1 // Deque implementation -*- C++ -*-
2
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
11
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 // USA.
21
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
30
31 /*
32 *
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
35 *
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation. Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose. It is provided "as is" without express or implied warranty.
43 *
44 *
45 * Copyright (c) 1997
46 * Silicon Graphics Computer Systems, Inc.
47 *
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation. Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose. It is provided "as is" without express or implied warranty.
55 */
56
57 /** @file stl_deque.h
58 * This is an internal header file, included by other library headers.
59 * You should not attempt to use it directly.
60 */
61
62 #ifndef _DEQUE_H
63 #define _DEQUE_H 1
64
65 #include <bits/concept_check.h>
66 #include <bits/stl_iterator_base_types.h>
67 #include <bits/stl_iterator_base_funcs.h>
68
_GLIBCXX_BEGIN_NESTED_NAMESPACE(std,_GLIBCXX_STD)69 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
70
71 /**
72 * @if maint
73 * @brief This function controls the size of memory nodes.
74 * @param size The size of an element.
75 * @return The number (not byte size) of elements per node.
76 *
77 * This function started off as a compiler kludge from SGI, but seems to
78 * be a useful wrapper around a repeated constant expression. The '512' is
79 * tuneable (and no other code needs to change), but no investigation has
80 * been done since inheriting the SGI code.
81 * @endif
82 */
83 inline size_t
84 __deque_buf_size(size_t __size)
85 { return __size < 512 ? size_t(512 / __size) : size_t(1); }
86
87
88 /**
89 * @brief A deque::iterator.
90 *
91 * Quite a bit of intelligence here. Much of the functionality of
92 * deque is actually passed off to this class. A deque holds two
93 * of these internally, marking its valid range. Access to
94 * elements is done as offsets of either of those two, relying on
95 * operator overloading in this class.
96 *
97 * @if maint
98 * All the functions are op overloads except for _M_set_node.
99 * @endif
100 */
101 template<typename _Tp, typename _Ref, typename _Ptr>
102 struct _Deque_iterator
103 {
104 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
105 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
106
_S_buffer_size_Deque_iterator107 static size_t _S_buffer_size()
108 { return __deque_buf_size(sizeof(_Tp)); }
109
110 typedef std::random_access_iterator_tag iterator_category;
111 typedef _Tp value_type;
112 typedef _Ptr pointer;
113 typedef _Ref reference;
114 typedef size_t size_type;
115 typedef ptrdiff_t difference_type;
116 typedef _Tp** _Map_pointer;
117 typedef _Deque_iterator _Self;
118
119 _Tp* _M_cur;
120 _Tp* _M_first;
121 _Tp* _M_last;
122 _Map_pointer _M_node;
123
_Deque_iterator_Deque_iterator124 _Deque_iterator(_Tp* __x, _Map_pointer __y)
125 : _M_cur(__x), _M_first(*__y),
126 _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
127
_Deque_iterator_Deque_iterator128 _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
129
_Deque_iterator_Deque_iterator130 _Deque_iterator(const iterator& __x)
131 : _M_cur(__x._M_cur), _M_first(__x._M_first),
132 _M_last(__x._M_last), _M_node(__x._M_node) {}
133
134 reference
135 operator*() const
136 { return *_M_cur; }
137
138 pointer
139 operator->() const
140 { return _M_cur; }
141
142 _Self&
143 operator++()
144 {
145 ++_M_cur;
146 if (_M_cur == _M_last)
147 {
148 _M_set_node(_M_node + 1);
149 _M_cur = _M_first;
150 }
151 return *this;
152 }
153
154 _Self
155 operator++(int)
156 {
157 _Self __tmp = *this;
158 ++*this;
159 return __tmp;
160 }
161
162 _Self&
163 operator--()
164 {
165 if (_M_cur == _M_first)
166 {
167 _M_set_node(_M_node - 1);
168 _M_cur = _M_last;
169 }
170 --_M_cur;
171 return *this;
172 }
173
174 _Self
175 operator--(int)
176 {
177 _Self __tmp = *this;
178 --*this;
179 return __tmp;
180 }
181
182 _Self&
183 operator+=(difference_type __n)
184 {
185 const difference_type __offset = __n + (_M_cur - _M_first);
186 if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
187 _M_cur += __n;
188 else
189 {
190 const difference_type __node_offset =
191 __offset > 0 ? __offset / difference_type(_S_buffer_size())
192 : -difference_type((-__offset - 1)
193 / _S_buffer_size()) - 1;
194 _M_set_node(_M_node + __node_offset);
195 _M_cur = _M_first + (__offset - __node_offset
196 * difference_type(_S_buffer_size()));
197 }
198 return *this;
199 }
200
201 _Self
202 operator+(difference_type __n) const
203 {
204 _Self __tmp = *this;
205 return __tmp += __n;
206 }
207
208 _Self&
209 operator-=(difference_type __n)
210 { return *this += -__n; }
211
212 _Self
213 operator-(difference_type __n) const
214 {
215 _Self __tmp = *this;
216 return __tmp -= __n;
217 }
218
219 reference
220 operator[](difference_type __n) const
221 { return *(*this + __n); }
222
223 /** @if maint
224 * Prepares to traverse new_node. Sets everything except
225 * _M_cur, which should therefore be set by the caller
226 * immediately afterwards, based on _M_first and _M_last.
