1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #if KMP_OS_LINUX
29 #include <semaphore.h>
30 #endif // KMP_OS_LINUX
31 #include <sys/resource.h>
32 #if !KMP_OS_AIX
33 #include <sys/syscall.h>
34 #endif
35 #include <sys/time.h>
36 #include <sys/times.h>
37 #include <unistd.h>
38 
39 #if KMP_OS_LINUX
40 #include <sys/sysinfo.h>
41 #if KMP_USE_FUTEX
42 // We should really include <futex.h>, but that causes compatibility problems on
43 // different Linux* OS distributions that either require that you include (or
44 // break when you try to include) <pci/types.h>. Since all we need is the two
45 // macros below (which are part of the kernel ABI, so can't change) we just
46 // define the constants here and don't include <futex.h>
47 #ifndef FUTEX_WAIT
48 #define FUTEX_WAIT 0
49 #endif
50 #ifndef FUTEX_WAKE
51 #define FUTEX_WAKE 1
52 #endif
53 #endif
54 #elif KMP_OS_DARWIN
55 #include <mach/mach.h>
56 #include <sys/sysctl.h>
57 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
58 #include <sys/types.h>
59 #include <sys/sysctl.h>
60 #include <sys/user.h>
61 #include <pthread_np.h>
62 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #elif KMP_OS_SOLARIS
66 #include <sys/loadavg.h>
67 #endif
68 
69 #include <ctype.h>
70 #include <dirent.h>
71 #include <fcntl.h>
72 
73 struct kmp_sys_timer {
74   struct timespec start;
75 };
76 
77 #ifndef TIMEVAL_TO_TIMESPEC
78 // Convert timeval to timespec.
79 #define TIMEVAL_TO_TIMESPEC(tv, ts)                                            \
80   do {                                                                         \
81     (ts)->tv_sec = (tv)->tv_sec;                                               \
82     (ts)->tv_nsec = (tv)->tv_usec * 1000;                                      \
83   } while (0)
84 #endif
85 
86 // Convert timespec to nanoseconds.
87 #define TS2NS(timespec)                                                        \
88   (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
89 
90 static struct kmp_sys_timer __kmp_sys_timer_data;
91 
92 #if KMP_HANDLE_SIGNALS
93 typedef void (*sig_func_t)(int);
94 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
95 static sigset_t __kmp_sigset;
96 #endif
97 
98 static int __kmp_init_runtime = FALSE;
99 
100 static int __kmp_fork_count = 0;
101 
102 static pthread_condattr_t __kmp_suspend_cond_attr;
103 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
104 
105 static kmp_cond_align_t __kmp_wait_cv;
106 static kmp_mutex_align_t __kmp_wait_mx;
107 
108 kmp_uint64 __kmp_ticks_per_msec = 1000000;
109 kmp_uint64 __kmp_ticks_per_usec = 1000;
110 
111 #ifdef DEBUG_SUSPEND
__kmp_print_cond(char * buffer,kmp_cond_align_t * cond)112 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
113   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
114                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
115                cond->c_cond.__c_waiting);
116 }
117 #endif
118 
119 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_AIX) && KMP_AFFINITY_SUPPORTED)
120 
121 /* Affinity support */
122 
__kmp_affinity_bind_thread(int which)123 void __kmp_affinity_bind_thread(int which) {
124   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
125               "Illegal set affinity operation when not capable");
126 
127   kmp_affin_mask_t *mask;
128   KMP_CPU_ALLOC_ON_STACK(mask);
129   KMP_CPU_ZERO(mask);
130   KMP_CPU_SET(which, mask);
131   __kmp_set_system_affinity(mask, TRUE);
132   KMP_CPU_FREE_FROM_STACK(mask);
133 }
134 
135 #if KMP_OS_AIX
__kmp_affinity_determine_capable(const char * env_var)136 void __kmp_affinity_determine_capable(const char *env_var) {
137   // All versions of AIX support bindprocessor().
138 
139   size_t mask_size = __kmp_xproc / CHAR_BIT;
140   // Round up to byte boundary.
141   if (__kmp_xproc % CHAR_BIT)
142     ++mask_size;
143 
144   // Round up to the mask_size_type boundary.
145   if (mask_size % sizeof(__kmp_affin_mask_size))
146     mask_size += sizeof(__kmp_affin_mask_size) -
147                  mask_size % sizeof(__kmp_affin_mask_size);
148   KMP_AFFINITY_ENABLE(mask_size);
149   KA_TRACE(10,
150            ("__kmp_affinity_determine_capable: "
151             "AIX OS affinity interface bindprocessor functional (mask size = "
152             "%" KMP_SIZE_T_SPEC ").\n",
153             __kmp_affin_mask_size));
154 }
155 
156 #else // !KMP_OS_AIX
157 
158 /* Determine if we can access affinity functionality on this version of
159  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
160  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
__kmp_affinity_determine_capable(const char * env_var)161 void __kmp_affinity_determine_capable(const char *env_var) {
162   // Check and see if the OS supports thread affinity.
163 
164 #if KMP_OS_LINUX
165 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
166 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE
167 #elif KMP_OS_FREEBSD
168 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
169 #endif
170 
171   int verbose = __kmp_affinity.flags.verbose;
172   int warnings = __kmp_affinity.flags.warnings;
173   enum affinity_type type = __kmp_affinity.type;
174 
175 #if KMP_OS_LINUX
176   long gCode;
177   unsigned char *buf;
178   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
179 
180   // If the syscall returns a suggestion for the size,
181   // then we don't have to search for an appropriate size.
182   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
183   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
184                 "initial getaffinity call returned %ld errno = %d\n",
185                 gCode, errno));
186 
187   if (gCode < 0 && errno != EINVAL) {
188     // System call not supported
189     if (verbose ||
190         (warnings && (type != affinity_none) && (type != affinity_default) &&
191          (type != affinity_disabled))) {
192       int error = errno;
193       kmp_msg_t err_code = KMP_ERR(error);
194       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
195                 err_code, __kmp_msg_null);
196       if (__kmp_generate_warnings == kmp_warnings_off) {
197         __kmp_str_free(&err_code.str);
198       }
199     }
200     KMP_AFFINITY_DISABLE();
201     KMP_INTERNAL_FREE(buf);
202     return;
203   } else if (gCode > 0) {
204     // The optimal situation: the OS returns the size of the buffer it expects.
