xref: /reactos/sdk/lib/crt/math/ieee754/j0_y0.c (revision c2c66aff)
1 /* @(#)e_j0.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/26,
13    for performance improvement on pipelined processors.
14 */
15 
16 #if defined(LIBM_SCCS) && !defined(lint)
17 static char rcsid[] = "$NetBSD: e_j0.c,v 1.8 1995/05/10 20:45:23 jtc Exp $";
18 #endif
19 
20 /* __ieee754_j0(x), __ieee754_y0(x)
21  * Bessel function of the first and second kinds of order zero.
22  * Method -- j0(x):
23  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
24  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
25  *	   for x in (0,2)
26  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
27  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
28  *	   for x in (2,inf)
29  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
30  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
31  *	   as follow:
32  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
33  *			= 1/sqrt(2) * (cos(x) + sin(x))
34  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
35  *			= 1/sqrt(2) * (sin(x) - cos(x))
36  * 	   (To avoid cancellation, use
37  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
38  * 	    to compute the worse one.)
39  *
40  *	3 Special cases
41  *		j0(nan)= nan
42  *		j0(0) = 1
43  *		j0(inf) = 0
44  *
45  * Method -- y0(x):
46  *	1. For x<2.
47  *	   Since
48  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
49  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
50  *	   We use the following function to approximate y0,
51  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
52  *	   where
53  *		U(z) = u00 + u01*z + ... + u06*z^6
54  *		V(z) = 1  + v01*z + ... + v04*z^4
55  *	   with absolute approximation error bounded by 2**-72.
56  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
57  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
58  *	2. For x>=2.
59  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
60  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
61  *	   by the method mentioned above.
62  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
63  */
64 
65 #include "math.h"
66 #include "ieee754.h"
67 
68 #ifdef __STDC__
69 static double pzero(double), qzero(double);
70 #else
71 static double pzero(), qzero();
72 #endif
73 
74 #ifdef __STDC__
75 static const double
76 #else
77 static double
78 #endif
79 huge 	= 1e300,
80 one	= 1.0,
81 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
82 tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
83  		/* R0/S0 on [0, 2.00] */
84 R[]  =  {0.0, 0.0, 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
85  -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
86   1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
87  -4.61832688532103189199e-09}, /* 0xBE33D5E7, 0x73D63FCE */
88 S[]  =  {0.0, 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
89   1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
90   5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
91   1.16614003333790000205e-09}; /* 0x3E1408BC, 0xF4745D8F */
92 
93 #ifdef __STDC__
94 static const double zero = 0.0;
95 #else
96 static double zero = 0.0;
97 #endif
98 
99 #ifdef __STDC__
__ieee754_j0(double x)100 	double __ieee754_j0(double x)
101 #else
102 	double __ieee754_j0(x)
103 	double x;
104 #endif
105 {
106 	double z, s,c,ss,cc,r,u,v,r1,r2,s1,s2,z2,z4;
107 	int32_t hx,ix;
108 
109 	GET_HIGH_WORD(hx,x);
110 	ix = hx&0x7fffffff;
111 	if(ix>=0x7ff00000) return one/(x*x);
112 	x = fabs(x);
113 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
114 		__sincos (x, &s, &c);
115 		ss = s-c;
116 		cc = s+c;
117 		if(ix<0x7fe00000) {  /* make sure x+x not overflow */
118 		    z = -__cos(x+x);
119 		    if ((s*c)<zero) cc = z/ss;
120 		    else 	    ss = z/cc;
121 		}
122 	/*
123 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
124 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
125 	 */
126 		if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(x);
127 		else {
128 		    u = pzero(x); v = qzero(x);
129 		    z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(x);
130 		}
131 		return z;
132 	}
133 	if(ix<0x3f200000) {	/* |x| < 2**-13 */
134 	    if(huge+x>one) {	/* raise inexact if x != 0 */
135 	        if(ix<0x3e400000) return one;	/* |x|<2**-27 */
136 	        else 	      return one - 0.25*x*x;
137 	    }
138 	}
139 	z = x*x;
140 #ifdef DO_NOT_USE_THIS
141 	r =  z*(R02+z*(R03+z*(R04+z*R05)));
142 	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
143 #else
144 	r1 = z*R[2]; z2=z*z;
145 	r2 = R[3]+z*R[4]; z4=z2*z2;
146 	r  = r1 + z2*r2 + z4*R[5];
147 	s1 = one+z*S[1];
148 	s2 = S[2]+z*S[3];
149 	s = s1 + z2*s2 + z4*S[4];
150 #endif
151 	if(ix < 0x3FF00000) {	/* |x| < 1.00 */
152 	    return one + z*(-0.25+(r/s));
153 	} else {
154 	    u = 0.5*x;
155 	    return((one+u)*(one-u)+z*(r/s));
156 	}
157 }
158 
159 #ifdef __STDC__
160 static const double
161 #else
162 static double
163 #endif
164 U[]  = {-7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
165   1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
166  -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
167   3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
168  -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
169   1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
170  -3.98205194132103398453e-11}, /* 0xBDC5E43D, 0x693FB3C8 */
171 V[]  =  {1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
172   7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
173   2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
174   4.41110311332675467403e-10}; /* 0x3DFE5018, 0x3BD6D9EF */
175 
176 #ifdef __STDC__
__ieee754_y0(double x)177 	double __ieee754_y0(double x)
178 #else
179 	double __ieee754_y0(x)
180 	double x;
181 #endif
182 {
183 	double z, s,c,ss,cc,u,v,z2,z4,z6,u1,u2,u3,v1,v2;
184 	int32_t hx,ix,lx;
185 
186 	EXTRACT_WORDS(hx,lx,x);
187         ix = 0x7fffffff&hx;
188     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0, y0(0) is -inf.  */
189 	if(ix>=0x7ff00000) return  one/(x+x*x);
190         if((ix|lx)==0) return -HUGE_VAL+x; /* -inf and overflow exception.  */
191         if(hx<0) return zero/(zero*x);
192         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
