xref: /reactos/sdk/lib/crt/math/ieee754/j1_y1.c (revision c2c66aff)
1 /* @(#)e_j1.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/26,
13    for performance improvement on pipelined processors.
14 */
15 
16 #if defined(LIBM_SCCS) && !defined(lint)
17 static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $";
18 #endif
19 
20 /* __ieee754_j1(x), __ieee754_y1(x)
21  * Bessel function of the first and second kinds of order zero.
22  * Method -- j1(x):
23  *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
24  *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
25  *	   for x in (0,2)
26  *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
27  *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
28  *	   for x in (2,inf)
29  * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
30  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
31  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
32  *	   as follow:
33  *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
34  *			=  1/sqrt(2) * (sin(x) - cos(x))
35  *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
36  *			= -1/sqrt(2) * (sin(x) + cos(x))
37  * 	   (To avoid cancellation, use
38  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
39  * 	    to compute the worse one.)
40  *
41  *	3 Special cases
42  *		j1(nan)= nan
43  *		j1(0) = 0
44  *		j1(inf) = 0
45  *
46  * Method -- y1(x):
47  *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
48  *	2. For x<2.
49  *	   Since
50  *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
51  *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
52  *	   We use the following function to approximate y1,
53  *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
54  *	   where for x in [0,2] (abs err less than 2**-65.89)
55  *		U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
56  *		V(z) = 1  + v0[0]*z + ... + v0[4]*z^5
57  *	   Note: For tiny x, 1/x dominate y1 and hence
58  *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
59  *	3. For x>=2.
60  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
61  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
62  *	   by method mentioned above.
63  */
64 
65 #include "math.h"
66 #include "ieee754.h"
67 
68 #ifdef __STDC__
69 static double pone(double), qone(double);
70 #else
71 static double pone(), qone();
72 #endif
73 
74 #ifdef __STDC__
75 static const double
76 #else
77 static double
78 #endif
79 huge    = 1e300,
80 one	= 1.0,
81 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
82 tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
83 	/* R0/S0 on [0,2] */
84 R[]  = {-6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
85   1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
86  -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
87   4.96727999609584448412e-08}, /* 0x3E6AAAFA, 0x46CA0BD9 */
88 S[]  =  {0.0, 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
89   1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
90   1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
91   5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
92   1.23542274426137913908e-11}; /* 0x3DAB2ACF, 0xCFB97ED8 */
93 
94 #ifdef __STDC__
95 static const double zero    = 0.0;
96 #else
97 static double zero    = 0.0;
98 #endif
99 
100 #ifdef __STDC__
__ieee754_j1(double x)101 	double __ieee754_j1(double x)
102 #else
103 	double __ieee754_j1(x)
104 	double x;
105 #endif
106 {
107 	double z, s,c,ss,cc,r,u,v,y,r1,r2,s1,s2,s3,z2,z4;
108 	int32_t hx,ix;
109 
110 	GET_HIGH_WORD(hx,x);
111 	ix = hx&0x7fffffff;
112 	if(ix>=0x7ff00000) return one/x;
113 	y = fabs(x);
114 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
115 		__sincos (y, &s, &c);
116 		ss = -s-c;
117 		cc = s-c;
118 		if(ix<0x7fe00000) {  /* make sure y+y not overflow */
119 		    z = __cos(y+y);
120 		    if ((s*c)>zero) cc = z/ss;
121 		    else 	    ss = z/cc;
122 		}
123 	/*
124 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
125 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
126 	 */
127 		if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(y);
128 		else {
129 		    u = pone(y); v = qone(y);
130 		    z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(y);
131 		}
132 		if(hx<0) return -z;
133 		else  	 return  z;
134 	}
135 	if(ix<0x3e400000) {	/* |x|<2**-27 */
136 	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
137 	}
138 	z = x*x;
139 #ifdef DO_NOT_USE_THIS
140 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
141 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
142 	r *= x;
143 #else
144 	r1 = z*R[0]; z2=z*z;
145 	r2 = R[1]+z*R[2]; z4=z2*z2;
146 	r = r1 + z2*r2 + z4*R[3];
147   	r *= x;
148 	s1 = one+z*S[1];
149 	s2 = S[2]+z*S[3];
150 	s3 = S[4]+z*S[5];
151 	s = s1 + z2*s2 + z4*s3;
152 #endif
153 	return(x*0.5+r/s);
154 }
155 
156 #ifdef __STDC__
157 static const double U0[5] = {
158 #else
159 static double U0[5] = {
160 #endif
161  -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
162   5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
163  -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
164   2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
165  -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
166 };
167 #ifdef __STDC__
168 static const double V0[5] = {
169 #else
170 static double V0[5] = {
171 #endif
172   1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
173   2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
174   1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
175   6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
176   1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
177 };
178 
179 #ifdef __STDC__
__ieee754_y1(double x)180 	double __ieee754_y1(double x)
181 #else
182 	double __ieee754_y1(x)
183 	double x;
184 #endif
185 {
186 	double z, s,c,ss,cc,u,v,u1,u2,v1,v2,v3,z2,z4;
187 	int32_t hx,ix,lx;
188 
189 	EXTRACT_WORDS(hx,lx,x);
190         ix = 0x7fffffff&hx;
191     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
192 	if(ix>=0x7ff00000) return  one/(x+x*x);
193         if((ix|lx)==0) return -HUGE_VAL+x; /* -inf and overflow exception.  */;
194         if(hx<0) return zero/(zero*x);
195         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