205     KMP_AFFINITY_ENABLE(gCode);
206     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
207                   "affinity supported (mask size %d)\n",
208                   (int)__kmp_affin_mask_size));
209     KMP_INTERNAL_FREE(buf);
210     return;
211   }
212 
213   // Call the getaffinity system call repeatedly with increasing set sizes
214   // until we succeed, or reach an upper bound on the search.
215   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
216                 "searching for proper set size\n"));
217   int size;
218   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
219     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
220     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
221                   "getaffinity for mask size %ld returned %ld errno = %d\n",
222                   size, gCode, errno));
223 
224     if (gCode < 0) {
225       if (errno == ENOSYS) {
226         // We shouldn't get here
227         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
228                       "inconsistent OS call behavior: errno == ENOSYS for mask "
229                       "size %d\n",
230                       size));
231         if (verbose ||
232             (warnings && (type != affinity_none) &&
233              (type != affinity_default) && (type != affinity_disabled))) {
234           int error = errno;
235           kmp_msg_t err_code = KMP_ERR(error);
236           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
237                     err_code, __kmp_msg_null);
238           if (__kmp_generate_warnings == kmp_warnings_off) {
239             __kmp_str_free(&err_code.str);
240           }
241         }
242         KMP_AFFINITY_DISABLE();
243         KMP_INTERNAL_FREE(buf);
244         return;
245       }
246       continue;
247     }
248 
249     KMP_AFFINITY_ENABLE(gCode);
250     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
251                   "affinity supported (mask size %d)\n",
252                   (int)__kmp_affin_mask_size));
253     KMP_INTERNAL_FREE(buf);
254     return;
255   }
256 #elif KMP_OS_FREEBSD
257   long gCode;
258   unsigned char *buf;
259   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
260   gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
261                                  reinterpret_cast<cpuset_t *>(buf));
262   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
263                 "initial getaffinity call returned %d errno = %d\n",
264                 gCode, errno));
265   if (gCode == 0) {
266     KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
267     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
268                   "affinity supported (mask size %d)\n",
269                   (int)__kmp_affin_mask_size));
270     KMP_INTERNAL_FREE(buf);
271     return;
272   }
273 #endif
274   KMP_INTERNAL_FREE(buf);
275 
276   // Affinity is not supported
277   KMP_AFFINITY_DISABLE();
278   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
279                 "cannot determine mask size - affinity not supported\n"));
280   if (verbose || (warnings && (type != affinity_none) &&
281                   (type != affinity_default) && (type != affinity_disabled))) {
282     KMP_WARNING(AffCantGetMaskSize, env_var);
283   }
284 }
285 #endif // KMP_OS_AIX
286 #endif // (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_AIX) &&
287        // KMP_AFFINITY_SUPPORTED
288 
289 #if KMP_USE_FUTEX
290 
__kmp_futex_determine_capable()291 int __kmp_futex_determine_capable() {
292   int loc = 0;
293   long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
294   int retval = (rc == 0) || (errno != ENOSYS);
295 
296   KA_TRACE(10,
297            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
298   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
299                 retval ? "" : " not"));
300 
301   return retval;
302 }
303 
304 #endif // KMP_USE_FUTEX
305 
306 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_WASM) && (!KMP_ASM_INTRINS)
307 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
308    use compare_and_store for these routines */
309 
__kmp_test_then_or8(volatile kmp_int8 * p,kmp_int8 d)310 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
311   kmp_int8 old_value, new_value;
312 
313   old_value = TCR_1(*p);
314   new_value = old_value | d;
315 
316   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
317     KMP_CPU_PAUSE();
318     old_value = TCR_1(*p);
319     new_value = old_value | d;
320   }
321   return old_value;
322 }
323 
__kmp_test_then_and8(volatile kmp_int8 * p,kmp_int8 d)324 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
325   kmp_int8 old_value, new_value;
326 
327   old_value = TCR_1(*p);
328   new_value = old_value & d;
329 
330   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
331     KMP_CPU_PAUSE();
332     old_value = TCR_1(*p);
333     new_value = old_value & d;
334   }
335   return old_value;
336 }
337 
__kmp_test_then_or32(volatile kmp_uint32 * p,kmp_uint32 d)338 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
339   kmp_uint32 old_value, new_value;
340 
341   old_value = TCR_4(*p);
342   new_value = old_value | d;
343 
344   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
345     KMP_CPU_PAUSE();
346     old_value = TCR_4(*p);
347     new_value = old_value | d;
348   }
349   return old_value;
350 }
351 
__kmp_test_then_and32(volatile kmp_uint32 * p,kmp_uint32 d)352 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
353   kmp_uint32 old_value, new_value;
354 
355   old_value = TCR_4(*p);
356   new_value = old_value & d;
357 
358   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
359     KMP_CPU_PAUSE();
360     old_value = TCR_4(*p);
361     new_value = old_value & d;
362   }
363   return old_value;
364 }
365 
366 #if KMP_ARCH_X86 || KMP_ARCH_WASM
__kmp_test_then_add8(volatile kmp_int8 * p,kmp_int8 d)367 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
368   kmp_int8 old_value, new_value;
369 
370   old_value = TCR_1(*p);
371   new_value = old_value + d;
372 
373   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
374     KMP_CPU_PAUSE();
375     old_value = TCR_1(*p);
376     new_value = old_value + d;
377   }
378   return old_value;
379 }
380 
__kmp_test_then_add64(volatile kmp_int64 * p,kmp_int64 d)381 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
382   kmp_int64 old_value, new_value;
383 
384   old_value = TCR_8(*p);
385   new_value = old_value + d;
386 
387   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
388     KMP_CPU_PAUSE();
389     old_value = TCR_8(*p);
390     new_value = old_value + d;
391   }
392   return old_value;
393 }
394 #endif /* KMP_ARCH_X86 */
395 
__kmp_test_then_or64(volatile kmp_uint64 * p,kmp_uint64 d)396 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
397   kmp_uint64 old_value, new_value;
398 
399   old_value = TCR_8(*p);
400   new_value = old_value | d;
401   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
402     KMP_CPU_PAUSE();
403     old_value = TCR_8(*p);
404     new_value = old_value | d;
405   }
406   return old_value;
407 }
408 
__kmp_test_then_and64(volatile kmp_uint64 * p,kmp_uint64 d)409 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
410   kmp_uint64 old_value, new_value;
411 
412   old_value = TCR_8(*p);
413   new_value = old_value & d;
414   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
415     KMP_CPU_PAUSE();
416     old_value = TCR_8(*p);
417     new_value = old_value & d;
418   }
419   return old_value;
420 }
421 
422 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
423 
__kmp_terminate_thread(int gtid)424 void __kmp_terminate_thread(int gtid) {
425   int status;
426   kmp_info_t *th = __kmp_threads[gtid];
427 
428   if (!th)
429     return;
430 
431 #ifdef KMP_CANCEL_THREADS
432   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
433   status = pthread_cancel(th->th.th_info.ds.ds_thread);
434   if (status != 0 && status != ESRCH) {
435     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
436                 __kmp_msg_null);
437   }
438 #endif
439   KMP_YIELD(TRUE);
440 } //
441 
442 /* Set thread stack info according to values returned by pthread_getattr_np().
