691  *
2692  *  If both input variants are ERROR then VARCMP_EQ will be returned, else
2693  *  an ERROR variant will trigger an error.
2694  *
2695  *  Both input variants can have VT_RESERVED flag set which is ignored
2696  *  unless one and only one of the variants is a BSTR and the other one
2697  *  is not an EMPTY variant. All four VT_RESERVED combinations have a
2698  *  different meaning:
2699  *   - BSTR and other: BSTR is always greater than the other variant.
2700  *   - BSTR|VT_RESERVED and other: a string comparison is performed.
2701  *   - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2702  *     comparison will take place else the BSTR is always greater.
2703  *   - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2704  *     variant is ignored and the return value depends only on the sign
2705  *     of the BSTR if it is a number else the BSTR is always greater. A
2706  *     positive BSTR is greater, a negative one is smaller than the other
2707  *     variant.
2708  *
2709  * SEE
2710  *  VarBstrCmp for the lcid and flags usage.
2711  */
VarCmp(LPVARIANT left,LPVARIANT right,LCID lcid,DWORD flags)2712 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2713 {
2714     VARTYPE     lvt, rvt, vt;
2715     VARIANT     rv,lv;
2716     DWORD       xmask;
2717     HRESULT     rc;
2718 
2719     TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2720 
2721     lvt = V_VT(left) & VT_TYPEMASK;
2722     rvt = V_VT(right) & VT_TYPEMASK;
2723     xmask = (1 << lvt) | (1 << rvt);
2724 
2725     /* If we have any flag set except VT_RESERVED bail out.
2726        Same for the left input variant type > VT_INT and for the
2727        right input variant type > VT_I8. Yes, VT_INT is only supported
2728        as left variant. Go figure */
2729     if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2730             lvt > VT_INT || rvt > VT_I8) {
2731         return DISP_E_BADVARTYPE;
2732     }
2733 
2734     /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2735        VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2736     if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2737                 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2738         return DISP_E_TYPEMISMATCH;
2739 
2740     /* If both variants are VT_ERROR return VARCMP_EQ */
2741     if (xmask == VTBIT_ERROR)
2742         return VARCMP_EQ;
2743     else if (xmask & VTBIT_ERROR)
2744         return DISP_E_TYPEMISMATCH;
2745 
2746     if (xmask & VTBIT_NULL)
2747         return VARCMP_NULL;
2748 
2749     VariantInit(&lv);
2750     VariantInit(&rv);
2751 
2752     /* Two BSTRs, ignore VT_RESERVED */
2753     if (xmask == VTBIT_BSTR)
2754         return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2755 
2756     /* A BSTR and another variant; we have to take care of VT_RESERVED */
2757     if (xmask & VTBIT_BSTR) {
2758         VARIANT *bstrv, *nonbv;
2759         VARTYPE nonbvt;
2760         int swap = 0;
2761 
2762         /* Swap the variants so the BSTR is always on the left */
2763         if (lvt == VT_BSTR) {
2764             bstrv = left;
2765             nonbv = right;
2766             nonbvt = rvt;
2767         } else {
2768             swap = 1;
2769             bstrv = right;
2770             nonbv = left;
2771             nonbvt = lvt;
2772         }
2773 
2774         /* BSTR and EMPTY: ignore VT_RESERVED */
2775         if (nonbvt == VT_EMPTY)
2776             rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2777         else {
2778             VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2779             VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2780 
2781             if (!breserv && !nreserv)
2782                 /* No VT_RESERVED set ==> BSTR always greater */
2783                 rc = VARCMP_GT;
2784             else if (breserv && !nreserv) {
2785                 /* BSTR has VT_RESERVED set. Do a string comparison */
2786                 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2787                 if (FAILED(rc))
2788                     return rc;
2789                 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2790                 VariantClear(&rv);
2791             } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2792             /* Non NULL nor empty BSTR */
2793                 /* If the BSTR is not a number the BSTR is greater */
2794                 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2795                 if (FAILED(rc))
2796                     rc = VARCMP_GT;
2797                 else if (breserv && nreserv)
2798                     /* FIXME: This is strange: with both VT_RESERVED set it
2799                        looks like the result depends only on the sign of
2800                        the BSTR number */
2801                     rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2802                 else
2803                     /* Numeric comparison, will be handled below.
2804                        VARCMP_NULL used only to break out. */
2805                     rc = VARCMP_NULL;
2806                 VariantClear(&lv);
2807                 VariantClear(&rv);
2808             } else
2809                 /* Empty or NULL BSTR */
2810                 rc = VARCMP_GT;
2811         }
2812         /* Fixup the return code if we swapped left and right */
2813         if (swap) {
2814             if (rc == VARCMP_GT)
2815                 rc = VARCMP_LT;
2816             else if (rc == VARCMP_LT)
2817                 rc = VARCMP_GT;
2818         }
2819         if (rc != VARCMP_NULL)
2820             return rc;
2821     }
2822 
2823     if (xmask & VTBIT_DECIMAL)
2824         vt = VT_DECIMAL;
2825     else if (xmask & VTBIT_BSTR)
2826         vt = VT_R8;
2827     else if (xmask & VTBIT_R4)
2828         vt = VT_R4;
2829     else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2830         vt = VT_R8;
2831     else if (xmask & VTBIT_CY)
2832         vt = VT_CY;
2833     else
2834         /* default to I8 */
2835         vt = VT_I8;
2836 
2837     /* Coerce the variants */
2838     rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2839     if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2840         /* Overflow, change to R8 */
2841         vt = VT_R8;
2842         rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2843     }
2844     if (FAILED(rc))
2845         return rc;
2846     rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2847     if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2848         /* Overflow, change to R8 */
2849         vt = VT_R8;
2850         rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2851         if (FAILED(rc))
2852             return rc;
2853         rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2854     }
2855     if (FAILED(rc))
2856         return rc;
2857 
2858 #define _VARCMP(a,b) \
2859     (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2860 
2861     switch (vt) {
2862         case VT_CY:
2863             return VarCyCmp(V_CY(&lv), V_CY(&rv));
2864         case VT_DECIMAL:
2865             return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2866         case VT_I8:
2867             return _VARCMP(V_I8(&lv), V_I8(&rv));
2868         case VT_R4:
2869             return _VARCMP(V_R4(&lv), V_R4(&rv));
2870         case VT_R8:
2871             return _VARCMP(V_R8(&lv), V_R8(&rv));
2872         default:
2873             /* We should never get here */
2874             return E_FAIL;
2875     }
2876 #undef _VARCMP
2877 }
2878 
2879 /**********************************************************************
2880  *              VarAnd [OLEAUT32.142]
2881  *
2882  * Computes the logical AND of two variants.
2883  *
2884  * PARAMS
2885  *  left    [I] First variant
2886  *  right   [I] Second variant
2887  *  result  [O] Result variant
2888  *
2889  * RETURNS
2890  *  Success: S_OK.
2891  *  Failure: An HRESULT error code indicating the error.
2892  */
VarAnd(LPVARIANT left,LPVARIANT right,LPVARIANT result)2893 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2894 {
2895     HRESULT hres = S_OK;
2896     VARTYPE resvt = VT_EMPTY;
2897     VARTYPE leftvt,rightvt;
2898     VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2899     VARIANT varLeft, varRight;
2900     VARIANT tempLeft, tempRight;
2901 
2902     VariantInit(&varLeft);
2903     VariantInit(&varRight);
2904     VariantInit(&tempLeft);
2905     VariantInit(&tempRight);
2906 
2907     TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
2908 
2909     /* Handle VT_DISPATCH by storing and taking address of returned value */
2910     if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2911     {
2912         hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2913         if (FAILED(hres)) goto VarAnd_Exit;
2914         left = &tempLeft;
2915     }
2916     if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2917     {
2918         hres = VARIANT_FetchDispatchValue(right, &tempRight);
2919         if (FAILED(hres)) goto VarAnd_Exit;
2920         right = &tempRight;
2921     }
2922 
2923     leftvt = V_VT(left)&VT_TYPEMASK;
2924     rightvt = V_VT(right)&VT_TYPEMASK;
2925     leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2926     rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
2927 
2928     if (leftExtraFlags != rightExtraFlags)
2929     {
2930         hres = DISP_E_BADVARTYPE;
2931         goto VarAnd_Exit;
2932     }
2933     ExtraFlags = leftExtraFlags;
2934 
2935     /* Native VarAnd always returns an error when using extra
2936      * flags or if the variant combination is I8 and INT.
2937      */
2938     if ((leftvt == VT_I8 && rightvt == VT_INT) ||
2939         (leftvt == VT_INT && rightvt == VT_I8) ||
2940         ExtraFlags != 0)
2941     {
2942         hres = DISP_E_BADVARTYPE;
2943         goto VarAnd_Exit;
2944     }
2945 
2946     /* Determine return type */
2947     else if (leftvt == VT_I8 || rightvt == VT_I8)
2948         resvt = VT_I8;
2949     else if (leftvt == VT_I4 || rightvt == VT_I4 ||
2950         leftvt == VT_UINT || rightvt == VT_UINT ||
2951         leftvt == VT_INT || rightvt == VT_INT ||
2952         leftvt == VT_R4 || rightvt == VT_R4 ||
2953         leftvt == VT_R8 || rightvt == VT_R8 ||
2954         leftvt == VT_CY || rightvt == VT_CY ||
2955         leftvt == VT_DATE || rightvt == VT_DATE ||
2956         leftvt == VT_I1 || rightvt == VT_I1 ||
2957         leftvt == VT_UI2 || rightvt == VT_UI2 ||
2958         leftvt == VT_UI4 || rightvt == VT_UI4 ||
2959         leftvt == VT_UI8 || rightvt == VT_UI8 ||
2960         leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
2961         resvt = VT_I4;
2962     else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
2963         leftvt == VT_I2 || rightvt == VT_I2 ||
2964         leftvt == VT_EMPTY || rightvt == VT_EMPTY)
2965         if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
2966             (leftvt == VT_UI1 && rightvt == VT_NULL) ||
2967             (leftvt == VT_UI1 && rightvt == VT_UI1))
2968             resvt = VT_UI1;
2969         else
2970             resvt = VT_I2;
2971     else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
2972         (leftvt == VT_BSTR && rightvt == VT_BSTR))
2973         resvt = VT_BOOL;
2974     else if (leftvt == VT_NULL || rightvt == VT_NULL ||
2975         leftvt == VT_BSTR || rightvt == VT_BSTR)
2976         resvt = VT_NULL;
2977     else
2978     {
2979         hres = DISP_E_BADVARTYPE;
2980         goto VarAnd_Exit;
2981     }
2982 
2983     if (leftvt == VT_NULL || rightvt == VT_NULL)
2984     {
2985         /*
2986          * Special cases for when left variant is VT_NULL
2987          * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
2988          */
2989         if (leftvt == VT_NULL)
2990         {
2991             VARIANT_BOOL b;
2992             switch(rightvt)
2993             {
2994             case VT_I1:   if (V_I1(right)) resvt = VT_NULL; break;
2995             case VT_UI1:  if (V_UI1(right)) resvt = VT_NULL; break;
2996             case VT_I2:   if (V_I2(right)) resvt = VT_NULL; break;
2997             case VT_UI2:  if (V_UI2(right)) resvt = VT_NULL; break;
2998             case VT_I4:   if (V_I4(right)) resvt = VT_NULL; break;
2999             case VT_UI4:  if (V_UI4(right)) resvt = VT_NULL; break;
3000             case VT_I8:   if (V_I8(right)) resvt = VT_NULL; break;
3001             case VT_UI8:  if (V_UI8(right)) resvt = VT_NULL; break;
3002             case VT_INT:  if (V_INT(right)) resvt = VT_NULL; break;
3003             case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3004             case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3005             case VT_R4:   if (V_R4(right)) resvt = VT_NULL; break;
3006             case VT_R8:   if (V_R8(right)) resvt = VT_NULL; break;
3007             case VT_CY:
3008                 if(V_CY(right).int64)
3009                     resvt = VT_NULL;
3010                 break;
3011             case VT_DECIMAL:
3012                 if (DEC_HI32(&V_DECIMAL(right)) ||
3013                     DEC_LO64(&V_DECIMAL(right)))
3014                     resvt = VT_NULL;
3015                 break;
3016             case VT_BSTR:
3017                 hres = VarBoolFromStr(V_BSTR(right),
3018                 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3019                 if (FAILED(hres))
3020                     return hres;
3021                 else if (b)
3022                     V_VT(result) = VT_NULL;
3023                 else
3024                 {
3025                     V_VT(result) = VT_BOOL;
3026                     V_BOOL(result) = b;
3027                 }
3028                 goto VarAnd_Exit;
3029             }
3030         }
3031         V_VT(result) = resvt;
3032         goto VarAnd_Exit;
3033     }
3034 
3035     hres = VariantCopy(&varLeft, left);
3036     if (FAILED(hres)) goto VarAnd_Exit;
3037 
3038     hres = VariantCopy(&varRight, right);
3039     if (FAILED(hres)) goto VarAnd_Exit;
3040 
3041     if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3042         V_VT(&varLeft) = VT_I4; /* Don't overflow */
3043     else
3044     {
3045         double d;
3046 
3047         if (V_VT(&varLeft) == VT_BSTR &&
3048             FAILED(VarR8FromStr(V_BSTR(&varLeft),
3049             LOCALE_USER_DEFAULT, 0, &d)))
3050             hres = VariantChangeType(&varLeft,&varLeft,
3051             VARIANT_LOCALBOOL, VT_BOOL);
3052         if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3053             hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3054         if (FAILED(hres)) goto VarAnd_Exit;
3055     }
3056 
3057     if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3058         V_VT(&varRight) = VT_I4; /* Don't overflow */
3059     else
3060     {
3061         double d;
3062 
3063         if (V_VT(&varRight) == VT_BSTR &&
3064             FAILED(VarR8FromStr(V_BSTR(&varRight),
3065             LOCALE_USER_DEFAULT, 0, &d)))
3066             hres = VariantChangeType(&varRight, &varRight,
3067                 VARIANT_LOCALBOOL, VT_BOOL);
3068         if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3069             hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3070         if (FAILED(hres)) goto VarAnd_Exit;
3071     }
3072 
3073     V_VT(result) = resvt;
3074     switch(resvt)
3075     {
3076     case VT_I8:
3077         V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3078         break;
3079     case VT_I4:
3080         V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3081         break;
3082     case VT_I2:
3083         V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3084         break;
3085     case VT_UI1:
3086         V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3087         break;
3088     case VT_BOOL:
3089         V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3090         break;
3091     default:
3092         FIXME("Couldn't bitwise AND variant types %d,%d\n",
3093             leftvt,rightvt);
3094     }
3095 
3096 VarAnd_Exit:
3097     VariantClear(&varLeft);
3098     VariantClear(&varRight);
3099     VariantClear(&tempLeft);
3100     VariantClear(&tempRight);
3101 
3102     return hres;
3103 }
3104 
3105 /**********************************************************************
3106  *              VarAdd [OLEAUT32.141]
3107  *
3108  * Add two variants.
