1 //===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Implements a lazy call graph analysis and related passes for the new pass
11 /// manager.
12 ///
13 /// NB: This is *not* a traditional call graph! It is a graph which models both
14 /// the current calls and potential calls. As a consequence there are many
15 /// edges in this call graph that do not correspond to a 'call' or 'invoke'
16 /// instruction.
17 ///
18 /// The primary use cases of this graph analysis is to facilitate iterating
19 /// across the functions of a module in ways that ensure all callees are
20 /// visited prior to a caller (given any SCC constraints), or vice versa. As
21 /// such is it particularly well suited to organizing CGSCC optimizations such
22 /// as inlining, outlining, argument promotion, etc. That is its primary use
23 /// case and motivates the design. It may not be appropriate for other
24 /// purposes. The use graph of functions or some other conservative analysis of
25 /// call instructions may be interesting for optimizations and subsequent
26 /// analyses which don't work in the context of an overly specified
27 /// potential-call-edge graph.
28 ///
29 /// To understand the specific rules and nature of this call graph analysis,
30 /// see the documentation of the \c LazyCallGraph below.
31 ///
32 //===----------------------------------------------------------------------===//
33 
34 #ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H
35 #define LLVM_ANALYSIS_LAZYCALLGRAPH_H
36 
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/PointerIntPair.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SetVector.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/ADT/iterator.h"
47 #include "llvm/ADT/iterator_range.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/Support/Allocator.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cassert>
57 #include <iterator>
58 #include <string>
59 #include <utility>
60 
61 namespace llvm {
62 
63 class Module;
64 class Value;
65 
66 /// A lazily constructed view of the call graph of a module.
67 ///
68 /// With the edges of this graph, the motivating constraint that we are
69 /// attempting to maintain is that function-local optimization, CGSCC-local
70 /// optimizations, and optimizations transforming a pair of functions connected
71 /// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
72 /// DAG. That is, no optimizations will delete, remove, or add an edge such
73 /// that functions already visited in a bottom-up order of the SCC DAG are no
74 /// longer valid to have visited, or such that functions not yet visited in
75 /// a bottom-up order of the SCC DAG are not required to have already been
76 /// visited.
77 ///
78 /// Within this constraint, the desire is to minimize the merge points of the
79 /// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
80 /// in the SCC DAG, the more independence there is in optimizing within it.
81 /// There is a strong desire to enable parallelization of optimizations over
82 /// the call graph, and both limited fanout and merge points will (artificially
83 /// in some cases) limit the scaling of such an effort.
84 ///
85 /// To this end, graph represents both direct and any potential resolution to
86 /// an indirect call edge. Another way to think about it is that it represents
87 /// both the direct call edges and any direct call edges that might be formed
88 /// through static optimizations. Specifically, it considers taking the address
89 /// of a function to be an edge in the call graph because this might be
90 /// forwarded to become a direct call by some subsequent function-local
91 /// optimization. The result is that the graph closely follows the use-def
92 /// edges for functions. Walking "up" the graph can be done by looking at all
93 /// of the uses of a function.
94 ///
95 /// The roots of the call graph are the external functions and functions
96 /// escaped into global variables. Those functions can be called from outside
97 /// of the module or via unknowable means in the IR -- we may not be able to
98 /// form even a potential call edge from a function body which may dynamically
99 /// load the function and call it.
100 ///
101 /// This analysis still requires updates to remain valid after optimizations
102 /// which could potentially change the set of potential callees. The
103 /// constraints it operates under only make the traversal order remain valid.
104 ///
105 /// The entire analysis must be re-computed if full interprocedural
106 /// optimizations run at any point. For example, globalopt completely
107 /// invalidates the information in this analysis.
108 ///
109 /// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
110 /// it from the existing CallGraph. At some point, it is expected that this
111 /// will be the only call graph and it will be renamed accordingly.
112 class LazyCallGraph {
113 public:
114   class Node;
115   class EdgeSequence;
116   class SCC;
117   class RefSCC;
118 
119   /// A class used to represent edges in the call graph.
120   ///
121   /// The lazy call graph models both *call* edges and *reference* edges. Call
122   /// edges are much what you would expect, and exist when there is a 'call' or
123   /// 'invoke' instruction of some function. Reference edges are also tracked
124   /// along side these, and exist whenever any instruction (transitively
125   /// through its operands) references a function. All call edges are
126   /// inherently reference edges, and so the reference graph forms a superset
127   /// of the formal call graph.
128   ///
129   /// All of these forms of edges are fundamentally represented as outgoing
130   /// edges. The edges are stored in the source node and point at the target
131   /// node. This allows the edge structure itself to be a very compact data
132   /// structure: essentially a tagged pointer.
133   class Edge {
134   public:
135     /// The kind of edge in the graph.
136     enum Kind : bool { Ref = false, Call = true };
137 
138     Edge();
139     explicit Edge(Node &N, Kind K);
140 
141     /// Test whether the edge is null.
142     ///
143     /// This happens when an edge has been deleted. We leave the edge objects
144     /// around but clear them.
145     explicit operator bool() const;
146 
147     /// Returnss the \c Kind of the edge.
148     Kind getKind() const;
149 
150     /// Test whether the edge represents a direct call to a function.
151     ///
152     /// This requires that the edge is not null.
153     bool isCall() const;
154 
155     /// Get the call graph node referenced by this edge.
156     ///
157     /// This requires that the edge is not null.
158     Node &getNode() const;
159 
160     /// Get the function referenced by this edge.
161     ///
162     /// This requires that the edge is not null.
163     Function &getFunction() const;
164 
165   private:
166     friend class LazyCallGraph::EdgeSequence;
167     friend class LazyCallGraph::RefSCC;
168 
169     PointerIntPair<Node *, 1, Kind> Value;
170 
setKind(Kind K)171     void setKind(Kind K) { Value.setInt(K); }
172   };
173 
174   /// The edge sequence object.
175   ///
176   /// This typically exists entirely within the node but is exposed as
177   /// a separate type because a node doesn't initially have edges. An explicit
178   /// population step is required to produce this sequence at first and it is
179   /// then cached in the node. It is also used to represent edges entering the
180   /// graph from outside the module to model the graph's roots.
181   ///
182   /// The sequence itself both iterable and indexable. The indexes remain
183   /// stable even as the sequence mutates (including removal).