443    If values are unreasonable, assume call failed and use incremental stack
444    refinement method instead. Returns TRUE if the stack parameters could be
445    determined exactly, FALSE if incremental refinement is necessary. */
__kmp_set_stack_info(int gtid,kmp_info_t * th)446 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
447   int stack_data;
448 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
449     KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX
450   pthread_attr_t attr;
451   int status;
452   size_t size = 0;
453   void *addr = 0;
454 
455   /* Always do incremental stack refinement for ubermaster threads since the
456      initial thread stack range can be reduced by sibling thread creation so
457      pthread_attr_getstack may cause thread gtid aliasing */
458   if (!KMP_UBER_GTID(gtid)) {
459 
460     /* Fetch the real thread attributes */
461     status = pthread_attr_init(&attr);
462     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
463 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
464     status = pthread_attr_get_np(pthread_self(), &attr);
465     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
466 #else
467     status = pthread_getattr_np(pthread_self(), &attr);
468     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
469 #endif
470     status = pthread_attr_getstack(&attr, &addr, &size);
471     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
472     KA_TRACE(60,
473              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
474               " %lu, low addr: %p\n",
475               gtid, size, addr));
476     status = pthread_attr_destroy(&attr);
477     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
478   }
479 
480   if (size != 0 && addr != 0) { // was stack parameter determination successful?
481     /* Store the correct base and size */
482     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
483     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
484     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
485     return TRUE;
486   }
487 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD  \
488           || KMP_OS_HURD || KMP_OS_SOLARIS */
489   /* Use incremental refinement starting from initial conservative estimate */
490   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
491   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
492   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
493   return FALSE;
494 }
495 
__kmp_launch_worker(void * thr)496 static void *__kmp_launch_worker(void *thr) {
497   int status, old_type, old_state;
498 #ifdef KMP_BLOCK_SIGNALS
499   sigset_t new_set, old_set;
500 #endif /* KMP_BLOCK_SIGNALS */
501   void *exit_val;
502 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
503     KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX
504   void *volatile padding = 0;
505 #endif
506   int gtid;
507 
508   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
509   __kmp_gtid_set_specific(gtid);
510 #ifdef KMP_TDATA_GTID
511   __kmp_gtid = gtid;
512 #endif
513 #if KMP_STATS_ENABLED
514   // set thread local index to point to thread-specific stats
515   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
516   __kmp_stats_thread_ptr->startLife();
517   KMP_SET_THREAD_STATE(IDLE);
518   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
519 #endif
520 
521 #if USE_ITT_BUILD
522   __kmp_itt_thread_name(gtid);
523 #endif /* USE_ITT_BUILD */
524 
525 #if KMP_AFFINITY_SUPPORTED
526   __kmp_affinity_bind_init_mask(gtid);
527 #endif
528 
529 #ifdef KMP_CANCEL_THREADS
530   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
531   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
532   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
533   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
534   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
535 #endif
536 
537 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
538   // Set FP control regs to be a copy of the parallel initialization thread's.
539   __kmp_clear_x87_fpu_status_word();
540   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
541   __kmp_load_mxcsr(&__kmp_init_mxcsr);
542 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
543 
544 #ifdef KMP_BLOCK_SIGNALS
545   status = sigfillset(&new_set);
546   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
547   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
548   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
549 #endif /* KMP_BLOCK_SIGNALS */
550 
551 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
552     KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX
553   if (__kmp_stkoffset > 0 && gtid > 0) {
554     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
555     (void)padding;
556   }
557 #endif
558 
559   KMP_MB();
560   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
561 
562   __kmp_check_stack_overlap((kmp_info_t *)thr);
563 
564   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
565 
566 #ifdef KMP_BLOCK_SIGNALS
567   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
568   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
569 #endif /* KMP_BLOCK_SIGNALS */
570 
571   return exit_val;
572 }
573 
574 #if KMP_USE_MONITOR
575 /* The monitor thread controls all of the threads in the complex */
576 
__kmp_launch_monitor(void * thr)577 static void *__kmp_launch_monitor(void *thr) {
578   int status, old_type, old_state;
579 #ifdef KMP_BLOCK_SIGNALS
580   sigset_t new_set;
581 #endif /* KMP_BLOCK_SIGNALS */
582   struct timespec interval;
583 
584   KMP_MB(); /* Flush all pending memory write invalidates.  */
585 
586   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
587 
588   /* register us as the monitor thread */
589   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
590 #ifdef KMP_TDATA_GTID
591   __kmp_gtid = KMP_GTID_MONITOR;
592 #endif
593 
594   KMP_MB();
595 
596 #if USE_ITT_BUILD
597   // Instruct Intel(R) Threading Tools to ignore monitor thread.
598   __kmp_itt_thread_ignore();
599 #endif /* USE_ITT_BUILD */
600 
601   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
602                        (kmp_info_t *)thr);
603 
604   __kmp_check_stack_overlap((kmp_info_t *)thr);
605 
606 #ifdef KMP_CANCEL_THREADS
607   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
608   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
609   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
610   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
611   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
612 #endif
613 
614 #if KMP_REAL_TIME_FIX
615   // This is a potential fix which allows application with real-time scheduling
616   // policy work. However, decision about the fix is not made yet, so it is
617   // disabled by default.
618   { // Are program started with real-time scheduling policy?
619     int sched = sched_getscheduler(0);
620     if (sched == SCHED_FIFO || sched == SCHED_RR) {
621       // Yes, we are a part of real-time application. Try to increase the
622       // priority of the monitor.
