1 //! Defines how the compiler represents types internally.
2 //!
3 //! Two important entities in this module are:
4 //!
5 //! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type.
6 //! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler.
7 //!
8 //! For more information, see ["The `ty` module: representing types"] in the ructc-dev-guide.
9 //!
10 //! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html
11 
12 pub use self::fold::{TypeFoldable, TypeFolder, TypeVisitor};
13 pub use self::AssocItemContainer::*;
14 pub use self::BorrowKind::*;
15 pub use self::IntVarValue::*;
16 pub use self::Variance::*;
17 pub use adt::*;
18 pub use assoc::*;
19 pub use generics::*;
20 pub use vtable::*;
21 
22 use crate::hir::exports::ExportMap;
23 use crate::mir::{Body, GeneratorLayout};
24 use crate::traits::{self, Reveal};
25 use crate::ty;
26 use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
27 use crate::ty::util::Discr;
28 use rustc_ast as ast;
29 use rustc_attr as attr;
30 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
31 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
32 use rustc_data_structures::tagged_ptr::CopyTaggedPtr;
33 use rustc_hir as hir;
34 use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res};
35 use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LocalDefIdMap, CRATE_DEF_INDEX};
36 use rustc_hir::Node;
37 use rustc_macros::HashStable;
38 use rustc_query_system::ich::StableHashingContext;
39 use rustc_session::cstore::CrateStoreDyn;
40 use rustc_span::symbol::{kw, Ident, Symbol};
41 use rustc_span::{sym, Span};
42 use rustc_target::abi::Align;
43 
44 use std::cmp::Ordering;
45 use std::collections::BTreeMap;
46 use std::hash::{Hash, Hasher};
47 use std::ops::ControlFlow;
48 use std::{fmt, ptr, str};
49 
50 pub use crate::ty::diagnostics::*;
51 pub use rustc_type_ir::InferTy::*;
52 pub use rustc_type_ir::*;
53 
54 pub use self::binding::BindingMode;
55 pub use self::binding::BindingMode::*;
56 pub use self::closure::{
57     is_ancestor_or_same_capture, place_to_string_for_capture, BorrowKind, CaptureInfo,
58     CapturedPlace, ClosureKind, MinCaptureInformationMap, MinCaptureList,
59     RootVariableMinCaptureList, UpvarBorrow, UpvarCapture, UpvarCaptureMap, UpvarId, UpvarListMap,
60     UpvarPath, CAPTURE_STRUCT_LOCAL,
61 };
62 pub use self::consts::{Const, ConstInt, ConstKind, InferConst, ScalarInt, Unevaluated, ValTree};
63 pub use self::context::{
64     tls, CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations,
65     CtxtInterners, DelaySpanBugEmitted, FreeRegionInfo, GeneratorInteriorTypeCause, GlobalCtxt,
66     Lift, OnDiskCache, TyCtxt, TypeckResults, UserType, UserTypeAnnotationIndex,
67 };
68 pub use self::instance::{Instance, InstanceDef};
69 pub use self::list::List;
70 pub use self::sty::BoundRegionKind::*;
71 pub use self::sty::RegionKind::*;
72 pub use self::sty::TyKind::*;
73 pub use self::sty::{
74     Binder, BoundRegion, BoundRegionKind, BoundTy, BoundTyKind, BoundVar, BoundVariableKind,
75     CanonicalPolyFnSig, ClosureSubsts, ClosureSubstsParts, ConstVid, EarlyBoundRegion,
76     ExistentialPredicate, ExistentialProjection, ExistentialTraitRef, FnSig, FreeRegion, GenSig,
77     GeneratorSubsts, GeneratorSubstsParts, InlineConstSubsts, InlineConstSubstsParts, ParamConst,
78     ParamTy, PolyExistentialProjection, PolyExistentialTraitRef, PolyFnSig, PolyGenSig,
79     PolyTraitRef, ProjectionTy, Region, RegionKind, RegionVid, TraitRef, TyKind, TypeAndMut,
80     UpvarSubsts, VarianceDiagInfo, VarianceDiagMutKind,
81 };
82 pub use self::trait_def::TraitDef;
83 
84 pub mod _match;
85 pub mod adjustment;
86 pub mod binding;
87 pub mod cast;
88 pub mod codec;
89 pub mod error;
90 pub mod fast_reject;
91 pub mod flags;
92 pub mod fold;
93 pub mod inhabitedness;
94 pub mod layout;
95 pub mod normalize_erasing_regions;
96 pub mod print;
97 pub mod query;
98 pub mod relate;
99 pub mod subst;
100 pub mod trait_def;
101 pub mod util;
102 pub mod vtable;
103 pub mod walk;
104 
105 mod adt;
106 mod assoc;
107 mod closure;
108 mod consts;
109 mod context;
110 mod diagnostics;
111 mod erase_regions;
112 mod generics;
113 mod impls_ty;
114 mod instance;
115 mod list;
116 mod structural_impls;
117 mod sty;
118 
119 // Data types
120 
121 #[derive(Debug)]
122 pub struct ResolverOutputs {
123     pub definitions: rustc_hir::definitions::Definitions,
124     pub cstore: Box<CrateStoreDyn>,
125     pub visibilities: FxHashMap<LocalDefId, Visibility>,
126     pub extern_crate_map: FxHashMap<LocalDefId, CrateNum>,
127     pub maybe_unused_trait_imports: FxHashSet<LocalDefId>,
128     pub maybe_unused_extern_crates: Vec<(LocalDefId, Span)>,
129     pub export_map: ExportMap,
130     pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
131     /// Extern prelude entries. The value is `true` if the entry was introduced
132     /// via `extern crate` item and not `--extern` option or compiler built-in.
133     pub extern_prelude: FxHashMap<Symbol, bool>,
134     pub main_def: Option<MainDefinition>,
135     pub trait_impls: BTreeMap<DefId, Vec<LocalDefId>>,
136     /// A list of proc macro LocalDefIds, written out in the order in which
137     /// they are declared in the static array generated by proc_macro_harness.
138     pub proc_macros: Vec<LocalDefId>,
139     /// Mapping from ident span to path span for paths that don't exist as written, but that
140     /// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`.
141     pub confused_type_with_std_module: FxHashMap<Span, Span>,
142 }
143 
144 #[derive(Clone, Copy, Debug)]
145 pub struct MainDefinition {
146     pub res: Res<ast::NodeId>,
147     pub is_import: bool,
148     pub span: Span,
149 }
150 
151 impl MainDefinition {
opt_fn_def_id(self) -> Option<DefId>152     pub fn opt_fn_def_id(self) -> Option<DefId> {
153         if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None }
154     }
155 }
156 
157 /// The "header" of an impl is everything outside the body: a Self type, a trait
158 /// ref (in the case of a trait impl), and a set of predicates (from the
159 /// bounds / where-clauses).
160 #[derive(Clone, Debug, TypeFoldable)]
161 pub struct ImplHeader<'tcx> {
162     pub impl_def_id: DefId,
163     pub self_ty: Ty<'tcx>,
164     pub trait_ref: Option<TraitRef<'tcx>>,
165     pub predicates: Vec<Predicate<'tcx>>,
166 }
167 
168 #[derive(
169     Copy,
170     Clone,
171     PartialEq,
172     Eq,
173     Hash,
174     TyEncodable,
175     TyDecodable,
176     HashStable,
177     Debug,
178     TypeFoldable
179 )]
180 pub enum ImplPolarity {
181     /// `impl Trait for Type`
182     Positive,
183     /// `impl !Trait for Type`
184     Negative,
185     /// `#[rustc_reservation_impl] impl Trait for Type`
186     ///
187     /// This is a "stability hack", not a real Rust feature.
188     /// See #64631 for details.
189     Reservation,
190 }
191 
192 impl ImplPolarity {
193     /// Flips polarity by turning `Positive` into `Negative` and `Negative` into `Positive`.
flip(&self) -> Option<ImplPolarity>194     pub fn flip(&self) -> Option<ImplPolarity> {
195         match self {
196             ImplPolarity::Positive => Some(ImplPolarity::Negative),
197             ImplPolarity::Negative => Some(ImplPolarity::Positive),
198             ImplPolarity::Reservation => None,
199         }
200     }
201 }
202 
203 impl fmt::Display for ImplPolarity {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result204     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
205         match self {
206             Self::Positive => f.write_str("positive"),
207             Self::Negative => f.write_str("negative"),
208             Self::Reservation => f.write_str("reservation"),
209         }
210     }
211 }
212 
213 #[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
214 pub enum Visibility {
215     /// Visible everywhere (including in other crates).
216     Public,
217     /// Visible only in the given crate-local module.
218     Restricted(DefId),
219     /// Not visible anywhere in the local crate. This is the visibility of private external items.
220     Invisible,
221 }
222 
223 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
224 pub enum BoundConstness {
225     /// `T: Trait`
226     NotConst,
227     /// `T: ~const Trait`
228     ///
229     /// Requires resolving to const only when we are in a const context.
230     ConstIfConst,
231 }
232 
233 impl fmt::Display for BoundConstness {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result234     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
235         match self {
236             Self::NotConst => f.write_str("normal"),
237             Self::ConstIfConst => f.write_str("`~const`"),
238         }
239     }
240 }
241 
242 #[derive(
243     Clone,
244     Debug,
245     PartialEq,
246     Eq,
247     Copy,
248     Hash,
249     TyEncodable,
250     TyDecodable,
251     HashStable,
252     TypeFoldable
253 )]
254 pub struct ClosureSizeProfileData<'tcx> {
255     /// Tuple containing the types of closure captures before the feature `capture_disjoint_fields`
256     pub before_feature_tys: Ty<'tcx>,
257     /// Tuple containing the types of closure captures after the feature `capture_disjoint_fields`
258     pub after_feature_tys: Ty<'tcx>,
259 }
260 
261 pub trait DefIdTree: Copy {
parent(self, id: DefId) -> Option<DefId>262     fn parent(self, id: DefId) -> Option<DefId>;
263 
is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool264     fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
265         if descendant.krate != ancestor.krate {
266             return false;
267         }
268 
269         while descendant != ancestor {
270             match self.parent(descendant) {
271                 Some(parent) => descendant = parent,
272                 None => return false,
273             }
274         }
275         true
276     }
277 }
278 
279 impl<'tcx> DefIdTree for TyCtxt<'tcx> {
parent(self, id: DefId) -> Option<DefId>280     fn parent(self, id: DefId) -> Option<DefId> {
281         self.def_key(id).parent.map(|index| DefId { index, ..id })
282     }
283 }
284 
285 impl Visibility {
from_hir(visibility: &hir::Visibility<'_>, id: hir::HirId, tcx: TyCtxt<'_>) -> Self286     pub fn from_hir(visibility: &hir::Visibility<'_>, id: hir::HirId, tcx: TyCtxt<'_>) -> Self {
287         match visibility.node {
288             hir::VisibilityKind::Public => Visibility::Public,
289             hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
290             hir::VisibilityKind::Restricted { ref path, .. } => match path.res {
291                 // If there is no resolution, `resolve` will have already reported an error, so
292                 // assume that the visibility is public to avoid reporting more privacy errors.
293                 Res::Err => Visibility::Public,
294                 def => Visibility::Restricted(def.def_id()),
295             },
296             hir::VisibilityKind::Inherited => {
297                 Visibility::Restricted(tcx.parent_module(id).to_def_id())
298             }
299         }
300     }
301 
302     /// Returns `true` if an item with this visibility is accessible from the given block.
is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool303     pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
304         let restriction = match self {
305             // Public items are visible everywhere.