227 * @endif
228 */
229 void
_M_set_node_Deque_iterator230 _M_set_node(_Map_pointer __new_node)
231 {
232 _M_node = __new_node;
233 _M_first = *__new_node;
234 _M_last = _M_first + difference_type(_S_buffer_size());
235 }
236 };
237
238 // Note: we also provide overloads whose operands are of the same type in
239 // order to avoid ambiguous overload resolution when std::rel_ops operators
240 // are in scope (for additional details, see libstdc++/3628)
241 template<typename _Tp, typename _Ref, typename _Ptr>
242 inline bool
243 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
244 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
245 { return __x._M_cur == __y._M_cur; }
246
247 template<typename _Tp, typename _RefL, typename _PtrL,
248 typename _RefR, typename _PtrR>
249 inline bool
250 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
251 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
252 { return __x._M_cur == __y._M_cur; }
253
254 template<typename _Tp, typename _Ref, typename _Ptr>
255 inline bool
256 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
257 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
258 { return !(__x == __y); }
259
260 template<typename _Tp, typename _RefL, typename _PtrL,
261 typename _RefR, typename _PtrR>
262 inline bool
263 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
264 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
265 { return !(__x == __y); }
266
267 template<typename _Tp, typename _Ref, typename _Ptr>
268 inline bool
269 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
270 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
271 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
272 : (__x._M_node < __y._M_node); }
273
274 template<typename _Tp, typename _RefL, typename _PtrL,
275 typename _RefR, typename _PtrR>
276 inline bool
277 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
278 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
279 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
280 : (__x._M_node < __y._M_node); }
281
282 template<typename _Tp, typename _Ref, typename _Ptr>
283 inline bool
284 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
285 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
286 { return __y < __x; }
287
288 template<typename _Tp, typename _RefL, typename _PtrL,
289 typename _RefR, typename _PtrR>
290 inline bool
291 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
292 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
293 { return __y < __x; }
294
295 template<typename _Tp, typename _Ref, typename _Ptr>
296 inline bool
297 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
298 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
299 { return !(__y < __x); }
300
301 template<typename _Tp, typename _RefL, typename _PtrL,
302 typename _RefR, typename _PtrR>
303 inline bool
304 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
305 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
306 { return !(__y < __x); }
307
308 template<typename _Tp, typename _Ref, typename _Ptr>
309 inline bool
310 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
311 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
312 { return !(__x < __y); }
313
314 template<typename _Tp, typename _RefL, typename _PtrL,
315 typename _RefR, typename _PtrR>
316 inline bool
317 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
318 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
319 { return !(__x < __y); }
320
321 // _GLIBCXX_RESOLVE_LIB_DEFECTS
322 // According to the resolution of DR179 not only the various comparison
323 // operators but also operator- must accept mixed iterator/const_iterator
324 // parameters.
325 template<typename _Tp, typename _Ref, typename _Ptr>
326 inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
327 operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
328 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
329 {
330 return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
331 (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
332 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
333 + (__y._M_last - __y._M_cur);
334 }
335
336 template<typename _Tp, typename _RefL, typename _PtrL,
337 typename _RefR, typename _PtrR>
338 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
339 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
340 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
341 {
342 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
343 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
344 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
345 + (__y._M_last - __y._M_cur);
346 }
347
348 template<typename _Tp, typename _Ref, typename _Ptr>
349 inline _Deque_iterator<_Tp, _Ref, _Ptr>
350 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
351 { return __x + __n; }
352
353 template<typename _Tp>
354 void
355 fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>& __first,
356 const _Deque_iterator<_Tp, _Tp&, _Tp*>& __last, const _Tp& __value);
357
358 /**
359 * @if maint
360 * Deque base class. This class provides the unified face for %deque's
361 * allocation. This class's constructor and destructor allocate and
362 * deallocate (but do not initialize) storage. This makes %exception
363 * safety easier.
364 *
365 * Nothing in this class ever constructs or destroys an actual Tp element.
366 * (Deque handles that itself.) Only/All memory management is performed
367 * here.
368 * @endif
369 */
370 template<typename _Tp, typename _Alloc>
371 class _Deque_base
372 {
373 public:
374 typedef _Alloc allocator_type;
375
376 allocator_type
get_allocator()377 get_allocator() const
378 { return allocator_type(_M_get_Tp_allocator()); }
379
380 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
381 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
382
_Deque_base(const allocator_type & __a,size_t __num_elements)383 _Deque_base(const allocator_type& __a, size_t __num_elements)
384 : _M_impl(__a)
385 { _M_initialize_map(__num_elements); }
386
_Deque_base(const allocator_type & __a)387 _Deque_base(const allocator_type& __a)
388 : _M_impl(__a)
389 { }
390
391 ~_Deque_base();
392
393 protected:
394 //This struct encapsulates the implementation of the std::deque
395 //standard container and at the same time makes use of the EBO
396 //for empty allocators.
397 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
398
399 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
400
401 struct _Deque_impl
402 : public _Tp_alloc_type
403 {
404 _Tp** _M_map;
405 size_t _M_map_size;
406 iterator _M_start;
407 iterator _M_finish;
408
_Deque_impl_Deque_impl409 _Deque_impl(const _Tp_alloc_type& __a)
410 : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
411 _M_start(), _M_finish()
412 { }
413 };
414
415 _Tp_alloc_type&
_M_get_Tp_allocator()416 _M_get_Tp_allocator()
417 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
418
419 const _Tp_alloc_type&
_M_get_Tp_allocator()420 _M_get_Tp_allocator() const
421 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
422
423 _Map_alloc_type
_M_get_map_allocator()424 _M_get_map_allocator() const
425 { return _Map_alloc_type(_M_get_Tp_allocator()); }
426
427 _Tp*
_M_allocate_node()428 _M_allocate_node()
429 {
430 return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
431 }
432
433 void
_M_deallocate_node(_Tp * __p)434 _M_deallocate_node(_Tp* __p)
435 {
436 _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
437 }
438
439 _Tp**
_M_allocate_map(size_t __n)440 _M_allocate_map(size_t __n)
441 { return _M_get_map_allocator().allocate(__n); }
442
443 void
_M_deallocate_map(_Tp ** __p,size_t __n)444 _M_deallocate_map(_Tp** __p, size_t __n)
445 { _M_get_map_allocator().deallocate(__p, __n); }
446
447 protected:
448 void _M_initialize_map(size_t);
449 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
450 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
451 enum { _S_initial_map_size = 8 };
452
453 _Deque_impl _M_impl;
454 };
455
456 template<typename _Tp, typename _Alloc>
457 _Deque_base<_Tp, _Alloc>::
~_Deque_base()458 ~_Deque_base()
459 {
460 if (this->_M_impl._M_map)
461 {
462 _M_destroy_nodes(this->_M_impl._M_start._M_node,
463 this->_M_impl._M_finish._M_node + 1);
464 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
465 }
466 }
467
468 /**
469 * @if maint
470 * @brief Layout storage.
471 * @param num_elements The count of T's for which to allocate space
472 * at first.
473 * @return Nothing.
474 *
475 * The initial underlying memory layout is a bit complicated...
476 * @endif
477 */
478 template<typename _Tp, typename _Alloc>
479 void
480 _Deque_base<_Tp, _Alloc>::
_M_initialize_map(size_t __num_elements)481 _M_initialize_map(size_t __num_elements)
482 {
483 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
484 + 1);
485
486 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
487 size_t(__num_nodes + 2));
488 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
489
490 // For "small" maps (needing less than _M_map_size nodes), allocation
491 // starts in the middle elements and grows outwards. So nstart may be
492 // the beginning of _M_map, but for small maps it may be as far in as
493 // _M_map+3.