184   class EdgeSequence {
185     friend class LazyCallGraph;
186     friend class LazyCallGraph::Node;
187     friend class LazyCallGraph::RefSCC;
188 
189     using VectorT = SmallVector<Edge, 4>;
190     using VectorImplT = SmallVectorImpl<Edge>;
191 
192   public:
193     /// An iterator used for the edges to both entry nodes and child nodes.
194     class iterator
195         : public iterator_adaptor_base<iterator, VectorImplT::iterator,
196                                        std::forward_iterator_tag> {
197       friend class LazyCallGraph;
198       friend class LazyCallGraph::Node;
199 
200       VectorImplT::iterator E;
201 
202       // Build the iterator for a specific position in the edge list.
iterator(VectorImplT::iterator BaseI,VectorImplT::iterator E)203       iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
204           : iterator_adaptor_base(BaseI), E(E) {
205         while (I != E && !*I)
206           ++I;
207       }
208 
209     public:
210       iterator() = default;
211 
212       using iterator_adaptor_base::operator++;
213       iterator &operator++() {
214         do {
215           ++I;
216         } while (I != E && !*I);
217         return *this;
218       }
219     };
220 
221     /// An iterator over specifically call edges.
222     ///
223     /// This has the same iteration properties as the \c iterator, but
224     /// restricts itself to edges which represent actual calls.
225     class call_iterator
226         : public iterator_adaptor_base<call_iterator, VectorImplT::iterator,
227                                        std::forward_iterator_tag> {
228       friend class LazyCallGraph;
229       friend class LazyCallGraph::Node;
230 
231       VectorImplT::iterator E;
232 
233       /// Advance the iterator to the next valid, call edge.
advanceToNextEdge()234       void advanceToNextEdge() {
235         while (I != E && (!*I || !I->isCall()))
236           ++I;
237       }
238 
239       // Build the iterator for a specific position in the edge list.
call_iterator(VectorImplT::iterator BaseI,VectorImplT::iterator E)240       call_iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
241           : iterator_adaptor_base(BaseI), E(E) {
242         advanceToNextEdge();
243       }
244 
245     public:
246       call_iterator() = default;
247 
248       using iterator_adaptor_base::operator++;
249       call_iterator &operator++() {
250         ++I;
251         advanceToNextEdge();
252         return *this;
253       }
254     };
255 
begin()256     iterator begin() { return iterator(Edges.begin(), Edges.end()); }
end()257     iterator end() { return iterator(Edges.end(), Edges.end()); }
258 
259     Edge &operator[](Node &N) {
260       assert(EdgeIndexMap.find(&N) != EdgeIndexMap.end() && "No such edge!");
261       auto &E = Edges[EdgeIndexMap.find(&N)->second];
262       assert(E && "Dead or null edge!");
263       return E;
264     }
265 
lookup(Node & N)266     Edge *lookup(Node &N) {
267       auto EI = EdgeIndexMap.find(&N);
268       if (EI == EdgeIndexMap.end())
269         return nullptr;
270       auto &E = Edges[EI->second];
271       return E ? &E : nullptr;
272     }
273 
call_begin()274     call_iterator call_begin() {
275       return call_iterator(Edges.begin(), Edges.end());
276     }
call_end()277     call_iterator call_end() { return call_iterator(Edges.end(), Edges.end()); }
278 
calls()279     iterator_range<call_iterator> calls() {
280       return make_range(call_begin(), call_end());
281     }
282 
empty()283     bool empty() {
284       for (auto &E : Edges)
285         if (E)
286           return false;
287 
288       return true;
289     }
290 
291   private:
292     VectorT Edges;
293     DenseMap<Node *, int> EdgeIndexMap;
294 
295     EdgeSequence() = default;
296 
297     /// Internal helper to insert an edge to a node.
298     void insertEdgeInternal(Node &ChildN, Edge::Kind EK);
299 
300     /// Internal helper to change an edge kind.
301     void setEdgeKind(Node &ChildN, Edge::Kind EK);
302 
303     /// Internal helper to remove the edge to the given function.
304     bool removeEdgeInternal(Node &ChildN);
305   };
306 
307   /// A node in the call graph.
308   ///
309   /// This represents a single node. It's primary roles are to cache the list of
310   /// callees, de-duplicate and provide fast testing of whether a function is
311   /// a callee, and facilitate iteration of child nodes in the graph.
312   ///
313   /// The node works much like an optional in order to lazily populate the
314   /// edges of each node. Until populated, there are no edges. Once populated,
315   /// you can access the edges by dereferencing the node or using the `->`
316   /// operator as if the node was an `Optional<EdgeSequence>`.
317   class Node {
318     friend class LazyCallGraph;
319     friend class LazyCallGraph::RefSCC;
320 
321   public:
getGraph()322     LazyCallGraph &getGraph() const { return *G; }
323 
getFunction()324     Function &getFunction() const { return *F; }
325 
getName()326     StringRef getName() const { return F->getName(); }
327 
328     /// Equality is defined as address equality.
329     bool operator==(const Node &N) const { return this == &N; }
330     bool operator!=(const Node &N) const { return !operator==(N); }
331 
332     /// Tests whether the node has been populated with edges.
isPopulated()333     bool isPopulated() const { return Edges.hasValue(); }
334 
335     /// Tests whether this is actually a dead node and no longer valid.
336     ///
337     /// Users rarely interact with nodes in this state and other methods are
338     /// invalid. This is used to model a node in an edge list where the
339     /// function has been completely removed.
isDead()340     bool isDead() const {
341       assert(!G == !F &&
342              "Both graph and function pointers should be null or non-null.");
343       return !G;
344     }
345 
346     // We allow accessing the edges by dereferencing or using the arrow
347     // operator, essentially wrapping the internal optional.
348     EdgeSequence &operator*() const {
349       // Rip const off because the node itself isn't changing here.
350       return const_cast<EdgeSequence &>(*Edges);
351     }
352     EdgeSequence *operator->() const { return &**this; }
353 
354     /// Populate the edges of this node if necessary.
355     ///
356     /// The first time this is called it will populate the edges for this node
357     /// in the graph. It does this by scanning the underlying function, so once
358     /// this is done, any changes to that function must be explicitly reflected
359     /// in updates to the graph.
360     ///
361     /// \returns the populated \c EdgeSequence to simplify walking it.
362     ///
363     /// This will not update or re-scan anything if called repeatedly. Instead,
364     /// the edge sequence is cached and returned immediately on subsequent
365     /// calls.
populate()366     EdgeSequence &populate() {
367       if (Edges)
368         return *Edges;
369 
370       return populateSlow();
371     }
372 
373   private:
374     LazyCallGraph *G;
375     Function *F;
376 
377     // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
378     // stored directly within the node. These are both '-1' when nodes are part
379     // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk.