306             Visibility::Public => return true,
307             // Private items from other crates are visible nowhere.
308             Visibility::Invisible => return false,
309             // Restricted items are visible in an arbitrary local module.
310             Visibility::Restricted(other) if other.krate != module.krate => return false,
311             Visibility::Restricted(module) => module,
312         };
313 
314         tree.is_descendant_of(module, restriction)
315     }
316 
317     /// Returns `true` if this visibility is at least as accessible as the given visibility
is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool318     pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
319         let vis_restriction = match vis {
320             Visibility::Public => return self == Visibility::Public,
321             Visibility::Invisible => return true,
322             Visibility::Restricted(module) => module,
323         };
324 
325         self.is_accessible_from(vis_restriction, tree)
326     }
327 
328     // Returns `true` if this item is visible anywhere in the local crate.
is_visible_locally(self) -> bool329     pub fn is_visible_locally(self) -> bool {
330         match self {
331             Visibility::Public => true,
332             Visibility::Restricted(def_id) => def_id.is_local(),
333             Visibility::Invisible => false,
334         }
335     }
336 
is_public(self) -> bool337     pub fn is_public(self) -> bool {
338         matches!(self, Visibility::Public)
339     }
340 }
341 
342 /// The crate variances map is computed during typeck and contains the
343 /// variance of every item in the local crate. You should not use it
344 /// directly, because to do so will make your pass dependent on the
345 /// HIR of every item in the local crate. Instead, use
346 /// `tcx.variances_of()` to get the variance for a *particular*
347 /// item.
348 #[derive(HashStable, Debug)]
349 pub struct CrateVariancesMap<'tcx> {
350     /// For each item with generics, maps to a vector of the variance
351     /// of its generics. If an item has no generics, it will have no
352     /// entry.
353     pub variances: FxHashMap<DefId, &'tcx [ty::Variance]>,
354 }
355 
356 // Contains information needed to resolve types and (in the future) look up
357 // the types of AST nodes.
358 #[derive(Copy, Clone, PartialEq, Eq, Hash)]
359 pub struct CReaderCacheKey {
360     pub cnum: Option<CrateNum>,
361     pub pos: usize,
362 }
363 
364 #[allow(rustc::usage_of_ty_tykind)]
365 pub struct TyS<'tcx> {
366     /// This field shouldn't be used directly and may be removed in the future.
367     /// Use `TyS::kind()` instead.
368     kind: TyKind<'tcx>,
369     /// This field shouldn't be used directly and may be removed in the future.
370     /// Use `TyS::flags()` instead.
371     flags: TypeFlags,
372 
373     /// This is a kind of confusing thing: it stores the smallest
374     /// binder such that
375     ///
376     /// (a) the binder itself captures nothing but
377     /// (b) all the late-bound things within the type are captured
378     ///     by some sub-binder.
379     ///
380     /// So, for a type without any late-bound things, like `u32`, this
381     /// will be *innermost*, because that is the innermost binder that
382     /// captures nothing. But for a type `&'D u32`, where `'D` is a
383     /// late-bound region with De Bruijn index `D`, this would be `D + 1`
384     /// -- the binder itself does not capture `D`, but `D` is captured
385     /// by an inner binder.
386     ///
387     /// We call this concept an "exclusive" binder `D` because all
388     /// De Bruijn indices within the type are contained within `0..D`
389     /// (exclusive).
390     outer_exclusive_binder: ty::DebruijnIndex,
391 }
392 
393 impl<'tcx> TyS<'tcx> {
394     /// A constructor used only for internal testing.
395     #[allow(rustc::usage_of_ty_tykind)]
make_for_test( kind: TyKind<'tcx>, flags: TypeFlags, outer_exclusive_binder: ty::DebruijnIndex, ) -> TyS<'tcx>396     pub fn make_for_test(
397         kind: TyKind<'tcx>,
398         flags: TypeFlags,
399         outer_exclusive_binder: ty::DebruijnIndex,
400     ) -> TyS<'tcx> {
401         TyS { kind, flags, outer_exclusive_binder }
402     }
403 }
404 
405 // `TyS` is used a lot. Make sure it doesn't unintentionally get bigger.
406 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
407 static_assert_size!(TyS<'_>, 40);
408 
409 impl<'tcx> Ord for TyS<'tcx> {
cmp(&self, other: &TyS<'tcx>) -> Ordering410     fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
411         self.kind().cmp(other.kind())
412     }
413 }
414 
415 impl<'tcx> PartialOrd for TyS<'tcx> {
partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering>416     fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
417         Some(self.kind().cmp(other.kind()))
418     }
419 }
420 
421 impl<'tcx> PartialEq for TyS<'tcx> {
422     #[inline]
eq(&self, other: &TyS<'tcx>) -> bool423     fn eq(&self, other: &TyS<'tcx>) -> bool {
424         ptr::eq(self, other)
425     }
426 }
427 impl<'tcx> Eq for TyS<'tcx> {}
428 
429 impl<'tcx> Hash for TyS<'tcx> {
hash<H: Hasher>(&self, s: &mut H)430     fn hash<H: Hasher>(&self, s: &mut H) {
431         (self as *const TyS<'_>).hash(s)
432     }
433 }
434 
435 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for TyS<'tcx> {
hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher)436     fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
437         let ty::TyS {
438             ref kind,
439 
440             // The other fields just provide fast access to information that is
441             // also contained in `kind`, so no need to hash them.
442             flags: _,
443 
444             outer_exclusive_binder: _,
445         } = *self;
446 
447         kind.hash_stable(hcx, hasher);
448     }
449 }
450 
451 #[rustc_diagnostic_item = "Ty"]
452 pub type Ty<'tcx> = &'tcx TyS<'tcx>;
453 
454 impl ty::EarlyBoundRegion {
455     /// Does this early bound region have a name? Early bound regions normally
456     /// always have names except when using anonymous lifetimes (`'_`).
has_name(&self) -> bool457     pub fn has_name(&self) -> bool {
458         self.name != kw::UnderscoreLifetime
459     }
460 }
461 
462 #[derive(Debug)]
463 crate struct PredicateInner<'tcx> {
464     kind: Binder<'tcx, PredicateKind<'tcx>>,
465     flags: TypeFlags,
466     /// See the comment for the corresponding field of [TyS].
467     outer_exclusive_binder: ty::DebruijnIndex,
468 }
469 
470 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
471 static_assert_size!(PredicateInner<'_>, 48);
472 
473 #[derive(Clone, Copy, Lift)]
474 pub struct Predicate<'tcx> {
475     inner: &'tcx PredicateInner<'tcx>,
476 }
477 
478 impl<'tcx> PartialEq for Predicate<'tcx> {
eq(&self, other: &Self) -> bool479     fn eq(&self, other: &Self) -> bool {
480         // `self.kind` is always interned.
481         ptr::eq(self.inner, other.inner)
482     }
483 }
484 
485 impl Hash for Predicate<'_> {
hash<H: Hasher>(&self, s: &mut H)486     fn hash<H: Hasher>(&self, s: &mut H) {
487         (self.inner as *const PredicateInner<'_>).hash(s)
488     }
489 }
490 
491 impl<'tcx> Eq for Predicate<'tcx> {}
492 
493 impl<'tcx> Predicate<'tcx> {
494     /// Gets the inner `Binder<'tcx, PredicateKind<'tcx>>`.
495     #[inline]
kind(self) -> Binder<'tcx, PredicateKind<'tcx>>496     pub fn kind(self) -> Binder<'tcx, PredicateKind<'tcx>> {
497         self.inner.kind
498     }
499 
500     /// Flips the polarity of a Predicate.
501     ///
502     /// Given `T: Trait` predicate it returns `T: !Trait` and given `T: !Trait` returns `T: Trait`.
flip_polarity(&self, tcx: TyCtxt<'tcx>) -> Option<Predicate<'tcx>>503     pub fn flip_polarity(&self, tcx: TyCtxt<'tcx>) -> Option<Predicate<'tcx>> {
504         let kind = self
505             .inner
506             .kind
507             .map_bound(|kind| match kind {
508                 PredicateKind::Trait(TraitPredicate { trait_ref, constness, polarity }) => {
509                     Some(PredicateKind::Trait(TraitPredicate {
510                         trait_ref,
511                         constness,
512                         polarity: polarity.flip()?,
513                     }))
514                 }
515 
516                 _ => None,
517             })
518             .transpose()?;
519 
520         Some(tcx.mk_predicate(kind))
521     }
522 }
523 
524 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Predicate<'tcx> {
hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher)525     fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
526         let PredicateInner {
527             ref kind,
528 
529             // The other fields just provide fast access to information that is
530             // also contained in `kind`, so no need to hash them.
531             flags: _,
532             outer_exclusive_binder: _,
533         } = self.inner;
534 
535         kind.hash_stable(hcx, hasher);
536     }
537 }
538 
539 #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
540 #[derive(HashStable, TypeFoldable)]
541 pub enum PredicateKind<'tcx> {
542     /// Corresponds to `where Foo: Bar<A, B, C>`. `Foo` here would be
543     /// the `Self` type of the trait reference and `A`, `B`, and `C`
544     /// would be the type parameters.
545     Trait(TraitPredicate<'tcx>),
546 
547     /// `where 'a: 'b`
548     RegionOutlives(RegionOutlivesPredicate<'tcx>),
549 
550     /// `where T: 'a`
551     TypeOutlives(TypeOutlivesPredicate<'tcx>),
552 
553     /// `where <T as TraitRef>::Name == X`, approximately.
554     /// See the `ProjectionPredicate` struct for details.
555     Projection(ProjectionPredicate<'tcx>),
556 
557     /// No syntax: `T` well-formed.
558     WellFormed(GenericArg<'tcx>),
559 
560     /// Trait must be object-safe.
561     ObjectSafe(DefId),
562 
563     /// No direct syntax. May be thought of as `where T: FnFoo<...>`
564     /// for some substitutions `...` and `T` being a closure type.
565     /// Satisfied (or refuted) once we know the closure's kind.
566     ClosureKind(DefId, SubstsRef<'tcx>, ClosureKind),
567 
568     /// `T1 <: T2`
569     ///
570     /// This obligation is created most often when we have two
571     /// unresolved type variables and hence don't have enough
572     /// information to process the subtyping obligation yet.
573     Subtype(SubtypePredicate<'tcx>),
574 
575     /// `T1` coerced to `T2`
576     ///
577     /// Like a subtyping obligation, this is created most often
578     /// when we have two unresolved type variables and hence
579     /// don't have enough information to process the coercion
580     /// obligation yet. At the moment, we actually process coercions
581     /// very much like subtyping and don't handle the full coercion
582     /// logic.
583     Coerce(CoercePredicate<'tcx>),
584 
585     /// Constant initializer must evaluate successfully.
586     ConstEvaluatable(ty::Unevaluated<'tcx, ()>),
587 
588     /// Constants must be equal. The first component is the const that is expected.
589     ConstEquate(&'tcx Const<'tcx>, &'tcx Const<'tcx>),
590 
591     /// Represents a type found in the environment that we can use for implied bounds.
592     ///
593     /// Only used for Chalk.
594     TypeWellFormedFromEnv(Ty<'tcx>),
595 }
596 
597 /// The crate outlives map is computed during typeck and contains the
598 /// outlives of every item in the local crate. You should not use it
599 /// directly, because to do so will make your pass dependent on the
600 /// HIR of every item in the local crate. Instead, use
601 /// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
602 /// item.