494
495 _Tp** __nstart = (this->_M_impl._M_map
496 + (this->_M_impl._M_map_size - __num_nodes) / 2);
497 _Tp** __nfinish = __nstart + __num_nodes;
498
499 try
500 { _M_create_nodes(__nstart, __nfinish); }
501 catch(...)
502 {
503 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
504 this->_M_impl._M_map = 0;
505 this->_M_impl._M_map_size = 0;
506 __throw_exception_again;
507 }
508
509 this->_M_impl._M_start._M_set_node(__nstart);
510 this->_M_impl._M_finish._M_set_node(__nfinish - 1);
511 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
512 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
513 + __num_elements
514 % __deque_buf_size(sizeof(_Tp)));
515 }
516
517 template<typename _Tp, typename _Alloc>
518 void
519 _Deque_base<_Tp, _Alloc>::
_M_create_nodes(_Tp ** __nstart,_Tp ** __nfinish)520 _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
521 {
522 _Tp** __cur;
523 try
524 {
525 for (__cur = __nstart; __cur < __nfinish; ++__cur)
526 *__cur = this->_M_allocate_node();
527 }
528 catch(...)
529 {
530 _M_destroy_nodes(__nstart, __cur);
531 __throw_exception_again;
532 }
533 }
534
535 template<typename _Tp, typename _Alloc>
536 void
537 _Deque_base<_Tp, _Alloc>::
_M_destroy_nodes(_Tp ** __nstart,_Tp ** __nfinish)538 _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
539 {
540 for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
541 _M_deallocate_node(*__n);
542 }
543
544 /**
545 * @brief A standard container using fixed-size memory allocation and
546 * constant-time manipulation of elements at either end.
547 *
548 * @ingroup Containers
549 * @ingroup Sequences
550 *
551 * Meets the requirements of a <a href="tables.html#65">container</a>, a
552 * <a href="tables.html#66">reversible container</a>, and a
553 * <a href="tables.html#67">sequence</a>, including the
554 * <a href="tables.html#68">optional sequence requirements</a>.
555 *
556 * In previous HP/SGI versions of deque, there was an extra template
557 * parameter so users could control the node size. This extension turned
558 * out to violate the C++ standard (it can be detected using template
559 * template parameters), and it was removed.
560 *
561 * @if maint
562 * Here's how a deque<Tp> manages memory. Each deque has 4 members:
563 *
564 * - Tp** _M_map
565 * - size_t _M_map_size
566 * - iterator _M_start, _M_finish
567 *
568 * map_size is at least 8. %map is an array of map_size
569 * pointers-to-"nodes". (The name %map has nothing to do with the
570 * std::map class, and "nodes" should not be confused with
571 * std::list's usage of "node".)
572 *
573 * A "node" has no specific type name as such, but it is referred
574 * to as "node" in this file. It is a simple array-of-Tp. If Tp
575 * is very large, there will be one Tp element per node (i.e., an
576 * "array" of one). For non-huge Tp's, node size is inversely
577 * related to Tp size: the larger the Tp, the fewer Tp's will fit
578 * in a node. The goal here is to keep the total size of a node
579 * relatively small and constant over different Tp's, to improve
580 * allocator efficiency.
581 *
582 * Not every pointer in the %map array will point to a node. If
583 * the initial number of elements in the deque is small, the
584 * /middle/ %map pointers will be valid, and the ones at the edges
585 * will be unused. This same situation will arise as the %map
586 * grows: available %map pointers, if any, will be on the ends. As
587 * new nodes are created, only a subset of the %map's pointers need
588 * to be copied "outward".
589 *
590 * Class invariants:
591 * - For any nonsingular iterator i:
592 * - i.node points to a member of the %map array. (Yes, you read that
593 * correctly: i.node does not actually point to a node.) The member of
594 * the %map array is what actually points to the node.
595 * - i.first == *(i.node) (This points to the node (first Tp element).)
596 * - i.last == i.first + node_size
597 * - i.cur is a pointer in the range [i.first, i.last). NOTE:
598 * the implication of this is that i.cur is always a dereferenceable
599 * pointer, even if i is a past-the-end iterator.
600 * - Start and Finish are always nonsingular iterators. NOTE: this
601 * means that an empty deque must have one node, a deque with <N
602 * elements (where N is the node buffer size) must have one node, a
603 * deque with N through (2N-1) elements must have two nodes, etc.
604 * - For every node other than start.node and finish.node, every
605 * element in the node is an initialized object. If start.node ==
606 * finish.node, then [start.cur, finish.cur) are initialized
607 * objects, and the elements outside that range are uninitialized
608 * storage. Otherwise, [start.cur, start.last) and [finish.first,
609 * finish.cur) are initialized objects, and [start.first, start.cur)
610 * and [finish.cur, finish.last) are uninitialized storage.
611 * - [%map, %map + map_size) is a valid, non-empty range.
612 * - [start.node, finish.node] is a valid range contained within
613 * [%map, %map + map_size).
614 * - A pointer in the range [%map, %map + map_size) points to an allocated
615 * node if and only if the pointer is in the range
616 * [start.node, finish.node].
617 *
618 * Here's the magic: nothing in deque is "aware" of the discontiguous
619 * storage!
620 *
621 * The memory setup and layout occurs in the parent, _Base, and the iterator
622 * class is entirely responsible for "leaping" from one node to the next.
623 * All the implementation routines for deque itself work only through the
624 * start and finish iterators. This keeps the routines simple and sane,
625 * and we can use other standard algorithms as well.
626 * @endif
627 */
628 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
629 class deque : protected _Deque_base<_Tp, _Alloc>
630 {
631 // concept requirements
632 typedef typename _Alloc::value_type _Alloc_value_type;
633 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
634 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
635
636 typedef _Deque_base<_Tp, _Alloc> _Base;
637 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
638
639 public:
640 typedef _Tp value_type;
641 typedef typename _Tp_alloc_type::pointer pointer;
642 typedef typename _Tp_alloc_type::const_pointer const_pointer;
643 typedef typename _Tp_alloc_type::reference reference;
644 typedef typename _Tp_alloc_type::const_reference const_reference;
645 typedef typename _Base::iterator iterator;
646 typedef typename _Base::const_iterator const_iterator;
647 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
648 typedef std::reverse_iterator<iterator> reverse_iterator;
649 typedef size_t size_type;
650 typedef ptrdiff_t difference_type;
651 typedef _Alloc allocator_type;
652
653 protected:
654 typedef pointer* _Map_pointer;
655
_S_buffer_size()656 static size_t _S_buffer_size()
657 { return __deque_buf_size(sizeof(_Tp)); }
658
659 // Functions controlling memory layout, and nothing else.