3109  *
3110  * PARAMS
3111  *  left    [I] First variant
3112  *  right   [I] Second variant
3113  *  result  [O] Result variant
3114  *
3115  * RETURNS
3116  *  Success: S_OK.
3117  *  Failure: An HRESULT error code indicating the error.
3118  *
3119  * NOTES
3120  *  Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3121  *  UI8, INT and UINT as input variants.
3122  *
3123  *  Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3124  *  same here.
3125  *
3126  * FIXME
3127  *  Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3128  *  case.
3129  */
VarAdd(LPVARIANT left,LPVARIANT right,LPVARIANT result)3130 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3131 {
3132     HRESULT hres;
3133     VARTYPE lvt, rvt, resvt, tvt;
3134     VARIANT lv, rv, tv;
3135     VARIANT tempLeft, tempRight;
3136     double r8res;
3137 
3138     /* Variant priority for coercion. Sorted from lowest to highest.
3139        VT_ERROR shows an invalid input variant type. */
3140     enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3141                       vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3142                       vt_ERROR };
3143     /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3144     static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3145                           VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3146                           VT_NULL, VT_ERROR };
3147 
3148     /* Mapping for coercion from input variant to priority of result variant. */
3149     static const VARTYPE coerce[] = {
3150         /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3151         vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3152         /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3153         vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3154         /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3155         vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3156         /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3157         vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3158     };
3159 
3160     TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3161 
3162     VariantInit(&lv);
3163     VariantInit(&rv);
3164     VariantInit(&tv);
3165     VariantInit(&tempLeft);
3166     VariantInit(&tempRight);
3167 
3168     /* Handle VT_DISPATCH by storing and taking address of returned value */
3169     if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3170     {
3171         if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3172         {
3173             hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3174             if (FAILED(hres)) goto end;
3175             left = &tempLeft;
3176         }
3177         if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3178         {
3179             hres = VARIANT_FetchDispatchValue(right, &tempRight);
3180             if (FAILED(hres)) goto end;
3181             right = &tempRight;
3182         }
3183     }
3184 
3185     lvt = V_VT(left)&VT_TYPEMASK;
3186     rvt = V_VT(right)&VT_TYPEMASK;
3187 
3188     /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3189        Same for any input variant type > VT_I8 */
3190     if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3191         lvt > VT_I8 || rvt > VT_I8) {
3192         hres = DISP_E_BADVARTYPE;
3193         goto end;
3194     }
3195 
3196     /* Determine the variant type to coerce to. */
3197     if (coerce[lvt] > coerce[rvt]) {
3198         resvt = prio2vt[coerce[lvt]];
3199         tvt = prio2vt[coerce[rvt]];
3200     } else {
3201         resvt = prio2vt[coerce[rvt]];
3202         tvt = prio2vt[coerce[lvt]];
3203     }
3204 
3205     /* Special cases where the result variant type is defined by both
3206        input variants and not only that with the highest priority */
3207     if (resvt == VT_BSTR) {
3208         if (tvt == VT_EMPTY || tvt == VT_BSTR)
3209             resvt = VT_BSTR;
3210         else
3211             resvt = VT_R8;
3212     }
3213     if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3214         resvt = VT_R8;
3215 
3216     /* For overflow detection use the biggest compatible type for the
3217        addition */
3218     switch (resvt) {
3219         case VT_ERROR:
3220             hres = DISP_E_BADVARTYPE;
3221             goto end;
3222         case VT_NULL:
3223             hres = S_OK;
3224             V_VT(result) = VT_NULL;
3225             goto end;
3226         case VT_DISPATCH:
3227             FIXME("cannot handle variant type VT_DISPATCH\n");
3228             hres = DISP_E_TYPEMISMATCH;
3229             goto end;
3230         case VT_EMPTY:
3231             resvt = VT_I2;
3232             /* Fall through */
3233         case VT_UI1:
3234         case VT_I2:
3235         case VT_I4:
3236         case VT_I8:
3237             tvt = VT_I8;
3238             break;
3239         case VT_DATE:
3240         case VT_R4:
3241             tvt = VT_R8;
3242             break;
3243         default:
3244             tvt = resvt;
3245     }
3246 
3247     /* Now coerce the variants */
3248     hres = VariantChangeType(&lv, left, 0, tvt);
3249     if (FAILED(hres))
3250         goto end;
3251     hres = VariantChangeType(&rv, right, 0, tvt);
3252     if (FAILED(hres))
3253         goto end;
3254 
3255     /* Do the math */
3256     hres = S_OK;
3257     V_VT(result) = resvt;
3258     switch (tvt) {
3259         case VT_DECIMAL:
3260             hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3261                              &V_DECIMAL(result));
3262             goto end;
3263         case VT_CY:
3264             hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3265             goto end;
3266         case VT_BSTR:
3267             /* We do not add those, we concatenate them. */
3268             hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3269             goto end;
3270         case VT_I8:
3271             /* Overflow detection */
3272             r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3273             if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3274                 V_VT(result) = VT_R8;
3275                 V_R8(result) = r8res;
3276                 goto end;
3277             } else {
3278                 V_VT(&tv) = tvt;
3279                 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3280             }
3281             break;
3282         case VT_R8:
3283             V_VT(&tv) = tvt;
3284             /* FIXME: overflow detection */
3285             V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3286             break;
3287         default:
3288             ERR("We shouldn't get here! tvt = %d!\n", tvt);
3289             break;
3290     }
3291     if (resvt != tvt) {
3292         if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3293             /* Overflow! Change to the vartype with the next higher priority.
3294                With one exception: I4 ==> R8 even if it would fit in I8 */
3295             if (resvt == VT_I4)
3296                 resvt = VT_R8;
3297             else
3298                 resvt = prio2vt[coerce[resvt] + 1];
3299             hres = VariantChangeType(result, &tv, 0, resvt);
3300         }
3301     } else
3302         hres = VariantCopy(result, &tv);
3303 
3304 end:
3305     if (hres != S_OK) {
3306         V_VT(result) = VT_EMPTY;
3307         V_I4(result) = 0;       /* No V_EMPTY */
3308     }
3309     VariantClear(&lv);
3310     VariantClear(&rv);
3311     VariantClear(&tv);
3312     VariantClear(&tempLeft);
3313     VariantClear(&tempRight);
3314     TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3315     return hres;
3316 }
3317 
3318 /**********************************************************************
3319  *              VarMul [OLEAUT32.156]
3320  *
3321  * Multiply two variants.
3322  *
3323  * PARAMS
3324  *  left    [I] First variant
3325  *  right   [I] Second variant
3326  *  result  [O] Result variant
3327  *
3328  * RETURNS
3329  *  Success: S_OK.
3330  *  Failure: An HRESULT error code indicating the error.
3331  *
3332  * NOTES
3333  *  Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3334  *  UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3335  *
3336  *  Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3337  *  same here.
3338  *
3339  * FIXME
3340  *  Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3341  *  case.
3342  */
VarMul(LPVARIANT left,LPVARIANT right,LPVARIANT result)3343 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3344 {
3345     HRESULT hres;
3346     VARTYPE lvt, rvt, resvt, tvt;
3347     VARIANT lv, rv, tv;
3348     VARIANT tempLeft, tempRight;
3349     double r8res;
3350 
3351     /* Variant priority for coercion. Sorted from lowest to highest.
3352        VT_ERROR shows an invalid input variant type. */
3353     enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3354                       vt_DECIMAL, vt_NULL, vt_ERROR };
3355     /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3356     static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3357                           VT_DECIMAL, VT_NULL, VT_ERROR };
3358 
3359     /* Mapping for coercion from input variant to priority of result variant. */
3360     static const VARTYPE coerce[] = {
3361         /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3362         vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3363         /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3364         vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3365         /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3366         vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3367         /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3368         vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3369     };
3370 
3371     TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3372 
3373     VariantInit(&lv);
3374     VariantInit(&rv);
3375     VariantInit(&tv);
3376     VariantInit(&tempLeft);
3377     VariantInit(&tempRight);
3378 
3379     /* Handle VT_DISPATCH by storing and taking address of returned value */
3380     if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3381     {
3382         hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3383         if (FAILED(hres)) goto end;
3384         left = &tempLeft;
3385     }
3386     if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3387     {
3388         hres = VARIANT_FetchDispatchValue(right, &tempRight);
3389         if (FAILED(hres)) goto end;
3390         right = &tempRight;
3391     }
3392 
3393     lvt = V_VT(left)&VT_TYPEMASK;
3394     rvt = V_VT(right)&VT_TYPEMASK;
3395 
3396     /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3397        Same for any input variant type > VT_I8 */
3398     if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3399         lvt > VT_I8 || rvt > VT_I8) {
3400         hres = DISP_E_BADVARTYPE;
3401         goto end;
3402     }
3403 
3404     /* Determine the variant type to coerce to. */
3405     if (coerce[lvt] > coerce[rvt]) {
3406         resvt = prio2vt[coerce[lvt]];
3407         tvt = prio2vt[coerce[rvt]];
3408     } else {
3409         resvt = prio2vt[coerce[rvt]];
3410         tvt = prio2vt[coerce[lvt]];
3411     }
3412 
3413     /* Special cases where the result variant type is defined by both
3414        input variants and not only that with the highest priority */
3415     if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3416         resvt = VT_R8;
3417     if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3418         resvt = VT_I2;
3419 
3420     /* For overflow detection use the biggest compatible type for the
3421        multiplication */
3422     switch (resvt) {
3423         case VT_ERROR:
3424             hres = DISP_E_BADVARTYPE;
3425             goto end;
3426         case VT_NULL:
3427             hres = S_OK;
3428             V_VT(result) = VT_NULL;
3429             goto end;
3430         case VT_UI1:
3431         case VT_I2:
3432         case VT_I4:
3433         case VT_I8:
3434             tvt = VT_I8;
3435             break;
3436         case VT_R4:
3437             tvt = VT_R8;
3438             break;
3439         default:
3440             tvt = resvt;
3441     }
3442 
3443     /* Now coerce the variants */
3444     hres = VariantChangeType(&lv, left, 0, tvt);
3445     if (FAILED(hres))
3446         goto end;
3447     hres = VariantChangeType(&rv, right, 0, tvt);
3448     if (FAILED(hres))
3449         goto end;
3450 
3451     /* Do the math */
3452     hres = S_OK;
3453     V_VT(&tv) = tvt;
3454     V_VT(result) = resvt;
3455     switch (tvt) {
3456         case VT_DECIMAL:
3457             hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3458                              &V_DECIMAL(result));
3459             goto end;
3460         case VT_CY:
3461             hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3462             goto end;
3463         case VT_I8:
3464             /* Overflow detection */
3465             r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3466             if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3467                 V_VT(result) = VT_R8;
3468                 V_R8(result) = r8res;
3469                 goto end;
3470             } else
3471                 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3472             break;
3473         case VT_R8:
3474             /* FIXME: overflow detection */
3475             V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3476             break;
3477         default:
3478             ERR("We shouldn't get here! tvt = %d!\n", tvt);
3479             break;
3480     }
3481     if (resvt != tvt) {
3482         while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3483             /* Overflow! Change to the vartype with the next higher priority.
3484                With one exception: I4 ==> R8 even if it would fit in I8 */
3485             if (resvt == VT_I4)
3486                 resvt = VT_R8;
3487             else
3488                 resvt = prio2vt[coerce[resvt] + 1];
3489         }
3490     } else
3491         hres = VariantCopy(result, &tv);
3492 
3493 end:
3494     if (hres != S_OK) {
3495         V_VT(result) = VT_EMPTY;
3496         V_I4(result) = 0;       /* No V_EMPTY */
3497     }
3498     VariantClear(&lv);
3499     VariantClear(&rv);
3500     VariantClear(&tv);
3501     VariantClear(&tempLeft);
3502     VariantClear(&tempRight);
3503     TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3504     return hres;
3505 }
3506 
3507 /**********************************************************************
3508  *              VarDiv [OLEAUT32.143]
3509  *
3510  * Divides one variant with another.