623       struct sched_param param;
624       int max_priority = sched_get_priority_max(sched);
625       int rc;
626       KMP_WARNING(RealTimeSchedNotSupported);
627       sched_getparam(0, &param);
628       if (param.sched_priority < max_priority) {
629         param.sched_priority += 1;
630         rc = sched_setscheduler(0, sched, &param);
631         if (rc != 0) {
632           int error = errno;
633           kmp_msg_t err_code = KMP_ERR(error);
634           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
635                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
636           if (__kmp_generate_warnings == kmp_warnings_off) {
637             __kmp_str_free(&err_code.str);
638           }
639         }
640       } else {
641         // We cannot abort here, because number of CPUs may be enough for all
642         // the threads, including the monitor thread, so application could
643         // potentially work...
644         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
645                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
646                   __kmp_msg_null);
647       }
648     }
649     // AC: free thread that waits for monitor started
650     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
651   }
652 #endif // KMP_REAL_TIME_FIX
653 
654   KMP_MB(); /* Flush all pending memory write invalidates.  */
655 
656   if (__kmp_monitor_wakeups == 1) {
657     interval.tv_sec = 1;
658     interval.tv_nsec = 0;
659   } else {
660     interval.tv_sec = 0;
661     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
662   }
663 
664   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
665 
666   while (!TCR_4(__kmp_global.g.g_done)) {
667     struct timespec now;
668     struct timeval tval;
669 
670     /*  This thread monitors the state of the system */
671 
672     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
673 
674     status = gettimeofday(&tval, NULL);
675     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
676     TIMEVAL_TO_TIMESPEC(&tval, &now);
677 
678     now.tv_sec += interval.tv_sec;
679     now.tv_nsec += interval.tv_nsec;
680 
681     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
682       now.tv_sec += 1;
683       now.tv_nsec -= KMP_NSEC_PER_SEC;
684     }
685 
686     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
687     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
688     // AC: the monitor should not fall asleep if g_done has been set
689     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
690       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
691                                       &__kmp_wait_mx.m_mutex, &now);
692       if (status != 0) {
693         if (status != ETIMEDOUT && status != EINTR) {
694           KMP_SYSFAIL("pthread_cond_timedwait", status);
695         }
696       }
697     }
698     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
699     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
700 
701     TCW_4(__kmp_global.g.g_time.dt.t_value,
702           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
703 
704     KMP_MB(); /* Flush all pending memory write invalidates.  */
705   }
706 
707   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
708 
709 #ifdef KMP_BLOCK_SIGNALS
710   status = sigfillset(&new_set);
711   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
712   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
713   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
714 #endif /* KMP_BLOCK_SIGNALS */
715 
716   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
717 
718   if (__kmp_global.g.g_abort != 0) {
719     /* now we need to terminate the worker threads  */
720     /* the value of t_abort is the signal we caught */
721 
722     int gtid;
723 
724     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
725                   __kmp_global.g.g_abort));
726 
727     /* terminate the OpenMP worker threads */
728     /* TODO this is not valid for sibling threads!!
729      * the uber master might not be 0 anymore.. */
730     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
731       __kmp_terminate_thread(gtid);
732 
733     __kmp_cleanup();
734 
735     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
736                   __kmp_global.g.g_abort));
737 
738     if (__kmp_global.g.g_abort > 0)
739       raise(__kmp_global.g.g_abort);
740   }
741 
742   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
743 
744   return thr;
745 }
746 #endif // KMP_USE_MONITOR
747 
__kmp_create_worker(int gtid,kmp_info_t * th,size_t stack_size)748 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
749   pthread_t handle;
750   pthread_attr_t thread_attr;
751   int status;
752 
753   th->th.th_info.ds.ds_gtid = gtid;
754 
755 #if KMP_STATS_ENABLED
756   // sets up worker thread stats
757   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
758 
759   // th->th.th_stats is used to transfer thread-specific stats-pointer to
760   // __kmp_launch_worker. So when thread is created (goes into
761   // __kmp_launch_worker) it will set its thread local pointer to
762   // th->th.th_stats
763   if (!KMP_UBER_GTID(gtid)) {
764     th->th.th_stats = __kmp_stats_list->push_back(gtid);
765   } else {
766     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
767     // so set the th->th.th_stats field to it.
768     th->th.th_stats = __kmp_stats_thread_ptr;
769   }
770   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
771 
772 #endif // KMP_STATS_ENABLED
773 
774   if (KMP_UBER_GTID(gtid)) {
775     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
776     th->th.th_info.ds.ds_thread = pthread_self();
777     __kmp_set_stack_info(gtid, th);
778     __kmp_check_stack_overlap(th);
779     return;
780   }
781 
782   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
783 
784   KMP_MB(); /* Flush all pending memory write invalidates.  */
785 
786 #ifdef KMP_THREAD_ATTR
787   status = pthread_attr_init(&thread_attr);
788   if (status != 0) {
789     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
790   }
791   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
792   if (status != 0) {
793     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
794   }
795 
796   /* Set stack size for this thread now.
797      The multiple of 2 is there because on some machines, requesting an unusual
798      stacksize causes the thread to have an offset before the dummy alloca()
799      takes place to create the offset.  Since we want the user to have a
800      sufficient stacksize AND support a stack offset, we alloca() twice the
801      offset so that the upcoming alloca() does not eliminate any premade offset,
802      and also gives the user the stack space they requested for all threads */
803   stack_size += gtid * __kmp_stkoffset * 2;
804 
805   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
806                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
807                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
808 
809 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
810   status = pthread_attr_setstacksize(&thread_attr, stack_size);
811 #ifdef KMP_BACKUP_STKSIZE
812   if (status != 0) {
813     if (!__kmp_env_stksize) {
814       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
815       __kmp_stksize = KMP_BACKUP_STKSIZE;
816       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
817                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
818                     "bytes\n",
819                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
820       status = pthread_attr_setstacksize(&thread_attr, stack_size);
821     }
822   }
823 #endif /* KMP_BACKUP_STKSIZE */
824   if (status != 0) {
825     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
826                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
827   }
828 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
829 
830 #endif /* KMP_THREAD_ATTR */
831 
832   status =
833       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
834   if (status != 0 || !handle) { // ??? Why do we check handle??