196 		__sincos (x, &s, &c);
197                 ss = -s-c;
198                 cc = s-c;
199                 if(ix<0x7fe00000) {  /* make sure x+x not overflow */
200                     z = __cos(x+x);
201                     if ((s*c)>zero) cc = z/ss;
202                     else            ss = z/cc;
203                 }
204         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
205          * where x0 = x-3pi/4
206          *      Better formula:
207          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
208          *                      =  1/sqrt(2) * (sin(x) - cos(x))
209          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
210          *                      = -1/sqrt(2) * (cos(x) + sin(x))
211          * To avoid cancellation, use
212          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
213          * to compute the worse one.
214          */
215                 if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
216                 else {
217                     u = pone(x); v = qone(x);
218                     z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
219                 }
220                 return z;
221         }
222         if(ix<=0x3c900000) {    /* x < 2**-54 */
223             return(-tpi/x);
224         }
225         z = x*x;
226 #ifdef DO_NOT_USE_THIS
227         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
228         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
229 #else
230 	u1 = U0[0]+z*U0[1];z2=z*z;
231 	u2 = U0[2]+z*U0[3];z4=z2*z2;
232 	u  = u1 + z2*u2 + z4*U0[4];
233 	v1 = one+z*V0[0];
234 	v2 = V0[1]+z*V0[2];
235 	v3 = V0[3]+z*V0[4];
236 	v = v1 + z2*v2 + z4*v3;
237 #endif
238         return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
239 }
240 
241 /* For x >= 8, the asymptotic expansions of pone is
242  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
243  * We approximate pone by
244  * 	pone(x) = 1 + (R/S)
245  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
246  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
247  * and
248  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
249  */
250 
251 #ifdef __STDC__
252 static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
253 #else
254 static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
255 #endif
256   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
257   1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
258   1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
259   4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
260   3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
261   7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
262 };
263 #ifdef __STDC__
264 static const double ps8[5] = {
265 #else
266 static double ps8[5] = {
267 #endif
268   1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
269   3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
270   3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
271   9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
272   3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
273 };
274 
275 #ifdef __STDC__
276 static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
277 #else
278 static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
279 #endif
280   1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
281   1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
282   6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
283   1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
284   5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
285   5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
286 };
287 #ifdef __STDC__
288 static const double ps5[5] = {
289 #else
290 static double ps5[5] = {
291 #endif
292   5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
293   9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
294   5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
295   7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
296   1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
297 };
298 
299 #ifdef __STDC__
300 static const double pr3[6] = {
301 #else
302 static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
303 #endif
304   3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
305   1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
306   3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
307   3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
308   9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
309   4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
310 };
311 #ifdef __STDC__
312 static const double ps3[5] = {
313 #else
314 static double ps3[5] = {
315 #endif
316   3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
317   3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
318   1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
319   8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
320   1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
321 };
322 
323 #ifdef __STDC__
324 static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
325 #else
326 static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
327 #endif
328   1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
329   1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
330   2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
331   1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
332   1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
333   5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
334 };
335 #ifdef __STDC__
336 static const double ps2[5] = {
337 #else
338 static double ps2[5] = {
339 #endif
340   2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
341   1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
342   2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
343   1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
344   8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
345 };
346 
347 #ifdef __STDC__
pone(double x)348 	static double pone(double x)
349 #else
350 	static double pone(x)
351 	double x;
352 #endif
353 {
354 #ifdef __STDC__
355 	const double *p = 0,*q = 0;
356 #else
357 	double *p = 0,*q = 0;
358 #endif