603 #[derive(HashStable, Debug)]
604 pub struct CratePredicatesMap<'tcx> {
605     /// For each struct with outlive bounds, maps to a vector of the
606     /// predicate of its outlive bounds. If an item has no outlives
607     /// bounds, it will have no entry.
608     pub predicates: FxHashMap<DefId, &'tcx [(Predicate<'tcx>, Span)]>,
609 }
610 
611 impl<'tcx> Predicate<'tcx> {
612     /// Performs a substitution suitable for going from a
613     /// poly-trait-ref to supertraits that must hold if that
614     /// poly-trait-ref holds. This is slightly different from a normal
615     /// substitution in terms of what happens with bound regions. See
616     /// lengthy comment below for details.
subst_supertrait( self, tcx: TyCtxt<'tcx>, trait_ref: &ty::PolyTraitRef<'tcx>, ) -> Predicate<'tcx>617     pub fn subst_supertrait(
618         self,
619         tcx: TyCtxt<'tcx>,
620         trait_ref: &ty::PolyTraitRef<'tcx>,
621     ) -> Predicate<'tcx> {
622         // The interaction between HRTB and supertraits is not entirely
623         // obvious. Let me walk you (and myself) through an example.
624         //
625         // Let's start with an easy case. Consider two traits:
626         //
627         //     trait Foo<'a>: Bar<'a,'a> { }
628         //     trait Bar<'b,'c> { }
629         //
630         // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
631         // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
632         // knew that `Foo<'x>` (for any 'x) then we also know that
633         // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
634         // normal substitution.
635         //
636         // In terms of why this is sound, the idea is that whenever there
637         // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
638         // holds.  So if there is an impl of `T:Foo<'a>` that applies to
639         // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
640         // `'a`.
641         //
642         // Another example to be careful of is this:
643         //
644         //     trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
645         //     trait Bar1<'b,'c> { }
646         //
647         // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
648         // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
649         // reason is similar to the previous example: any impl of
650         // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`.  So
651         // basically we would want to collapse the bound lifetimes from
652         // the input (`trait_ref`) and the supertraits.
653         //
654         // To achieve this in practice is fairly straightforward. Let's
655         // consider the more complicated scenario:
656         //
657         // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
658         //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
659         //   where both `'x` and `'b` would have a DB index of 1.
660         //   The substitution from the input trait-ref is therefore going to be
661         //   `'a => 'x` (where `'x` has a DB index of 1).
662         // - The supertrait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
663         //   early-bound parameter and `'b' is a late-bound parameter with a
664         //   DB index of 1.
665         // - If we replace `'a` with `'x` from the input, it too will have
666         //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
667         //   just as we wanted.
668         //
669         // There is only one catch. If we just apply the substitution `'a
670         // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
671         // adjust the DB index because we substituting into a binder (it
672         // tries to be so smart...) resulting in `for<'x> for<'b>
673         // Bar1<'x,'b>` (we have no syntax for this, so use your
674         // imagination). Basically the 'x will have DB index of 2 and 'b
675         // will have DB index of 1. Not quite what we want. So we apply
676         // the substitution to the *contents* of the trait reference,
677         // rather than the trait reference itself (put another way, the
678         // substitution code expects equal binding levels in the values
679         // from the substitution and the value being substituted into, and
680         // this trick achieves that).
681 
682         // Working through the second example:
683         // trait_ref: for<'x> T: Foo1<'^0.0>; substs: [T, '^0.0]
684         // predicate: for<'b> Self: Bar1<'a, '^0.0>; substs: [Self, 'a, '^0.0]
685         // We want to end up with:
686         //     for<'x, 'b> T: Bar1<'^0.0, '^0.1>
687         // To do this:
688         // 1) We must shift all bound vars in predicate by the length
689         //    of trait ref's bound vars. So, we would end up with predicate like
690         //    Self: Bar1<'a, '^0.1>
691         // 2) We can then apply the trait substs to this, ending up with
692         //    T: Bar1<'^0.0, '^0.1>
693         // 3) Finally, to create the final bound vars, we concatenate the bound
694         //    vars of the trait ref with those of the predicate:
695         //    ['x, 'b]
696         let bound_pred = self.kind();
697         let pred_bound_vars = bound_pred.bound_vars();
698         let trait_bound_vars = trait_ref.bound_vars();
699         // 1) Self: Bar1<'a, '^0.0> -> Self: Bar1<'a, '^0.1>
700         let shifted_pred =
701             tcx.shift_bound_var_indices(trait_bound_vars.len(), bound_pred.skip_binder());
702         // 2) Self: Bar1<'a, '^0.1> -> T: Bar1<'^0.0, '^0.1>
703         let new = shifted_pred.subst(tcx, trait_ref.skip_binder().substs);
704         // 3) ['x] + ['b] -> ['x, 'b]
705         let bound_vars =
706             tcx.mk_bound_variable_kinds(trait_bound_vars.iter().chain(pred_bound_vars));
707         tcx.reuse_or_mk_predicate(self, ty::Binder::bind_with_vars(new, bound_vars))
708     }
709 }
710 
711 #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
712 #[derive(HashStable, TypeFoldable)]
713 pub struct TraitPredicate<'tcx> {
714     pub trait_ref: TraitRef<'tcx>,
715 
716     pub constness: BoundConstness,
717 
718     pub polarity: ImplPolarity,
719 }
720 
721 pub type PolyTraitPredicate<'tcx> = ty::Binder<'tcx, TraitPredicate<'tcx>>;
722 
723 impl<'tcx> TraitPredicate<'tcx> {
def_id(self) -> DefId724     pub fn def_id(self) -> DefId {
725         self.trait_ref.def_id
726     }
727 
self_ty(self) -> Ty<'tcx>728     pub fn self_ty(self) -> Ty<'tcx> {
729         self.trait_ref.self_ty()
730     }
731 }
732 
733 impl<'tcx> PolyTraitPredicate<'tcx> {
def_id(self) -> DefId734     pub fn def_id(self) -> DefId {
735         // Ok to skip binder since trait `DefId` does not care about regions.
736         self.skip_binder().def_id()
737     }
738 
self_ty(self) -> ty::Binder<'tcx, Ty<'tcx>>739     pub fn self_ty(self) -> ty::Binder<'tcx, Ty<'tcx>> {
740         self.map_bound(|trait_ref| trait_ref.self_ty())
741     }
742 }
743 
744 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
745 #[derive(HashStable, TypeFoldable)]
746 pub struct OutlivesPredicate<A, B>(pub A, pub B); // `A: B`
747 pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>;
748 pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
749 pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>;
750 pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>;
751 
752 /// Encodes that `a` must be a subtype of `b`. The `a_is_expected` flag indicates
753 /// whether the `a` type is the type that we should label as "expected" when
754 /// presenting user diagnostics.
755 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
756 #[derive(HashStable, TypeFoldable)]
757 pub struct SubtypePredicate<'tcx> {
758     pub a_is_expected: bool,
759     pub a: Ty<'tcx>,
760     pub b: Ty<'tcx>,
761 }
762 pub type PolySubtypePredicate<'tcx> = ty::Binder<'tcx, SubtypePredicate<'tcx>>;
763 
764 /// Encodes that we have to coerce *from* the `a` type to the `b` type.
765 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
766 #[derive(HashStable, TypeFoldable)]
767 pub struct CoercePredicate<'tcx> {
768     pub a: Ty<'tcx>,
769     pub b: Ty<'tcx>,
770 }
771 pub type PolyCoercePredicate<'tcx> = ty::Binder<'tcx, CoercePredicate<'tcx>>;
772 
773 /// This kind of predicate has no *direct* correspondent in the
774 /// syntax, but it roughly corresponds to the syntactic forms:
775 ///
776 /// 1. `T: TraitRef<..., Item = Type>`
777 /// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
778 ///
779 /// In particular, form #1 is "desugared" to the combination of a
780 /// normal trait predicate (`T: TraitRef<...>`) and one of these
781 /// predicates. Form #2 is a broader form in that it also permits
782 /// equality between arbitrary types. Processing an instance of
783 /// Form #2 eventually yields one of these `ProjectionPredicate`
784 /// instances to normalize the LHS.
785 #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
786 #[derive(HashStable, TypeFoldable)]
787 pub struct ProjectionPredicate<'tcx> {
788     pub projection_ty: ProjectionTy<'tcx>,
789     pub ty: Ty<'tcx>,
790 }
791 
792 pub type PolyProjectionPredicate<'tcx> = Binder<'tcx, ProjectionPredicate<'tcx>>;
793 
794 impl<'tcx> PolyProjectionPredicate<'tcx> {
795     /// Returns the `DefId` of the trait of the associated item being projected.
796     #[inline]
trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId797     pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
798         self.skip_binder().projection_ty.trait_def_id(tcx)
799     }
800 
801     /// Get the [PolyTraitRef] required for this projection to be well formed.
802     /// Note that for generic associated types the predicates of the associated
803     /// type also need to be checked.
804     #[inline]
required_poly_trait_ref(&self, tcx: TyCtxt<'tcx>) -> PolyTraitRef<'tcx>805     pub fn required_poly_trait_ref(&self, tcx: TyCtxt<'tcx>) -> PolyTraitRef<'tcx> {
806         // Note: unlike with `TraitRef::to_poly_trait_ref()`,
807         // `self.0.trait_ref` is permitted to have escaping regions.
808         // This is because here `self` has a `Binder` and so does our
809         // return value, so we are preserving the number of binding
810         // levels.
811         self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
812     }
813 
ty(&self) -> Binder<'tcx, Ty<'tcx>>814     pub fn ty(&self) -> Binder<'tcx, Ty<'tcx>> {
815         self.map_bound(|predicate| predicate.ty)
816     }
817 
818     /// The `DefId` of the `TraitItem` for the associated type.
819     ///
820     /// Note that this is not the `DefId` of the `TraitRef` containing this
821     /// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
projection_def_id(&self) -> DefId822     pub fn projection_def_id(&self) -> DefId {
823         // Ok to skip binder since trait `DefId` does not care about regions.
824         self.skip_binder().projection_ty.item_def_id
825     }
826 }
827 
828 pub trait ToPolyTraitRef<'tcx> {
to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>829     fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
830 }
831 
832 impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>833     fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
834         self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
835     }
836 }
837 
838 pub trait ToPredicate<'tcx> {
to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>839     fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>;
840 }
841 
842 impl ToPredicate<'tcx> for Binder<'tcx, PredicateKind<'tcx>> {
843     #[inline(always)]
to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>844     fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
845         tcx.mk_predicate(self)
846     }
847 }
848 
849 impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<PolyTraitRef<'tcx>> {
to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>850     fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
851         self.value
852             .map_bound(|trait_ref| {
853                 PredicateKind::Trait(ty::TraitPredicate {
854                     trait_ref,
855                     constness: self.constness,
856                     polarity: ty::ImplPolarity::Positive,
857                 })
858             })
859             .to_predicate(tcx)
860     }
861 }
862 
863 impl<'tcx> ToPredicate<'tcx> for PolyTraitPredicate<'tcx> {
to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>864     fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
865         self.map_bound(PredicateKind::Trait).to_predicate(tcx)
866     }
867 }
868 
869 impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>870     fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
871         self.map_bound(PredicateKind::RegionOutlives).to_predicate(tcx)
872     }
873 }
874 
875 impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>876     fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
877         self.map_bound(PredicateKind::TypeOutlives).to_predicate(tcx)
878     }
879 }
880 
881 impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>882     fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> {
883         self.map_bound(PredicateKind::Projection).to_predicate(tcx)
884     }
885 }
886 
887 impl<'tcx> Predicate<'tcx> {
to_opt_poly_trait_ref(self) -> Option<ConstnessAnd<PolyTraitRef<'tcx>>>888     pub fn to_opt_poly_trait_ref(self) -> Option<ConstnessAnd<PolyTraitRef<'tcx>>> {
889         let predicate = self.kind();
890         match predicate.skip_binder() {
891             PredicateKind::Trait(t) => {
892                 Some(ConstnessAnd { constness: t.constness, value: predicate.rebind(t.trait_ref) })
893             }
894             PredicateKind::Projection(..)
895             | PredicateKind::Subtype(..)