660 using _Base::_M_initialize_map;
661 using _Base::_M_create_nodes;
662 using _Base::_M_destroy_nodes;
663 using _Base::_M_allocate_node;
664 using _Base::_M_deallocate_node;
665 using _Base::_M_allocate_map;
666 using _Base::_M_deallocate_map;
667 using _Base::_M_get_Tp_allocator;
668
669 /** @if maint
670 * A total of four data members accumulated down the heirarchy.
671 * May be accessed via _M_impl.*
672 * @endif
673 */
674 using _Base::_M_impl;
675
676 public:
677 // [23.2.1.1] construct/copy/destroy
678 // (assign() and get_allocator() are also listed in this section)
679 /**
680 * @brief Default constructor creates no elements.
681 */
682 explicit
683 deque(const allocator_type& __a = allocator_type())
684 : _Base(__a, 0) {}
685
686 /**
687 * @brief Create a %deque with copies of an exemplar element.
688 * @param n The number of elements to initially create.
689 * @param value An element to copy.
690 *
691 * This constructor fills the %deque with @a n copies of @a value.
692 */
693 explicit
694 deque(size_type __n, const value_type& __value = value_type(),
695 const allocator_type& __a = allocator_type())
_Base(__a,__n)696 : _Base(__a, __n)
697 { _M_fill_initialize(__value); }
698
699 /**
700 * @brief %Deque copy constructor.
701 * @param x A %deque of identical element and allocator types.
702 *
703 * The newly-created %deque uses a copy of the allocation object used
704 * by @a x.
705 */
deque(const deque & __x)706 deque(const deque& __x)
707 : _Base(__x._M_get_Tp_allocator(), __x.size())
708 { std::__uninitialized_copy_a(__x.begin(), __x.end(),
709 this->_M_impl._M_start,
710 _M_get_Tp_allocator()); }
711
712 /**
713 * @brief Builds a %deque from a range.
714 * @param first An input iterator.
715 * @param last An input iterator.
716 *
717 * Create a %deque consisting of copies of the elements from [first,
718 * last).
719 *
720 * If the iterators are forward, bidirectional, or random-access, then
721 * this will call the elements' copy constructor N times (where N is
722 * distance(first,last)) and do no memory reallocation. But if only
723 * input iterators are used, then this will do at most 2N calls to the
724 * copy constructor, and logN memory reallocations.
725 */
726 template<typename _InputIterator>
727 deque(_InputIterator __first, _InputIterator __last,
728 const allocator_type& __a = allocator_type())
_Base(__a)729 : _Base(__a)
730 {
731 // Check whether it's an integral type. If so, it's not an iterator.
732 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
733 _M_initialize_dispatch(__first, __last, _Integral());
734 }
735
736 /**
737 * The dtor only erases the elements, and note that if the elements
738 * themselves are pointers, the pointed-to memory is not touched in any
739 * way. Managing the pointer is the user's responsibilty.
740 */
~deque()741 ~deque()
742 { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
743
744 /**
745 * @brief %Deque assignment operator.
746 * @param x A %deque of identical element and allocator types.
747 *
748 * All the elements of @a x are copied, but unlike the copy constructor,
749 * the allocator object is not copied.
750 */
751 deque&
752 operator=(const deque& __x);
753
754 /**
755 * @brief Assigns a given value to a %deque.
756 * @param n Number of elements to be assigned.
757 * @param val Value to be assigned.
758 *
759 * This function fills a %deque with @a n copies of the given
760 * value. Note that the assignment completely changes the
761 * %deque and that the resulting %deque's size is the same as
762 * the number of elements assigned. Old data may be lost.
763 */
764 void
assign(size_type __n,const value_type & __val)765 assign(size_type __n, const value_type& __val)
766 { _M_fill_assign(__n, __val); }
767
768 /**
769 * @brief Assigns a range to a %deque.
770 * @param first An input iterator.
771 * @param last An input iterator.
772 *
773 * This function fills a %deque with copies of the elements in the
774 * range [first,last).
775 *
776 * Note that the assignment completely changes the %deque and that the
777 * resulting %deque's size is the same as the number of elements
778 * assigned. Old data may be lost.
779 */
780 template<typename _InputIterator>
781 void
assign(_InputIterator __first,_InputIterator __last)782 assign(_InputIterator __first, _InputIterator __last)
783 {
784 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
785 _M_assign_dispatch(__first, __last, _Integral());
786 }
787
788 /// Get a copy of the memory allocation object.
789 allocator_type
get_allocator()790 get_allocator() const
791 { return _Base::get_allocator(); }
792
793 // iterators
794 /**
795 * Returns a read/write iterator that points to the first element in the
796 * %deque. Iteration is done in ordinary element order.
797 */
798 iterator
begin()799 begin()
800 { return this->_M_impl._M_start; }
801
802 /**
803 * Returns a read-only (constant) iterator that points to the first
804 * element in the %deque. Iteration is done in ordinary element order.
805 */
806 const_iterator
begin()807 begin() const
808 { return this->_M_impl._M_start; }
809
810 /**
811 * Returns a read/write iterator that points one past the last
812 * element in the %deque. Iteration is done in ordinary
813 * element order.
814 */
815 iterator
end()816 end()
817 { return this->_M_impl._M_finish; }
818
819 /**
820 * Returns a read-only (constant) iterator that points one past
821 * the last element in the %deque. Iteration is done in
822 * ordinary element order.
823 */
824 const_iterator
end()825 end() const
826 { return this->_M_impl._M_finish; }
827
828 /**
829 * Returns a read/write reverse iterator that points to the
830 * last element in the %deque. Iteration is done in reverse
831 * element order.
832 */
833 reverse_iterator
rbegin()834 rbegin()
835 { return reverse_iterator(this->_M_impl._M_finish); }
836
837 /**
838 * Returns a read-only (constant) reverse iterator that points
839 * to the last element in the %deque. Iteration is done in
840 * reverse element order.