835 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
836     if (status == EINVAL) {
837       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
838                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
839     }
840     if (status == ENOMEM) {
841       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
842                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
843     }
844 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
845     if (status == EAGAIN) {
846       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
847                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
848     }
849     KMP_SYSFAIL("pthread_create", status);
850   }
851 
852   th->th.th_info.ds.ds_thread = handle;
853 
854 #ifdef KMP_THREAD_ATTR
855   status = pthread_attr_destroy(&thread_attr);
856   if (status) {
857     kmp_msg_t err_code = KMP_ERR(status);
858     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
859               __kmp_msg_null);
860     if (__kmp_generate_warnings == kmp_warnings_off) {
861       __kmp_str_free(&err_code.str);
862     }
863   }
864 #endif /* KMP_THREAD_ATTR */
865 
866   KMP_MB(); /* Flush all pending memory write invalidates.  */
867 
868   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
869 
870 } // __kmp_create_worker
871 
872 #if KMP_USE_MONITOR
__kmp_create_monitor(kmp_info_t * th)873 void __kmp_create_monitor(kmp_info_t *th) {
874   pthread_t handle;
875   pthread_attr_t thread_attr;
876   size_t size;
877   int status;
878   int auto_adj_size = FALSE;
879 
880   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
881     // We don't need monitor thread in case of MAX_BLOCKTIME
882     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
883                   "MAX blocktime\n"));
884     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
885     th->th.th_info.ds.ds_gtid = 0;
886     return;
887   }
888   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
889 
890   KMP_MB(); /* Flush all pending memory write invalidates.  */
891 
892   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
893   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
894 #if KMP_REAL_TIME_FIX
895   TCW_4(__kmp_global.g.g_time.dt.t_value,
896         -1); // Will use it for synchronization a bit later.
897 #else
898   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
899 #endif // KMP_REAL_TIME_FIX
900 
901 #ifdef KMP_THREAD_ATTR
902   if (__kmp_monitor_stksize == 0) {
903     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
904     auto_adj_size = TRUE;
905   }
906   status = pthread_attr_init(&thread_attr);
907   if (status != 0) {
908     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
909   }
910   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
911   if (status != 0) {
912     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
913   }
914 
915 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
916   status = pthread_attr_getstacksize(&thread_attr, &size);
917   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
918 #else
919   size = __kmp_sys_min_stksize;
920 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
921 #endif /* KMP_THREAD_ATTR */
922 
923   if (__kmp_monitor_stksize == 0) {
924     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
925   }
926   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
927     __kmp_monitor_stksize = __kmp_sys_min_stksize;
928   }
929 
930   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
931                 "requested stacksize = %lu bytes\n",
932                 size, __kmp_monitor_stksize));
933 
934 retry:
935 
936 /* Set stack size for this thread now. */
937 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
938   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
939                 __kmp_monitor_stksize));
940   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
941   if (status != 0) {
942     if (auto_adj_size) {
943       __kmp_monitor_stksize *= 2;
944       goto retry;
945     }
946     kmp_msg_t err_code = KMP_ERR(status);
947     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
948               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
949               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
950     if (__kmp_generate_warnings == kmp_warnings_off) {
951       __kmp_str_free(&err_code.str);
952     }
953   }
954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
955 
956   status =
957       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
958 
959   if (status != 0) {
960 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
961     if (status == EINVAL) {
962       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
963         __kmp_monitor_stksize *= 2;
964         goto retry;
965       }
966       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
967                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
968                   __kmp_msg_null);
969     }
970     if (status == ENOMEM) {
971       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
972                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
973                   __kmp_msg_null);
974     }
975 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
976     if (status == EAGAIN) {
977       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
978                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
979     }
980     KMP_SYSFAIL("pthread_create", status);
981   }
982 
983   th->th.th_info.ds.ds_thread = handle;
984 
985 #if KMP_REAL_TIME_FIX
986   // Wait for the monitor thread is really started and set its *priority*.
987   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
988                    sizeof(__kmp_global.g.g_time.dt.t_value));
989   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
990                &__kmp_neq_4, NULL);
991 #endif // KMP_REAL_TIME_FIX
992 
993 #ifdef KMP_THREAD_ATTR
994   status = pthread_attr_destroy(&thread_attr);
995   if (status != 0) {
996     kmp_msg_t err_code = KMP_ERR(status);
997     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
998               __kmp_msg_null);
999     if (__kmp_generate_warnings == kmp_warnings_off) {
1000       __kmp_str_free(&err_code.str);
1001     }
1002   }
1003 #endif
1004 
1005   KMP_MB(); /* Flush all pending memory write invalidates.  */
1006 
1007   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1008                 th->th.th_info.ds.ds_thread));
1009 
1010 } // __kmp_create_monitor
1011 #endif // KMP_USE_MONITOR
1012 
__kmp_exit_thread(int exit_status)1013 void __kmp_exit_thread(int exit_status) {
1014 #if KMP_OS_WASI
1015 // TODO: the wasm32-wasi-threads target does not yet support pthread_exit.
1016 #else
1017   pthread_exit((void *)(intptr_t)exit_status);
1018 #endif
1019 } // __kmp_exit_thread
1020 
1021 #if KMP_USE_MONITOR
1022 void __kmp_resume_monitor();
1023 
__kmp_reap_monitor(kmp_info_t * th)1024 extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
1025   int status;
1026   void *exit_val;
1027 
1028   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1029                 " %#.8lx\n",
1030                 th->th.th_info.ds.ds_thread));
1031 
1032   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1033   // If both tid and gtid are 0, it means the monitor did not ever start.
1034   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1035   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1036   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1037     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1038     return;
1039   }
1040 
1041   KMP_MB(); /* Flush all pending memory write invalidates.  */
1042 
1043   /* First, check to see whether the monitor thread exists to wake it up. This
1044      is to avoid performance problem when the monitor sleeps during
1045      blocktime-size interval */
1046 
1047   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1048   if (status != ESRCH) {
1049     __kmp_resume_monitor(); // Wake up the monitor thread
1050   }
1051   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1052   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1053   if (exit_val != th) {
1054     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1055   }
1056 
1057   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1058   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1059 
1060   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1061                 " %#.8lx\n",
1062                 th->th.th_info.ds.ds_thread));
1063 
1064   KMP_MB(); /* Flush all pending memory write invalidates.  */
1065 }
1066 #else
1067 // Empty symbol to export (see exports_so.txt) when
1068 // monitor thread feature is disabled
__kmp_reap_monitor(kmp_info_t * th)1069 extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
1070   (void)th;
1071 }
1072 #endif // KMP_USE_MONITOR
1073 
__kmp_reap_worker(kmp_info_t * th)1074 void __kmp_reap_worker(kmp_info_t *th) {
1075   int status;
1076   void *exit_val;
1077 
1078   KMP_MB(); /* Flush all pending memory write invalidates.  */
1079 
1080   KA_TRACE(
1081       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1082 
1083   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1084 #ifdef KMP_DEBUG
1085   /* Don't expose these to the user until we understand when they trigger */
1086   if (status != 0) {
1087     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1088   }
1089   if (exit_val != th) {
1090     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1091                   "exit_val = %p\n",
1092                   th->th.th_info.ds.ds_gtid, exit_val));
1093   }
1094 #else
1095   (void)status; // unused variable
1096 #endif /* KMP_DEBUG */
1097 
1098   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1099                 th->th.th_info.ds.ds_gtid));
1100 
1101   KMP_MB(); /* Flush all pending memory write invalidates.  */
1102 }
1103 
1104 #if KMP_HANDLE_SIGNALS
1105 
__kmp_null_handler(int signo)1106 static void __kmp_null_handler(int signo) {
1107   //  Do nothing, for doing SIG_IGN-type actions.