3511  *
3512  * PARAMS
3513  *  left    [I] First variant
3514  *  right   [I] Second variant
3515  *  result  [O] Result variant
3516  *
3517  * RETURNS
3518  *  Success: S_OK.
3519  *  Failure: An HRESULT error code indicating the error.
3520  */
VarDiv(LPVARIANT left,LPVARIANT right,LPVARIANT result)3521 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3522 {
3523     HRESULT hres = S_OK;
3524     VARTYPE resvt = VT_EMPTY;
3525     VARTYPE leftvt,rightvt;
3526     VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3527     VARIANT lv,rv;
3528     VARIANT tempLeft, tempRight;
3529 
3530     VariantInit(&tempLeft);
3531     VariantInit(&tempRight);
3532     VariantInit(&lv);
3533     VariantInit(&rv);
3534 
3535     TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3536 
3537     /* Handle VT_DISPATCH by storing and taking address of returned value */
3538     if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3539     {
3540         hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3541         if (FAILED(hres)) goto end;
3542         left = &tempLeft;
3543     }
3544     if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3545     {
3546         hres = VARIANT_FetchDispatchValue(right, &tempRight);
3547         if (FAILED(hres)) goto end;
3548         right = &tempRight;
3549     }
3550 
3551     leftvt = V_VT(left)&VT_TYPEMASK;
3552     rightvt = V_VT(right)&VT_TYPEMASK;
3553     leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3554     rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3555 
3556     if (leftExtraFlags != rightExtraFlags)
3557     {
3558         hres = DISP_E_BADVARTYPE;
3559         goto end;
3560     }
3561     ExtraFlags = leftExtraFlags;
3562 
3563     /* Native VarDiv always returns an error when using extra flags */
3564     if (ExtraFlags != 0)
3565     {
3566         hres = DISP_E_BADVARTYPE;
3567         goto end;
3568     }
3569 
3570     /* Determine return type */
3571     if (rightvt != VT_EMPTY)
3572     {
3573         if (leftvt == VT_NULL || rightvt == VT_NULL)
3574         {
3575             V_VT(result) = VT_NULL;
3576             hres = S_OK;
3577             goto end;
3578         }
3579         else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3580             resvt = VT_DECIMAL;
3581         else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3582             leftvt == VT_CY || rightvt == VT_CY ||
3583             leftvt == VT_DATE || rightvt == VT_DATE ||
3584             leftvt == VT_I4 || rightvt == VT_I4 ||
3585             leftvt == VT_BSTR || rightvt == VT_BSTR ||
3586             leftvt == VT_I2 || rightvt == VT_I2 ||
3587             leftvt == VT_BOOL || rightvt == VT_BOOL ||
3588             leftvt == VT_R8 || rightvt == VT_R8 ||
3589             leftvt == VT_UI1 || rightvt == VT_UI1)
3590         {
3591             if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3592                 (leftvt == VT_R4 && rightvt == VT_UI1))
3593                 resvt = VT_R4;
3594             else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3595                 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3596                 (leftvt == VT_BOOL || leftvt == VT_I2)))
3597                 resvt = VT_R4;
3598             else
3599                 resvt = VT_R8;
3600         }
3601         else if (leftvt == VT_R4 || rightvt == VT_R4)
3602             resvt = VT_R4;
3603     }
3604     else if (leftvt == VT_NULL)
3605     {
3606         V_VT(result) = VT_NULL;
3607         hres = S_OK;
3608         goto end;
3609     }
3610     else
3611     {
3612         hres = DISP_E_BADVARTYPE;
3613         goto end;
3614     }
3615 
3616     /* coerce to the result type */
3617     hres = VariantChangeType(&lv, left, 0, resvt);
3618     if (hres != S_OK) goto end;
3619 
3620     hres = VariantChangeType(&rv, right, 0, resvt);
3621     if (hres != S_OK) goto end;
3622 
3623     /* do the math */
3624     V_VT(result) = resvt;
3625     switch (resvt)
3626     {
3627     case VT_R4:
3628     if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3629     {
3630         hres = DISP_E_OVERFLOW;
3631         V_VT(result) = VT_EMPTY;
3632     }
3633     else if (V_R4(&rv) == 0.0)
3634     {
3635         hres = DISP_E_DIVBYZERO;
3636         V_VT(result) = VT_EMPTY;
3637     }
3638     else
3639         V_R4(result) = V_R4(&lv) / V_R4(&rv);
3640     break;
3641     case VT_R8:
3642     if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3643     {
3644         hres = DISP_E_OVERFLOW;
3645         V_VT(result) = VT_EMPTY;
3646     }
3647     else if (V_R8(&rv) == 0.0)
3648     {
3649         hres = DISP_E_DIVBYZERO;
3650         V_VT(result) = VT_EMPTY;
3651     }
3652     else
3653         V_R8(result) = V_R8(&lv) / V_R8(&rv);
3654     break;
3655     case VT_DECIMAL:
3656     hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3657     break;
3658     }
3659 
3660 end:
3661     VariantClear(&lv);
3662     VariantClear(&rv);
3663     VariantClear(&tempLeft);
3664     VariantClear(&tempRight);
3665     TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3666     return hres;
3667 }
3668 
3669 /**********************************************************************
3670  *              VarSub [OLEAUT32.159]
3671  *
3672  * Subtract two variants.
3673  *
3674  * PARAMS
3675  *  left    [I] First variant
3676  *  right   [I] Second variant
3677  *  result  [O] Result variant
3678  *
3679  * RETURNS
3680  *  Success: S_OK.
3681  *  Failure: An HRESULT error code indicating the error.
3682  */
VarSub(LPVARIANT left,LPVARIANT right,LPVARIANT result)3683 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3684 {
3685     HRESULT hres = S_OK;
3686     VARTYPE resvt = VT_EMPTY;
3687     VARTYPE leftvt,rightvt;
3688     VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3689     VARIANT lv,rv;
3690     VARIANT tempLeft, tempRight;
3691 
3692     VariantInit(&lv);
3693     VariantInit(&rv);
3694     VariantInit(&tempLeft);
3695     VariantInit(&tempRight);
3696 
3697     TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3698 
3699     if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3700         (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3701         (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3702     {
3703         if (NULL == V_DISPATCH(left)) {
3704             if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3705                 hres = DISP_E_BADVARTYPE;
3706             else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3707                 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3708                 hres = DISP_E_BADVARTYPE;
3709             else switch (V_VT(right) & VT_TYPEMASK)
3710             {
3711             case VT_VARIANT:
3712             case VT_UNKNOWN:
3713             case 15:
3714             case VT_I1:
3715             case VT_UI2:
3716             case VT_UI4:
3717                 hres = DISP_E_BADVARTYPE;
3718             }
3719             if (FAILED(hres)) goto end;
3720         }
3721         hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3722         if (FAILED(hres)) goto end;
3723         left = &tempLeft;
3724     }
3725     if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3726         (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3727         (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3728     {
3729         if (NULL == V_DISPATCH(right))
3730         {
3731             if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3732                 hres = DISP_E_BADVARTYPE;
3733             else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3734                 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3735                 hres = DISP_E_BADVARTYPE;
3736             else switch (V_VT(left) & VT_TYPEMASK)
3737             {
3738             case VT_VARIANT:
3739             case VT_UNKNOWN:
3740             case 15:
3741             case VT_I1:
3742             case VT_UI2:
3743             case VT_UI4:
3744                 hres = DISP_E_BADVARTYPE;
3745             }
3746             if (FAILED(hres)) goto end;
3747         }
3748         hres = VARIANT_FetchDispatchValue(right, &tempRight);
3749         if (FAILED(hres)) goto end;
3750         right = &tempRight;
3751     }
3752 
3753     leftvt = V_VT(left)&VT_TYPEMASK;
3754     rightvt = V_VT(right)&VT_TYPEMASK;
3755     leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3756     rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3757 
3758     if (leftExtraFlags != rightExtraFlags)
3759     {
3760         hres = DISP_E_BADVARTYPE;
3761         goto end;
3762     }
3763     ExtraFlags = leftExtraFlags;
3764 
3765     /* determine return type and return code */
3766     /* All extra flags produce errors */
3767     if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3768         ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3769         ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3770         ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3771         ExtraFlags == VT_VECTOR ||
3772         ExtraFlags == VT_BYREF ||
3773         ExtraFlags == VT_RESERVED)
3774     {
3775         hres = DISP_E_BADVARTYPE;
3776         goto end;
3777     }
3778     else if (ExtraFlags >= VT_ARRAY)
3779     {
3780         hres = DISP_E_TYPEMISMATCH;
3781         goto end;
3782     }
3783     /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3784        VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3785     else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3786         leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3787         leftvt == VT_I1 || rightvt == VT_I1 ||
3788         leftvt == VT_UI2 || rightvt == VT_UI2 ||
3789         leftvt == VT_UI4 || rightvt == VT_UI4 ||
3790         leftvt == VT_UI8 || rightvt == VT_UI8 ||
3791         leftvt == VT_INT || rightvt == VT_INT ||
3792         leftvt == VT_UINT || rightvt == VT_UINT ||
3793         leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3794         leftvt == VT_RECORD || rightvt == VT_RECORD)
3795     {
3796         if (leftvt == VT_RECORD && rightvt == VT_I8)
3797             hres = DISP_E_TYPEMISMATCH;
3798         else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3799             hres = DISP_E_TYPEMISMATCH;
3800         else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3801             hres = DISP_E_TYPEMISMATCH;
3802         else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3803             hres = DISP_E_TYPEMISMATCH;
3804         else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3805             hres = DISP_E_BADVARTYPE;
3806         else
3807             hres = DISP_E_BADVARTYPE;
3808         goto end;
3809     }
3810     /*  The following flags/types are invalid for left variant */
3811     else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3812         leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3813         (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3814     {
3815         hres = DISP_E_BADVARTYPE;
3816         goto end;
3817     }
3818     /*  The following flags/types are invalid for right variant */
3819     else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3820         rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3821         (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3822     {
3823         hres = DISP_E_BADVARTYPE;
3824         goto end;
3825     }
3826     else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3827         (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3828         resvt = VT_NULL;
3829     else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3830         leftvt == VT_ERROR || rightvt == VT_ERROR)
3831     {
3832         hres = DISP_E_TYPEMISMATCH;
3833         goto end;
3834     }
3835     else if (leftvt == VT_NULL || rightvt == VT_NULL)
3836         resvt = VT_NULL;
3837     else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3838         (leftvt == VT_DATE && rightvt == VT_DATE) ||
3839         (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3840         (leftvt == VT_BSTR && rightvt == VT_BSTR))
3841         resvt = VT_R8;
3842     else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3843         resvt = VT_DECIMAL;
3844     else if (leftvt == VT_DATE || rightvt == VT_DATE)
3845         resvt = VT_DATE;
3846     else if (leftvt == VT_CY || rightvt == VT_CY)
3847         resvt = VT_CY;
3848     else if (leftvt == VT_R8 || rightvt == VT_R8)
3849         resvt = VT_R8;
3850     else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3851         resvt = VT_R8;
3852     else if (leftvt == VT_R4 || rightvt == VT_R4)
3853     {
3854         if (leftvt == VT_I4 || rightvt == VT_I4 ||
3855             leftvt == VT_I8 || rightvt == VT_I8)
3856             resvt = VT_R8;
3857         else
3858             resvt = VT_R4;
3859     }
3860     else if (leftvt == VT_I8 || rightvt == VT_I8)
3861         resvt = VT_I8;
3862     else if (leftvt == VT_I4 || rightvt == VT_I4)
3863         resvt = VT_I4;
3864     else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3865         leftvt == VT_BOOL || rightvt == VT_BOOL ||
3866         (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3867         resvt = VT_I2;
3868     else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3869         resvt = VT_UI1;
3870     else
3871     {
3872         hres = DISP_E_TYPEMISMATCH;
3873         goto end;
3874     }
3875 
3876     /* coerce to the result type */
3877     if (leftvt == VT_BSTR && rightvt == VT_DATE)
3878         hres = VariantChangeType(&lv, left, 0, VT_R8);
3879     else
3880         hres = VariantChangeType(&lv, left, 0, resvt);
3881     if (hres != S_OK) goto end;
3882     if (leftvt == VT_DATE && rightvt == VT_BSTR)
3883         hres = VariantChangeType(&rv, right, 0, VT_R8);
3884     else
3885         hres = VariantChangeType(&rv, right, 0, resvt);
3886     if (hres != S_OK) goto end;
3887 
3888     /* do the math */
3889     V_VT(result) = resvt;
3890     switch (resvt)
3891     {
3892     case VT_NULL:
3893     break;
3894     case VT_DATE:
3895     V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3896     break;
3897     case VT_CY:
3898     hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3899     break;
3900     case VT_R4:
3901     V_R4(result) = V_R4(&lv) - V_R4(&rv);
3902     break;
3903     case VT_I8:
3904     V_I8(result) = V_I8(&lv) - V_I8(&rv);
3905     break;
3906     case VT_I4:
3907     V_I4(result) = V_I4(&lv) - V_I4(&rv);
3908     break;
3909     case VT_I2:
3910     V_I2(result) = V_I2(&lv) - V_I2(&rv);
3911     break;
3912     case VT_UI1:
3913     V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3914     break;
3915     case VT_R8:
3916     V_R8(result) = V_R8(&lv) - V_R8(&rv);
3917     break;
3918     case VT_DECIMAL:
3919     hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3920     break;
3921     }
3922 
3923 end:
3924     VariantClear(&lv);
3925     VariantClear(&rv);
3926     VariantClear(&tempLeft);
3927     VariantClear(&tempRight);
3928     TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3929     return hres;
3930 }
3931 
3932 
3933 /**********************************************************************
3934  *              VarOr [OLEAUT32.157]
3935  *
3936  * Perform a logical or (OR) operation on two variants.