380     int DFSNumber = 0;
381     int LowLink = 0;
382 
383     Optional<EdgeSequence> Edges;
384 
385     /// Basic constructor implements the scanning of F into Edges and
386     /// EdgeIndexMap.
Node(LazyCallGraph & G,Function & F)387     Node(LazyCallGraph &G, Function &F) : G(&G), F(&F) {}
388 
389     /// Implementation of the scan when populating.
390     EdgeSequence &populateSlow();
391 
392     /// Internal helper to directly replace the function with a new one.
393     ///
394     /// This is used to facilitate tranfsormations which need to replace the
395     /// formal Function object but directly move the body and users from one to
396     /// the other.
397     void replaceFunction(Function &NewF);
398 
clear()399     void clear() { Edges.reset(); }
400 
401     /// Print the name of this node's function.
402     friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) {
403       return OS << N.F->getName();
404     }
405 
406     /// Dump the name of this node's function to stderr.
407     void dump() const;
408   };
409 
410   /// An SCC of the call graph.
411   ///
412   /// This represents a Strongly Connected Component of the direct call graph
413   /// -- ignoring indirect calls and function references. It stores this as
414   /// a collection of call graph nodes. While the order of nodes in the SCC is
415   /// stable, it is not any particular order.
416   ///
417   /// The SCCs are nested within a \c RefSCC, see below for details about that
418   /// outer structure. SCCs do not support mutation of the call graph, that
419   /// must be done through the containing \c RefSCC in order to fully reason
420   /// about the ordering and connections of the graph.
421   class SCC {
422     friend class LazyCallGraph;
423     friend class LazyCallGraph::Node;
424 
425     RefSCC *OuterRefSCC;
426     SmallVector<Node *, 1> Nodes;
427 
428     template <typename NodeRangeT>
SCC(RefSCC & OuterRefSCC,NodeRangeT && Nodes)429     SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes)
430         : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {}
431 
clear()432     void clear() {
433       OuterRefSCC = nullptr;
434       Nodes.clear();
435     }
436 
437     /// Print a short descrtiption useful for debugging or logging.
438     ///
439     /// We print the function names in the SCC wrapped in '()'s and skipping
440     /// the middle functions if there are a large number.
441     //
442     // Note: this is defined inline to dodge issues with GCC's interpretation
443     // of enclosing namespaces for friend function declarations.
444     friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) {
445       OS << '(';
446       int i = 0;
447       for (LazyCallGraph::Node &N : C) {
448         if (i > 0)
449           OS << ", ";
450         // Elide the inner elements if there are too many.
451         if (i > 8) {
452           OS << "..., " << *C.Nodes.back();
453           break;
454         }
455         OS << N;
456         ++i;
457       }
458       OS << ')';
459       return OS;
460     }
461 
462     /// Dump a short description of this SCC to stderr.
463     void dump() const;
464 
465 #ifndef NDEBUG
466     /// Verify invariants about the SCC.
467     ///
468     /// This will attempt to validate all of the basic invariants within an
469     /// SCC, but not that it is a strongly connected componet per-se. Primarily
470     /// useful while building and updating the graph to check that basic
471     /// properties are in place rather than having inexplicable crashes later.
472     void verify();
473 #endif
474 
475   public:
476     using iterator = pointee_iterator<SmallVectorImpl<Node *>::const_iterator>;
477 
begin()478     iterator begin() const { return Nodes.begin(); }
end()479     iterator end() const { return Nodes.end(); }
480 
size()481     int size() const { return Nodes.size(); }
482 
getOuterRefSCC()483     RefSCC &getOuterRefSCC() const { return *OuterRefSCC; }
484 
485     /// Test if this SCC is a parent of \a C.
486     ///
487     /// Note that this is linear in the number of edges departing the current
488     /// SCC.
489     bool isParentOf(const SCC &C) const;
490 
491     /// Test if this SCC is an ancestor of \a C.
492     ///
493     /// Note that in the worst case this is linear in the number of edges
494     /// departing the current SCC and every SCC in the entire graph reachable
495     /// from this SCC. Thus this very well may walk every edge in the entire
496     /// call graph! Do not call this in a tight loop!
497     bool isAncestorOf(const SCC &C) const;
498 
499     /// Test if this SCC is a child of \a C.
500     ///
501     /// See the comments for \c isParentOf for detailed notes about the
502     /// complexity of this routine.
isChildOf(const SCC & C)503     bool isChildOf(const SCC &C) const { return C.isParentOf(*this); }
504 
505     /// Test if this SCC is a descendant of \a C.
506     ///
507     /// See the comments for \c isParentOf for detailed notes about the
508     /// complexity of this routine.
isDescendantOf(const SCC & C)509     bool isDescendantOf(const SCC &C) const { return C.isAncestorOf(*this); }
510 
511     /// Provide a short name by printing this SCC to a std::string.
512     ///
513     /// This copes with the fact that we don't have a name per-se for an SCC
514     /// while still making the use of this in debugging and logging useful.
getName()515     std::string getName() const {
516       std::string Name;
517       raw_string_ostream OS(Name);
518       OS << *this;
519       OS.flush();
520       return Name;
521     }
522   };
523 
524   /// A RefSCC of the call graph.
525   ///
526   /// This models a Strongly Connected Component of function reference edges in
527   /// the call graph. As opposed to actual SCCs, these can be used to scope
528   /// subgraphs of the module which are independent from other subgraphs of the
529   /// module because they do not reference it in any way. This is also the unit
530   /// where we do mutation of the graph in order to restrict mutations to those
531   /// which don't violate this independence.
532   ///
533   /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC
534   /// are necessarily within some actual SCC that nests within it. Since
535   /// a direct call *is* a reference, there will always be at least one RefSCC
536   /// around any SCC.
537   class RefSCC {
538     friend class LazyCallGraph;
539     friend class LazyCallGraph::Node;
540 
541     LazyCallGraph *G;
542 
543     /// A postorder list of the inner SCCs.
544     SmallVector<SCC *, 4> SCCs;
545 
546     /// A map from SCC to index in the postorder list.
547     SmallDenseMap<SCC *, int, 4> SCCIndices;
548 
549     /// Fast-path constructor. RefSCCs should instead be constructed by calling
550     /// formRefSCCFast on the graph itself.