896             | PredicateKind::Coerce(..)
897             | PredicateKind::RegionOutlives(..)
898             | PredicateKind::WellFormed(..)
899             | PredicateKind::ObjectSafe(..)
900             | PredicateKind::ClosureKind(..)
901             | PredicateKind::TypeOutlives(..)
902             | PredicateKind::ConstEvaluatable(..)
903             | PredicateKind::ConstEquate(..)
904             | PredicateKind::TypeWellFormedFromEnv(..) => None,
905         }
906     }
907 
to_opt_type_outlives(self) -> Option<PolyTypeOutlivesPredicate<'tcx>>908     pub fn to_opt_type_outlives(self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
909         let predicate = self.kind();
910         match predicate.skip_binder() {
911             PredicateKind::TypeOutlives(data) => Some(predicate.rebind(data)),
912             PredicateKind::Trait(..)
913             | PredicateKind::Projection(..)
914             | PredicateKind::Subtype(..)
915             | PredicateKind::Coerce(..)
916             | PredicateKind::RegionOutlives(..)
917             | PredicateKind::WellFormed(..)
918             | PredicateKind::ObjectSafe(..)
919             | PredicateKind::ClosureKind(..)
920             | PredicateKind::ConstEvaluatable(..)
921             | PredicateKind::ConstEquate(..)
922             | PredicateKind::TypeWellFormedFromEnv(..) => None,
923         }
924     }
925 }
926 
927 /// Represents the bounds declared on a particular set of type
928 /// parameters. Should eventually be generalized into a flag list of
929 /// where-clauses. You can obtain an `InstantiatedPredicates` list from a
930 /// `GenericPredicates` by using the `instantiate` method. Note that this method
931 /// reflects an important semantic invariant of `InstantiatedPredicates`: while
932 /// the `GenericPredicates` are expressed in terms of the bound type
933 /// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
934 /// represented a set of bounds for some particular instantiation,
935 /// meaning that the generic parameters have been substituted with
936 /// their values.
937 ///
938 /// Example:
939 ///
940 ///     struct Foo<T, U: Bar<T>> { ... }
941 ///
942 /// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
943 /// `[[], [U:Bar<T>]]`. Now if there were some particular reference
944 /// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
945 /// [usize:Bar<isize>]]`.
946 #[derive(Clone, Debug, TypeFoldable)]
947 pub struct InstantiatedPredicates<'tcx> {
948     pub predicates: Vec<Predicate<'tcx>>,
949     pub spans: Vec<Span>,
950 }
951 
952 impl<'tcx> InstantiatedPredicates<'tcx> {
empty() -> InstantiatedPredicates<'tcx>953     pub fn empty() -> InstantiatedPredicates<'tcx> {
954         InstantiatedPredicates { predicates: vec![], spans: vec![] }
955     }
956 
is_empty(&self) -> bool957     pub fn is_empty(&self) -> bool {
958         self.predicates.is_empty()
959     }
960 }
961 
962 #[derive(Copy, Clone, Debug, PartialEq, Eq, HashStable, TyEncodable, TyDecodable, TypeFoldable)]
963 pub struct OpaqueTypeKey<'tcx> {
964     pub def_id: DefId,
965     pub substs: SubstsRef<'tcx>,
966 }
967 
968 rustc_index::newtype_index! {
969     /// "Universes" are used during type- and trait-checking in the
970     /// presence of `for<..>` binders to control what sets of names are
971     /// visible. Universes are arranged into a tree: the root universe
972     /// contains names that are always visible. Each child then adds a new
973     /// set of names that are visible, in addition to those of its parent.
974     /// We say that the child universe "extends" the parent universe with
975     /// new names.
976     ///
977     /// To make this more concrete, consider this program:
978     ///
979     /// ```
980     /// struct Foo { }
981     /// fn bar<T>(x: T) {
982     ///   let y: for<'a> fn(&'a u8, Foo) = ...;
983     /// }
984     /// ```
985     ///
986     /// The struct name `Foo` is in the root universe U0. But the type
987     /// parameter `T`, introduced on `bar`, is in an extended universe U1
988     /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
989     /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
990     /// region `'a` is in a universe U2 that extends U1, because we can
991     /// name it inside the fn type but not outside.
992     ///
993     /// Universes are used to do type- and trait-checking around these
994     /// "forall" binders (also called **universal quantification**). The
995     /// idea is that when, in the body of `bar`, we refer to `T` as a
996     /// type, we aren't referring to any type in particular, but rather a
997     /// kind of "fresh" type that is distinct from all other types we have
998     /// actually declared. This is called a **placeholder** type, and we
999     /// use universes to talk about this. In other words, a type name in
1000     /// universe 0 always corresponds to some "ground" type that the user
1001     /// declared, but a type name in a non-zero universe is a placeholder
1002     /// type -- an idealized representative of "types in general" that we
1003     /// use for checking generic functions.
1004     pub struct UniverseIndex {
1005         derive [HashStable]
1006         DEBUG_FORMAT = "U{}",
1007     }
1008 }
1009 
1010 impl UniverseIndex {
1011     pub const ROOT: UniverseIndex = UniverseIndex::from_u32(0);
1012 
1013     /// Returns the "next" universe index in order -- this new index
1014     /// is considered to extend all previous universes. This
1015     /// corresponds to entering a `forall` quantifier. So, for
1016     /// example, suppose we have this type in universe `U`:
1017     ///
1018     /// ```
1019     /// for<'a> fn(&'a u32)
1020     /// ```
1021     ///
1022     /// Once we "enter" into this `for<'a>` quantifier, we are in a
1023     /// new universe that extends `U` -- in this new universe, we can
1024     /// name the region `'a`, but that region was not nameable from
1025     /// `U` because it was not in scope there.
next_universe(self) -> UniverseIndex1026     pub fn next_universe(self) -> UniverseIndex {
1027         UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
1028     }
1029 
1030     /// Returns `true` if `self` can name a name from `other` -- in other words,
1031     /// if the set of names in `self` is a superset of those in
1032     /// `other` (`self >= other`).
can_name(self, other: UniverseIndex) -> bool1033     pub fn can_name(self, other: UniverseIndex) -> bool {
1034         self.private >= other.private
1035     }
1036 
1037     /// Returns `true` if `self` cannot name some names from `other` -- in other
1038     /// words, if the set of names in `self` is a strict subset of
1039     /// those in `other` (`self < other`).
cannot_name(self, other: UniverseIndex) -> bool1040     pub fn cannot_name(self, other: UniverseIndex) -> bool {
1041         self.private < other.private
1042     }
1043 }
1044 
1045 /// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are
1046 /// identified by both a universe, as well as a name residing within that universe. Distinct bound
1047 /// regions/types/consts within the same universe simply have an unknown relationship to one
1048 /// another.
1049 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable, PartialOrd, Ord)]
1050 pub struct Placeholder<T> {
1051     pub universe: UniverseIndex,
1052     pub name: T,
1053 }
1054 
1055 impl<'a, T> HashStable<StableHashingContext<'a>> for Placeholder<T>
1056 where
1057     T: HashStable<StableHashingContext<'a>>,
1058 {
hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher)1059     fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
1060         self.universe.hash_stable(hcx, hasher);
1061         self.name.hash_stable(hcx, hasher);
1062     }
1063 }
1064 
1065 pub type PlaceholderRegion = Placeholder<BoundRegionKind>;
1066 
1067 pub type PlaceholderType = Placeholder<BoundVar>;
1068 
1069 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
1070 #[derive(TyEncodable, TyDecodable, PartialOrd, Ord)]
1071 pub struct BoundConst<'tcx> {
1072     pub var: BoundVar,
1073     pub ty: Ty<'tcx>,
1074 }
1075 
1076 pub type PlaceholderConst<'tcx> = Placeholder<BoundConst<'tcx>>;
1077 
1078 /// A `DefId` which, in case it is a const argument, is potentially bundled with
1079 /// the `DefId` of the generic parameter it instantiates.
1080 ///
1081 /// This is used to avoid calls to `type_of` for const arguments during typeck
1082 /// which cause cycle errors.
1083 ///
1084 /// ```rust
1085 /// struct A;
1086 /// impl A {
1087 ///     fn foo<const N: usize>(&self) -> [u8; N] { [0; N] }
1088 ///     //           ^ const parameter
1089 /// }
1090 /// struct B;
1091 /// impl B {
1092 ///     fn foo<const M: u8>(&self) -> usize { 42 }
1093 ///     //           ^ const parameter
1094 /// }
1095 ///
1096 /// fn main() {
1097 ///     let a = A;
1098 ///     let _b = a.foo::<{ 3 + 7 }>();
1099 ///     //               ^^^^^^^^^ const argument
1100 /// }
1101 /// ```
1102 ///
1103 /// Let's look at the call `a.foo::<{ 3 + 7 }>()` here. We do not know
1104 /// which `foo` is used until we know the type of `a`.
1105 ///
1106 /// We only know the type of `a` once we are inside of `typeck(main)`.
1107 /// We also end up normalizing the type of `_b` during `typeck(main)` which
1108 /// requires us to evaluate the const argument.
1109 ///
1110 /// To evaluate that const argument we need to know its type,
1111 /// which we would get using `type_of(const_arg)`. This requires us to
1112 /// resolve `foo` as it can be either `usize` or `u8` in this example.
1113 /// However, resolving `foo` once again requires `typeck(main)` to get the type of `a`,
1114 /// which results in a cycle.
1115 ///
1116 /// In short we must not call `type_of(const_arg)` during `typeck(main)`.
1117 ///
1118 /// When first creating the `ty::Const` of the const argument inside of `typeck` we have
1119 /// already resolved `foo` so we know which const parameter this argument instantiates.
1120 /// This means that we also know the expected result of `type_of(const_arg)` even if we
1121 /// aren't allowed to call that query: it is equal to `type_of(const_param)` which is
1122 /// trivial to compute.
1123 ///
1124 /// If we now want to use that constant in a place which potentionally needs its type
1125 /// we also pass the type of its `const_param`. This is the point of `WithOptConstParam`,
1126 /// except that instead of a `Ty` we bundle the `DefId` of the const parameter.
1127 /// Meaning that we need to use `type_of(const_param_did)` if `const_param_did` is `Some`
1128 /// to get the type of `did`.
1129 #[derive(Copy, Clone, Debug, TypeFoldable, Lift, TyEncodable, TyDecodable)]
1130 #[derive(PartialEq, Eq, PartialOrd, Ord)]
1131 #[derive(Hash, HashStable)]
1132 pub struct WithOptConstParam<T> {
1133     pub did: T,
1134     /// The `DefId` of the corresponding generic parameter in case `did` is
1135     /// a const argument.