1108 } // __kmp_null_handler
1109 
__kmp_team_handler(int signo)1110 static void __kmp_team_handler(int signo) {
1111   if (__kmp_global.g.g_abort == 0) {
1112 /* Stage 1 signal handler, let's shut down all of the threads */
1113 #ifdef KMP_DEBUG
1114     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1115 #endif
1116     switch (signo) {
1117     case SIGHUP:
1118     case SIGINT:
1119     case SIGQUIT:
1120     case SIGILL:
1121     case SIGABRT:
1122     case SIGFPE:
1123     case SIGBUS:
1124     case SIGSEGV:
1125 #ifdef SIGSYS
1126     case SIGSYS:
1127 #endif
1128     case SIGTERM:
1129       if (__kmp_debug_buf) {
1130         __kmp_dump_debug_buffer();
1131       }
1132       __kmp_unregister_library(); // cleanup shared memory
1133       KMP_MB(); // Flush all pending memory write invalidates.
1134       TCW_4(__kmp_global.g.g_abort, signo);
1135       KMP_MB(); // Flush all pending memory write invalidates.
1136       TCW_4(__kmp_global.g.g_done, TRUE);
1137       KMP_MB(); // Flush all pending memory write invalidates.
1138       break;
1139     default:
1140 #ifdef KMP_DEBUG
1141       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1142 #endif
1143       break;
1144     }
1145   }
1146 } // __kmp_team_handler
1147 
__kmp_sigaction(int signum,const struct sigaction * act,struct sigaction * oldact)1148 static void __kmp_sigaction(int signum, const struct sigaction *act,
1149                             struct sigaction *oldact) {
1150   int rc = sigaction(signum, act, oldact);
1151   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1152 }
1153 
__kmp_install_one_handler(int sig,sig_func_t handler_func,int parallel_init)1154 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1155                                       int parallel_init) {
1156   KMP_MB(); // Flush all pending memory write invalidates.
1157   KB_TRACE(60,
1158            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1159   if (parallel_init) {
1160     struct sigaction new_action;
1161     struct sigaction old_action;
1162     new_action.sa_handler = handler_func;
1163     new_action.sa_flags = 0;
1164     sigfillset(&new_action.sa_mask);
1165     __kmp_sigaction(sig, &new_action, &old_action);
1166     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1167       sigaddset(&__kmp_sigset, sig);
1168     } else {
1169       // Restore/keep user's handler if one previously installed.
1170       __kmp_sigaction(sig, &old_action, NULL);
1171     }
1172   } else {
1173     // Save initial/system signal handlers to see if user handlers installed.
1174     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1175   }
1176   KMP_MB(); // Flush all pending memory write invalidates.
1177 } // __kmp_install_one_handler
1178 
__kmp_remove_one_handler(int sig)1179 static void __kmp_remove_one_handler(int sig) {
1180   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1181   if (sigismember(&__kmp_sigset, sig)) {
1182     struct sigaction old;
1183     KMP_MB(); // Flush all pending memory write invalidates.
1184     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1185     if ((old.sa_handler != __kmp_team_handler) &&
1186         (old.sa_handler != __kmp_null_handler)) {
1187       // Restore the users signal handler.
1188       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1189                     "restoring: sig=%d\n",
1190                     sig));
1191       __kmp_sigaction(sig, &old, NULL);
1192     }
1193     sigdelset(&__kmp_sigset, sig);
1194     KMP_MB(); // Flush all pending memory write invalidates.
1195   }
1196 } // __kmp_remove_one_handler
1197 
__kmp_install_signals(int parallel_init)1198 void __kmp_install_signals(int parallel_init) {
1199   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1200   if (__kmp_handle_signals || !parallel_init) {
1201     // If ! parallel_init, we do not install handlers, just save original
1202     // handlers. Let us do it even __handle_signals is 0.
1203     sigemptyset(&__kmp_sigset);
1204     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1205     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1206     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1207     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1208     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1209     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1210     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1211     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1212 #ifdef SIGSYS
1213     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1214 #endif // SIGSYS
1215     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1216 #ifdef SIGPIPE
1217     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1218 #endif // SIGPIPE
1219   }
1220 } // __kmp_install_signals
1221 
__kmp_remove_signals(void)1222 void __kmp_remove_signals(void) {
1223   int sig;
1224   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1225   for (sig = 1; sig < NSIG; ++sig) {
1226     __kmp_remove_one_handler(sig);
1227   }
1228 } // __kmp_remove_signals
1229 
1230 #endif // KMP_HANDLE_SIGNALS
1231 
__kmp_enable(int new_state)1232 void __kmp_enable(int new_state) {
1233 #ifdef KMP_CANCEL_THREADS
1234   int status, old_state;
1235   status = pthread_setcancelstate(new_state, &old_state);
1236   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1237   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1238 #endif
1239 }
1240 
__kmp_disable(int * old_state)1241 void __kmp_disable(int *old_state) {
1242 #ifdef KMP_CANCEL_THREADS
1243   int status;
1244   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1245   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1246 #endif
1247 }
1248 
__kmp_atfork_prepare(void)1249 static void __kmp_atfork_prepare(void) {
1250   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1251   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1252 }
1253 
__kmp_atfork_parent(void)1254 static void __kmp_atfork_parent(void) {
1255   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1256   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1257 }
1258 
1259 /* Reset the library so execution in the child starts "all over again" with
1260    clean data structures in initial states.  Don't worry about freeing memory
1261    allocated by parent, just abandon it to be safe. */
__kmp_atfork_child(void)1262 static void __kmp_atfork_child(void) {
1263   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1264   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1265   /* TODO make sure this is done right for nested/sibling */
1266   // ATT:  Memory leaks are here? TODO: Check it and fix.