551     RefSCC(LazyCallGraph &G);
552 
clear()553     void clear() {
554       SCCs.clear();
555       SCCIndices.clear();
556     }
557 
558     /// Print a short description useful for debugging or logging.
559     ///
560     /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if
561     /// there are a large number.
562     //
563     // Note: this is defined inline to dodge issues with GCC's interpretation
564     // of enclosing namespaces for friend function declarations.
565     friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) {
566       OS << '[';
567       int i = 0;
568       for (LazyCallGraph::SCC &C : RC) {
569         if (i > 0)
570           OS << ", ";
571         // Elide the inner elements if there are too many.
572         if (i > 4) {
573           OS << "..., " << *RC.SCCs.back();
574           break;
575         }
576         OS << C;
577         ++i;
578       }
579       OS << ']';
580       return OS;
581     }
582 
583     /// Dump a short description of this RefSCC to stderr.
584     void dump() const;
585 
586 #ifndef NDEBUG
587     /// Verify invariants about the RefSCC and all its SCCs.
588     ///
589     /// This will attempt to validate all of the invariants *within* the
590     /// RefSCC, but not that it is a strongly connected component of the larger
591     /// graph. This makes it useful even when partially through an update.
592     ///
593     /// Invariants checked:
594     /// - SCCs and their indices match.
595     /// - The SCCs list is in fact in post-order.
596     void verify();
597 #endif
598 
599   public:
600     using iterator = pointee_iterator<SmallVectorImpl<SCC *>::const_iterator>;
601     using range = iterator_range<iterator>;
602     using parent_iterator =
603         pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>;
604 
begin()605     iterator begin() const { return SCCs.begin(); }
end()606     iterator end() const { return SCCs.end(); }
607 
size()608     ssize_t size() const { return SCCs.size(); }
609 
610     SCC &operator[](int Idx) { return *SCCs[Idx]; }
611 
find(SCC & C)612     iterator find(SCC &C) const {
613       return SCCs.begin() + SCCIndices.find(&C)->second;
614     }
615 
616     /// Test if this RefSCC is a parent of \a RC.
617     ///
618     /// CAUTION: This method walks every edge in the \c RefSCC, it can be very
619     /// expensive.
620     bool isParentOf(const RefSCC &RC) const;
621 
622     /// Test if this RefSCC is an ancestor of \a RC.
623     ///
624     /// CAUTION: This method walks the directed graph of edges as far as
625     /// necessary to find a possible path to the argument. In the worst case
626     /// this may walk the entire graph and can be extremely expensive.
627     bool isAncestorOf(const RefSCC &RC) const;
628 
629     /// Test if this RefSCC is a child of \a RC.
630     ///
631     /// CAUTION: This method walks every edge in the argument \c RefSCC, it can
632     /// be very expensive.
isChildOf(const RefSCC & RC)633     bool isChildOf(const RefSCC &RC) const { return RC.isParentOf(*this); }
634 
635     /// Test if this RefSCC is a descendant of \a RC.
636     ///
637     /// CAUTION: This method walks the directed graph of edges as far as
638     /// necessary to find a possible path from the argument. In the worst case
639     /// this may walk the entire graph and can be extremely expensive.
isDescendantOf(const RefSCC & RC)640     bool isDescendantOf(const RefSCC &RC) const {
641       return RC.isAncestorOf(*this);
642     }
643 
644     /// Provide a short name by printing this RefSCC to a std::string.
645     ///
646     /// This copes with the fact that we don't have a name per-se for an RefSCC
647     /// while still making the use of this in debugging and logging useful.
getName()648     std::string getName() const {
649       std::string Name;
650       raw_string_ostream OS(Name);
651       OS << *this;
652       OS.flush();
653       return Name;
654     }
655 
656     ///@{
657     /// \name Mutation API
658     ///
659     /// These methods provide the core API for updating the call graph in the
660     /// presence of (potentially still in-flight) DFS-found RefSCCs and SCCs.
661     ///
662     /// Note that these methods sometimes have complex runtimes, so be careful
663     /// how you call them.
664 
665     /// Make an existing internal ref edge into a call edge.
666     ///
667     /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC.
668     /// If that happens, the optional callback \p MergedCB will be invoked (if
669     /// provided) on the SCCs being merged away prior to actually performing
670     /// the merge. Note that this will never include the target SCC as that
671     /// will be the SCC functions are merged into to resolve the cycle. Once
672     /// this function returns, these merged SCCs are not in a valid state but
673     /// the pointers will remain valid until destruction of the parent graph
674     /// instance for the purpose of clearing cached information. This function
675     /// also returns 'true' if a cycle was formed and some SCCs merged away as
676     /// a convenience.
677     ///
678     /// After this operation, both SourceN's SCC and TargetN's SCC may move
679     /// position within this RefSCC's postorder list. Any SCCs merged are
680     /// merged into the TargetN's SCC in order to preserve reachability analyses
681     /// which took place on that SCC.
682     bool switchInternalEdgeToCall(
683         Node &SourceN, Node &TargetN,
684         function_ref<void(ArrayRef<SCC *> MergedSCCs)> MergeCB = {});
685 
686     /// Make an existing internal call edge between separate SCCs into a ref
687     /// edge.
688     ///
689     /// If SourceN and TargetN in separate SCCs within this RefSCC, changing
690     /// the call edge between them to a ref edge is a trivial operation that
691     /// does not require any structural changes to the call graph.
692     void switchTrivialInternalEdgeToRef(Node &SourceN, Node &TargetN);
693 
694     /// Make an existing internal call edge within a single SCC into a ref
695     /// edge.
696     ///
697     /// Since SourceN and TargetN are part of a single SCC, this SCC may be
698     /// split up due to breaking a cycle in the call edges that formed it. If
699     /// that happens, then this routine will insert new SCCs into the postorder
700     /// list *before* the SCC of TargetN (previously the SCC of both). This
701     /// preserves postorder as the TargetN can reach all of the other nodes by
702     /// definition of previously being in a single SCC formed by the cycle from
703     /// SourceN to TargetN.
704     ///
705     /// The newly added SCCs are added *immediately* and contiguously
706     /// prior to the TargetN SCC and return the range covering the new SCCs in
707     /// the RefSCC's postorder sequence. You can directly iterate the returned
708     /// range to observe all of the new SCCs in postorder.
709     ///
710     /// Note that if SourceN and TargetN are in separate SCCs, the simpler
711     /// routine `switchTrivialInternalEdgeToRef` should be used instead.