1136     ///
1137     /// Note that even if `did` is a const argument, this may still be `None`.
1138     /// All queries taking `WithOptConstParam` start by calling `tcx.opt_const_param_of(def.did)`
1139     /// to potentially update `param_did` in the case it is `None`.
1140     pub const_param_did: Option<DefId>,
1141 }
1142 
1143 impl<T> WithOptConstParam<T> {
1144     /// Creates a new `WithOptConstParam` setting `const_param_did` to `None`.
1145     #[inline(always)]
unknown(did: T) -> WithOptConstParam<T>1146     pub fn unknown(did: T) -> WithOptConstParam<T> {
1147         WithOptConstParam { did, const_param_did: None }
1148     }
1149 }
1150 
1151 impl WithOptConstParam<LocalDefId> {
1152     /// Returns `Some((did, param_did))` if `def_id` is a const argument,
1153     /// `None` otherwise.
1154     #[inline(always)]
try_lookup(did: LocalDefId, tcx: TyCtxt<'_>) -> Option<(LocalDefId, DefId)>1155     pub fn try_lookup(did: LocalDefId, tcx: TyCtxt<'_>) -> Option<(LocalDefId, DefId)> {
1156         tcx.opt_const_param_of(did).map(|param_did| (did, param_did))
1157     }
1158 
1159     /// In case `self` is unknown but `self.did` is a const argument, this returns
1160     /// a `WithOptConstParam` with the correct `const_param_did`.
1161     #[inline(always)]
try_upgrade(self, tcx: TyCtxt<'_>) -> Option<WithOptConstParam<LocalDefId>>1162     pub fn try_upgrade(self, tcx: TyCtxt<'_>) -> Option<WithOptConstParam<LocalDefId>> {
1163         if self.const_param_did.is_none() {
1164             if let const_param_did @ Some(_) = tcx.opt_const_param_of(self.did) {
1165                 return Some(WithOptConstParam { did: self.did, const_param_did });
1166             }
1167         }
1168 
1169         None
1170     }
1171 
to_global(self) -> WithOptConstParam<DefId>1172     pub fn to_global(self) -> WithOptConstParam<DefId> {
1173         WithOptConstParam { did: self.did.to_def_id(), const_param_did: self.const_param_did }
1174     }
1175 
def_id_for_type_of(self) -> DefId1176     pub fn def_id_for_type_of(self) -> DefId {
1177         if let Some(did) = self.const_param_did { did } else { self.did.to_def_id() }
1178     }
1179 }
1180 
1181 impl WithOptConstParam<DefId> {
as_local(self) -> Option<WithOptConstParam<LocalDefId>>1182     pub fn as_local(self) -> Option<WithOptConstParam<LocalDefId>> {
1183         self.did
1184             .as_local()
1185             .map(|did| WithOptConstParam { did, const_param_did: self.const_param_did })
1186     }
1187 
as_const_arg(self) -> Option<(LocalDefId, DefId)>1188     pub fn as_const_arg(self) -> Option<(LocalDefId, DefId)> {
1189         if let Some(param_did) = self.const_param_did {
1190             if let Some(did) = self.did.as_local() {
1191                 return Some((did, param_did));
1192             }
1193         }
1194 
1195         None
1196     }
1197 
is_local(self) -> bool1198     pub fn is_local(self) -> bool {
1199         self.did.is_local()
1200     }
1201 
def_id_for_type_of(self) -> DefId1202     pub fn def_id_for_type_of(self) -> DefId {
1203         self.const_param_did.unwrap_or(self.did)
1204     }
1205 }
1206 
1207 /// When type checking, we use the `ParamEnv` to track
1208 /// details about the set of where-clauses that are in scope at this
1209 /// particular point.
1210 #[derive(Copy, Clone, Hash, PartialEq, Eq)]
1211 pub struct ParamEnv<'tcx> {
1212     /// This packs both caller bounds and the reveal enum into one pointer.
1213     ///
1214     /// Caller bounds are `Obligation`s that the caller must satisfy. This is
1215     /// basically the set of bounds on the in-scope type parameters, translated
1216     /// into `Obligation`s, and elaborated and normalized.
1217     ///
1218     /// Use the `caller_bounds()` method to access.
1219     ///
1220     /// Typically, this is `Reveal::UserFacing`, but during codegen we
1221     /// want `Reveal::All`.
1222     ///
1223     /// Note: This is packed, use the reveal() method to access it.
1224     packed: CopyTaggedPtr<&'tcx List<Predicate<'tcx>>, traits::Reveal, true>,
1225 }
1226 
1227 unsafe impl rustc_data_structures::tagged_ptr::Tag for traits::Reveal {
1228     const BITS: usize = 1;
1229     #[inline]
into_usize(self) -> usize1230     fn into_usize(self) -> usize {
1231         match self {
1232             traits::Reveal::UserFacing => 0,
1233             traits::Reveal::All => 1,
1234         }
1235     }
1236     #[inline]
from_usize(ptr: usize) -> Self1237     unsafe fn from_usize(ptr: usize) -> Self {
1238         match ptr {
1239             0 => traits::Reveal::UserFacing,
1240             1 => traits::Reveal::All,
1241             _ => std::hint::unreachable_unchecked(),
1242         }
1243     }
1244 }
1245 
1246 impl<'tcx> fmt::Debug for ParamEnv<'tcx> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1247     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1248         f.debug_struct("ParamEnv")
1249             .field("caller_bounds", &self.caller_bounds())
1250             .field("reveal", &self.reveal())
1251             .finish()
1252     }
1253 }
1254 
1255 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for ParamEnv<'tcx> {
hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher)1256     fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
1257         self.caller_bounds().hash_stable(hcx, hasher);
1258         self.reveal().hash_stable(hcx, hasher);
1259     }
1260 }
1261 
1262 impl<'tcx> TypeFoldable<'tcx> for ParamEnv<'tcx> {
super_fold_with<F: ty::fold::TypeFolder<'tcx>>(self, folder: &mut F) -> Self1263     fn super_fold_with<F: ty::fold::TypeFolder<'tcx>>(self, folder: &mut F) -> Self {
1264         ParamEnv::new(self.caller_bounds().fold_with(folder), self.reveal().fold_with(folder))
1265     }
1266 
super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy>1267     fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
1268         self.caller_bounds().visit_with(visitor)?;
1269         self.reveal().visit_with(visitor)
1270     }
1271 }
1272 
1273 impl<'tcx> ParamEnv<'tcx> {
1274     /// Construct a trait environment suitable for contexts where
1275     /// there are no where-clauses in scope. Hidden types (like `impl
1276     /// Trait`) are left hidden, so this is suitable for ordinary
1277     /// type-checking.
1278     #[inline]
empty() -> Self1279     pub fn empty() -> Self {
1280         Self::new(List::empty(), Reveal::UserFacing)
1281     }
1282 
1283     #[inline]
caller_bounds(self) -> &'tcx List<Predicate<'tcx>>1284     pub fn caller_bounds(self) -> &'tcx List<Predicate<'tcx>> {
1285         self.packed.pointer()
1286     }
1287 
1288     #[inline]
reveal(self) -> traits::Reveal1289     pub fn reveal(self) -> traits::Reveal {
1290         self.packed.tag()
1291     }
1292 
1293     /// Construct a trait environment with no where-clauses in scope
1294     /// where the values of all `impl Trait` and other hidden types
1295     /// are revealed. This is suitable for monomorphized, post-typeck
1296     /// environments like codegen or doing optimizations.
1297     ///
1298     /// N.B., if you want to have predicates in scope, use `ParamEnv::new`,
1299     /// or invoke `param_env.with_reveal_all()`.
1300     #[inline]
reveal_all() -> Self1301     pub fn reveal_all() -> Self {
1302         Self::new(List::empty(), Reveal::All)
1303     }
1304 
1305     /// Construct a trait environment with the given set of predicates.
1306     #[inline]
new(caller_bounds: &'tcx List<Predicate<'tcx>>, reveal: Reveal) -> Self1307     pub fn new(caller_bounds: &'tcx List<Predicate<'tcx>>, reveal: Reveal) -> Self {
1308         ty::ParamEnv { packed: CopyTaggedPtr::new(caller_bounds, reveal) }
1309     }
1310 
with_user_facing(mut self) -> Self1311     pub fn with_user_facing(mut self) -> Self {
1312         self.packed.set_tag(Reveal::UserFacing);
1313         self
1314     }
1315 
1316     /// Returns a new parameter environment with the same clauses, but
1317     /// which "reveals" the true results of projections in all cases
1318     /// (even for associated types that are specializable). This is
1319     /// the desired behavior during codegen and certain other special
1320     /// contexts; normally though we want to use `Reveal::UserFacing`,
1321     /// which is the default.
1322     /// All opaque types in the caller_bounds of the `ParamEnv`
1323     /// will be normalized to their underlying types.
1324     /// See PR #65989 and issue #65918 for more details
with_reveal_all_normalized(self, tcx: TyCtxt<'tcx>) -> Self1325     pub fn with_reveal_all_normalized(self, tcx: TyCtxt<'tcx>) -> Self {
1326         if self.packed.tag() == traits::Reveal::All {
1327             return self;
1328         }
1329 
1330         ParamEnv::new(tcx.normalize_opaque_types(self.caller_bounds()), Reveal::All)
1331     }
1332 
1333     /// Returns this same environment but with no caller bounds.
1334     #[inline]
without_caller_bounds(self) -> Self1335     pub fn without_caller_bounds(self) -> Self {
1336         Self::new(List::empty(), self.reveal())
1337     }
1338 
1339     /// Creates a suitable environment in which to perform trait
1340     /// queries on the given value. When type-checking, this is simply
1341     /// the pair of the environment plus value. But when reveal is set to
1342     /// All, then if `value` does not reference any type parameters, we will
1343     /// pair it with the empty environment. This improves caching and is generally
1344     /// invisible.
1345     ///
1346     /// N.B., we preserve the environment when type-checking because it
1347     /// is possible for the user to have wacky where-clauses like
1348     /// `where Box<u32>: Copy`, which are clearly never
1349     /// satisfiable. We generally want to behave as if they were true,
1350     /// although the surrounding function is never reachable.
and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T>1351     pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1352         match self.reveal() {
1353             Reveal::UserFacing => ParamEnvAnd { param_env: self, value },
1354 
1355             Reveal::All => {
1356                 if value.is_known_global() {
1357                     ParamEnvAnd { param_env: self.without_caller_bounds(), value }
1358                 } else {
1359                     ParamEnvAnd { param_env: self, value }
1360                 }
1361             }
1362         }
1363     }
1364 }
1365 
1366 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)]
1367 pub struct ConstnessAnd<T> {
1368     pub constness: BoundConstness,
1369     pub value: T,
1370 }
1371 
1372 // FIXME(ecstaticmorse): Audit all occurrences of `without_const().to_predicate(tcx)` to ensure that
1373 // the constness of trait bounds is being propagated correctly.