841 */
842 const_reverse_iterator
rbegin()843 rbegin() const
844 { return const_reverse_iterator(this->_M_impl._M_finish); }
845
846 /**
847 * Returns a read/write reverse iterator that points to one
848 * before the first element in the %deque. Iteration is done
849 * in reverse element order.
850 */
851 reverse_iterator
rend()852 rend()
853 { return reverse_iterator(this->_M_impl._M_start); }
854
855 /**
856 * Returns a read-only (constant) reverse iterator that points
857 * to one before the first element in the %deque. Iteration is
858 * done in reverse element order.
859 */
860 const_reverse_iterator
rend()861 rend() const
862 { return const_reverse_iterator(this->_M_impl._M_start); }
863
864 // [23.2.1.2] capacity
865 /** Returns the number of elements in the %deque. */
866 size_type
size()867 size() const
868 { return this->_M_impl._M_finish - this->_M_impl._M_start; }
869
870 /** Returns the size() of the largest possible %deque. */
871 size_type
max_size()872 max_size() const
873 { return _M_get_Tp_allocator().max_size(); }
874
875 /**
876 * @brief Resizes the %deque to the specified number of elements.
877 * @param new_size Number of elements the %deque should contain.
878 * @param x Data with which new elements should be populated.
879 *
880 * This function will %resize the %deque to the specified
881 * number of elements. If the number is smaller than the
882 * %deque's current size the %deque is truncated, otherwise the
883 * %deque is extended and new elements are populated with given
884 * data.
885 */
886 void
887 resize(size_type __new_size, value_type __x = value_type())
888 {
889 const size_type __len = size();
890 if (__new_size < __len)
891 _M_erase_at_end(this->_M_impl._M_start + difference_type(__new_size));
892 else
893 insert(this->_M_impl._M_finish, __new_size - __len, __x);
894 }
895
896 /**
897 * Returns true if the %deque is empty. (Thus begin() would
898 * equal end().)
899 */
900 bool
empty()901 empty() const
902 { return this->_M_impl._M_finish == this->_M_impl._M_start; }
903
904 // element access
905 /**
906 * @brief Subscript access to the data contained in the %deque.
907 * @param n The index of the element for which data should be
908 * accessed.
909 * @return Read/write reference to data.
910 *
911 * This operator allows for easy, array-style, data access.
912 * Note that data access with this operator is unchecked and
913 * out_of_range lookups are not defined. (For checked lookups
914 * see at().)
915 */
916 reference
917 operator[](size_type __n)
918 { return this->_M_impl._M_start[difference_type(__n)]; }
919
920 /**
921 * @brief Subscript access to the data contained in the %deque.
922 * @param n The index of the element for which data should be
923 * accessed.
924 * @return Read-only (constant) reference to data.
925 *
926 * This operator allows for easy, array-style, data access.
927 * Note that data access with this operator is unchecked and
928 * out_of_range lookups are not defined. (For checked lookups
929 * see at().)
930 */
931 const_reference
932 operator[](size_type __n) const
933 { return this->_M_impl._M_start[difference_type(__n)]; }
934
935 protected:
936 /// @if maint Safety check used only from at(). @endif
937 void
_M_range_check(size_type __n)938 _M_range_check(size_type __n) const
939 {
940 if (__n >= this->size())
941 __throw_out_of_range(__N("deque::_M_range_check"));
942 }
943
944 public:
945 /**
946 * @brief Provides access to the data contained in the %deque.
947 * @param n The index of the element for which data should be
948 * accessed.
949 * @return Read/write reference to data.
950 * @throw std::out_of_range If @a n is an invalid index.
951 *
952 * This function provides for safer data access. The parameter
953 * is first checked that it is in the range of the deque. The
954 * function throws out_of_range if the check fails.
955 */
956 reference
at(size_type __n)957 at(size_type __n)
958 {
959 _M_range_check(__n);
960 return (*this)[__n];
961 }
962
963 /**
964 * @brief Provides access to the data contained in the %deque.
965 * @param n The index of the element for which data should be
966 * accessed.
967 * @return Read-only (constant) reference to data.
968 * @throw std::out_of_range If @a n is an invalid index.
969 *
970 * This function provides for safer data access. The parameter is first
971 * checked that it is in the range of the deque. The function throws
972 * out_of_range if the check fails.
973 */
974 const_reference
at(size_type __n)975 at(size_type __n) const
976 {
977 _M_range_check(__n);
978 return (*this)[__n];
979 }
980
981 /**
982 * Returns a read/write reference to the data at the first
983 * element of the %deque.
984 */
985 reference
front()986 front()
987 { return *begin(); }
988
989 /**
990 * Returns a read-only (constant) reference to the data at the first
991 * element of the %deque.
992 */
993 const_reference
front()994 front() const
995 { return *begin(); }
996
997 /**
998 * Returns a read/write reference to the data at the last element of the
999 * %deque.
1000 */
1001 reference
back()1002 back()
1003 {
1004 iterator __tmp = end();
1005 --__tmp;
1006 return *__tmp;
1007 }
1008
1009 /**
1010 * Returns a read-only (constant) reference to the data at the last
1011 * element of the %deque.
1012 */
1013 const_reference
back()1014 back() const
1015 {
1016 const_iterator __tmp = end();
1017 --__tmp;
1018 return *__tmp;
1019 }
1020
1021 // [23.2.1.2] modifiers
1022 /**
1023 * @brief Add data to the front of the %deque.
1024 * @param x Data to be added.
1025 *
1026 * This is a typical stack operation. The function creates an
1027 * element at the front of the %deque and assigns the given
1028 * data to it. Due to the nature of a %deque this operation
1029 * can be done in constant time.
1030 */
1031 void
push_front(const value_type & __x)1032 push_front(const value_type& __x)
1033 {
1034 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1035 {
1036 this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1037 --this->_M_impl._M_start._M_cur;
1038 }
1039 else
1040 _M_push_front_aux(__x);
1041 }
1042
1043 /**
1044 * @brief Add data to the end of the %deque.
1045 * @param x Data to be added.
1046 *
1047 * This is a typical stack operation. The function creates an
1048 * element at the end of the %deque and assigns the given data
1049 * to it. Due to the nature of a %deque this operation can be
1050 * done in constant time.