193         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
194          * where x0 = x-pi/4
195          *      Better formula:
196          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
197          *                      =  1/sqrt(2) * (sin(x) + cos(x))
198          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
199          *                      =  1/sqrt(2) * (sin(x) - cos(x))
200          * To avoid cancellation, use
201          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
202          * to compute the worse one.
203          */
204 		__sincos (x, &s, &c);
205                 ss = s-c;
206                 cc = s+c;
207 	/*
208 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
209 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
210 	 */
211                 if(ix<0x7fe00000) {  /* make sure x+x not overflow */
212                     z = -__cos(x+x);
213                     if ((s*c)<zero) cc = z/ss;
214                     else            ss = z/cc;
215                 }
216                 if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
217                 else {
218                     u = pzero(x); v = qzero(x);
219                     z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
220                 }
221                 return z;
222 	}
223 	if(ix<=0x3e400000) {	/* x < 2**-27 */
224 	    return(U[0] + tpi*__ieee754_log(x));
225 	}
226 	z = x*x;
227 #ifdef DO_NOT_USE_THIS
228 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
229 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
230 #else
231 	u1 = U[0]+z*U[1]; z2=z*z;
232 	u2 = U[2]+z*U[3]; z4=z2*z2;
233 	u3 = U[4]+z*U[5]; z6=z4*z2;
234 	u = u1 + z2*u2 + z4*u3 + z6*U[6];
235 	v1 = one+z*V[0];
236 	v2 = V[1]+z*V[2];
237 	v = v1 + z2*v2 + z4*V[3];
238 #endif
239 	return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
240 }
241 
242 /* The asymptotic expansions of pzero is
243  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
244  * For x >= 2, We approximate pzero by
245  * 	pzero(x) = 1 + (R/S)
246  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
247  * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
248  * and
249  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
250  */
251 #ifdef __STDC__
252 static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
253 #else
254 static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
255 #endif
256   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
257  -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
258  -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
259  -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
260  -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
261  -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
262 };
263 #ifdef __STDC__
264 static const double pS8[5] = {
265 #else
266 static double pS8[5] = {
267 #endif
268   1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
269   3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
270   4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
271   1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
272   4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
273 };
274 
275 #ifdef __STDC__
276 static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
277 #else
278 static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
279 #endif
280  -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
281  -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
282  -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
283  -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
284  -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
285  -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
286 };
287 #ifdef __STDC__
288 static const double pS5[5] = {
289 #else
290 static double pS5[5] = {
291 #endif
292   6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
293   1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
294   5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
295   9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
296   2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
297 };
298 
299 #ifdef __STDC__
300 static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
301 #else
302 static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
303 #endif
304  -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
305  -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
306  -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
307  -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
308  -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
309  -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
310 };
311 #ifdef __STDC__
312 static const double pS3[5] = {
313 #else
314 static double pS3[5] = {
315 #endif
316   3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
317   3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
318   1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
319   1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
320   1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
321 };
322 
323 #ifdef __STDC__
324 static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
325 #else
326 static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
327 #endif
328  -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
329  -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
330  -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
331  -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
332  -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
333  -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
334 };
335 #ifdef __STDC__
336 static const double pS2[5] = {
337 #else
338 static double pS2[5] = {
339 #endif
340   2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
341   1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
342   2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
343   1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
344   1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
345 };
346 
347 #ifdef __STDC__
pzero(double x)348 	static double pzero(double x)
349 #else
350 	static double pzero(x)
351 	double x;
352 #endif
353 {
354 #ifdef __STDC__
355 	const double *p = 0,*q = 0;
356 #else