1374 pub trait WithConstness: Sized {
1375     #[inline]
with_constness(self, constness: BoundConstness) -> ConstnessAnd<Self>1376     fn with_constness(self, constness: BoundConstness) -> ConstnessAnd<Self> {
1377         ConstnessAnd { constness, value: self }
1378     }
1379 
1380     #[inline]
with_const_if_const(self) -> ConstnessAnd<Self>1381     fn with_const_if_const(self) -> ConstnessAnd<Self> {
1382         self.with_constness(BoundConstness::ConstIfConst)
1383     }
1384 
1385     #[inline]
without_const(self) -> ConstnessAnd<Self>1386     fn without_const(self) -> ConstnessAnd<Self> {
1387         self.with_constness(BoundConstness::NotConst)
1388     }
1389 }
1390 
1391 impl<T> WithConstness for T {}
1392 
1393 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)]
1394 pub struct ParamEnvAnd<'tcx, T> {
1395     pub param_env: ParamEnv<'tcx>,
1396     pub value: T,
1397 }
1398 
1399 impl<'tcx, T> ParamEnvAnd<'tcx, T> {
into_parts(self) -> (ParamEnv<'tcx>, T)1400     pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1401         (self.param_env, self.value)
1402     }
1403 }
1404 
1405 impl<'a, 'tcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'tcx, T>
1406 where
1407     T: HashStable<StableHashingContext<'a>>,
1408 {
hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher)1409     fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
1410         let ParamEnvAnd { ref param_env, ref value } = *self;
1411 
1412         param_env.hash_stable(hcx, hasher);
1413         value.hash_stable(hcx, hasher);
1414     }
1415 }
1416 
1417 #[derive(Copy, Clone, Debug, HashStable)]
1418 pub struct Destructor {
1419     /// The `DefId` of the destructor method
1420     pub did: DefId,
1421     /// The constness of the destructor method
1422     pub constness: hir::Constness,
1423 }
1424 
1425 bitflags! {
1426     #[derive(HashStable)]
1427     pub struct VariantFlags: u32 {
1428         const NO_VARIANT_FLAGS        = 0;
1429         /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
1430         const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1431         /// Indicates whether this variant was obtained as part of recovering from
1432         /// a syntactic error. May be incomplete or bogus.
1433         const IS_RECOVERED = 1 << 1;
1434     }
1435 }
1436 
1437 /// Definition of a variant -- a struct's fields or an enum variant.
1438 #[derive(Debug, HashStable)]
1439 pub struct VariantDef {
1440     /// `DefId` that identifies the variant itself.
1441     /// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
1442     pub def_id: DefId,
1443     /// `DefId` that identifies the variant's constructor.
1444     /// If this variant is a struct variant, then this is `None`.
1445     pub ctor_def_id: Option<DefId>,
1446     /// Variant or struct name.
1447     #[stable_hasher(project(name))]
1448     pub ident: Ident,
1449     /// Discriminant of this variant.
1450     pub discr: VariantDiscr,
1451     /// Fields of this variant.
1452     pub fields: Vec<FieldDef>,
1453     /// Type of constructor of variant.
1454     pub ctor_kind: CtorKind,
1455     /// Flags of the variant (e.g. is field list non-exhaustive)?
1456     flags: VariantFlags,
1457 }
1458 
1459 impl VariantDef {
1460     /// Creates a new `VariantDef`.
1461     ///
1462     /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
1463     /// represents an enum variant).
1464     ///
1465     /// `ctor_did` is the `DefId` that identifies the constructor of unit or
1466     /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
1467     ///
1468     /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
1469     /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
1470     /// to go through the redirect of checking the ctor's attributes - but compiling a small crate
1471     /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
1472     /// built-in trait), and we do not want to load attributes twice.
1473     ///
1474     /// If someone speeds up attribute loading to not be a performance concern, they can
1475     /// remove this hack and use the constructor `DefId` everywhere.
new( ident: Ident, variant_did: Option<DefId>, ctor_def_id: Option<DefId>, discr: VariantDiscr, fields: Vec<FieldDef>, ctor_kind: CtorKind, adt_kind: AdtKind, parent_did: DefId, recovered: bool, is_field_list_non_exhaustive: bool, ) -> Self1476     pub fn new(
1477         ident: Ident,
1478         variant_did: Option<DefId>,
1479         ctor_def_id: Option<DefId>,
1480         discr: VariantDiscr,
1481         fields: Vec<FieldDef>,
1482         ctor_kind: CtorKind,
1483         adt_kind: AdtKind,
1484         parent_did: DefId,
1485         recovered: bool,
1486         is_field_list_non_exhaustive: bool,
1487     ) -> Self {
1488         debug!(
1489             "VariantDef::new(ident = {:?}, variant_did = {:?}, ctor_def_id = {:?}, discr = {:?},
1490              fields = {:?}, ctor_kind = {:?}, adt_kind = {:?}, parent_did = {:?})",
1491             ident, variant_did, ctor_def_id, discr, fields, ctor_kind, adt_kind, parent_did,
1492         );
1493 
1494         let mut flags = VariantFlags::NO_VARIANT_FLAGS;
1495         if is_field_list_non_exhaustive {
1496             flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
1497         }
1498 
1499         if recovered {
1500             flags |= VariantFlags::IS_RECOVERED;
1501         }
1502 
1503         VariantDef {
1504             def_id: variant_did.unwrap_or(parent_did),
1505             ctor_def_id,
1506             ident,
1507             discr,
1508             fields,
1509             ctor_kind,
1510             flags,
1511         }
1512     }
1513 
1514     /// Is this field list non-exhaustive?
1515     #[inline]
is_field_list_non_exhaustive(&self) -> bool1516     pub fn is_field_list_non_exhaustive(&self) -> bool {
1517         self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
1518     }
1519 
1520     /// Was this variant obtained as part of recovering from a syntactic error?
1521     #[inline]
is_recovered(&self) -> bool1522     pub fn is_recovered(&self) -> bool {
1523         self.flags.intersects(VariantFlags::IS_RECOVERED)
1524     }
1525 }
1526 
1527 #[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
1528 pub enum VariantDiscr {
1529     /// Explicit value for this variant, i.e., `X = 123`.
1530     /// The `DefId` corresponds to the embedded constant.
1531     Explicit(DefId),
1532 
1533     /// The previous variant's discriminant plus one.
1534     /// For efficiency reasons, the distance from the
1535     /// last `Explicit` discriminant is being stored,
1536     /// or `0` for the first variant, if it has none.
1537     Relative(u32),
1538 }
1539 
1540 #[derive(Debug, HashStable)]
1541 pub struct FieldDef {
1542     pub did: DefId,
1543     #[stable_hasher(project(name))]
1544     pub ident: Ident,
1545     pub vis: Visibility,
1546 }
1547 
1548 bitflags! {
1549     #[derive(TyEncodable, TyDecodable, Default, HashStable)]
1550     pub struct ReprFlags: u8 {
1551         const IS_C               = 1 << 0;
1552         const IS_SIMD            = 1 << 1;
1553         const IS_TRANSPARENT     = 1 << 2;
1554         // Internal only for now. If true, don't reorder fields.
1555         const IS_LINEAR          = 1 << 3;
1556         // If true, don't expose any niche to type's context.
1557         const HIDE_NICHE         = 1 << 4;
1558         // If true, the type's layout can be randomized using
1559         // the seed stored in `ReprOptions.layout_seed`
1560         const RANDOMIZE_LAYOUT   = 1 << 5;
1561         // Any of these flags being set prevent field reordering optimisation.
1562         const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
1563                                    ReprFlags::IS_SIMD.bits |
1564                                    ReprFlags::IS_LINEAR.bits;
1565     }
1566 }
1567 
1568 /// Represents the repr options provided by the user,
1569 #[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Default, HashStable)]
1570 pub struct ReprOptions {
1571     pub int: Option<attr::IntType>,
1572     pub align: Option<Align>,
1573     pub pack: Option<Align>,
1574     pub flags: ReprFlags,
1575     /// The seed to be used for randomizing a type's layout
1576     ///
1577     /// Note: This could technically be a `[u8; 16]` (a `u128`) which would
1578     /// be the "most accurate" hash as it'd encompass the item and crate
1579     /// hash without loss, but it does pay the price of being larger.
1580     /// Everything's a tradeoff, a `u64` seed should be sufficient for our
1581     /// purposes (primarily `-Z randomize-layout`)
1582     pub field_shuffle_seed: u64,
1583 }
1584 
1585 impl ReprOptions {
new(tcx: TyCtxt<'_>, did: DefId) -> ReprOptions1586     pub fn new(tcx: TyCtxt<'_>, did: DefId) -> ReprOptions {
1587         let mut flags = ReprFlags::empty();
1588         let mut size = None;
1589         let mut max_align: Option<Align> = None;
1590         let mut min_pack: Option<Align> = None;
1591 
1592         // Generate a deterministically-derived seed from the item's path hash
1593         // to allow for cross-crate compilation to actually work
1594         let field_shuffle_seed = tcx.def_path_hash(did).0.to_smaller_hash();
1595 
1596         for attr in tcx.get_attrs(did).iter() {
1597             for r in attr::find_repr_attrs(&tcx.sess, attr) {
1598                 flags.insert(match r {
1599                     attr::ReprC => ReprFlags::IS_C,
1600                     attr::ReprPacked(pack) => {
1601                         let pack = Align::from_bytes(pack as u64).unwrap();
1602                         min_pack = Some(if let Some(min_pack) = min_pack {
1603                             min_pack.min(pack)
1604                         } else {
1605                             pack
1606                         });
1607                         ReprFlags::empty()
1608                     }
1609                     attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1610                     attr::ReprNoNiche => ReprFlags::HIDE_NICHE,
1611                     attr::ReprSimd => ReprFlags::IS_SIMD,
1612                     attr::ReprInt(i) => {
1613                         size = Some(i);
1614                         ReprFlags::empty()
1615                     }
1616                     attr::ReprAlign(align) => {
1617                         max_align = max_align.max(Some(Align::from_bytes(align as u64).unwrap()));
1618                         ReprFlags::empty()
1619                     }
1620                 });
1621             }
1622         }
1623 
1624         // If `-Z randomize-layout` was enabled for the type definition then we can
1625         // consider performing layout randomization
1626         if tcx.sess.opts.debugging_opts.randomize_layout {
1627             flags.insert(ReprFlags::RANDOMIZE_LAYOUT);
1628         }
1629 
1630         // This is here instead of layout because the choice must make it into metadata.
1631         if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.def_path_str(did))) {
1632             flags.insert(ReprFlags::IS_LINEAR);
1633         }
1634 
1635         Self { int: size, align: max_align, pack: min_pack, flags, field_shuffle_seed }
1636     }
1637 
1638     #[inline]
simd(&self) -> bool1639     pub fn simd(&self) -> bool {
1640         self.flags.contains(ReprFlags::IS_SIMD)
1641     }
1642 
1643     #[inline]
c(&self) -> bool1644     pub fn c(&self) -> bool {
1645         self.flags.contains(ReprFlags::IS_C)
1646     }
1647 
1648     #[inline]
packed(&self) -> bool1649     pub fn packed(&self) -> bool {
1650         self.pack.is_some()
1651     }
1652 
1653     #[inline]
transparent(&self) -> bool1654     pub fn transparent(&self) -> bool {
1655         self.flags.contains(ReprFlags::IS_TRANSPARENT)
1656     }
1657 
1658     #[inline]
linear(&self) -> bool1659     pub fn linear(&self) -> bool {
1660         self.flags.contains(ReprFlags::IS_LINEAR)
1661     }
1662 
1663     #[inline]
hide_niche(&self) -> bool1664     pub fn hide_niche(&self) -> bool {
1665         self.flags.contains(ReprFlags::HIDE_NICHE)
1666     }
1667 
1668     /// Returns the discriminant type, given these `repr` options.