712     iterator_range<iterator> switchInternalEdgeToRef(Node &SourceN,
713                                                      Node &TargetN);
714 
715     /// Make an existing outgoing ref edge into a call edge.
716     ///
717     /// Note that this is trivial as there are no cyclic impacts and there
718     /// remains a reference edge.
719     void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN);
720 
721     /// Make an existing outgoing call edge into a ref edge.
722     ///
723     /// This is trivial as there are no cyclic impacts and there remains
724     /// a reference edge.
725     void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN);
726 
727     /// Insert a ref edge from one node in this RefSCC to another in this
728     /// RefSCC.
729     ///
730     /// This is always a trivial operation as it doesn't change any part of the
731     /// graph structure besides connecting the two nodes.
732     ///
733     /// Note that we don't support directly inserting internal *call* edges
734     /// because that could change the graph structure and requires returning
735     /// information about what became invalid. As a consequence, the pattern
736     /// should be to first insert the necessary ref edge, and then to switch it
737     /// to a call edge if needed and handle any invalidation that results. See
738     /// the \c switchInternalEdgeToCall routine for details.
739     void insertInternalRefEdge(Node &SourceN, Node &TargetN);
740 
741     /// Insert an edge whose parent is in this RefSCC and child is in some
742     /// child RefSCC.
743     ///
744     /// There must be an existing path from the \p SourceN to the \p TargetN.
745     /// This operation is inexpensive and does not change the set of SCCs and
746     /// RefSCCs in the graph.
747     void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
748 
749     /// Insert an edge whose source is in a descendant RefSCC and target is in
750     /// this RefSCC.
751     ///
752     /// There must be an existing path from the target to the source in this
753     /// case.
754     ///
755     /// NB! This is has the potential to be a very expensive function. It
756     /// inherently forms a cycle in the prior RefSCC DAG and we have to merge
757     /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which
758     /// participate in the cycle can in the worst case require traversing every
759     /// RefSCC in the graph. Every attempt is made to avoid that, but passes
760     /// must still exercise caution calling this routine repeatedly.
761     ///
762     /// Also note that this can only insert ref edges. In order to insert
763     /// a call edge, first insert a ref edge and then switch it to a call edge.
764     /// These are intentionally kept as separate interfaces because each step
765     /// of the operation invalidates a different set of data structures.
766     ///
767     /// This returns all the RefSCCs which were merged into the this RefSCC
768     /// (the target's). This allows callers to invalidate any cached
769     /// information.
770     ///
771     /// FIXME: We could possibly optimize this quite a bit for cases where the
772     /// caller and callee are very nearby in the graph. See comments in the
773     /// implementation for details, but that use case might impact users.
774     SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN,
775                                                    Node &TargetN);
776 
777     /// Remove an edge whose source is in this RefSCC and target is *not*.
778     ///
779     /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating
780     /// from this SCC have been fully explored by any in-flight DFS graph
781     /// formation, so this is always safe to call once you have the source
782     /// RefSCC.
783     ///
784     /// This operation does not change the cyclic structure of the graph and so
785     /// is very inexpensive. It may change the connectivity graph of the SCCs
786     /// though, so be careful calling this while iterating over them.
787     void removeOutgoingEdge(Node &SourceN, Node &TargetN);
788 
789     /// Remove a list of ref edges which are entirely within this RefSCC.
790     ///
791     /// Both the \a SourceN and all of the \a TargetNs must be within this
792     /// RefSCC. Removing these edges may break cycles that form this RefSCC and
793     /// thus this operation may change the RefSCC graph significantly. In
794     /// particular, this operation will re-form new RefSCCs based on the
795     /// remaining connectivity of the graph. The following invariants are
796     /// guaranteed to hold after calling this method:
797     ///
798     /// 1) If a ref-cycle remains after removal, it leaves this RefSCC intact
799     ///    and in the graph. No new RefSCCs are built.
800     /// 2) Otherwise, this RefSCC will be dead after this call and no longer in
801     ///    the graph or the postorder traversal of the call graph. Any iterator
802     ///    pointing at this RefSCC will become invalid.
803     /// 3) All newly formed RefSCCs will be returned and the order of the
804     ///    RefSCCs returned will be a valid postorder traversal of the new
805     ///    RefSCCs.
806     /// 4) No RefSCC other than this RefSCC has its member set changed (this is
807     ///    inherent in the definition of removing such an edge).
808     ///
809     /// These invariants are very important to ensure that we can build
810     /// optimization pipelines on top of the CGSCC pass manager which
811     /// intelligently update the RefSCC graph without invalidating other parts
812     /// of the RefSCC graph.
813     ///
814     /// Note that we provide no routine to remove a *call* edge. Instead, you
815     /// must first switch it to a ref edge using \c switchInternalEdgeToRef.
816     /// This split API is intentional as each of these two steps can invalidate
817     /// a different aspect of the graph structure and needs to have the
818     /// invalidation handled independently.
819     ///
820     /// The runtime complexity of this method is, in the worst case, O(V+E)
821     /// where V is the number of nodes in this RefSCC and E is the number of
822     /// edges leaving the nodes in this RefSCC. Note that E includes both edges
823     /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some
824     /// effort has been made to minimize the overhead of common cases such as
825     /// self-edges and edge removals which result in a spanning tree with no
826     /// more cycles.
827     SmallVector<RefSCC *, 1> removeInternalRefEdge(Node &SourceN,
828                                                    ArrayRef<Node *> TargetNs);
829 
830     /// A convenience wrapper around the above to handle trivial cases of
831     /// inserting a new call edge.
832     ///
833     /// This is trivial whenever the target is in the same SCC as the source or
834     /// the edge is an outgoing edge to some descendant SCC. In these cases
835     /// there is no change to the cyclic structure of SCCs or RefSCCs.
836     ///
837     /// To further make calling this convenient, it also handles inserting
838     /// already existing edges.
839     void insertTrivialCallEdge(Node &SourceN, Node &TargetN);
840 
841     /// A convenience wrapper around the above to handle trivial cases of
842     /// inserting a new ref edge.
843     ///
844     /// This is trivial whenever the target is in the same RefSCC as the source
845     /// or the edge is an outgoing edge to some descendant RefSCC. In these
846     /// cases there is no change to the cyclic structure of the RefSCCs.
847     ///
848     /// To further make calling this convenient, it also handles inserting
849     /// already existing edges.