3937  *
3938  * PARAMS
3939  *  pVarLeft  [I] First variant
3940  *  pVarRight [I] Variant to OR with pVarLeft
3941  *  pVarOut   [O] Destination for OR result
3942  *
3943  * RETURNS
3944  *  Success: S_OK. pVarOut contains the result of the operation with its type
3945  *           taken from the table listed under VarXor().
3946  *  Failure: An HRESULT error code indicating the error.
3947  *
3948  * NOTES
3949  *  See the Notes section of VarXor() for further information.
3950  */
VarOr(LPVARIANT pVarLeft,LPVARIANT pVarRight,LPVARIANT pVarOut)3951 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3952 {
3953     VARTYPE vt = VT_I4;
3954     VARIANT varLeft, varRight, varStr;
3955     HRESULT hRet;
3956     VARIANT tempLeft, tempRight;
3957 
3958     VariantInit(&tempLeft);
3959     VariantInit(&tempRight);
3960     VariantInit(&varLeft);
3961     VariantInit(&varRight);
3962     VariantInit(&varStr);
3963 
3964     TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
3965 
3966     /* Handle VT_DISPATCH by storing and taking address of returned value */
3967     if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
3968     {
3969         hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
3970         if (FAILED(hRet)) goto VarOr_Exit;
3971         pVarLeft = &tempLeft;
3972     }
3973     if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
3974     {
3975         hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
3976         if (FAILED(hRet)) goto VarOr_Exit;
3977         pVarRight = &tempRight;
3978     }
3979 
3980     if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3981         V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3982         V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
3983         V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
3984     {
3985         hRet = DISP_E_BADVARTYPE;
3986         goto VarOr_Exit;
3987     }
3988 
3989     V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
3990 
3991     if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3992     {
3993         /* NULL OR Zero is NULL, NULL OR value is value */
3994         if (V_VT(pVarLeft) == VT_NULL)
3995             pVarLeft = pVarRight; /* point to the non-NULL var */
3996 
3997         V_VT(pVarOut) = VT_NULL;
3998         V_I4(pVarOut) = 0;
3999 
4000         switch (V_VT(pVarLeft))
4001         {
4002         case VT_DATE: case VT_R8:
4003             if (V_R8(pVarLeft))
4004                 goto VarOr_AsEmpty;
4005             hRet = S_OK;
4006             goto VarOr_Exit;
4007         case VT_BOOL:
4008             if (V_BOOL(pVarLeft))
4009                 *pVarOut = *pVarLeft;
4010             hRet = S_OK;
4011             goto VarOr_Exit;
4012          case VT_I2: case VT_UI2:
4013             if (V_I2(pVarLeft))
4014                 goto VarOr_AsEmpty;
4015             hRet = S_OK;
4016             goto VarOr_Exit;
4017         case VT_I1:
4018             if (V_I1(pVarLeft))
4019                 goto VarOr_AsEmpty;
4020             hRet = S_OK;
4021             goto VarOr_Exit;
4022         case VT_UI1:
4023             if (V_UI1(pVarLeft))
4024                 *pVarOut = *pVarLeft;
4025             hRet = S_OK;
4026             goto VarOr_Exit;
4027         case VT_R4:
4028             if (V_R4(pVarLeft))
4029                 goto VarOr_AsEmpty;
4030             hRet = S_OK;
4031             goto VarOr_Exit;
4032         case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4033             if (V_I4(pVarLeft))
4034                 goto VarOr_AsEmpty;
4035             hRet = S_OK;
4036             goto VarOr_Exit;
4037         case VT_CY:
4038             if (V_CY(pVarLeft).int64)
4039                 goto VarOr_AsEmpty;
4040             hRet = S_OK;
4041             goto VarOr_Exit;
4042         case VT_I8: case VT_UI8:
4043             if (V_I8(pVarLeft))
4044                 goto VarOr_AsEmpty;
4045             hRet = S_OK;
4046             goto VarOr_Exit;
4047         case VT_DECIMAL:
4048             if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4049                 goto VarOr_AsEmpty;
4050             hRet = S_OK;
4051             goto VarOr_Exit;
4052         case VT_BSTR:
4053         {
4054             VARIANT_BOOL b;
4055 
4056             if (!V_BSTR(pVarLeft))
4057             {
4058                 hRet = DISP_E_BADVARTYPE;
4059                 goto VarOr_Exit;
4060             }
4061 
4062             hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4063             if (SUCCEEDED(hRet) && b)
4064             {
4065                 V_VT(pVarOut) = VT_BOOL;
4066                 V_BOOL(pVarOut) = b;
4067             }
4068             goto VarOr_Exit;
4069         }
4070         case VT_NULL: case VT_EMPTY:
4071             V_VT(pVarOut) = VT_NULL;
4072             hRet = S_OK;
4073             goto VarOr_Exit;
4074         default:
4075             hRet = DISP_E_BADVARTYPE;
4076             goto VarOr_Exit;
4077         }
4078     }
4079 
4080     if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4081     {
4082         if (V_VT(pVarLeft) == VT_EMPTY)
4083             pVarLeft = pVarRight; /* point to the non-EMPTY var */
4084 
4085 VarOr_AsEmpty:
4086         /* Since one argument is empty (0), OR'ing it with the other simply
4087          * gives the others value (as 0|x => x). So just convert the other
4088          * argument to the required result type.
4089          */
4090         switch (V_VT(pVarLeft))
4091         {
4092         case VT_BSTR:
4093             if (!V_BSTR(pVarLeft))
4094             {
4095                 hRet = DISP_E_BADVARTYPE;
4096                 goto VarOr_Exit;
4097             }
4098 
4099             hRet = VariantCopy(&varStr, pVarLeft);
4100             if (FAILED(hRet))
4101                 goto VarOr_Exit;
4102             pVarLeft = &varStr;
4103             hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4104             if (FAILED(hRet))
4105                 goto VarOr_Exit;
4106             /* Fall Through ... */
4107         case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4108             V_VT(pVarOut) = VT_I2;
4109             break;
4110         case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4111         case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4112         case VT_INT: case VT_UINT: case VT_UI8:
4113             V_VT(pVarOut) = VT_I4;
4114             break;
4115         case VT_I8:
4116             V_VT(pVarOut) = VT_I8;
4117             break;
4118         default:
4119             hRet = DISP_E_BADVARTYPE;
4120             goto VarOr_Exit;
4121         }
4122         hRet = VariantCopy(&varLeft, pVarLeft);
4123         if (FAILED(hRet))
4124             goto VarOr_Exit;
4125         pVarLeft = &varLeft;
4126         hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4127         goto VarOr_Exit;
4128     }
4129 
4130     if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4131     {
4132         V_VT(pVarOut) = VT_BOOL;
4133         V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4134         hRet = S_OK;
4135         goto VarOr_Exit;
4136     }
4137 
4138     if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4139     {
4140         V_VT(pVarOut) = VT_UI1;
4141         V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4142         hRet = S_OK;
4143         goto VarOr_Exit;
4144     }
4145 
4146     if (V_VT(pVarLeft) == VT_BSTR)
4147     {
4148         hRet = VariantCopy(&varStr, pVarLeft);
4149         if (FAILED(hRet))
4150             goto VarOr_Exit;
4151         pVarLeft = &varStr;
4152         hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4153         if (FAILED(hRet))
4154             goto VarOr_Exit;
4155     }
4156 
4157     if (V_VT(pVarLeft) == VT_BOOL &&
4158         (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4159     {
4160         vt = VT_BOOL;
4161     }
4162     else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4163         V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4164         (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4165         V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4166     {
4167         vt = VT_I2;
4168     }
4169     else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4170     {
4171         if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4172         {
4173             hRet = DISP_E_TYPEMISMATCH;
4174             goto VarOr_Exit;
4175         }
4176         vt = VT_I8;
4177     }
4178 
4179     hRet = VariantCopy(&varLeft, pVarLeft);
4180     if (FAILED(hRet))
4181         goto VarOr_Exit;
4182 
4183     hRet = VariantCopy(&varRight, pVarRight);
4184     if (FAILED(hRet))
4185         goto VarOr_Exit;
4186 
4187     if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4188         V_VT(&varLeft) = VT_I4; /* Don't overflow */
4189     else
4190     {
4191         double d;
4192 
4193         if (V_VT(&varLeft) == VT_BSTR &&
4194             FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4195             hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4196         if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4197             hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4198         if (FAILED(hRet))
4199             goto VarOr_Exit;
4200     }
4201 
4202     if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4203         V_VT(&varRight) = VT_I4; /* Don't overflow */
4204     else
4205     {
4206         double d;
4207 
4208         if (V_VT(&varRight) == VT_BSTR &&
4209             FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4210             hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4211         if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4212             hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4213         if (FAILED(hRet))
4214             goto VarOr_Exit;
4215     }
4216 
4217     V_VT(pVarOut) = vt;
4218     if (vt == VT_I8)
4219     {
4220         V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4221     }
4222     else if (vt == VT_I4)
4223     {
4224         V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4225     }
4226     else
4227     {
4228         V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4229     }
4230 
4231 VarOr_Exit:
4232     VariantClear(&varStr);
4233     VariantClear(&varLeft);
4234     VariantClear(&varRight);
4235     VariantClear(&tempLeft);
4236     VariantClear(&tempRight);
4237     return hRet;
4238 }
4239 
4240 /**********************************************************************
4241  * VarAbs [OLEAUT32.168]
4242  *
4243  * Convert a variant to its absolute value.
4244  *
4245  * PARAMS
4246  *  pVarIn  [I] Source variant
4247  *  pVarOut [O] Destination for converted value
4248  *
4249  * RETURNS
4250  *  Success: S_OK. pVarOut contains the absolute value of pVarIn.
4251  *  Failure: An HRESULT error code indicating the error.
4252  *
4253  * NOTES
4254  *  - This function does not process by-reference variants.
4255  *  - The type of the value stored in pVarOut depends on the type of pVarIn,
4256  *    according to the following table:
4257  *| Input Type       Output Type
4258  *| ----------       -----------
4259  *| VT_BOOL          VT_I2
4260  *| VT_BSTR          VT_R8
4261  *| (All others)     Unchanged
4262  */
VarAbs(LPVARIANT pVarIn,LPVARIANT pVarOut)4263 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4264 {
4265     VARIANT varIn;
4266     HRESULT hRet = S_OK;
4267     VARIANT temp;
4268 
4269     VariantInit(&temp);
4270 
4271     TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4272 
4273     /* Handle VT_DISPATCH by storing and taking address of returned value */
4274     if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4275     {
4276         hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4277         if (FAILED(hRet)) goto VarAbs_Exit;
4278         pVarIn = &temp;
4279     }
4280 
4281     if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4282         V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4283         V_VT(pVarIn) == VT_ERROR)
4284     {
4285         hRet = DISP_E_TYPEMISMATCH;
4286         goto VarAbs_Exit;
4287     }
4288     *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4289 
4290 #define ABS_CASE(typ,min) \
4291     case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4292                   else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4293                   break
4294 
4295     switch (V_VT(pVarIn))
4296     {
4297     ABS_CASE(I1,I1_MIN);
4298     case VT_BOOL:
4299         V_VT(pVarOut) = VT_I2;
4300         /* BOOL->I2, Fall through ... */
4301     ABS_CASE(I2,I2_MIN);
4302     case VT_INT:
4303     ABS_CASE(I4,I4_MIN);
4304     ABS_CASE(I8,I8_MIN);
4305     ABS_CASE(R4,R4_MIN);
4306     case VT_BSTR:
4307         hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4308         if (FAILED(hRet))
4309             break;
4310         V_VT(pVarOut) = VT_R8;
4311         pVarIn = &varIn;
4312         /* Fall through ... */
4313     case VT_DATE:
4314     ABS_CASE(R8,R8_MIN);
4315     case VT_CY:
4316         hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4317         break;
4318     case VT_DECIMAL:
4319         DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4320         break;
4321     case VT_UI1:
4322     case VT_UI2:
4323     case VT_UINT:
4324     case VT_UI4:
4325     case VT_UI8:
4326         /* No-Op */
4327         break;
4328     case VT_EMPTY:
4329         V_VT(pVarOut) = VT_I2;
4330     case VT_NULL:
4331         V_I2(pVarOut) = 0;
4332         break;
4333     default:
4334         hRet = DISP_E_BADVARTYPE;
4335     }
4336 
4337 VarAbs_Exit:
4338     VariantClear(&temp);
4339     return hRet;
4340 }
4341 
4342 /**********************************************************************
4343  *              VarFix [OLEAUT32.169]
4344  *
4345  * Truncate a variants value to a whole number.