1669     /// This must only be called on enums!
discr_type(&self) -> attr::IntType1670     pub fn discr_type(&self) -> attr::IntType {
1671         self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1672     }
1673 
1674     /// Returns `true` if this `#[repr()]` should inhabit "smart enum
1675     /// layout" optimizations, such as representing `Foo<&T>` as a
1676     /// single pointer.
inhibit_enum_layout_opt(&self) -> bool1677     pub fn inhibit_enum_layout_opt(&self) -> bool {
1678         self.c() || self.int.is_some()
1679     }
1680 
1681     /// Returns `true` if this `#[repr()]` should inhibit struct field reordering
1682     /// optimizations, such as with `repr(C)`, `repr(packed(1))`, or `repr(<int>)`.
inhibit_struct_field_reordering_opt(&self) -> bool1683     pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
1684         if let Some(pack) = self.pack {
1685             if pack.bytes() == 1 {
1686                 return true;
1687             }
1688         }
1689 
1690         self.flags.intersects(ReprFlags::IS_UNOPTIMISABLE) || self.int.is_some()
1691     }
1692 
1693     /// Returns `true` if this type is valid for reordering and `-Z randomize-layout`
1694     /// was enabled for its declaration crate
can_randomize_type_layout(&self) -> bool1695     pub fn can_randomize_type_layout(&self) -> bool {
1696         !self.inhibit_struct_field_reordering_opt()
1697             && self.flags.contains(ReprFlags::RANDOMIZE_LAYOUT)
1698     }
1699 
1700     /// Returns `true` if this `#[repr()]` should inhibit union ABI optimisations.
inhibit_union_abi_opt(&self) -> bool1701     pub fn inhibit_union_abi_opt(&self) -> bool {
1702         self.c()
1703     }
1704 }
1705 
1706 impl<'tcx> FieldDef {
1707     /// Returns the type of this field. The resulting type is not normalized. The `subst` is
1708     /// typically obtained via the second field of `TyKind::AdtDef`.
ty(&self, tcx: TyCtxt<'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx>1709     pub fn ty(&self, tcx: TyCtxt<'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx> {
1710         tcx.type_of(self.did).subst(tcx, subst)
1711     }
1712 }
1713 
1714 pub type Attributes<'tcx> = &'tcx [ast::Attribute];
1715 
1716 #[derive(Debug, PartialEq, Eq)]
1717 pub enum ImplOverlapKind {
1718     /// These impls are always allowed to overlap.
1719     Permitted {
1720         /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
1721         marker: bool,
1722     },
1723     /// These impls are allowed to overlap, but that raises
1724     /// an issue #33140 future-compatibility warning.
1725     ///
1726     /// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's
1727     /// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different.
1728     ///
1729     /// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied
1730     /// that difference, making what reduces to the following set of impls:
1731     ///
1732     /// ```
1733     /// trait Trait {}
1734     /// impl Trait for dyn Send + Sync {}
1735     /// impl Trait for dyn Sync + Send {}
1736     /// ```
1737     ///
1738     /// Obviously, once we made these types be identical, that code causes a coherence
1739     /// error and a fairly big headache for us. However, luckily for us, the trait
1740     /// `Trait` used in this case is basically a marker trait, and therefore having
1741     /// overlapping impls for it is sound.
1742     ///
1743     /// To handle this, we basically regard the trait as a marker trait, with an additional
1744     /// future-compatibility warning. To avoid accidentally "stabilizing" this feature,
1745     /// it has the following restrictions:
1746     ///
1747     /// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be
1748     /// positive impls.
1749     /// 2. The trait-ref of both impls must be equal.
1750     /// 3. The trait-ref of both impls must be a trait object type consisting only of
1751     /// marker traits.
1752     /// 4. Neither of the impls can have any where-clauses.
1753     ///
1754     /// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed.
1755     Issue33140,
1756 }
1757 
1758 impl<'tcx> TyCtxt<'tcx> {
typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx>1759     pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
1760         self.typeck(self.hir().body_owner_def_id(body))
1761     }
1762 
provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem>1763     pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
1764         self.associated_items(id)
1765             .in_definition_order()
1766             .filter(|item| item.kind == AssocKind::Fn && item.defaultness.has_value())
1767     }
1768 
item_name_from_hir(self, def_id: DefId) -> Option<Ident>1769     fn item_name_from_hir(self, def_id: DefId) -> Option<Ident> {
1770         self.hir().get_if_local(def_id).and_then(|node| node.ident())
1771     }
1772 
item_name_from_def_id(self, def_id: DefId) -> Option<Symbol>1773     fn item_name_from_def_id(self, def_id: DefId) -> Option<Symbol> {
1774         if def_id.index == CRATE_DEF_INDEX {
1775             Some(self.crate_name(def_id.krate))
1776         } else {
1777             let def_key = self.def_key(def_id);
1778             match def_key.disambiguated_data.data {
1779                 // The name of a constructor is that of its parent.
1780                 rustc_hir::definitions::DefPathData::Ctor => self.item_name_from_def_id(DefId {
1781                     krate: def_id.krate,
1782                     index: def_key.parent.unwrap(),
1783                 }),
1784                 _ => def_key.disambiguated_data.data.get_opt_name(),
1785             }
1786         }
1787     }
1788 
1789     /// Look up the name of an item across crates. This does not look at HIR.
1790     ///
1791     /// When possible, this function should be used for cross-crate lookups over
1792     /// [`opt_item_name`] to avoid invalidating the incremental cache. If you
1793     /// need to handle items without a name, or HIR items that will not be
1794     /// serialized cross-crate, or if you need the span of the item, use
1795     /// [`opt_item_name`] instead.
1796     ///
1797     /// [`opt_item_name`]: Self::opt_item_name
item_name(self, id: DefId) -> Symbol1798     pub fn item_name(self, id: DefId) -> Symbol {
1799         // Look at cross-crate items first to avoid invalidating the incremental cache
1800         // unless we have to.
1801         self.item_name_from_def_id(id).unwrap_or_else(|| {
1802             bug!("item_name: no name for {:?}", self.def_path(id));
1803         })
1804     }
1805 
1806     /// Look up the name and span of an item or [`Node`].
1807     ///
1808     /// See [`item_name`][Self::item_name] for more information.
opt_item_name(self, def_id: DefId) -> Option<Ident>1809     pub fn opt_item_name(self, def_id: DefId) -> Option<Ident> {
1810         // Look at the HIR first so the span will be correct if this is a local item.
1811         self.item_name_from_hir(def_id)
1812             .or_else(|| self.item_name_from_def_id(def_id).map(Ident::with_dummy_span))
1813     }
1814 
opt_associated_item(self, def_id: DefId) -> Option<&'tcx AssocItem>1815     pub fn opt_associated_item(self, def_id: DefId) -> Option<&'tcx AssocItem> {
1816         if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
1817             Some(self.associated_item(def_id))
1818         } else {
1819             None
1820         }
1821     }
1822 
field_index(self, hir_id: hir::HirId, typeck_results: &TypeckResults<'_>) -> usize1823     pub fn field_index(self, hir_id: hir::HirId, typeck_results: &TypeckResults<'_>) -> usize {
1824         typeck_results.field_indices().get(hir_id).cloned().expect("no index for a field")
1825     }
1826 
find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize>1827     pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
1828         variant.fields.iter().position(|field| self.hygienic_eq(ident, field.ident, variant.def_id))
1829     }
1830 
1831     /// Returns `true` if the impls are the same polarity and the trait either
1832     /// has no items or is annotated `#[marker]` and prevents item overrides.
impls_are_allowed_to_overlap( self, def_id1: DefId, def_id2: DefId, ) -> Option<ImplOverlapKind>1833     pub fn impls_are_allowed_to_overlap(
1834         self,
1835         def_id1: DefId,
1836         def_id2: DefId,
1837     ) -> Option<ImplOverlapKind> {
1838         // If either trait impl references an error, they're allowed to overlap,
1839         // as one of them essentially doesn't exist.
1840         if self.impl_trait_ref(def_id1).map_or(false, |tr| tr.references_error())
1841             || self.impl_trait_ref(def_id2).map_or(false, |tr| tr.references_error())
1842         {
1843             return Some(ImplOverlapKind::Permitted { marker: false });
1844         }
1845 
1846         match (self.impl_polarity(def_id1), self.impl_polarity(def_id2)) {
1847             (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
1848                 // `#[rustc_reservation_impl]` impls don't overlap with anything
1849                 debug!(
1850                     "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (reservations)",
1851                     def_id1, def_id2
1852                 );
1853                 return Some(ImplOverlapKind::Permitted { marker: false });
1854             }
1855             (ImplPolarity::Positive, ImplPolarity::Negative)
1856             | (ImplPolarity::Negative, ImplPolarity::Positive) => {
1857                 // `impl AutoTrait for Type` + `impl !AutoTrait for Type`
1858                 debug!(
1859                     "impls_are_allowed_to_overlap({:?}, {:?}) - None (differing polarities)",
1860                     def_id1, def_id2
1861                 );
1862                 return None;
1863             }
1864             (ImplPolarity::Positive, ImplPolarity::Positive)
1865             | (ImplPolarity::Negative, ImplPolarity::Negative) => {}
1866         };
1867 
1868         let is_marker_overlap = {
1869             let is_marker_impl = |def_id: DefId| -> bool {
1870                 let trait_ref = self.impl_trait_ref(def_id);
1871                 trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
1872             };
1873             is_marker_impl(def_id1) && is_marker_impl(def_id2)
1874         };
1875 
1876         if is_marker_overlap {
1877             debug!(
1878                 "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (marker overlap)",
1879                 def_id1, def_id2
1880             );
1881             Some(ImplOverlapKind::Permitted { marker: true })
1882         } else {
1883             if let Some(self_ty1) = self.issue33140_self_ty(def_id1) {
1884                 if let Some(self_ty2) = self.issue33140_self_ty(def_id2) {
1885                     if self_ty1 == self_ty2 {
1886                         debug!(
1887                             "impls_are_allowed_to_overlap({:?}, {:?}) - issue #33140 HACK",
1888                             def_id1, def_id2
1889                         );
1890                         return Some(ImplOverlapKind::Issue33140);
1891                     } else {
1892                         debug!(
1893                             "impls_are_allowed_to_overlap({:?}, {:?}) - found {:?} != {:?}",
1894                             def_id1, def_id2, self_ty1, self_ty2
1895                         );
1896                     }
1897                 }
1898             }
1899 
1900             debug!("impls_are_allowed_to_overlap({:?}, {:?}) = None", def_id1, def_id2);
1901             None
1902         }
1903     }
1904 
1905     /// Returns `ty::VariantDef` if `res` refers to a struct,
1906     /// or variant or their constructors, panics otherwise.
expect_variant_res(self, res: Res) -> &'tcx VariantDef1907     pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
1908         match res {
1909             Res::Def(DefKind::Variant, did) => {
1910                 let enum_did = self.parent(did).unwrap();
1911                 self.adt_def(enum_did).variant_with_id(did)
1912             }
1913             Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
1914             Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
1915                 let variant_did = self.parent(variant_ctor_did).unwrap();
1916                 let enum_did = self.parent(variant_did).unwrap();
1917                 self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
1918             }
1919             Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
1920                 let struct_did = self.parent(ctor_did).expect("struct ctor has no parent");
1921                 self.adt_def(struct_did).non_enum_variant()
1922             }
1923             _ => bug!("expect_variant_res used with unexpected res {:?}", res),
1924         }
1925     }
1926 
1927     /// Returns the possibly-auto-generated MIR of a `(DefId, Subst)` pair.
instance_mir(self, instance: ty::InstanceDef<'tcx>) -> &'tcx Body<'tcx>1928     pub fn instance_mir(self, instance: ty::InstanceDef<'tcx>) -> &'tcx Body<'tcx> {
1929         match instance {
1930             ty::InstanceDef::Item(def) => match self.def_kind(def.did) {
1931                 DefKind::Const
1932                 | DefKind::Static
1933                 | DefKind::AssocConst
1934                 | DefKind::Ctor(..)