359 	double z,r,s,r1,r2,r3,s1,s2,s3,z2,z4;
360         int32_t ix;
361 	GET_HIGH_WORD(ix,x);
362 	ix &= 0x7fffffff;
363         if(ix>=0x40200000)     {p = pr8; q= ps8;}
364         else if(ix>=0x40122E8B){p = pr5; q= ps5;}
365         else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
366         else if(ix>=0x40000000){p = pr2; q= ps2;}
367         z = one/(x*x);
368 #ifdef DO_NOT_USE_THIS
369         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
370         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
371 #else
372 	r1 = p[0]+z*p[1]; z2=z*z;
373 	r2 = p[2]+z*p[3]; z4=z2*z2;
374 	r3 = p[4]+z*p[5];
375 	r = r1 + z2*r2 + z4*r3;
376 	s1 = one+z*q[0];
377 	s2 = q[1]+z*q[2];
378 	s3 = q[3]+z*q[4];
379 	s = s1 + z2*s2 + z4*s3;
380 #endif
381         return one+ r/s;
382 }
383 
384 
385 /* For x >= 8, the asymptotic expansions of qone is
386  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
387  * We approximate pone by
388  * 	qone(x) = s*(0.375 + (R/S))
389  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
390  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
391  * and
392  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
393  */
394 
395 #ifdef __STDC__
396 static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
397 #else
398 static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
399 #endif
400   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
401  -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
402  -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
403  -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
404  -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
405  -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
406 };
407 #ifdef __STDC__
408 static const double qs8[6] = {
409 #else
410 static double qs8[6] = {
411 #endif
412   1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
413   7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
414   1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
415   7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
416   6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
417  -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
418 };
419 
420 #ifdef __STDC__
421 static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
422 #else
423 static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
424 #endif
425  -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
426  -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
427  -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
428  -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
429  -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
430  -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
431 };
432 #ifdef __STDC__
433 static const double qs5[6] = {
434 #else
435 static double qs5[6] = {
436 #endif
437   8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
438   1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
439   1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
440   4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
441   2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
442  -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
443 };
444 
445 #ifdef __STDC__
446 static const double qr3[6] = {
447 #else
448 static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
449 #endif
450  -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
451  -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
452  -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
453  -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
454  -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
455  -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
456 };
457 #ifdef __STDC__
458 static const double qs3[6] = {
459 #else
460 static double qs3[6] = {
461 #endif
462   4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
463   6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
464   3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
465   5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
466   1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
467  -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
468 };
469 
470 #ifdef __STDC__
471 static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
472 #else
473 static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
474 #endif
475  -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
476  -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
477  -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
478  -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
479  -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
480  -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
481 };
482 #ifdef __STDC__
483 static const double qs2[6] = {
484 #else
485 static double qs2[6] = {
486 #endif
487   2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
488   2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
489   7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
490   7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
491   1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
492  -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
493 };
494 
495 #ifdef __STDC__
qone(double x)496 	static double qone(double x)
497 #else
498 	static double qone(x)
499 	double x;
500 #endif
501 {
502 #ifdef __STDC__
503 	const double *p = 0,*q = 0;
504 #else
505 	double *p = 0,*q = 0;
506 #endif
507 	double  s,r,z,r1,r2,r3,s1,s2,s3,z2,z4,z6;
508 	int32_t ix;
509 	GET_HIGH_WORD(ix,x);
510 	ix &= 0x7fffffff;
511 	if(ix>=0x40200000)     {p = qr8; q= qs8;}
512 	else if(ix>=0x40122E8B){p = qr5; q= qs5;}
513 	else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
514 	else if(ix>=0x40000000){p = qr2; q= qs2;}
515 	z = one/(x*x);
516 #ifdef DO_NOT_USE_THIS
517 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
518 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
519 #else
520 	r1 = p[0]+z*p[1]; z2=z*z;
521 	r2 = p[2]+z*p[3]; z4=z2*z2;
522 	r3 = p[4]+z*p[5]; z6=z4*z2;
523 	r = r1 + z2*r2 + z4*r3;
524 	s1 = one+z*q[0];
525 	s2 = q[1]+z*q[2];
526 	s3 = q[3]+z*q[4];
527 	s = s1 + z2*s2 + z4*s3 + z6*q[5];
528 #endif
529 	return (.375 + r/s)/x;
530 }
531