1267   /* KMP_ASSERT( 0 ); */
1268 
1269   ++__kmp_fork_count;
1270 
1271 #if KMP_AFFINITY_SUPPORTED
1272 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_AIX
1273   // reset the affinity in the child to the initial thread
1274   // affinity in the parent
1275   kmp_set_thread_affinity_mask_initial();
1276 #endif
1277   // Set default not to bind threads tightly in the child (we're expecting
1278   // over-subscription after the fork and this can improve things for
1279   // scripting languages that use OpenMP inside process-parallel code).
1280   if (__kmp_nested_proc_bind.bind_types != NULL) {
1281     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1282   }
1283   for (kmp_affinity_t *affinity : __kmp_affinities)
1284     *affinity = KMP_AFFINITY_INIT(affinity->env_var);
1285   __kmp_affin_fullMask = nullptr;
1286   __kmp_affin_origMask = nullptr;
1287   __kmp_topology = nullptr;
1288 #endif // KMP_AFFINITY_SUPPORTED
1289 
1290 #if KMP_USE_MONITOR
1291   __kmp_init_monitor = 0;
1292 #endif
1293   __kmp_init_parallel = FALSE;
1294   __kmp_init_middle = FALSE;
1295   __kmp_init_serial = FALSE;
1296   TCW_4(__kmp_init_gtid, FALSE);
1297   __kmp_init_common = FALSE;
1298 
1299   TCW_4(__kmp_init_user_locks, FALSE);
1300 #if !KMP_USE_DYNAMIC_LOCK
1301   __kmp_user_lock_table.used = 1;
1302   __kmp_user_lock_table.allocated = 0;
1303   __kmp_user_lock_table.table = NULL;
1304   __kmp_lock_blocks = NULL;
1305 #endif
1306 
1307   __kmp_all_nth = 0;
1308   TCW_4(__kmp_nth, 0);
1309 
1310   __kmp_thread_pool = NULL;
1311   __kmp_thread_pool_insert_pt = NULL;
1312   __kmp_team_pool = NULL;
1313 
1314   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1315      here so threadprivate doesn't use stale data */
1316   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1317                 __kmp_threadpriv_cache_list));
1318 
1319   while (__kmp_threadpriv_cache_list != NULL) {
1320 
1321     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1322       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1323                     &(*__kmp_threadpriv_cache_list->addr)));
1324 
1325       *__kmp_threadpriv_cache_list->addr = NULL;
1326     }
1327     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1328   }
1329 
1330   __kmp_init_runtime = FALSE;
1331 
1332   /* reset statically initialized locks */
1333   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1334   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1335   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1336   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1337 
1338 #if USE_ITT_BUILD
1339   __kmp_itt_reset(); // reset ITT's global state
1340 #endif /* USE_ITT_BUILD */
1341 
1342   {
1343     // Child process often get terminated without any use of OpenMP. That might
1344     // cause mapped shared memory file to be left unattended. Thus we postpone
1345     // library registration till middle initialization in the child process.
1346     __kmp_need_register_serial = FALSE;
1347     __kmp_serial_initialize();
1348   }
1349 
1350   /* This is necessary to make sure no stale data is left around */
1351   /* AC: customers complain that we use unsafe routines in the atfork
1352      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1353      in dynamic_link when check the presence of shared tbbmalloc library.
1354      Suggestion is to make the library initialization lazier, similar
1355      to what done for __kmpc_begin(). */
1356   // TODO: synchronize all static initializations with regular library
1357   //       startup; look at kmp_global.cpp and etc.
1358   //__kmp_internal_begin ();
1359 }
1360 
__kmp_register_atfork(void)1361 void __kmp_register_atfork(void) {
1362   if (__kmp_need_register_atfork) {
1363 #if !KMP_OS_WASI
1364     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1365                                 __kmp_atfork_child);
1366     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1367 #endif
1368     __kmp_need_register_atfork = FALSE;
1369   }
1370 }
1371 
__kmp_suspend_initialize(void)1372 void __kmp_suspend_initialize(void) {
1373   int status;
1374   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1375   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1376   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1377   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1378 }
1379 
__kmp_suspend_initialize_thread(kmp_info_t * th)1380 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1381   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1382   int new_value = __kmp_fork_count + 1;
1383   // Return if already initialized
1384   if (old_value == new_value)
1385     return;
1386   // Wait, then return if being initialized
1387   if (old_value == -1 || !__kmp_atomic_compare_store(
1388                              &th->th.th_suspend_init_count, old_value, -1)) {
1389     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1390       KMP_CPU_PAUSE();
1391     }
1392   } else {
1393     // Claim to be the initializer and do initializations
1394     int status;
1395     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1396                                &__kmp_suspend_cond_attr);
1397     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1398     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1399                                 &__kmp_suspend_mutex_attr);
1400     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1401     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1402   }
1403 }
1404 
__kmp_suspend_uninitialize_thread(kmp_info_t * th)1405 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1406   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1407     /* this means we have initialize the suspension pthread objects for this
1408        thread in this instance of the process */
1409     int status;
1410 
1411     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1412     if (status != 0 && status != EBUSY) {
1413       KMP_SYSFAIL("pthread_cond_destroy", status);
1414     }
1415     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1416     if (status != 0 && status != EBUSY) {
1417       KMP_SYSFAIL("pthread_mutex_destroy", status);
1418     }
1419     --th->th.th_suspend_init_count;
1420     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1421                      __kmp_fork_count);
1422   }
1423 }
1424 
1425 // return true if lock obtained, false otherwise
__kmp_try_suspend_mx(kmp_info_t * th)1426 int __kmp_try_suspend_mx(kmp_info_t *th) {
1427   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1428 }
1429 
__kmp_lock_suspend_mx(kmp_info_t * th)1430 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1431   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1432   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1433 }
1434 
__kmp_unlock_suspend_mx(kmp_info_t * th)1435 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1436   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1437   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1438 }
1439 
1440 /* This routine puts the calling thread to sleep after setting the
1441    sleep bit for the indicated flag variable to true. */
1442 template <class C>
__kmp_suspend_template(int th_gtid,C * flag)1443 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1444   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1445   kmp_info_t *th = __kmp_threads[th_gtid];
1446   int status;
1447   typename C::flag_t old_spin;
1448 
1449   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1450                 flag->get()));
1451 
1452   __kmp_suspend_initialize_thread(th);
1453 
1454   __kmp_lock_suspend_mx(th);
1455 
1456   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1457                 th_gtid, flag->get()));
1458 
1459   /* TODO: shouldn't this use release semantics to ensure that
1460      __kmp_suspend_initialize_thread gets called first? */
1461   old_spin = flag->set_sleeping();
1462   TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1463   th->th.th_sleep_loc_type = flag->get_type();
1464   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1465       __kmp_pause_status != kmp_soft_paused) {
1466     flag->unset_sleeping();
1467     TCW_PTR(th->th.th_sleep_loc, NULL);
1468     th->th.th_sleep_loc_type = flag_unset;
1469     __kmp_unlock_suspend_mx(th);
1470     return;
1471   }
1472   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1473                " was %x\n",
1474                th_gtid, flag->get(), flag->load(), old_spin));
1475 
1476   if (flag->done_check_val(old_spin) || flag->done_check()) {
1477     flag->unset_sleeping();
1478     TCW_PTR(th->th.th_sleep_loc, NULL);
1479     th->th.th_sleep_loc_type = flag_unset;
1480     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1481                  "for spin(%p)\n",
1482                  th_gtid, flag->get()));
1483   } else {
1484     /* Encapsulate in a loop as the documentation states that this may
1485        "with low probability" return when the condition variable has
1486        not been signaled or broadcast */
1487     int deactivated = FALSE;
1488 
1489     while (flag->is_sleeping()) {
1490 #ifdef DEBUG_SUSPEND
1491       char buffer[128];
1492       __kmp_suspend_count++;
1493       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1494       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1495                    buffer);
1496 #endif
1497       // Mark the thread as no longer active (only in the first iteration of the
1498       // loop).