4346  *
4347  * PARAMS
4348  *  pVarIn  [I] Source variant
4349  *  pVarOut [O] Destination for converted value
4350  *
4351  * RETURNS
4352  *  Success: S_OK. pVarOut contains the converted value.
4353  *  Failure: An HRESULT error code indicating the error.
4354  *
4355  * NOTES
4356  *  - The type of the value stored in pVarOut depends on the type of pVarIn,
4357  *    according to the following table:
4358  *| Input Type       Output Type
4359  *| ----------       -----------
4360  *|  VT_BOOL          VT_I2
4361  *|  VT_EMPTY         VT_I2
4362  *|  VT_BSTR          VT_R8
4363  *|  All Others       Unchanged
4364  *  - The difference between this function and VarInt() is that VarInt() rounds
4365  *    negative numbers away from 0, while this function rounds them towards zero.
4366  */
VarFix(LPVARIANT pVarIn,LPVARIANT pVarOut)4367 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4368 {
4369     HRESULT hRet = S_OK;
4370     VARIANT temp;
4371 
4372     VariantInit(&temp);
4373 
4374     TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4375 
4376     /* Handle VT_DISPATCH by storing and taking address of returned value */
4377     if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4378     {
4379         hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4380         if (FAILED(hRet)) goto VarFix_Exit;
4381         pVarIn = &temp;
4382     }
4383     V_VT(pVarOut) = V_VT(pVarIn);
4384 
4385     switch (V_VT(pVarIn))
4386     {
4387     case VT_UI1:
4388         V_UI1(pVarOut) = V_UI1(pVarIn);
4389         break;
4390     case VT_BOOL:
4391         V_VT(pVarOut) = VT_I2;
4392         /* Fall through */
4393      case VT_I2:
4394         V_I2(pVarOut) = V_I2(pVarIn);
4395         break;
4396      case VT_I4:
4397         V_I4(pVarOut) = V_I4(pVarIn);
4398         break;
4399      case VT_I8:
4400         V_I8(pVarOut) = V_I8(pVarIn);
4401         break;
4402     case VT_R4:
4403         if (V_R4(pVarIn) < 0.0f)
4404             V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4405         else
4406             V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4407         break;
4408     case VT_BSTR:
4409         V_VT(pVarOut) = VT_R8;
4410         hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4411         pVarIn = pVarOut;
4412         /* Fall through */
4413     case VT_DATE:
4414     case VT_R8:
4415         if (V_R8(pVarIn) < 0.0)
4416             V_R8(pVarOut) = ceil(V_R8(pVarIn));
4417         else
4418             V_R8(pVarOut) = floor(V_R8(pVarIn));
4419         break;
4420     case VT_CY:
4421         hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4422         break;
4423     case VT_DECIMAL:
4424         hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4425         break;
4426     case VT_EMPTY:
4427         V_VT(pVarOut) = VT_I2;
4428         V_I2(pVarOut) = 0;
4429         break;
4430     case VT_NULL:
4431         /* No-Op */
4432         break;
4433     default:
4434         if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4435             FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4436             hRet = DISP_E_BADVARTYPE;
4437         else
4438             hRet = DISP_E_TYPEMISMATCH;
4439     }
4440 VarFix_Exit:
4441     if (FAILED(hRet))
4442       V_VT(pVarOut) = VT_EMPTY;
4443     VariantClear(&temp);
4444 
4445     return hRet;
4446 }
4447 
4448 /**********************************************************************
4449  *              VarInt [OLEAUT32.172]
4450  *
4451  * Truncate a variants value to a whole number.
4452  *
4453  * PARAMS
4454  *  pVarIn  [I] Source variant
4455  *  pVarOut [O] Destination for converted value
4456  *
4457  * RETURNS
4458  *  Success: S_OK. pVarOut contains the converted value.
4459  *  Failure: An HRESULT error code indicating the error.
4460  *
4461  * NOTES
4462  *  - The type of the value stored in pVarOut depends on the type of pVarIn,
4463  *    according to the following table:
4464  *| Input Type       Output Type
4465  *| ----------       -----------
4466  *|  VT_BOOL          VT_I2
4467  *|  VT_EMPTY         VT_I2
4468  *|  VT_BSTR          VT_R8
4469  *|  All Others       Unchanged
4470  *  - The difference between this function and VarFix() is that VarFix() rounds
4471  *    negative numbers towards 0, while this function rounds them away from zero.
4472  */
VarInt(LPVARIANT pVarIn,LPVARIANT pVarOut)4473 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4474 {
4475     HRESULT hRet = S_OK;
4476     VARIANT temp;
4477 
4478     VariantInit(&temp);
4479 
4480     TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4481 
4482     /* Handle VT_DISPATCH by storing and taking address of returned value */
4483     if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4484     {
4485         hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4486         if (FAILED(hRet)) goto VarInt_Exit;
4487         pVarIn = &temp;
4488     }
4489     V_VT(pVarOut) = V_VT(pVarIn);
4490 
4491     switch (V_VT(pVarIn))
4492     {
4493     case VT_R4:
4494         V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4495         break;
4496     case VT_BSTR:
4497         V_VT(pVarOut) = VT_R8;
4498         hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4499         pVarIn = pVarOut;
4500         /* Fall through */
4501     case VT_DATE:
4502     case VT_R8:
4503         V_R8(pVarOut) = floor(V_R8(pVarIn));
4504         break;
4505     case VT_CY:
4506         hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4507         break;
4508     case VT_DECIMAL:
4509         hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4510         break;
4511     default:
4512         hRet = VarFix(pVarIn, pVarOut);
4513     }
4514 VarInt_Exit:
4515     VariantClear(&temp);
4516 
4517     return hRet;
4518 }
4519 
4520 /**********************************************************************
4521  *              VarXor [OLEAUT32.167]
4522  *
4523  * Perform a logical exclusive-or (XOR) operation on two variants.
4524  *
4525  * PARAMS
4526  *  pVarLeft  [I] First variant
4527  *  pVarRight [I] Variant to XOR with pVarLeft
4528  *  pVarOut   [O] Destination for XOR result
4529  *
4530  * RETURNS
4531  *  Success: S_OK. pVarOut contains the result of the operation with its type
4532  *           taken from the table below).
4533  *  Failure: An HRESULT error code indicating the error.
4534  *
4535  * NOTES
4536  *  - Neither pVarLeft or pVarRight are modified by this function.
4537  *  - This function does not process by-reference variants.
4538  *  - Input types of VT_BSTR may be numeric strings or boolean text.
4539  *  - The type of result stored in pVarOut depends on the types of pVarLeft
4540  *    and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4541  *    or VT_NULL if the function succeeds.
4542  *  - Type promotion is inconsistent and as a result certain combinations of
4543  *    values will return DISP_E_OVERFLOW even when they could be represented.
4544  *    This matches the behaviour of native oleaut32.
4545  */
VarXor(LPVARIANT pVarLeft,LPVARIANT pVarRight,LPVARIANT pVarOut)4546 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4547 {
4548     VARTYPE vt;
4549     VARIANT varLeft, varRight;
4550     VARIANT tempLeft, tempRight;
4551     double d;
4552     HRESULT hRet;
4553 
4554     TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4555 
4556     if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4557         V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4558         V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4559         V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4560         V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4561         V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4562         return DISP_E_BADVARTYPE;
4563 
4564     if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4565     {
4566         /* NULL XOR anything valid is NULL */
4567         V_VT(pVarOut) = VT_NULL;
4568         return S_OK;
4569     }
4570 
4571     VariantInit(&tempLeft);
4572     VariantInit(&tempRight);
4573 
4574     /* Handle VT_DISPATCH by storing and taking address of returned value */
4575     if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4576     {
4577         hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4578         if (FAILED(hRet)) goto VarXor_Exit;
4579         pVarLeft = &tempLeft;
4580     }
4581     if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4582     {
4583         hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4584         if (FAILED(hRet)) goto VarXor_Exit;
4585         pVarRight = &tempRight;
4586     }
4587 
4588     /* Copy our inputs so we don't disturb anything */
4589     V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4590 
4591     hRet = VariantCopy(&varLeft, pVarLeft);
4592     if (FAILED(hRet))
4593         goto VarXor_Exit;
4594 
4595     hRet = VariantCopy(&varRight, pVarRight);
4596     if (FAILED(hRet))
4597         goto VarXor_Exit;
4598 
4599     /* Try any strings first as numbers, then as VT_BOOL */
4600     if (V_VT(&varLeft) == VT_BSTR)
4601     {
4602         hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4603         hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4604                                  FAILED(hRet) ? VT_BOOL : VT_I4);
4605         if (FAILED(hRet))
4606             goto VarXor_Exit;
4607     }
4608 
4609     if (V_VT(&varRight) == VT_BSTR)
4610     {
4611         hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4612         hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4613                                  FAILED(hRet) ? VT_BOOL : VT_I4);
4614         if (FAILED(hRet))
4615             goto VarXor_Exit;
4616     }
4617 
4618     /* Determine the result type */
4619     if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4620     {
4621         if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4622         {
4623             hRet = DISP_E_TYPEMISMATCH;
4624             goto VarXor_Exit;
4625         }
4626         vt = VT_I8;
4627     }
4628     else
4629     {
4630         switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4631         {
4632         case (VT_BOOL  << 16) | VT_BOOL:
4633             vt = VT_BOOL;
4634             break;
4635         case (VT_UI1   << 16) | VT_UI1:
4636             vt = VT_UI1;
4637             break;
4638         case (VT_EMPTY << 16) | VT_EMPTY:
4639         case (VT_EMPTY << 16) | VT_UI1:
4640         case (VT_EMPTY << 16) | VT_I2:
4641         case (VT_EMPTY << 16) | VT_BOOL:
4642         case (VT_UI1   << 16) | VT_EMPTY:
4643         case (VT_UI1   << 16) | VT_I2:
4644         case (VT_UI1   << 16) | VT_BOOL:
4645         case (VT_I2    << 16) | VT_EMPTY:
4646         case (VT_I2    << 16) | VT_UI1:
4647         case (VT_I2    << 16) | VT_I2:
4648         case (VT_I2    << 16) | VT_BOOL:
4649         case (VT_BOOL  << 16) | VT_EMPTY:
4650         case (VT_BOOL  << 16) | VT_UI1:
4651         case (VT_BOOL  << 16) | VT_I2:
4652             vt = VT_I2;
4653             break;
4654         default:
4655             vt = VT_I4;
4656             break;
4657         }
4658     }
4659 
4660     /* VT_UI4 does not overflow */
4661     if (vt != VT_I8)
4662     {
4663         if (V_VT(&varLeft) == VT_UI4)
4664             V_VT(&varLeft) = VT_I4;
4665         if (V_VT(&varRight) == VT_UI4)
4666             V_VT(&varRight) = VT_I4;
4667     }
4668 
4669     /* Convert our input copies to the result type */
4670     if (V_VT(&varLeft) != vt)
4671         hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4672     if (FAILED(hRet))
4673         goto VarXor_Exit;
4674 
4675     if (V_VT(&varRight) != vt)
4676         hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4677     if (FAILED(hRet))
4678         goto VarXor_Exit;
4679 
4680     V_VT(pVarOut) = vt;
4681 
4682     /* Calculate the result */
4683     switch (vt)
4684     {
4685     case VT_I8:
4686         V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4687         break;
4688     case VT_I4:
4689         V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4690         break;
4691     case VT_BOOL:
4692     case VT_I2:
4693         V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4694         break;
4695     case VT_UI1:
4696         V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4697         break;
4698     }
4699 
4700 VarXor_Exit:
4701     VariantClear(&varLeft);
4702     VariantClear(&varRight);
4703     VariantClear(&tempLeft);
4704     VariantClear(&tempRight);
4705     return hRet;
4706 }
4707 
4708 /**********************************************************************
4709  *              VarEqv [OLEAUT32.172]
4710  *
4711  * Determine if two variants contain the same value.
4712  *
4713  * PARAMS
4714  *  pVarLeft  [I] First variant to compare
4715  *  pVarRight [I] Variant to compare to pVarLeft
4716  *  pVarOut   [O] Destination for comparison result
4717  *
4718  * RETURNS
4719  *  Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4720  *           if equivalent or non-zero otherwise.
4721  *  Failure: An HRESULT error code indicating the error.
4722  *
4723  * NOTES
4724  *  - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4725  *    the result.
4726  */
VarEqv(LPVARIANT pVarLeft,LPVARIANT pVarRight,LPVARIANT pVarOut)4727 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4728 {
4729     HRESULT hRet;
4730 
4731     TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4732 
4733     hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4734     if (SUCCEEDED(hRet))
4735     {
4736         if (V_VT(pVarOut) == VT_I8)
4737             V_I8(pVarOut) = ~V_I8(pVarOut);
4738         else
4739             V_UI4(pVarOut) = ~V_UI4(pVarOut);
4740     }
4741     return hRet;
4742 }
4743 
4744 /**********************************************************************
4745  *              VarNeg [OLEAUT32.173]
4746  *
4747  * Negate the value of a variant.
4748  *
4749  * PARAMS
4750  *  pVarIn  [I] Source variant
4751  *  pVarOut [O] Destination for converted value
4752  *
4753  * RETURNS
4754  *  Success: S_OK. pVarOut contains the converted value.
4755  *  Failure: An HRESULT error code indicating the error.