1051 */
1052 void
push_back(const value_type & __x)1053 push_back(const value_type& __x)
1054 {
1055 if (this->_M_impl._M_finish._M_cur
1056 != this->_M_impl._M_finish._M_last - 1)
1057 {
1058 this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1059 ++this->_M_impl._M_finish._M_cur;
1060 }
1061 else
1062 _M_push_back_aux(__x);
1063 }
1064
1065 /**
1066 * @brief Removes first element.
1067 *
1068 * This is a typical stack operation. It shrinks the %deque by one.
1069 *
1070 * Note that no data is returned, and if the first element's data is
1071 * needed, it should be retrieved before pop_front() is called.
1072 */
1073 void
pop_front()1074 pop_front()
1075 {
1076 if (this->_M_impl._M_start._M_cur
1077 != this->_M_impl._M_start._M_last - 1)
1078 {
1079 this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1080 ++this->_M_impl._M_start._M_cur;
1081 }
1082 else
1083 _M_pop_front_aux();
1084 }
1085
1086 /**
1087 * @brief Removes last element.
1088 *
1089 * This is a typical stack operation. It shrinks the %deque by one.
1090 *
1091 * Note that no data is returned, and if the last element's data is
1092 * needed, it should be retrieved before pop_back() is called.
1093 */
1094 void
pop_back()1095 pop_back()
1096 {
1097 if (this->_M_impl._M_finish._M_cur
1098 != this->_M_impl._M_finish._M_first)
1099 {
1100 --this->_M_impl._M_finish._M_cur;
1101 this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1102 }
1103 else
1104 _M_pop_back_aux();
1105 }
1106
1107 /**
1108 * @brief Inserts given value into %deque before specified iterator.
1109 * @param position An iterator into the %deque.
1110 * @param x Data to be inserted.
1111 * @return An iterator that points to the inserted data.
1112 *
1113 * This function will insert a copy of the given value before the
1114 * specified location.
1115 */
1116 iterator
1117 insert(iterator __position, const value_type& __x);
1118
1119 /**
1120 * @brief Inserts a number of copies of given data into the %deque.
1121 * @param position An iterator into the %deque.
1122 * @param n Number of elements to be inserted.
1123 * @param x Data to be inserted.
1124 *
1125 * This function will insert a specified number of copies of the given
1126 * data before the location specified by @a position.
1127 */
1128 void
insert(iterator __position,size_type __n,const value_type & __x)1129 insert(iterator __position, size_type __n, const value_type& __x)
1130 { _M_fill_insert(__position, __n, __x); }
1131
1132 /**
1133 * @brief Inserts a range into the %deque.
1134 * @param position An iterator into the %deque.
1135 * @param first An input iterator.
1136 * @param last An input iterator.
1137 *
1138 * This function will insert copies of the data in the range
1139 * [first,last) into the %deque before the location specified
1140 * by @a pos. This is known as "range insert."
1141 */
1142 template<typename _InputIterator>
1143 void
insert(iterator __position,_InputIterator __first,_InputIterator __last)1144 insert(iterator __position, _InputIterator __first,
1145 _InputIterator __last)
1146 {
1147 // Check whether it's an integral type. If so, it's not an iterator.
1148 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1149 _M_insert_dispatch(__position, __first, __last, _Integral());
1150 }
1151
1152 /**
1153 * @brief Remove element at given position.
1154 * @param position Iterator pointing to element to be erased.
1155 * @return An iterator pointing to the next element (or end()).
1156 *
1157 * This function will erase the element at the given position and thus
1158 * shorten the %deque by one.
1159 *
1160 * The user is cautioned that
1161 * this function only erases the element, and that if the element is
1162 * itself a pointer, the pointed-to memory is not touched in any way.
1163 * Managing the pointer is the user's responsibilty.
1164 */
1165 iterator
1166 erase(iterator __position);
1167
1168 /**
1169 * @brief Remove a range of elements.
1170 * @param first Iterator pointing to the first element to be erased.
1171 * @param last Iterator pointing to one past the last element to be
1172 * erased.
1173 * @return An iterator pointing to the element pointed to by @a last
1174 * prior to erasing (or end()).
1175 *
1176 * This function will erase the elements in the range [first,last) and
1177 * shorten the %deque accordingly.
1178 *
1179 * The user is cautioned that
1180 * this function only erases the elements, and that if the elements
1181 * themselves are pointers, the pointed-to memory is not touched in any
1182 * way. Managing the pointer is the user's responsibilty.
1183 */
1184 iterator
1185 erase(iterator __first, iterator __last);
1186
1187 /**
1188 * @brief Swaps data with another %deque.
1189 * @param x A %deque of the same element and allocator types.
1190 *
1191 * This exchanges the elements between two deques in constant time.
1192 * (Four pointers, so it should be quite fast.)
1193 * Note that the global std::swap() function is specialized such that
1194 * std::swap(d1,d2) will feed to this function.
1195 */
1196 void
swap(deque & __x)1197 swap(deque& __x)
1198 {
1199 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1200 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1201 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1202 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1203
1204 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1205 // 431. Swapping containers with unequal allocators.
1206 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1207 __x._M_get_Tp_allocator());
1208 }
1209
1210 /**
1211 * Erases all the elements. Note that this function only erases the
1212 * elements, and that if the elements themselves are pointers, the
1213 * pointed-to memory is not touched in any way. Managing the pointer is
1214 * the user's responsibilty.
1215 */
1216 void
clear()1217 clear()
1218 { _M_erase_at_end(begin()); }
1219
1220 protected:
1221 // Internal constructor functions follow.
1222
1223 // called by the range constructor to implement [23.1.1]/9
1224 template<typename _Integer>
1225 void
_M_initialize_dispatch(_Integer __n,_Integer __x,__true_type)1226 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1227 {
1228 _M_initialize_map(__n);
1229 _M_fill_initialize(__x);
1230 }
1231
1232 // called by the range constructor to implement [23.1.1]/9
1233 template<typename _InputIterator>
1234 void
_M_initialize_dispatch(_InputIterator __first,_InputIterator __last,__false_type)1235 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1236 __false_type)
1237 {
1238 typedef typename std::iterator_traits<_InputIterator>::
1239 iterator_category _IterCategory;
1240 _M_range_initialize(__first, __last, _IterCategory());
1241 }
1242
1243 // called by the second initialize_dispatch above
1244 //@{
1245 /**
1246 * @if maint
1247 * @brief Fills the deque with whatever is in [first,last).