1935                 | DefKind::AnonConst
1936                 | DefKind::InlineConst => self.mir_for_ctfe_opt_const_arg(def),
1937                 // If the caller wants `mir_for_ctfe` of a function they should not be using
1938                 // `instance_mir`, so we'll assume const fn also wants the optimized version.
1939                 _ => {
1940                     assert_eq!(def.const_param_did, None);
1941                     self.optimized_mir(def.did)
1942                 }
1943             },
1944             ty::InstanceDef::VtableShim(..)
1945             | ty::InstanceDef::ReifyShim(..)
1946             | ty::InstanceDef::Intrinsic(..)
1947             | ty::InstanceDef::FnPtrShim(..)
1948             | ty::InstanceDef::Virtual(..)
1949             | ty::InstanceDef::ClosureOnceShim { .. }
1950             | ty::InstanceDef::DropGlue(..)
1951             | ty::InstanceDef::CloneShim(..) => self.mir_shims(instance),
1952         }
1953     }
1954 
1955     /// Gets the attributes of a definition.
get_attrs(self, did: DefId) -> Attributes<'tcx>1956     pub fn get_attrs(self, did: DefId) -> Attributes<'tcx> {
1957         if let Some(did) = did.as_local() {
1958             self.hir().attrs(self.hir().local_def_id_to_hir_id(did))
1959         } else {
1960             self.item_attrs(did)
1961         }
1962     }
1963 
1964     /// Determines whether an item is annotated with an attribute.
has_attr(self, did: DefId, attr: Symbol) -> bool1965     pub fn has_attr(self, did: DefId, attr: Symbol) -> bool {
1966         self.sess.contains_name(&self.get_attrs(did), attr)
1967     }
1968 
1969     /// Determines whether an item is annotated with `doc(hidden)`.
is_doc_hidden(self, did: DefId) -> bool1970     pub fn is_doc_hidden(self, did: DefId) -> bool {
1971         self.get_attrs(did)
1972             .iter()
1973             .filter_map(|attr| if attr.has_name(sym::doc) { attr.meta_item_list() } else { None })
1974             .any(|items| items.iter().any(|item| item.has_name(sym::hidden)))
1975     }
1976 
1977     /// Returns `true` if this is an `auto trait`.
trait_is_auto(self, trait_def_id: DefId) -> bool1978     pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
1979         self.trait_def(trait_def_id).has_auto_impl
1980     }
1981 
1982     /// Returns layout of a generator. Layout might be unavailable if the
1983     /// generator is tainted by errors.
generator_layout(self, def_id: DefId) -> Option<&'tcx GeneratorLayout<'tcx>>1984     pub fn generator_layout(self, def_id: DefId) -> Option<&'tcx GeneratorLayout<'tcx>> {
1985         self.optimized_mir(def_id).generator_layout()
1986     }
1987 
1988     /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
1989     /// If it implements no trait, returns `None`.
trait_id_of_impl(self, def_id: DefId) -> Option<DefId>1990     pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
1991         self.impl_trait_ref(def_id).map(|tr| tr.def_id)
1992     }
1993 
1994     /// If the given defid describes a method belonging to an impl, returns the
1995     /// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
impl_of_method(self, def_id: DefId) -> Option<DefId>1996     pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
1997         self.opt_associated_item(def_id).and_then(|trait_item| match trait_item.container {
1998             TraitContainer(_) => None,
1999             ImplContainer(def_id) => Some(def_id),
2000         })
2001     }
2002 
2003     /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
2004     /// with the name of the crate containing the impl.
span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol>2005     pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2006         if let Some(impl_did) = impl_did.as_local() {
2007             let hir_id = self.hir().local_def_id_to_hir_id(impl_did);
2008             Ok(self.hir().span(hir_id))
2009         } else {
2010             Err(self.crate_name(impl_did.krate))
2011         }
2012     }
2013 
2014     /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
2015     /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
2016     /// definition's parent/scope to perform comparison.
hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool2017     pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
2018         // We could use `Ident::eq` here, but we deliberately don't. The name
2019         // comparison fails frequently, and we want to avoid the expensive
2020         // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
2021         use_name.name == def_name.name
2022             && use_name
2023                 .span
2024                 .ctxt()
2025                 .hygienic_eq(def_name.span.ctxt(), self.expn_that_defined(def_parent_def_id))
2026     }
2027 
adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident2028     pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
2029         ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope));
2030         ident
2031     }
2032 
adjust_ident_and_get_scope( self, mut ident: Ident, scope: DefId, block: hir::HirId, ) -> (Ident, DefId)2033     pub fn adjust_ident_and_get_scope(
2034         self,
2035         mut ident: Ident,
2036         scope: DefId,
2037         block: hir::HirId,
2038     ) -> (Ident, DefId) {
2039         let scope = ident
2040             .span
2041             .normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope))
2042             .and_then(|actual_expansion| actual_expansion.expn_data().parent_module)
2043             .unwrap_or_else(|| self.parent_module(block).to_def_id());
2044         (ident, scope)
2045     }
2046 
is_object_safe(self, key: DefId) -> bool2047     pub fn is_object_safe(self, key: DefId) -> bool {
2048         self.object_safety_violations(key).is_empty()
2049     }
2050 }
2051 
2052 /// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition.
is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId>2053 pub fn is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> {
2054     if let Some(def_id) = def_id.as_local() {
2055         if let Node::Item(item) = tcx.hir().get(tcx.hir().local_def_id_to_hir_id(def_id)) {
2056             if let hir::ItemKind::OpaqueTy(ref opaque_ty) = item.kind {
2057                 return opaque_ty.impl_trait_fn;
2058             }
2059         }
2060     }
2061     None
2062 }
2063 
int_ty(ity: ast::IntTy) -> IntTy2064 pub fn int_ty(ity: ast::IntTy) -> IntTy {
2065     match ity {
2066         ast::IntTy::Isize => IntTy::Isize,
2067         ast::IntTy::I8 => IntTy::I8,
2068         ast::IntTy::I16 => IntTy::I16,
2069         ast::IntTy::I32 => IntTy::I32,
2070         ast::IntTy::I64 => IntTy::I64,
2071         ast::IntTy::I128 => IntTy::I128,
2072     }
2073 }
2074 
uint_ty(uty: ast::UintTy) -> UintTy2075 pub fn uint_ty(uty: ast::UintTy) -> UintTy {
2076     match uty {
2077         ast::UintTy::Usize => UintTy::Usize,
2078         ast::UintTy::U8 => UintTy::U8,
2079         ast::UintTy::U16 => UintTy::U16,
2080         ast::UintTy::U32 => UintTy::U32,
2081         ast::UintTy::U64 => UintTy::U64,
2082         ast::UintTy::U128 => UintTy::U128,
2083     }
2084 }
2085 
float_ty(fty: ast::FloatTy) -> FloatTy2086 pub fn float_ty(fty: ast::FloatTy) -> FloatTy {
2087     match fty {
2088         ast::FloatTy::F32 => FloatTy::F32,
2089         ast::FloatTy::F64 => FloatTy::F64,
2090     }
2091 }
2092 
ast_int_ty(ity: IntTy) -> ast::IntTy2093 pub fn ast_int_ty(ity: IntTy) -> ast::IntTy {
2094     match ity {
2095         IntTy::Isize => ast::IntTy::Isize,
2096         IntTy::I8 => ast::IntTy::I8,
2097         IntTy::I16 => ast::IntTy::I16,
2098         IntTy::I32 => ast::IntTy::I32,
2099         IntTy::I64 => ast::IntTy::I64,
2100         IntTy::I128 => ast::IntTy::I128,
2101     }
2102 }
2103 
ast_uint_ty(uty: UintTy) -> ast::UintTy2104 pub fn ast_uint_ty(uty: UintTy) -> ast::UintTy {
2105     match uty {
2106         UintTy::Usize => ast::UintTy::Usize,
2107         UintTy::U8 => ast::UintTy::U8,
2108         UintTy::U16 => ast::UintTy::U16,
2109         UintTy::U32 => ast::UintTy::U32,
2110         UintTy::U64 => ast::UintTy::U64,
2111         UintTy::U128 => ast::UintTy::U128,
2112     }
2113 }
2114 
provide(providers: &mut ty::query::Providers)2115 pub fn provide(providers: &mut ty::query::Providers) {
2116     closure::provide(providers);
2117     context::provide(providers);
2118     erase_regions::provide(providers);
2119     layout::provide(providers);
2120     util::provide(providers);
2121     print::provide(providers);
2122     super::util::bug::provide(providers);
2123     super::middle::provide(providers);
2124     *providers = ty::query::Providers {
2125         trait_impls_of: trait_def::trait_impls_of_provider,
2126         type_uninhabited_from: inhabitedness::type_uninhabited_from,
2127         const_param_default: consts::const_param_default,
2128         vtable_allocation: vtable::vtable_allocation_provider,
2129         ..*providers
2130     };
2131 }
2132 
2133 /// A map for the local crate mapping each type to a vector of its
2134 /// inherent impls. This is not meant to be used outside of coherence;
2135 /// rather, you should request the vector for a specific type via
2136 /// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
2137 /// (constructing this map requires touching the entire crate).
2138 #[derive(Clone, Debug, Default, HashStable)]
2139 pub struct CrateInherentImpls {
2140     pub inherent_impls: LocalDefIdMap<Vec<DefId>>,
2141 }
2142 
2143 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
2144 pub struct SymbolName<'tcx> {
2145     /// `&str` gives a consistent ordering, which ensures reproducible builds.
2146     pub name: &'tcx str,
2147 }
2148 
2149 impl<'tcx> SymbolName<'tcx> {
new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx>2150     pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
2151         SymbolName {
2152             name: unsafe { str::from_utf8_unchecked(tcx.arena.alloc_slice(name.as_bytes())) },
2153         }
2154     }
2155 }
2156 
2157 impl<'tcx> fmt::Display for SymbolName<'tcx> {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result2158     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2159         fmt::Display::fmt(&self.name, fmt)
2160     }
2161 }
2162 
2163 impl<'tcx> fmt::Debug for SymbolName<'tcx> {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result2164     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2165         fmt::Display::fmt(&self.name, fmt)
2166     }
2167 }
2168 
2169 #[derive(Debug, Default, Copy, Clone)]
2170 pub struct FoundRelationships {
2171     /// This is true if we identified that this Ty (`?T`) is found in a `?T: Foo`
2172     /// obligation, where:
2173     ///
2174     ///  * `Foo` is not `Sized`
2175     ///  * `(): Foo` may be satisfied
2176     pub self_in_trait: bool,
2177     /// This is true if we identified that this Ty (`?T`) is found in a `<_ as
2178     /// _>::AssocType = ?T`
2179     pub output: bool,
2180 }
2181