4756  *
4757  * NOTES
4758  *  - The type of the value stored in pVarOut depends on the type of pVarIn,
4759  *    according to the following table:
4760  *| Input Type       Output Type
4761  *| ----------       -----------
4762  *|  VT_EMPTY         VT_I2
4763  *|  VT_UI1           VT_I2
4764  *|  VT_BOOL          VT_I2
4765  *|  VT_BSTR          VT_R8
4766  *|  All Others       Unchanged (unless promoted)
4767  *  - Where the negated value of a variant does not fit in its base type, the type
4768  *    is promoted according to the following table:
4769  *| Input Type       Promoted To
4770  *| ----------       -----------
4771  *|   VT_I2            VT_I4
4772  *|   VT_I4            VT_R8
4773  *|   VT_I8            VT_R8
4774  *  - The native version of this function returns DISP_E_BADVARTYPE for valid
4775  *    variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4776  *    for types which are not valid. Since this is in contravention of the
4777  *    meaning of those error codes and unlikely to be relied on by applications,
4778  *    this implementation returns errors consistent with the other high level
4779  *    variant math functions.
4780  */
VarNeg(LPVARIANT pVarIn,LPVARIANT pVarOut)4781 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4782 {
4783     HRESULT hRet = S_OK;
4784     VARIANT temp;
4785 
4786     VariantInit(&temp);
4787 
4788     TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4789 
4790     /* Handle VT_DISPATCH by storing and taking address of returned value */
4791     if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4792     {
4793         hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4794         if (FAILED(hRet)) goto VarNeg_Exit;
4795         pVarIn = &temp;
4796     }
4797     V_VT(pVarOut) = V_VT(pVarIn);
4798 
4799     switch (V_VT(pVarIn))
4800     {
4801     case VT_UI1:
4802         V_VT(pVarOut) = VT_I2;
4803         V_I2(pVarOut) = -V_UI1(pVarIn);
4804         break;
4805     case VT_BOOL:
4806         V_VT(pVarOut) = VT_I2;
4807         /* Fall through */
4808     case VT_I2:
4809         if (V_I2(pVarIn) == I2_MIN)
4810         {
4811             V_VT(pVarOut) = VT_I4;
4812             V_I4(pVarOut) = -(int)V_I2(pVarIn);
4813         }
4814         else
4815             V_I2(pVarOut) = -V_I2(pVarIn);
4816         break;
4817     case VT_I4:
4818         if (V_I4(pVarIn) == I4_MIN)
4819         {
4820             V_VT(pVarOut) = VT_R8;
4821             V_R8(pVarOut) = -(double)V_I4(pVarIn);
4822         }
4823         else
4824             V_I4(pVarOut) = -V_I4(pVarIn);
4825         break;
4826     case VT_I8:
4827         if (V_I8(pVarIn) == I8_MIN)
4828         {
4829             V_VT(pVarOut) = VT_R8;
4830             hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4831             V_R8(pVarOut) *= -1.0;
4832         }
4833         else
4834             V_I8(pVarOut) = -V_I8(pVarIn);
4835         break;
4836     case VT_R4:
4837         V_R4(pVarOut) = -V_R4(pVarIn);
4838         break;
4839     case VT_DATE:
4840     case VT_R8:
4841         V_R8(pVarOut) = -V_R8(pVarIn);
4842         break;
4843     case VT_CY:
4844         hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4845         break;
4846     case VT_DECIMAL:
4847         hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4848         break;
4849     case VT_BSTR:
4850         V_VT(pVarOut) = VT_R8;
4851         hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4852         V_R8(pVarOut) = -V_R8(pVarOut);
4853         break;
4854     case VT_EMPTY:
4855         V_VT(pVarOut) = VT_I2;
4856         V_I2(pVarOut) = 0;
4857         break;
4858     case VT_NULL:
4859         /* No-Op */
4860         break;
4861     default:
4862         if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4863             FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4864             hRet = DISP_E_BADVARTYPE;
4865         else
4866             hRet = DISP_E_TYPEMISMATCH;
4867     }
4868 VarNeg_Exit:
4869     if (FAILED(hRet))
4870       V_VT(pVarOut) = VT_EMPTY;
4871     VariantClear(&temp);
4872 
4873     return hRet;
4874 }
4875 
4876 /**********************************************************************
4877  *              VarNot [OLEAUT32.174]
4878  *
4879  * Perform a not operation on a variant.
4880  *
4881  * PARAMS
4882  *  pVarIn  [I] Source variant
4883  *  pVarOut [O] Destination for converted value
4884  *
4885  * RETURNS
4886  *  Success: S_OK. pVarOut contains the converted value.
4887  *  Failure: An HRESULT error code indicating the error.
4888  *
4889  * NOTES
4890  *  - Strictly speaking, this function performs a bitwise ones complement
4891  *    on the variants value (after possibly converting to VT_I4, see below).
4892  *    This only behaves like a boolean not operation if the value in
4893  *    pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4894  *  - To perform a genuine not operation, convert the variant to a VT_BOOL
4895  *    before calling this function.
4896  *  - This function does not process by-reference variants.
4897  *  - The type of the value stored in pVarOut depends on the type of pVarIn,
4898  *    according to the following table:
4899  *| Input Type       Output Type
4900  *| ----------       -----------
4901  *| VT_EMPTY         VT_I2
4902  *| VT_R4            VT_I4
4903  *| VT_R8            VT_I4
4904  *| VT_BSTR          VT_I4
4905  *| VT_DECIMAL       VT_I4
4906  *| VT_CY            VT_I4
4907  *| (All others)     Unchanged
4908  */
VarNot(LPVARIANT pVarIn,LPVARIANT pVarOut)4909 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4910 {
4911     VARIANT varIn;
4912     HRESULT hRet = S_OK;
4913     VARIANT temp;
4914 
4915     VariantInit(&temp);
4916 
4917     TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4918 
4919     /* Handle VT_DISPATCH by storing and taking address of returned value */
4920     if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4921     {
4922         hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4923         if (FAILED(hRet)) goto VarNot_Exit;
4924         pVarIn = &temp;
4925     }
4926 
4927     if (V_VT(pVarIn) == VT_BSTR)
4928     {
4929         V_VT(&varIn) = VT_R8;
4930         hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
4931         if (FAILED(hRet))
4932         {
4933             V_VT(&varIn) = VT_BOOL;
4934             hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
4935         }
4936         if (FAILED(hRet)) goto VarNot_Exit;
4937         pVarIn = &varIn;
4938     }
4939 
4940     V_VT(pVarOut) = V_VT(pVarIn);
4941 
4942     switch (V_VT(pVarIn))
4943     {
4944     case VT_I1:
4945         V_I4(pVarOut) = ~V_I1(pVarIn);
4946         V_VT(pVarOut) = VT_I4;
4947         break;
4948     case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
4949     case VT_BOOL:
4950     case VT_I2:  V_I2(pVarOut) = ~V_I2(pVarIn); break;
4951     case VT_UI2:
4952         V_I4(pVarOut) = ~V_UI2(pVarIn);
4953         V_VT(pVarOut) = VT_I4;
4954         break;
4955     case VT_DECIMAL:
4956         hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
4957         if (FAILED(hRet))
4958             break;
4959         pVarIn = &varIn;
4960         /* Fall through ... */
4961     case VT_INT:
4962         V_VT(pVarOut) = VT_I4;
4963         /* Fall through ... */
4964     case VT_I4:  V_I4(pVarOut) = ~V_I4(pVarIn); break;
4965     case VT_UINT:
4966     case VT_UI4:
4967         V_I4(pVarOut) = ~V_UI4(pVarIn);
4968         V_VT(pVarOut) = VT_I4;
4969         break;
4970     case VT_I8:  V_I8(pVarOut) = ~V_I8(pVarIn); break;
4971     case VT_UI8:
4972         V_I4(pVarOut) = ~V_UI8(pVarIn);
4973         V_VT(pVarOut) = VT_I4;
4974         break;
4975     case VT_R4:
4976         hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
4977         V_I4(pVarOut) = ~V_I4(pVarOut);
4978         V_VT(pVarOut) = VT_I4;
4979         break;
4980     case VT_DATE:
4981     case VT_R8:
4982         hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
4983         V_I4(pVarOut) = ~V_I4(pVarOut);
4984         V_VT(pVarOut) = VT_I4;
4985         break;
4986     case VT_CY:
4987         hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
4988         V_I4(pVarOut) = ~V_I4(pVarOut);
4989         V_VT(pVarOut) = VT_I4;
4990         break;
4991     case VT_EMPTY:
4992         V_I2(pVarOut) = ~0;
4993         V_VT(pVarOut) = VT_I2;
4994         break;
4995     case VT_NULL:
4996         /* No-Op */
4997         break;
4998     default:
4999         if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5000             FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5001             hRet = DISP_E_BADVARTYPE;
5002         else
5003             hRet = DISP_E_TYPEMISMATCH;
5004     }
5005 VarNot_Exit:
5006     if (FAILED(hRet))
5007       V_VT(pVarOut) = VT_EMPTY;
5008     VariantClear(&temp);
5009 
5010     return hRet;
5011 }
5012 
5013 /**********************************************************************
5014  *              VarRound [OLEAUT32.175]
5015  *
5016  * Perform a round operation on a variant.
5017  *
5018  * PARAMS
5019  *  pVarIn  [I] Source variant
5020  *  deci    [I] Number of decimals to round to
5021  *  pVarOut [O] Destination for converted value
5022  *
5023  * RETURNS
5024  *  Success: S_OK. pVarOut contains the converted value.
5025  *  Failure: An HRESULT error code indicating the error.
5026  *
5027  * NOTES
5028  *  - Floating point values are rounded to the desired number of decimals.
5029  *  - Some integer types are just copied to the return variable.
5030  *  - Some other integer types are not handled and fail.
5031  */
VarRound(LPVARIANT pVarIn,int deci,LPVARIANT pVarOut)5032 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5033 {
5034     VARIANT varIn;
5035     HRESULT hRet = S_OK;
5036     float factor;
5037     VARIANT temp;
5038 
5039     VariantInit(&temp);
5040 
5041     TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5042 
5043     /* Handle VT_DISPATCH by storing and taking address of returned value */
5044     if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5045     {
5046         hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5047         if (FAILED(hRet)) goto VarRound_Exit;
5048         pVarIn = &temp;
5049     }
5050 
5051     switch (V_VT(pVarIn))
5052     {
5053     /* cases that fail on windows */
5054     case VT_I1:
5055     case VT_I8:
5056     case VT_UI2:
5057     case VT_UI4:
5058 	hRet = DISP_E_BADVARTYPE;
5059 	break;
5060 
5061     /* cases just copying in to out */
5062     case VT_UI1:
5063 	V_VT(pVarOut) = V_VT(pVarIn);
5064 	V_UI1(pVarOut) = V_UI1(pVarIn);
5065 	break;
5066     case VT_I2:
5067 	V_VT(pVarOut) = V_VT(pVarIn);
5068 	V_I2(pVarOut) = V_I2(pVarIn);
5069 	break;
5070     case VT_I4:
5071 	V_VT(pVarOut) = V_VT(pVarIn);
5072 	V_I4(pVarOut) = V_I4(pVarIn);
5073 	break;
5074     case VT_NULL:
5075 	V_VT(pVarOut) = V_VT(pVarIn);
5076 	/* value unchanged */
5077 	break;
5078 
5079     /* cases that change type */
5080     case VT_EMPTY:
5081 	V_VT(pVarOut) = VT_I2;
5082 	V_I2(pVarOut) = 0;
5083 	break;
5084     case VT_BOOL:
5085 	V_VT(pVarOut) = VT_I2;
5086 	V_I2(pVarOut) = V_BOOL(pVarIn);
5087 	break;
5088     case VT_BSTR:
5089 	hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5090 	if (FAILED(hRet))
5091 	    break;
5092 	V_VT(&varIn)=VT_R8;
5093 	pVarIn = &varIn;
5094 	/* Fall through ... */
5095 
5096     /* cases we need to do math */
5097     case VT_R8:
5098 	if (V_R8(pVarIn)>0) {
5099 	    V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5100 	} else {
5101 	    V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5102 	}
5103 	V_VT(pVarOut) = V_VT(pVarIn);
5104 	break;
5105     case VT_R4:
5106 	if (V_R4(pVarIn)>0) {
5107 	    V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5108 	} else {
5109 	    V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5110 	}
5111 	V_VT(pVarOut) = V_VT(pVarIn);
5112 	break;
5113     case VT_DATE:
5114 	if (V_DATE(pVarIn)>0) {
5115 	    V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5116 	} else {
5117 	    V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5118 	}
5119 	V_VT(pVarOut) = V_VT(pVarIn);
5120 	break;
5121     case VT_CY:
5122 	if (deci>3)
5123 	    factor=1;
5124 	else
5125 	    factor=pow(10, 4-deci);
5126 
5127 	if (V_CY(pVarIn).int64>0) {
5128 	    V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5129 	} else {
5130 	    V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5131 	}
5132 	V_VT(pVarOut) = V_VT(pVarIn);
5133 	break;
5134     case VT_DECIMAL:
5135     {
5136         double dbl;
5137 
5138         hRet = VarR8FromDec(&V_DECIMAL(pVarIn), &dbl);
5139         if (FAILED(hRet))
5140             break;
5141 
5142         if (dbl>0.0f)
5143             dbl = floor(dbl*pow(10,deci)+0.5);
5144         else
5145             dbl = ceil(dbl*pow(10,deci)-0.5);
5146 
5147         V_VT(pVarOut)=VT_DECIMAL;
5148         hRet = VarDecFromR8(dbl, &V_DECIMAL(pVarOut));
5149         break;
5150     }
5151     /* cases we don't know yet */
5152     default:
5153 	FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5154 		V_VT(pVarIn) & VT_TYPEMASK, deci);
5155 	hRet = DISP_E_BADVARTYPE;
5156     }
5157 VarRound_Exit:
5158     if (FAILED(hRet))
5159       V_VT(pVarOut) = VT_EMPTY;
5160     VariantClear(&temp);
5161 
5162     TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5163     return hRet;
5164 }
5165 
5166 /**********************************************************************
5167  *              VarIdiv [OLEAUT32.153]
5168  *
5169  * Converts input variants to integers and divides them.