850     void insertTrivialRefEdge(Node &SourceN, Node &TargetN);
851 
852     /// Directly replace a node's function with a new function.
853     ///
854     /// This should be used when moving the body and users of a function to
855     /// a new formal function object but not otherwise changing the call graph
856     /// structure in any way.
857     ///
858     /// It requires that the old function in the provided node have zero uses
859     /// and the new function must have calls and references to it establishing
860     /// an equivalent graph.
861     void replaceNodeFunction(Node &N, Function &NewF);
862 
863     ///@}
864   };
865 
866   /// A post-order depth-first RefSCC iterator over the call graph.
867   ///
868   /// This iterator walks the cached post-order sequence of RefSCCs. However,
869   /// it trades stability for flexibility. It is restricted to a forward
870   /// iterator but will survive mutations which insert new RefSCCs and continue
871   /// to point to the same RefSCC even if it moves in the post-order sequence.
872   class postorder_ref_scc_iterator
873       : public iterator_facade_base<postorder_ref_scc_iterator,
874                                     std::forward_iterator_tag, RefSCC> {
875     friend class LazyCallGraph;
876     friend class LazyCallGraph::Node;
877 
878     /// Nonce type to select the constructor for the end iterator.
879     struct IsAtEndT {};
880 
881     LazyCallGraph *G;
882     RefSCC *RC = nullptr;
883 
884     /// Build the begin iterator for a node.
postorder_ref_scc_iterator(LazyCallGraph & G)885     postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G), RC(getRC(G, 0)) {}
886 
887     /// Build the end iterator for a node. This is selected purely by overload.
postorder_ref_scc_iterator(LazyCallGraph & G,IsAtEndT)888     postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/) : G(&G) {}
889 
890     /// Get the post-order RefSCC at the given index of the postorder walk,
891     /// populating it if necessary.
getRC(LazyCallGraph & G,int Index)892     static RefSCC *getRC(LazyCallGraph &G, int Index) {
893       if (Index == (int)G.PostOrderRefSCCs.size())
894         // We're at the end.
895         return nullptr;
896 
897       return G.PostOrderRefSCCs[Index];
898     }
899 
900   public:
901     bool operator==(const postorder_ref_scc_iterator &Arg) const {
902       return G == Arg.G && RC == Arg.RC;
903     }
904 
905     reference operator*() const { return *RC; }
906 
907     using iterator_facade_base::operator++;
908     postorder_ref_scc_iterator &operator++() {
909       assert(RC && "Cannot increment the end iterator!");
910       RC = getRC(*G, G->RefSCCIndices.find(RC)->second + 1);
911       return *this;
912     }
913   };
914 
915   /// Construct a graph for the given module.
916   ///
917   /// This sets up the graph and computes all of the entry points of the graph.
918   /// No function definitions are scanned until their nodes in the graph are
919   /// requested during traversal.
920   LazyCallGraph(Module &M,
921                 function_ref<TargetLibraryInfo &(Function &)> GetTLI);
922 
923   LazyCallGraph(LazyCallGraph &&G);
924   LazyCallGraph &operator=(LazyCallGraph &&RHS);
925 
926   bool invalidate(Module &, const PreservedAnalyses &PA,
927                   ModuleAnalysisManager::Invalidator &);
928 
begin()929   EdgeSequence::iterator begin() { return EntryEdges.begin(); }
end()930   EdgeSequence::iterator end() { return EntryEdges.end(); }
931 
932   void buildRefSCCs();
933 
postorder_ref_scc_begin()934   postorder_ref_scc_iterator postorder_ref_scc_begin() {
935     if (!EntryEdges.empty())
936       assert(!PostOrderRefSCCs.empty() &&
937              "Must form RefSCCs before iterating them!");
938     return postorder_ref_scc_iterator(*this);
939   }
postorder_ref_scc_end()940   postorder_ref_scc_iterator postorder_ref_scc_end() {
941     if (!EntryEdges.empty())
942       assert(!PostOrderRefSCCs.empty() &&
943              "Must form RefSCCs before iterating them!");
944     return postorder_ref_scc_iterator(*this,
945                                       postorder_ref_scc_iterator::IsAtEndT());
946   }
947 
postorder_ref_sccs()948   iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() {
949     return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end());
950   }
951 
952   /// Lookup a function in the graph which has already been scanned and added.
lookup(const Function & F)953   Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
954 
955   /// Lookup a function's SCC in the graph.
956   ///
957   /// \returns null if the function hasn't been assigned an SCC via the RefSCC
958   /// iterator walk.
lookupSCC(Node & N)959   SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
960 
961   /// Lookup a function's RefSCC in the graph.
962   ///
963   /// \returns null if the function hasn't been assigned a RefSCC via the
964   /// RefSCC iterator walk.
lookupRefSCC(Node & N)965   RefSCC *lookupRefSCC(Node &N) const {
966     if (SCC *C = lookupSCC(N))
967       return &C->getOuterRefSCC();
968 
969     return nullptr;
970   }
971 
972   /// Get a graph node for a given function, scanning it to populate the graph
973   /// data as necessary.
get(Function & F)974   Node &get(Function &F) {
975     Node *&N = NodeMap[&F];
976     if (N)
977       return *N;
978 
979     return insertInto(F, N);
980   }
981 
982   /// Get the sequence of known and defined library functions.
983   ///
984   /// These functions, because they are known to LLVM, can have calls
985   /// introduced out of thin air from arbitrary IR.
getLibFunctions()986   ArrayRef<Function *> getLibFunctions() const {
987     return LibFunctions.getArrayRef();
988   }
989 
990   /// Test whether a function is a known and defined library function tracked by
991   /// the call graph.
992   ///
993   /// Because these functions are known to LLVM they are specially modeled in
994   /// the call graph and even when all IR-level references have been removed
995   /// remain active and reachable.
isLibFunction(Function & F)996   bool isLibFunction(Function &F) const { return LibFunctions.count(&F); }
997 
998   ///@{
999   /// \name Pre-SCC Mutation API
1000   ///
1001   /// These methods are only valid to call prior to forming any SCCs for this
1002   /// call graph. They can be used to update the core node-graph during
1003   /// a node-based inorder traversal that precedes any SCC-based traversal.
1004   ///
1005   /// Once you begin manipulating a call graph's SCCs, most mutation of the
1006   /// graph must be performed via a RefSCC method. There are some exceptions
1007   /// below.
1008 
1009   /// Update the call graph after inserting a new edge.
