xref: /reactos/sdk/lib/crt/math/i386/allrem_asm.s (revision 9393fc32)
1/*
2 * COPYRIGHT:         See COPYING in the top level directory
3 * PROJECT:           ReactOS kernel
4 * PURPOSE:           Run-Time Library
5 * FILE:              lib/sdk/crt/math/i386/allrem_asm.s
6 * PROGRAMER:         Alex Ionescu (alex@relsoft.net)
7 *
8 * Copyright (C) 2002 Michael Ringgaard.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the project nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES// LOSS OF USE, DATA, OR PROFITS// OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#include <asm.inc>
38
39PUBLIC __allrem
40
41/* FUNCTIONS ***************************************************************/
42.code
43
44//
45// llrem - signed long remainder
46//
47// Purpose:
48//       Does a signed long remainder of the arguments.  Arguments are
49//       not changed.
50//
51// Entry:
52//       Arguments are passed on the stack:
53//               1st pushed: divisor (QWORD)
54//               2nd pushed: dividend (QWORD)
55//
56// Exit:
57//       EDX:EAX contains the remainder (dividend%divisor)
58//       NOTE: this routine removes the parameters from the stack.
59//
60// Uses:
61//       ECX
62//
63
64__allrem :
65
66        push    ebx
67        push    edi
68
69// Set up the local stack and save the index registers.  When this is done
70// the stack frame will look as follows (assuming that the expression a%b will
71// generate a call to lrem(a, b)):
72//
73//               -----------------
74//               |               |
75//               |---------------|
76//               |               |
77//               |--divisor (b)--|
78//               |               |
79//               |---------------|
80//               |               |
81//               |--dividend (a)-|
82//               |               |
83//               |---------------|
84//               | return addr** |
85//               |---------------|
86//               |       EBX     |
87//               |---------------|
88//       ESP---->|       EDI     |
89//               -----------------
90//
91
92#undef DVNDLO
93#undef DVNDHI
94#undef DVSRLO
95#undef DVSRHI
96#define DVNDLO  [esp + 12]       // stack address of dividend (a)
97#define DVNDHI  [esp + 16]       // stack address of dividend (a)
98#define DVSRLO  [esp + 20]      // stack address of divisor (b)
99#define DVSRHI  [esp + 24]      // stack address of divisor (b)
100
101// Determine sign of the result (edi = 0 if result is positive, non-zero
102// otherwise) and make operands positive.
103
104        xor     edi,edi         // result sign assumed positive
105
106        mov     eax,DVNDHI // hi word of a
107        or      eax,eax         // test to see if signed
108        jge     short .L1        // skip rest if a is already positive
109        inc     edi             // complement result sign flag bit
110        mov     edx,DVNDLO // lo word of a
111        neg     eax             // make a positive
112        neg     edx
113        sbb     eax,0
114        mov     DVNDHI,eax // save positive value
115        mov     DVNDLO,edx
116.L1:
117        mov     eax,DVSRHI // hi word of b
118        or      eax,eax         // test to see if signed
119        jge     short .L2        // skip rest if b is already positive
120        mov     edx,DVSRLO // lo word of b
121        neg     eax             // make b positive
122        neg     edx
123        sbb     eax,0
124        mov     DVSRHI,eax // save positive value
125        mov     DVSRLO,edx
126.L2:
127
128//
129// Now do the divide.  First look to see if the divisor is less than 4194304K.
130// If so, then we can use a simple algorithm with word divides, otherwise
131// things get a little more complex.
132//
133// NOTE - eax currently contains the high order word of DVSR
134//
135
136        or      eax,eax         // check to see if divisor < 4194304K
137        jnz     short .L3        // nope, gotta do this the hard way
138        mov     ecx,DVSRLO // load divisor
139        mov     eax,DVNDHI // load high word of dividend
140        xor     edx,edx
141        div     ecx             // edx <- remainder
142        mov     eax,DVNDLO // edx:eax <- remainder:lo word of dividend
143        div     ecx             // edx <- final remainder
144        mov     eax,edx         // edx:eax <- remainder
145        xor     edx,edx
146        dec     edi             // check result sign flag
147        jns     short .L4        // negate result, restore stack and return
148        jmp     short .L8        // result sign ok, restore stack and return
149
150//
151// Here we do it the hard way.  Remember, eax contains the high word of DVSR
152//
153
154.L3:
155        mov     ebx,eax         // ebx:ecx <- divisor
156        mov     ecx,DVSRLO
157        mov     edx,DVNDHI // edx:eax <- dividend
158        mov     eax,DVNDLO
159.L5:
160        shr     ebx,1           // shift divisor right one bit
161        rcr     ecx,1
162        shr     edx,1           // shift dividend right one bit
163        rcr     eax,1
164        or      ebx,ebx
165        jnz     short .L5        // loop until divisor < 4194304K
166        div     ecx             // now divide, ignore remainder
167
168//
169// We may be off by one, so to check, we will multiply the quotient
170// by the divisor and check the result against the orignal dividend
171// Note that we must also check for overflow, which can occur if the
172// dividend is close to 2**64 and the quotient is off by 1.
173//
174
175        mov     ecx,eax         // save a copy of quotient in ECX
176        mul     dword ptr DVSRHI
177        xchg    ecx,eax         // save product, get quotient in EAX
178        mul     dword ptr DVSRLO
179        add     edx,ecx         // EDX:EAX = QUOT * DVSR
180        jc      short .L6        // carry means Quotient is off by 1
181
182//
183// do long compare here between original dividend and the result of the
184// multiply in edx:eax.  If original is larger or equal, we are ok, otherwise
185// subtract the original divisor from the result.
186//
187
188        cmp     edx,DVNDHI // compare hi words of result and original
189        ja      short .L6        // if result > original, do subtract
190        jb      short .L7        // if result < original, we are ok
191        cmp     eax,DVNDLO // hi words are equal, compare lo words
192        jbe     short .L7        // if less or equal we are ok, else subtract
193.L6:
194        sub     eax,DVSRLO // subtract divisor from result
195        sbb     edx,DVSRHI
196.L7:
197
198//
199// Calculate remainder by subtracting the result from the original dividend.
200// Since the result is already in a register, we will do the subtract in the
201// opposite direction and negate the result if necessary.
202//
203
204        sub     eax,DVNDLO // subtract dividend from result
205        sbb     edx,DVNDHI
206
207//
208// Now check the result sign flag to see if the result is supposed to be positive
209// or negative.  It is currently negated (because we subtracted in the 'wrong'
210// direction), so if the sign flag is set we are done, otherwise we must negate
211// the result to make it positive again.
212//
213
214        dec     edi             // check result sign flag
215        jns     short .L8        // result is ok, restore stack and return
216.L4:
217        neg     edx             // otherwise, negate the result
218        neg     eax
219        sbb     edx,0
220
221//
222// Just the cleanup left to do.  edx:eax contains the quotient.
223// Restore the saved registers and return.
224//
225
226.L8:
227        pop     edi
228        pop     ebx
229
230        ret     16
231
232END
233