5170  *
5171  * PARAMS
5172  *  left     [I] Left hand variant
5173  *  right    [I] Right hand variant
5174  *  result   [O] Destination for quotient
5175  *
5176  * RETURNS
5177  *  Success: S_OK.  result contains the quotient.
5178  *  Failure: An HRESULT error code indicating the error.
5179  *
5180  * NOTES
5181  *  If either expression is null, null is returned, as per MSDN
5182  */
VarIdiv(LPVARIANT left,LPVARIANT right,LPVARIANT result)5183 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5184 {
5185     HRESULT hres = S_OK;
5186     VARTYPE resvt = VT_EMPTY;
5187     VARTYPE leftvt,rightvt;
5188     VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5189     VARIANT lv,rv;
5190     VARIANT tempLeft, tempRight;
5191 
5192     TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5193 
5194     VariantInit(&lv);
5195     VariantInit(&rv);
5196     VariantInit(&tempLeft);
5197     VariantInit(&tempRight);
5198 
5199     leftvt = V_VT(left)&VT_TYPEMASK;
5200     rightvt = V_VT(right)&VT_TYPEMASK;
5201     leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5202     rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5203 
5204     if (leftExtraFlags != rightExtraFlags)
5205     {
5206         hres = DISP_E_BADVARTYPE;
5207         goto end;
5208     }
5209     ExtraFlags = leftExtraFlags;
5210 
5211     /* Native VarIdiv always returns an error when using extra
5212      * flags or if the variant combination is I8 and INT.
5213      */
5214     if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5215         (leftvt == VT_INT && rightvt == VT_I8) ||
5216         (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5217         ExtraFlags != 0)
5218     {
5219         hres = DISP_E_BADVARTYPE;
5220         goto end;
5221     }
5222 
5223     /* Determine variant type */
5224     else if (leftvt == VT_NULL || rightvt == VT_NULL)
5225     {
5226         V_VT(result) = VT_NULL;
5227         hres = S_OK;
5228         goto end;
5229     }
5230     else if (leftvt == VT_I8 || rightvt == VT_I8)
5231         resvt = VT_I8;
5232     else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5233         leftvt == VT_INT || rightvt == VT_INT ||
5234         leftvt == VT_UINT || rightvt == VT_UINT ||
5235         leftvt == VT_UI8 || rightvt == VT_UI8 ||
5236         leftvt == VT_UI4 || rightvt == VT_UI4 ||
5237         leftvt == VT_UI2 || rightvt == VT_UI2 ||
5238         leftvt == VT_I1 || rightvt == VT_I1 ||
5239         leftvt == VT_BSTR || rightvt == VT_BSTR ||
5240         leftvt == VT_DATE || rightvt == VT_DATE ||
5241         leftvt == VT_CY || rightvt == VT_CY ||
5242         leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5243         leftvt == VT_R8 || rightvt == VT_R8 ||
5244         leftvt == VT_R4 || rightvt == VT_R4)
5245         resvt = VT_I4;
5246     else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5247         leftvt == VT_BOOL || rightvt == VT_BOOL ||
5248         leftvt == VT_EMPTY)
5249         resvt = VT_I2;
5250     else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5251         resvt = VT_UI1;
5252     else
5253     {
5254         hres = DISP_E_BADVARTYPE;
5255         goto end;
5256     }
5257 
5258     /* coerce to the result type */
5259     hres = VariantChangeType(&lv, left, 0, resvt);
5260     if (hres != S_OK) goto end;
5261     hres = VariantChangeType(&rv, right, 0, resvt);
5262     if (hres != S_OK) goto end;
5263 
5264     /* do the math */
5265     V_VT(result) = resvt;
5266     switch (resvt)
5267     {
5268     case VT_UI1:
5269     if (V_UI1(&rv) == 0)
5270     {
5271         hres = DISP_E_DIVBYZERO;
5272         V_VT(result) = VT_EMPTY;
5273     }
5274     else
5275         V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5276     break;
5277     case VT_I2:
5278     if (V_I2(&rv) == 0)
5279     {
5280         hres = DISP_E_DIVBYZERO;
5281         V_VT(result) = VT_EMPTY;
5282     }
5283     else
5284         V_I2(result) = V_I2(&lv) / V_I2(&rv);
5285     break;
5286     case VT_I4:
5287     if (V_I4(&rv) == 0)
5288     {
5289         hres = DISP_E_DIVBYZERO;
5290         V_VT(result) = VT_EMPTY;
5291     }
5292     else
5293         V_I4(result) = V_I4(&lv) / V_I4(&rv);
5294     break;
5295     case VT_I8:
5296     if (V_I8(&rv) == 0)
5297     {
5298         hres = DISP_E_DIVBYZERO;
5299         V_VT(result) = VT_EMPTY;
5300     }
5301     else
5302         V_I8(result) = V_I8(&lv) / V_I8(&rv);
5303     break;
5304     default:
5305         FIXME("Couldn't integer divide variant types %d,%d\n",
5306             leftvt,rightvt);
5307     }
5308 
5309 end:
5310     VariantClear(&lv);
5311     VariantClear(&rv);
5312     VariantClear(&tempLeft);
5313     VariantClear(&tempRight);
5314 
5315     return hres;
5316 }
5317 
5318 
5319 /**********************************************************************
5320  *              VarMod [OLEAUT32.155]
5321  *
5322  * Perform the modulus operation of the right hand variant on the left
5323  *
5324  * PARAMS
5325  *  left     [I] Left hand variant
5326  *  right    [I] Right hand variant
5327  *  result   [O] Destination for converted value
5328  *
5329  * RETURNS
5330  *  Success: S_OK. result contains the remainder.
5331  *  Failure: An HRESULT error code indicating the error.
5332  *
5333  * NOTE:
5334  *   If an error occurs the type of result will be modified but the value will not be.
5335  *   Doesn't support arrays or any special flags yet.
5336  */
VarMod(LPVARIANT left,LPVARIANT right,LPVARIANT result)5337 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5338 {
5339     BOOL         lOk        = TRUE;
5340     HRESULT      rc         = E_FAIL;
5341     int          resT = 0;
5342     VARIANT      lv,rv;
5343     VARIANT tempLeft, tempRight;
5344 
5345     VariantInit(&tempLeft);
5346     VariantInit(&tempRight);
5347     VariantInit(&lv);
5348     VariantInit(&rv);
5349 
5350     TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5351 
5352     /* Handle VT_DISPATCH by storing and taking address of returned value */
5353     if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5354     {
5355         rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5356         if (FAILED(rc)) goto end;
5357         left = &tempLeft;
5358     }
5359     if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5360     {
5361         rc = VARIANT_FetchDispatchValue(right, &tempRight);
5362         if (FAILED(rc)) goto end;
5363         right = &tempRight;
5364     }
5365 
5366     /* check for invalid inputs */
5367     lOk = TRUE;
5368     switch (V_VT(left) & VT_TYPEMASK) {
5369     case VT_BOOL :
5370     case VT_I1   :
5371     case VT_I2   :
5372     case VT_I4   :
5373     case VT_I8   :
5374     case VT_INT  :
5375     case VT_UI1  :
5376     case VT_UI2  :
5377     case VT_UI4  :
5378     case VT_UI8  :
5379     case VT_UINT :
5380     case VT_R4   :
5381     case VT_R8   :
5382     case VT_CY   :
5383     case VT_EMPTY:
5384     case VT_DATE :
5385     case VT_BSTR :
5386     case VT_DECIMAL:
5387       break;
5388     case VT_VARIANT:
5389     case VT_UNKNOWN:
5390       V_VT(result) = VT_EMPTY;
5391       rc = DISP_E_TYPEMISMATCH;
5392       goto end;
5393     case VT_ERROR:
5394       rc = DISP_E_TYPEMISMATCH;
5395       goto end;
5396     case VT_RECORD:
5397       V_VT(result) = VT_EMPTY;
5398       rc = DISP_E_TYPEMISMATCH;
5399       goto end;
5400     case VT_NULL:
5401       break;
5402     default:
5403       V_VT(result) = VT_EMPTY;
5404       rc = DISP_E_BADVARTYPE;
5405       goto end;
5406     }
5407 
5408 
5409     switch (V_VT(right) & VT_TYPEMASK) {
5410     case VT_BOOL :
5411     case VT_I1   :
5412     case VT_I2   :
5413     case VT_I4   :
5414     case VT_I8   :
5415       if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5416       {
5417 	V_VT(result) = VT_EMPTY;
5418         rc = DISP_E_TYPEMISMATCH;
5419         goto end;
5420       }
5421     case VT_INT  :
5422       if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5423       {
5424 	V_VT(result) = VT_EMPTY;
5425         rc = DISP_E_TYPEMISMATCH;
5426         goto end;
5427       }
5428     case VT_UI1  :
5429     case VT_UI2  :
5430     case VT_UI4  :
5431     case VT_UI8  :
5432     case VT_UINT :
5433     case VT_R4   :
5434     case VT_R8   :
5435     case VT_CY   :
5436       if(V_VT(left) == VT_EMPTY)
5437       {
5438 	V_VT(result) = VT_I4;
5439         rc = S_OK;
5440         goto end;
5441       }
5442     case VT_EMPTY:
5443     case VT_DATE :
5444     case VT_DECIMAL:
5445       if(V_VT(left) == VT_ERROR)
5446       {
5447 	V_VT(result) = VT_EMPTY;
5448         rc = DISP_E_TYPEMISMATCH;
5449         goto end;
5450       }
5451     case VT_BSTR:
5452       if(V_VT(left) == VT_NULL)
5453       {
5454 	V_VT(result) = VT_NULL;
5455         rc = S_OK;
5456         goto end;
5457       }
5458       break;
5459 
5460     case VT_VOID:
5461       V_VT(result) = VT_EMPTY;
5462       rc = DISP_E_BADVARTYPE;
5463       goto end;
5464     case VT_NULL:
5465       if(V_VT(left) == VT_VOID)
5466       {
5467 	V_VT(result) = VT_EMPTY;
5468         rc = DISP_E_BADVARTYPE;
5469       } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5470 		lOk)
5471       {
5472         V_VT(result) = VT_NULL;
5473         rc = S_OK;
5474       } else
5475       {
5476 	V_VT(result) = VT_NULL;
5477         rc = DISP_E_BADVARTYPE;
5478       }
5479       goto end;
5480     case VT_VARIANT:
5481     case VT_UNKNOWN:
5482       V_VT(result) = VT_EMPTY;
5483       rc = DISP_E_TYPEMISMATCH;
5484       goto end;
5485     case VT_ERROR:
5486       rc = DISP_E_TYPEMISMATCH;
5487       goto end;
5488     case VT_RECORD:
5489       if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5490       {
5491 	V_VT(result) = VT_EMPTY;
5492         rc = DISP_E_BADVARTYPE;
5493       } else
5494       {
5495 	V_VT(result) = VT_EMPTY;
5496         rc = DISP_E_TYPEMISMATCH;
5497       }
5498       goto end;
5499     default:
5500       V_VT(result) = VT_EMPTY;
5501       rc = DISP_E_BADVARTYPE;
5502       goto end;
5503     }
5504 
5505     /* determine the result type */
5506     if((V_VT(left) == VT_I8)        || (V_VT(right) == VT_I8))   resT = VT_I8;
5507     else if((V_VT(left) == VT_UI1)  && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5508     else if((V_VT(left) == VT_UI1)  && (V_VT(right) == VT_UI1))  resT = VT_UI1;
5509     else if((V_VT(left) == VT_UI1)  && (V_VT(right) == VT_I2))   resT = VT_I2;
5510     else if((V_VT(left) == VT_I2)   && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5511     else if((V_VT(left) == VT_I2)   && (V_VT(right) == VT_UI1))  resT = VT_I2;
5512     else if((V_VT(left) == VT_I2)   && (V_VT(right) == VT_I2))   resT = VT_I2;
5513     else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5514     else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1))  resT = VT_I2;
5515     else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2))   resT = VT_I2;
5516     else resT = VT_I4; /* most outputs are I4 */
5517 
5518     /* convert to I8 for the modulo */
5519     rc = VariantChangeType(&lv, left, 0, VT_I8);
5520     if(FAILED(rc))
5521     {
5522       FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5523       goto end;
5524     }
5525 
5526     rc = VariantChangeType(&rv, right, 0, VT_I8);
5527     if(FAILED(rc))
5528     {
5529       FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5530       goto end;
5531     }
5532 
5533     /* if right is zero set VT_EMPTY and return divide by zero */
5534     if(V_I8(&rv) == 0)
5535     {
5536       V_VT(result) = VT_EMPTY;
5537       rc = DISP_E_DIVBYZERO;
5538       goto end;
5539     }
5540 
5541     /* perform the modulo operation */
5542     V_VT(result) = VT_I8;
5543     V_I8(result) = V_I8(&lv) % V_I8(&rv);
5544 
5545     TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5546           wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5547           wine_dbgstr_longlong(V_I8(result)));
5548 
5549     /* convert left and right to the destination type */
5550     rc = VariantChangeType(result, result, 0, resT);
5551     if(FAILED(rc))
5552     {
5553       FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5554       /* fall to end of function */
5555     }
5556 
5557 end:
5558     VariantClear(&lv);
5559     VariantClear(&rv);
5560     VariantClear(&tempLeft);
5561     VariantClear(&tempRight);
5562     return rc;
5563 }
5564 
5565 /**********************************************************************
5566  *              VarPow [OLEAUT32.158]
5567  *
5568  * Computes the power of one variant to another variant.