357 	double *p = 0,*q = 0;
358 #endif
359 	double z,r,s,z2,z4,r1,r2,r3,s1,s2,s3;
360 	int32_t ix;
361 	GET_HIGH_WORD(ix,x);
362 	ix &= 0x7fffffff;
363 	if(ix>=0x40200000)     {p = pR8; q= pS8;}
364 	else if(ix>=0x40122E8B){p = pR5; q= pS5;}
365 	else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
366 	else if(ix>=0x40000000){p = pR2; q= pS2;}
367 	z = one/(x*x);
368 #ifdef DO_NOT_USE_THIS
369 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
370 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
371 #else
372 	r1 = p[0]+z*p[1]; z2=z*z;
373 	r2 = p[2]+z*p[3]; z4=z2*z2;
374 	r3 = p[4]+z*p[5];
375 	r = r1 + z2*r2 + z4*r3;
376 	s1 = one+z*q[0];
377 	s2 = q[1]+z*q[2];
378 	s3 = q[3]+z*q[4];
379 	s = s1 + z2*s2 + z4*s3;
380 #endif
381 	return one+ r/s;
382 }
383 
384 
385 /* For x >= 8, the asymptotic expansions of qzero is
386  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
387  * We approximate pzero by
388  * 	qzero(x) = s*(-1.25 + (R/S))
389  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
390  * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
391  * and
392  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
393  */
394 #ifdef __STDC__
395 static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
396 #else
397 static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
398 #endif
399   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
400   7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
401   1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
402   5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
403   8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
404   3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
405 };
406 #ifdef __STDC__
407 static const double qS8[6] = {
408 #else
409 static double qS8[6] = {
410 #endif
411   1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
412   8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
413   1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
414   8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
415   8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
416  -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
417 };
418 
419 #ifdef __STDC__
420 static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
421 #else
422 static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
423 #endif
424   1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
425   7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
426   5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
427   1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
428   1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
429   1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
430 };
431 #ifdef __STDC__
432 static const double qS5[6] = {
433 #else
434 static double qS5[6] = {
435 #endif
436   8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
437   2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
438   1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
439   5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
440   3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
441  -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
442 };
443 
444 #ifdef __STDC__
445 static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
446 #else
447 static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
448 #endif
449   4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
450   7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
451   3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
452   4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
453   1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
454   1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
455 };
456 #ifdef __STDC__
457 static const double qS3[6] = {
458 #else
459 static double qS3[6] = {
460 #endif
461   4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
462   7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
463   3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
464   6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
465   2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
466  -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
467 };
468 
469 #ifdef __STDC__
470 static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
471 #else
472 static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
473 #endif
474   1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
475   7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
476   1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
477   1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
478   3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
479   1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
480 };
481 #ifdef __STDC__
482 static const double qS2[6] = {
483 #else
484 static double qS2[6] = {
485 #endif
486   3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
487   2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
488   8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
489   8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
490   2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
491  -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
492 };
493 
494 #ifdef __STDC__
qzero(double x)495 	static double qzero(double x)
496 #else
497 	static double qzero(x)
498 	double x;
499 #endif
500 {
501 #ifdef __STDC__
502 	const double *p = 0,*q = 0;
503 #else
504 	double *p = 0,*q = 0;
505 #endif
506 	double s,r,z,z2,z4,z6,r1,r2,r3,s1,s2,s3;
507 	int32_t ix;
508 	GET_HIGH_WORD(ix,x);
509 	ix &= 0x7fffffff;
510 	if(ix>=0x40200000)     {p = qR8; q= qS8;}
511 	else if(ix>=0x40122E8B){p = qR5; q= qS5;}
512 	else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
513 	else if(ix>=0x40000000){p = qR2; q= qS2;}
514 	z = one/(x*x);
515 #ifdef DO_NOT_USE_THIS
516 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
517 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
518 #else
519 	r1 = p[0]+z*p[1]; z2=z*z;
520 	r2 = p[2]+z*p[3]; z4=z2*z2;
521 	r3 = p[4]+z*p[5]; z6=z4*z2;
522 	r= r1 + z2*r2 + z4*r3;
523 	s1 = one+z*q[0];
524 	s2 = q[1]+z*q[2];
525 	s3 = q[3]+z*q[4];
526 	s = s1 + z2*s2 + z4*s3 +z6*q[5];
527 #endif
528 	return (-.125 + r/s)/x;
529 }
530