1248 * @param first An input iterator.
1249 * @param last An input iterator.
1250 * @return Nothing.
1251 *
1252 * If the iterators are actually forward iterators (or better), then the
1253 * memory layout can be done all at once. Else we move forward using
1254 * push_back on each value from the iterator.
1255 * @endif
1256 */
1257 template<typename _InputIterator>
1258 void
1259 _M_range_initialize(_InputIterator __first, _InputIterator __last,
1260 std::input_iterator_tag);
1261
1262 // called by the second initialize_dispatch above
1263 template<typename _ForwardIterator>
1264 void
1265 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1266 std::forward_iterator_tag);
1267 //@}
1268
1269 /**
1270 * @if maint
1271 * @brief Fills the %deque with copies of value.
1272 * @param value Initial value.
1273 * @return Nothing.
1274 * @pre _M_start and _M_finish have already been initialized,
1275 * but none of the %deque's elements have yet been constructed.
1276 *
1277 * This function is called only when the user provides an explicit size
1278 * (with or without an explicit exemplar value).
1279 * @endif
1280 */
1281 void
1282 _M_fill_initialize(const value_type& __value);
1283
1284 // Internal assign functions follow. The *_aux functions do the actual
1285 // assignment work for the range versions.
1286
1287 // called by the range assign to implement [23.1.1]/9
1288 template<typename _Integer>
1289 void
_M_assign_dispatch(_Integer __n,_Integer __val,__true_type)1290 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1291 {
1292 _M_fill_assign(static_cast<size_type>(__n),
1293 static_cast<value_type>(__val));
1294 }
1295
1296 // called by the range assign to implement [23.1.1]/9
1297 template<typename _InputIterator>
1298 void
_M_assign_dispatch(_InputIterator __first,_InputIterator __last,__false_type)1299 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1300 __false_type)
1301 {
1302 typedef typename std::iterator_traits<_InputIterator>::
1303 iterator_category _IterCategory;
1304 _M_assign_aux(__first, __last, _IterCategory());
1305 }
1306
1307 // called by the second assign_dispatch above
1308 template<typename _InputIterator>
1309 void
1310 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1311 std::input_iterator_tag);
1312
1313 // called by the second assign_dispatch above
1314 template<typename _ForwardIterator>
1315 void
_M_assign_aux(_ForwardIterator __first,_ForwardIterator __last,std::forward_iterator_tag)1316 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1317 std::forward_iterator_tag)
1318 {
1319 const size_type __len = std::distance(__first, __last);
1320 if (__len > size())
1321 {
1322 _ForwardIterator __mid = __first;
1323 std::advance(__mid, size());
1324 std::copy(__first, __mid, begin());
1325 insert(end(), __mid, __last);
1326 }
1327 else
1328 _M_erase_at_end(std::copy(__first, __last, begin()));
1329 }
1330
1331 // Called by assign(n,t), and the range assign when it turns out
1332 // to be the same thing.
1333 void
_M_fill_assign(size_type __n,const value_type & __val)1334 _M_fill_assign(size_type __n, const value_type& __val)
1335 {
1336 if (__n > size())
1337 {
1338 std::fill(begin(), end(), __val);
1339 insert(end(), __n - size(), __val);
1340 }
1341 else
1342 {
1343 _M_erase_at_end(begin() + difference_type(__n));
1344 std::fill(begin(), end(), __val);
1345 }
1346 }
1347
1348 //@{
1349 /**
1350 * @if maint
1351 * @brief Helper functions for push_* and pop_*.
1352 * @endif
1353 */
1354 void _M_push_back_aux(const value_type&);
1355
1356 void _M_push_front_aux(const value_type&);
1357
1358 void _M_pop_back_aux();
1359
1360 void _M_pop_front_aux();
1361 //@}
1362
1363 // Internal insert functions follow. The *_aux functions do the actual
1364 // insertion work when all shortcuts fail.
1365
1366 // called by the range insert to implement [23.1.1]/9
1367 template<typename _Integer>
1368 void
_M_insert_dispatch(iterator __pos,_Integer __n,_Integer __x,__true_type)1369 _M_insert_dispatch(iterator __pos,
1370 _Integer __n, _Integer __x, __true_type)
1371 {
1372 _M_fill_insert(__pos, static_cast<size_type>(__n),
1373 static_cast<value_type>(__x));
1374 }
1375
1376 // called by the range insert to implement [23.1.1]/9
1377 template<typename _InputIterator>
1378 void
_M_insert_dispatch(iterator __pos,_InputIterator __first,_InputIterator __last,__false_type)1379 _M_insert_dispatch(iterator __pos,
1380 _InputIterator __first, _InputIterator __last,
1381 __false_type)
1382 {
1383 typedef typename std::iterator_traits<_InputIterator>::
1384 iterator_category _IterCategory;
1385 _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1386 }
1387
1388 // called by the second insert_dispatch above
1389 template<typename _InputIterator>
1390 void
1391 _M_range_insert_aux(iterator __pos, _InputIterator __first,
1392 _InputIterator __last, std::input_iterator_tag);
1393
1394 // called by the second insert_dispatch above
1395 template<typename _ForwardIterator>
1396 void
1397 _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1398 _ForwardIterator __last, std::forward_iterator_tag);
1399
1400 // Called by insert(p,n,x), and the range insert when it turns out to be
1401 // the same thing. Can use fill functions in optimal situations,
1402 // otherwise passes off to insert_aux(p,n,x).
1403 void
1404 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1405
1406 // called by insert(p,x)
1407 iterator
1408 _M_insert_aux(iterator __pos, const value_type& __x);
1409
1410 // called by insert(p,n,x) via fill_insert
1411 void
1412 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1413
1414 // called by range_insert_aux for forward iterators
1415 template<typename _ForwardIterator>
1416 void
1417 _M_insert_aux(iterator __pos,
1418 _ForwardIterator __first, _ForwardIterator __last,
1419 size_type __n);
1420
1421
1422 // Internal erase functions follow.
1423
1424 void
1425 _M_destroy_data_aux(iterator __first, iterator __last);
1426
1427 void
_M_destroy_data_dispatch(iterator,iterator,__true_type)1428 _M_destroy_data_dispatch(iterator, iterator, __true_type) { }
1429
1430 void
_M_destroy_data_dispatch(iterator __first,iterator __last,__false_type)1431 _M_destroy_data_dispatch(iterator __first, iterator __last, __false_type)
1432 { _M_destroy_data_aux(__first, __last); }
1433
1434 // Called by ~deque().