5569  *
5570  * PARAMS
5571  *  left    [I] First variant
5572  *  right   [I] Second variant
5573  *  result  [O] Result variant
5574  *
5575  * RETURNS
5576  *  Success: S_OK.
5577  *  Failure: An HRESULT error code indicating the error.
5578  */
VarPow(LPVARIANT left,LPVARIANT right,LPVARIANT result)5579 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5580 {
5581     HRESULT hr = S_OK;
5582     VARIANT dl,dr;
5583     VARTYPE resvt = VT_EMPTY;
5584     VARTYPE leftvt,rightvt;
5585     VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5586     VARIANT tempLeft, tempRight;
5587 
5588     TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5589 
5590     VariantInit(&dl);
5591     VariantInit(&dr);
5592     VariantInit(&tempLeft);
5593     VariantInit(&tempRight);
5594 
5595     /* Handle VT_DISPATCH by storing and taking address of returned value */
5596     if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5597     {
5598         hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5599         if (FAILED(hr)) goto end;
5600         left = &tempLeft;
5601     }
5602     if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5603     {
5604         hr = VARIANT_FetchDispatchValue(right, &tempRight);
5605         if (FAILED(hr)) goto end;
5606         right = &tempRight;
5607     }
5608 
5609     leftvt = V_VT(left)&VT_TYPEMASK;
5610     rightvt = V_VT(right)&VT_TYPEMASK;
5611     leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5612     rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5613 
5614     if (leftExtraFlags != rightExtraFlags)
5615     {
5616         hr = DISP_E_BADVARTYPE;
5617         goto end;
5618     }
5619     ExtraFlags = leftExtraFlags;
5620 
5621     /* Native VarPow always returns an error when using extra flags */
5622     if (ExtraFlags != 0)
5623     {
5624         hr = DISP_E_BADVARTYPE;
5625         goto end;
5626     }
5627 
5628     /* Determine return type */
5629     else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5630         V_VT(result) = VT_NULL;
5631         hr = S_OK;
5632         goto end;
5633     }
5634     else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5635         leftvt == VT_I4 || leftvt == VT_R4 ||
5636         leftvt == VT_R8 || leftvt == VT_CY ||
5637         leftvt == VT_DATE || leftvt == VT_BSTR ||
5638         leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5639         (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5640         (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5641         rightvt == VT_I4 || rightvt == VT_R4 ||
5642         rightvt == VT_R8 || rightvt == VT_CY ||
5643         rightvt == VT_DATE || rightvt == VT_BSTR ||
5644         rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5645         (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5646         resvt = VT_R8;
5647     else
5648     {
5649         hr = DISP_E_BADVARTYPE;
5650         goto end;
5651     }
5652 
5653     hr = VariantChangeType(&dl,left,0,resvt);
5654     if (FAILED(hr)) {
5655         ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5656         hr = E_FAIL;
5657         goto end;
5658     }
5659 
5660     hr = VariantChangeType(&dr,right,0,resvt);
5661     if (FAILED(hr)) {
5662         ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5663         hr = E_FAIL;
5664         goto end;
5665     }
5666 
5667     V_VT(result) = VT_R8;
5668     V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5669 
5670 end:
5671     VariantClear(&dl);
5672     VariantClear(&dr);
5673     VariantClear(&tempLeft);
5674     VariantClear(&tempRight);
5675 
5676     return hr;
5677 }
5678 
5679 /**********************************************************************
5680  *              VarImp [OLEAUT32.154]
5681  *
5682  * Bitwise implication of two variants.
5683  *
5684  * PARAMS
5685  *  left    [I] First variant
5686  *  right   [I] Second variant
5687  *  result  [O] Result variant
5688  *
5689  * RETURNS
5690  *  Success: S_OK.
5691  *  Failure: An HRESULT error code indicating the error.
5692  */
VarImp(LPVARIANT left,LPVARIANT right,LPVARIANT result)5693 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5694 {
5695     HRESULT hres = S_OK;
5696     VARTYPE resvt = VT_EMPTY;
5697     VARTYPE leftvt,rightvt;
5698     VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5699     VARIANT lv,rv;
5700     double d;
5701     VARIANT tempLeft, tempRight;
5702 
5703     VariantInit(&lv);
5704     VariantInit(&rv);
5705     VariantInit(&tempLeft);
5706     VariantInit(&tempRight);
5707 
5708     TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5709 
5710     /* Handle VT_DISPATCH by storing and taking address of returned value */
5711     if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5712     {
5713         hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5714         if (FAILED(hres)) goto VarImp_Exit;
5715         left = &tempLeft;
5716     }
5717     if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5718     {
5719         hres = VARIANT_FetchDispatchValue(right, &tempRight);
5720         if (FAILED(hres)) goto VarImp_Exit;
5721         right = &tempRight;
5722     }
5723 
5724     leftvt = V_VT(left)&VT_TYPEMASK;
5725     rightvt = V_VT(right)&VT_TYPEMASK;
5726     leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5727     rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5728 
5729     if (leftExtraFlags != rightExtraFlags)
5730     {
5731         hres = DISP_E_BADVARTYPE;
5732         goto VarImp_Exit;
5733     }
5734     ExtraFlags = leftExtraFlags;
5735 
5736     /* Native VarImp always returns an error when using extra
5737      * flags or if the variants are I8 and INT.
5738      */
5739     if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5740         ExtraFlags != 0)
5741     {
5742         hres = DISP_E_BADVARTYPE;
5743         goto VarImp_Exit;
5744     }
5745 
5746     /* Determine result type */
5747     else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5748         (leftvt == VT_NULL && rightvt == VT_EMPTY))
5749     {
5750         V_VT(result) = VT_NULL;
5751         hres = S_OK;
5752         goto VarImp_Exit;
5753     }
5754     else if (leftvt == VT_I8 || rightvt == VT_I8)
5755         resvt = VT_I8;
5756     else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5757         leftvt == VT_INT || rightvt == VT_INT ||
5758         leftvt == VT_UINT || rightvt == VT_UINT ||
5759         leftvt == VT_UI4 || rightvt == VT_UI4 ||
5760         leftvt == VT_UI8 || rightvt == VT_UI8 ||
5761         leftvt == VT_UI2 || rightvt == VT_UI2 ||
5762         leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5763         leftvt == VT_DATE || rightvt == VT_DATE ||
5764         leftvt == VT_CY || rightvt == VT_CY ||
5765         leftvt == VT_R8 || rightvt == VT_R8 ||
5766         leftvt == VT_R4 || rightvt == VT_R4 ||
5767         leftvt == VT_I1 || rightvt == VT_I1)
5768         resvt = VT_I4;
5769     else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5770         (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5771         (leftvt == VT_NULL && rightvt == VT_UI1))
5772         resvt = VT_UI1;
5773     else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5774         leftvt == VT_I2 || rightvt == VT_I2 ||
5775         leftvt == VT_UI1 || rightvt == VT_UI1)
5776         resvt = VT_I2;
5777     else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5778         leftvt == VT_BSTR || rightvt == VT_BSTR)
5779         resvt = VT_BOOL;
5780 
5781     /* VT_NULL requires special handling for when the opposite
5782      * variant is equal to something other than -1.
5783      * (NULL Imp 0 = NULL, NULL Imp n = n)
5784      */
5785     if (leftvt == VT_NULL)
5786     {
5787         VARIANT_BOOL b;
5788         switch(rightvt)
5789         {
5790         case VT_I1:   if (!V_I1(right)) resvt = VT_NULL; break;
5791         case VT_UI1:  if (!V_UI1(right)) resvt = VT_NULL; break;
5792         case VT_I2:   if (!V_I2(right)) resvt = VT_NULL; break;
5793         case VT_UI2:  if (!V_UI2(right)) resvt = VT_NULL; break;
5794         case VT_I4:   if (!V_I4(right)) resvt = VT_NULL; break;
5795         case VT_UI4:  if (!V_UI4(right)) resvt = VT_NULL; break;
5796         case VT_I8:   if (!V_I8(right)) resvt = VT_NULL; break;
5797         case VT_UI8:  if (!V_UI8(right)) resvt = VT_NULL; break;
5798         case VT_INT:  if (!V_INT(right)) resvt = VT_NULL; break;
5799         case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5800         case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5801         case VT_R4:   if (!V_R4(right)) resvt = VT_NULL; break;
5802         case VT_R8:   if (!V_R8(right)) resvt = VT_NULL; break;
5803         case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5804         case VT_CY:   if (!V_CY(right).int64) resvt = VT_NULL; break;
5805         case VT_DECIMAL:
5806             if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5807                 resvt = VT_NULL;
5808             break;
5809         case VT_BSTR:
5810             hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5811             if (FAILED(hres)) goto VarImp_Exit;
5812             else if (!b)
5813                 V_VT(result) = VT_NULL;
5814             else
5815             {
5816                 V_VT(result) = VT_BOOL;
5817                 V_BOOL(result) = b;
5818             }
5819             goto VarImp_Exit;
5820         }
5821         if (resvt == VT_NULL)
5822         {
5823             V_VT(result) = resvt;
5824             goto VarImp_Exit;
5825         }
5826         else
5827         {
5828             hres = VariantChangeType(result,right,0,resvt);
5829             goto VarImp_Exit;
5830         }
5831     }
5832 
5833     /* Special handling is required when NULL is the right variant.
5834      * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5835      */
5836     else if (rightvt == VT_NULL)
5837     {
5838         VARIANT_BOOL b;
5839         switch(leftvt)
5840         {
5841         case VT_I1:     if (V_I1(left) == -1) resvt = VT_NULL; break;
5842         case VT_UI1:    if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5843         case VT_I2:     if (V_I2(left) == -1) resvt = VT_NULL; break;
5844         case VT_UI2:    if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5845         case VT_INT:    if (V_INT(left) == -1) resvt = VT_NULL; break;
5846         case VT_UINT:   if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5847         case VT_I4:     if (V_I4(left) == -1) resvt = VT_NULL; break;
5848         case VT_UI4:    if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5849         case VT_I8:     if (V_I8(left) == -1) resvt = VT_NULL; break;
5850         case VT_UI8:    if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5851         case VT_BOOL:   if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5852         case VT_R4:     if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5853         case VT_R8:     if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5854         case VT_CY:     if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5855         case VT_DECIMAL:
5856             if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5857                 resvt = VT_NULL;
5858             break;
5859         case VT_BSTR:
5860             hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5861             if (FAILED(hres)) goto VarImp_Exit;
5862             else if (b == VARIANT_TRUE)
5863                 resvt = VT_NULL;
5864         }
5865         if (resvt == VT_NULL)
5866         {
5867             V_VT(result) = resvt;
5868             goto VarImp_Exit;
5869         }
5870     }
5871 
5872     hres = VariantCopy(&lv, left);
5873     if (FAILED(hres)) goto VarImp_Exit;
5874 
5875     if (rightvt == VT_NULL)
5876     {
5877         memset( &rv, 0, sizeof(rv) );
5878         V_VT(&rv) = resvt;
5879     }
5880     else
5881     {
5882         hres = VariantCopy(&rv, right);
5883         if (FAILED(hres)) goto VarImp_Exit;
5884     }
5885 
5886     if (V_VT(&lv) == VT_BSTR &&
5887         FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5888         hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5889     if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5890         hres = VariantChangeType(&lv,&lv,0,resvt);
5891     if (FAILED(hres)) goto VarImp_Exit;
5892 
5893     if (V_VT(&rv) == VT_BSTR &&
5894         FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5895         hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5896     if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5897         hres = VariantChangeType(&rv, &rv, 0, resvt);
5898     if (FAILED(hres)) goto VarImp_Exit;
5899 
5900     /* do the math */
5901     V_VT(result) = resvt;
5902     switch (resvt)
5903     {
5904     case VT_I8:
5905     V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5906     break;
5907     case VT_I4:
5908     V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5909     break;
5910     case VT_I2:
5911     V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
5912     break;
5913     case VT_UI1:
5914     V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
5915     break;
5916     case VT_BOOL:
5917     V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
5918     break;
5919     default:
5920     FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5921         leftvt,rightvt);
5922     }
5923 
5924 VarImp_Exit:
5925 
5926     VariantClear(&lv);
5927     VariantClear(&rv);
5928     VariantClear(&tempLeft);
5929     VariantClear(&tempRight);
5930 
5931     return hres;
5932 }
5933