1010   void insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
1011 
1012   /// Update the call graph after inserting a new edge.
insertEdge(Function & Source,Function & Target,Edge::Kind EK)1013   void insertEdge(Function &Source, Function &Target, Edge::Kind EK) {
1014     return insertEdge(get(Source), get(Target), EK);
1015   }
1016 
1017   /// Update the call graph after deleting an edge.
1018   void removeEdge(Node &SourceN, Node &TargetN);
1019 
1020   /// Update the call graph after deleting an edge.
removeEdge(Function & Source,Function & Target)1021   void removeEdge(Function &Source, Function &Target) {
1022     return removeEdge(get(Source), get(Target));
1023   }
1024 
1025   ///@}
1026 
1027   ///@{
1028   /// \name General Mutation API
1029   ///
1030   /// There are a very limited set of mutations allowed on the graph as a whole
1031   /// once SCCs have started to be formed. These routines have strict contracts
1032   /// but may be called at any point.
1033 
1034   /// Remove a dead function from the call graph (typically to delete it).
1035   ///
1036   /// Note that the function must have an empty use list, and the call graph
1037   /// must be up-to-date prior to calling this. That means it is by itself in
1038   /// a maximal SCC which is by itself in a maximal RefSCC, etc. No structural
1039   /// changes result from calling this routine other than potentially removing
1040   /// entry points into the call graph.
1041   ///
1042   /// If SCC formation has begun, this function must not be part of the current
1043   /// DFS in order to call this safely. Typically, the function will have been
1044   /// fully visited by the DFS prior to calling this routine.
1045   void removeDeadFunction(Function &F);
1046 
1047   /// Add a new function split/outlined from an existing function.
1048   ///
1049   /// The new function may only reference other functions that the original
1050   /// function did.
1051   ///
1052   /// The original function must reference (either directly or indirectly) the
1053   /// new function.
1054   ///
1055   /// The new function may also reference the original function.
1056   /// It may end up in a parent SCC in the case that the original function's
1057   /// edge to the new function is a ref edge, and the edge back is a call edge.
1058   void addSplitFunction(Function &OriginalFunction, Function &NewFunction);
1059 
1060   /// Add new ref-recursive functions split/outlined from an existing function.
1061   ///
1062   /// The new functions may only reference other functions that the original
1063   /// function did. The new functions may reference (not call) the original
1064   /// function.
1065   ///
1066   /// The original function must reference (not call) all new functions.
1067   /// All new functions must reference (not call) each other.
1068   void addSplitRefRecursiveFunctions(Function &OriginalFunction,
1069                                      ArrayRef<Function *> NewFunctions);
1070 
1071   ///@}
1072 
1073   ///@{
1074   /// \name Static helpers for code doing updates to the call graph.
1075   ///
1076   /// These helpers are used to implement parts of the call graph but are also
1077   /// useful to code doing updates or otherwise wanting to walk the IR in the
1078   /// same patterns as when we build the call graph.
1079 
1080   /// Recursively visits the defined functions whose address is reachable from
1081   /// every constant in the \p Worklist.
1082   ///
1083   /// Doesn't recurse through any constants already in the \p Visited set, and
1084   /// updates that set with every constant visited.
1085   ///
1086   /// For each defined function, calls \p Callback with that function.
1087   template <typename CallbackT>
visitReferences(SmallVectorImpl<Constant * > & Worklist,SmallPtrSetImpl<Constant * > & Visited,CallbackT Callback)1088   static void visitReferences(SmallVectorImpl<Constant *> &Worklist,
1089                               SmallPtrSetImpl<Constant *> &Visited,
1090                               CallbackT Callback) {
1091     while (!Worklist.empty()) {
1092       Constant *C = Worklist.pop_back_val();
1093 
1094       if (Function *F = dyn_cast<Function>(C)) {
1095         if (!F->isDeclaration())
1096           Callback(*F);
1097         continue;
1098       }
1099 
1100       // The blockaddress constant expression is a weird special case, we can't
1101       // generically walk its operands the way we do for all other constants.
1102       if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1103         // If we've already visited the function referred to by the block
1104         // address, we don't need to revisit it.
1105         if (Visited.count(BA->getFunction()))
1106           continue;
1107 
1108         // If all of the blockaddress' users are instructions within the
1109         // referred to function, we don't need to insert a cycle.
1110         if (llvm::all_of(BA->users(), [&](User *U) {
1111               if (Instruction *I = dyn_cast<Instruction>(U))
1112                 return I->getFunction() == BA->getFunction();
1113               return false;
1114             }))
1115           continue;
1116 
1117         // Otherwise we should go visit the referred to function.
1118         Visited.insert(BA->getFunction());
1119         Worklist.push_back(BA->getFunction());
1120         continue;
1121       }
1122 
1123       for (Value *Op : C->operand_values())
1124         if (Visited.insert(cast<Constant>(Op)).second)
1125           Worklist.push_back(cast<Constant>(Op));
1126     }
1127   }
1128 
1129   ///@}
1130 
1131 private:
1132   using node_stack_iterator = SmallVectorImpl<Node *>::reverse_iterator;
1133   using node_stack_range = iterator_range<node_stack_iterator>;
1134 
1135   /// Allocator that holds all the call graph nodes.
1136   SpecificBumpPtrAllocator<Node> BPA;
1137 
1138   /// Maps function->node for fast lookup.
1139   DenseMap<const Function *, Node *> NodeMap;
1140 
1141   /// The entry edges into the graph.
1142   ///
1143   /// These edges are from "external" sources. Put another way, they
1144   /// escape at the module scope.
1145   EdgeSequence EntryEdges;
1146 
1147   /// Allocator that holds all the call graph SCCs.
1148   SpecificBumpPtrAllocator<SCC> SCCBPA;
1149 
1150   /// Maps Function -> SCC for fast lookup.
1151   DenseMap<Node *, SCC *> SCCMap;
1152 
1153   /// Allocator that holds all the call graph RefSCCs.
1154   SpecificBumpPtrAllocator<RefSCC> RefSCCBPA;
1155 
1156   /// The post-order sequence of RefSCCs.
1157   ///
1158   /// This list is lazily formed the first time we walk the graph.
1159   SmallVector<RefSCC *, 16> PostOrderRefSCCs;
1160 
1161   /// A map from RefSCC to the index for it in the postorder sequence of
1162   /// RefSCCs.