1435 // NB: Doesn't deallocate the nodes.
1436 template<typename _Alloc1>
1437 void
_M_destroy_data(iterator __first,iterator __last,const _Alloc1 &)1438 _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1439 { _M_destroy_data_aux(__first, __last); }
1440
1441 void
_M_destroy_data(iterator __first,iterator __last,const std::allocator<_Tp> &)1442 _M_destroy_data(iterator __first, iterator __last,
1443 const std::allocator<_Tp>&)
1444 {
1445 typedef typename std::__is_scalar<value_type>::__type
1446 _Has_trivial_destructor;
1447 _M_destroy_data_dispatch(__first, __last, _Has_trivial_destructor());
1448 }
1449
1450 // Called by erase(q1, q2).
1451 void
_M_erase_at_begin(iterator __pos)1452 _M_erase_at_begin(iterator __pos)
1453 {
1454 _M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1455 _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1456 this->_M_impl._M_start = __pos;
1457 }
1458
1459 // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1460 // _M_fill_assign, operator=.
1461 void
_M_erase_at_end(iterator __pos)1462 _M_erase_at_end(iterator __pos)
1463 {
1464 _M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1465 _M_destroy_nodes(__pos._M_node + 1,
1466 this->_M_impl._M_finish._M_node + 1);
1467 this->_M_impl._M_finish = __pos;
1468 }
1469
1470 //@{
1471 /**
1472 * @if maint
1473 * @brief Memory-handling helpers for the previous internal insert
1474 * functions.
1475 * @endif
1476 */
1477 iterator
_M_reserve_elements_at_front(size_type __n)1478 _M_reserve_elements_at_front(size_type __n)
1479 {
1480 const size_type __vacancies = this->_M_impl._M_start._M_cur
1481 - this->_M_impl._M_start._M_first;
1482 if (__n > __vacancies)
1483 _M_new_elements_at_front(__n - __vacancies);
1484 return this->_M_impl._M_start - difference_type(__n);
1485 }
1486
1487 iterator
_M_reserve_elements_at_back(size_type __n)1488 _M_reserve_elements_at_back(size_type __n)
1489 {
1490 const size_type __vacancies = (this->_M_impl._M_finish._M_last
1491 - this->_M_impl._M_finish._M_cur) - 1;
1492 if (__n > __vacancies)
1493 _M_new_elements_at_back(__n - __vacancies);
1494 return this->_M_impl._M_finish + difference_type(__n);
1495 }
1496
1497 void
1498 _M_new_elements_at_front(size_type __new_elements);
1499
1500 void
1501 _M_new_elements_at_back(size_type __new_elements);
1502 //@}
1503
1504
1505 //@{
1506 /**
1507 * @if maint
1508 * @brief Memory-handling helpers for the major %map.
1509 *
1510 * Makes sure the _M_map has space for new nodes. Does not
1511 * actually add the nodes. Can invalidate _M_map pointers.
1512 * (And consequently, %deque iterators.)
1513 * @endif
1514 */
1515 void
1516 _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1517 {
1518 if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1519 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1520 _M_reallocate_map(__nodes_to_add, false);
1521 }
1522
1523 void
1524 _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1525 {
1526 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1527 - this->_M_impl._M_map))
1528 _M_reallocate_map(__nodes_to_add, true);
1529 }
1530
1531 void
1532 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1533 //@}
1534 };
1535
1536
1537 /**
1538 * @brief Deque equality comparison.
1539 * @param x A %deque.
1540 * @param y A %deque of the same type as @a x.
1541 * @return True iff the size and elements of the deques are equal.
1542 *
1543 * This is an equivalence relation. It is linear in the size of the
1544 * deques. Deques are considered equivalent if their sizes are equal,
1545 * and if corresponding elements compare equal.
1546 */
1547 template<typename _Tp, typename _Alloc>
1548 inline bool
1549 operator==(const deque<_Tp, _Alloc>& __x,
1550 const deque<_Tp, _Alloc>& __y)
1551 { return __x.size() == __y.size()
1552 && std::equal(__x.begin(), __x.end(), __y.begin()); }
1553
1554 /**
1555 * @brief Deque ordering relation.
1556 * @param x A %deque.
1557 * @param y A %deque of the same type as @a x.
1558 * @return True iff @a x is lexicographically less than @a y.
1559 *
1560 * This is a total ordering relation. It is linear in the size of the
1561 * deques. The elements must be comparable with @c <.
1562 *
1563 * See std::lexicographical_compare() for how the determination is made.
1564 */
1565 template<typename _Tp, typename _Alloc>
1566 inline bool
1567 operator<(const deque<_Tp, _Alloc>& __x,
1568 const deque<_Tp, _Alloc>& __y)
1569 { return std::lexicographical_compare(__x.begin(), __x.end(),
1570 __y.begin(), __y.end()); }
1571
1572 /// Based on operator==
1573 template<typename _Tp, typename _Alloc>
1574 inline bool
1575 operator!=(const deque<_Tp, _Alloc>& __x,
1576 const deque<_Tp, _Alloc>& __y)
1577 { return !(__x == __y); }
1578
1579 /// Based on operator<
1580 template<typename _Tp, typename _Alloc>
1581 inline bool
1582 operator>(const deque<_Tp, _Alloc>& __x,
1583 const deque<_Tp, _Alloc>& __y)
1584 { return __y < __x; }
1585
1586 /// Based on operator<
1587 template<typename _Tp, typename _Alloc>
1588 inline bool
1589 operator<=(const deque<_Tp, _Alloc>& __x,
1590 const deque<_Tp, _Alloc>& __y)
1591 { return !(__y < __x); }
1592
1593 /// Based on operator<
1594 template<typename _Tp, typename _Alloc>
1595 inline bool
1596 operator>=(const deque<_Tp, _Alloc>& __x,
1597 const deque<_Tp, _Alloc>& __y)
1598 { return !(__x < __y); }
1599
1600 /// See std::deque::swap().
1601 template<typename _Tp, typename _Alloc>
1602 inline void
swap(deque<_Tp,_Alloc> & __x,deque<_Tp,_Alloc> & __y)1603 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1604 { __x.swap(__y); }
1605
1606 _GLIBCXX_END_NESTED_NAMESPACE
1607
1608 #endif /* _DEQUE_H */
1609