1163   DenseMap<RefSCC *, int> RefSCCIndices;
1164 
1165   /// Defined functions that are also known library functions which the
1166   /// optimizer can reason about and therefore might introduce calls to out of
1167   /// thin air.
1168   SmallSetVector<Function *, 4> LibFunctions;
1169 
1170   /// Helper to insert a new function, with an already looked-up entry in
1171   /// the NodeMap.
1172   Node &insertInto(Function &F, Node *&MappedN);
1173 
1174   /// Helper to initialize a new node created outside of creating SCCs and add
1175   /// it to the NodeMap if necessary. For example, useful when a function is
1176   /// split.
1177   Node &initNode(Function &F);
1178 
1179   /// Helper to update pointers back to the graph object during moves.
1180   void updateGraphPtrs();
1181 
1182   /// Allocates an SCC and constructs it using the graph allocator.
1183   ///
1184   /// The arguments are forwarded to the constructor.
createSCC(Ts &&...Args)1185   template <typename... Ts> SCC *createSCC(Ts &&... Args) {
1186     return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...);
1187   }
1188 
1189   /// Allocates a RefSCC and constructs it using the graph allocator.
1190   ///
1191   /// The arguments are forwarded to the constructor.
createRefSCC(Ts &&...Args)1192   template <typename... Ts> RefSCC *createRefSCC(Ts &&... Args) {
1193     return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...);
1194   }
1195 
1196   /// Common logic for building SCCs from a sequence of roots.
1197   ///
1198   /// This is a very generic implementation of the depth-first walk and SCC
1199   /// formation algorithm. It uses a generic sequence of roots and generic
1200   /// callbacks for each step. This is designed to be used to implement both
1201   /// the RefSCC formation and SCC formation with shared logic.
1202   ///
1203   /// Currently this is a relatively naive implementation of Tarjan's DFS
1204   /// algorithm to form the SCCs.
1205   ///
1206   /// FIXME: We should consider newer variants such as Nuutila.
1207   template <typename RootsT, typename GetBeginT, typename GetEndT,
1208             typename GetNodeT, typename FormSCCCallbackT>
1209   static void buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1210                                GetEndT &&GetEnd, GetNodeT &&GetNode,
1211                                FormSCCCallbackT &&FormSCC);
1212 
1213   /// Build the SCCs for a RefSCC out of a list of nodes.
1214   void buildSCCs(RefSCC &RC, node_stack_range Nodes);
1215 
1216   /// Get the index of a RefSCC within the postorder traversal.
1217   ///
1218   /// Requires that this RefSCC is a valid one in the (perhaps partial)
1219   /// postorder traversed part of the graph.
getRefSCCIndex(RefSCC & RC)1220   int getRefSCCIndex(RefSCC &RC) {
1221     auto IndexIt = RefSCCIndices.find(&RC);
1222     assert(IndexIt != RefSCCIndices.end() && "RefSCC doesn't have an index!");
1223     assert(PostOrderRefSCCs[IndexIt->second] == &RC &&
1224            "Index does not point back at RC!");
1225     return IndexIt->second;
1226   }
1227 };
1228 
Edge()1229 inline LazyCallGraph::Edge::Edge() : Value() {}
Edge(Node & N,Kind K)1230 inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {}
1231 
1232 inline LazyCallGraph::Edge::operator bool() const {
1233   return Value.getPointer() && !Value.getPointer()->isDead();
1234 }
1235 
getKind()1236 inline LazyCallGraph::Edge::Kind LazyCallGraph::Edge::getKind() const {
1237   assert(*this && "Queried a null edge!");
1238   return Value.getInt();
1239 }
1240 
isCall()1241 inline bool LazyCallGraph::Edge::isCall() const {
1242   assert(*this && "Queried a null edge!");
1243   return getKind() == Call;
1244 }
1245 
getNode()1246 inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode() const {
1247   assert(*this && "Queried a null edge!");
1248   return *Value.getPointer();
1249 }
1250 
getFunction()1251 inline Function &LazyCallGraph::Edge::getFunction() const {
1252   assert(*this && "Queried a null edge!");
1253   return getNode().getFunction();
1254 }
1255 
1256 // Provide GraphTraits specializations for call graphs.
1257 template <> struct GraphTraits<LazyCallGraph::Node *> {
1258   using NodeRef = LazyCallGraph::Node *;
1259   using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1260 
1261   static NodeRef getEntryNode(NodeRef N) { return N; }
1262   static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1263   static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1264 };
1265 template <> struct GraphTraits<LazyCallGraph *> {
1266   using NodeRef = LazyCallGraph::Node *;
1267   using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1268 
1269   static NodeRef getEntryNode(NodeRef N) { return N; }
1270   static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1271   static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1272 };
1273 
1274 /// An analysis pass which computes the call graph for a module.
1275 class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> {
1276   friend AnalysisInfoMixin<LazyCallGraphAnalysis>;
1277 
1278   static AnalysisKey Key;
1279 
1280 public:
1281   /// Inform generic clients of the result type.
1282   using Result = LazyCallGraph;
1283 
1284   /// Compute the \c LazyCallGraph for the module \c M.
1285   ///
1286   /// This just builds the set of entry points to the call graph. The rest is
1287   /// built lazily as it is walked.
1288   LazyCallGraph run(Module &M, ModuleAnalysisManager &AM) {
1289     FunctionAnalysisManager &FAM =
1290         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1291     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1292       return FAM.getResult<TargetLibraryAnalysis>(F);
1293     };
1294     return LazyCallGraph(M, GetTLI);
1295   }
1296 };
1297 
1298 /// A pass which prints the call graph to a \c raw_ostream.
1299 ///
1300 /// This is primarily useful for testing the analysis.
1301 class LazyCallGraphPrinterPass
1302     : public PassInfoMixin<LazyCallGraphPrinterPass> {
1303   raw_ostream &OS;
1304 
1305 public:
1306   explicit LazyCallGraphPrinterPass(raw_ostream &OS);
1307 
1308   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1309 };
1310 
1311 /// A pass which prints the call graph as a DOT file to a \c raw_ostream.
1312 ///
1313 /// This is primarily useful for visualization purposes.
1314 class LazyCallGraphDOTPrinterPass
1315     : public PassInfoMixin<LazyCallGraphDOTPrinterPass> {
1316   raw_ostream &OS;
1317 
1318 public:
1319   explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS);
1320 
1321   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1322 };
1323 
1324 } // end namespace llvm
1325 
1326 #endif // LLVM_ANALYSIS_LAZYCALLGRAPH_H
1327