1499       if (!deactivated) {
1500         th->th.th_active = FALSE;
1501         if (th->th.th_active_in_pool) {
1502           th->th.th_active_in_pool = FALSE;
1503           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1504           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1505         }
1506         deactivated = TRUE;
1507       }
1508 
1509       KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
1510       KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type);
1511 
1512 #if USE_SUSPEND_TIMEOUT
1513       struct timespec now;
1514       struct timeval tval;
1515       int msecs;
1516 
1517       status = gettimeofday(&tval, NULL);
1518       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1519       TIMEVAL_TO_TIMESPEC(&tval, &now);
1520 
1521       msecs = (4 * __kmp_dflt_blocktime) + 200;
1522       now.tv_sec += msecs / 1000;
1523       now.tv_nsec += (msecs % 1000) * 1000;
1524 
1525       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1526                     "pthread_cond_timedwait\n",
1527                     th_gtid));
1528       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1529                                       &th->th.th_suspend_mx.m_mutex, &now);
1530 #else
1531       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1532                     " pthread_cond_wait\n",
1533                     th_gtid));
1534       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1535                                  &th->th.th_suspend_mx.m_mutex);
1536 #endif // USE_SUSPEND_TIMEOUT
1537 
1538       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1539         KMP_SYSFAIL("pthread_cond_wait", status);
1540       }
1541 
1542       KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type());
1543 
1544       if (!flag->is_sleeping() &&
1545           ((status == EINTR) || (status == ETIMEDOUT))) {
1546         // if interrupt or timeout, and thread is no longer sleeping, we need to
1547         // make sure sleep_loc gets reset; however, this shouldn't be needed if
1548         // we woke up with resume
1549         flag->unset_sleeping();
1550         TCW_PTR(th->th.th_sleep_loc, NULL);
1551         th->th.th_sleep_loc_type = flag_unset;
1552       }
1553 #ifdef KMP_DEBUG
1554       if (status == ETIMEDOUT) {
1555         if (flag->is_sleeping()) {
1556           KF_TRACE(100,
1557                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1558         } else {
1559           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1560                        "not set!\n",
1561                        th_gtid));
1562           TCW_PTR(th->th.th_sleep_loc, NULL);
1563           th->th.th_sleep_loc_type = flag_unset;
1564         }
1565       } else if (flag->is_sleeping()) {
1566         KF_TRACE(100,
1567                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1568       }
1569 #endif
1570     } // while
1571 
1572     // Mark the thread as active again (if it was previous marked as inactive)
1573     if (deactivated) {
1574       th->th.th_active = TRUE;
1575       if (TCR_4(th->th.th_in_pool)) {
1576         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1577         th->th.th_active_in_pool = TRUE;
1578       }
1579     }
1580   }
1581   // We may have had the loop variable set before entering the loop body;
1582   // so we need to reset sleep_loc.
1583   TCW_PTR(th->th.th_sleep_loc, NULL);
1584   th->th.th_sleep_loc_type = flag_unset;
1585 
1586   KMP_DEBUG_ASSERT(!flag->is_sleeping());
1587   KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
1588 #ifdef DEBUG_SUSPEND
1589   {
1590     char buffer[128];
1591     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1592     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1593                  buffer);
1594   }
1595 #endif
1596 
1597   __kmp_unlock_suspend_mx(th);
1598   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1599 }
1600 
1601 template <bool C, bool S>
__kmp_suspend_32(int th_gtid,kmp_flag_32<C,S> * flag)1602 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1603   __kmp_suspend_template(th_gtid, flag);
1604 }
1605 template <bool C, bool S>
__kmp_suspend_64(int th_gtid,kmp_flag_64<C,S> * flag)1606 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1607   __kmp_suspend_template(th_gtid, flag);
1608 }
1609 template <bool C, bool S>
__kmp_atomic_suspend_64(int th_gtid,kmp_atomic_flag_64<C,S> * flag)1610 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
1611   __kmp_suspend_template(th_gtid, flag);
1612 }
__kmp_suspend_oncore(int th_gtid,kmp_flag_oncore * flag)1613 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1614   __kmp_suspend_template(th_gtid, flag);
1615 }
1616 
1617 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1618 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1619 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1620 template void
1621 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1622 template void
1623 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
1624 
1625 /* This routine signals the thread specified by target_gtid to wake up
1626    after setting the sleep bit indicated by the flag argument to FALSE.
1627    The target thread must already have called __kmp_suspend_template() */
1628 template <class C>
__kmp_resume_template(int target_gtid,C * flag)1629 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1630   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1631   kmp_info_t *th = __kmp_threads[target_gtid];
1632   int status;
1633 
1634 #ifdef KMP_DEBUG
1635   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1636 #endif
1637 
1638   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1639                 gtid, target_gtid));
1640   KMP_DEBUG_ASSERT(gtid != target_gtid);
1641 
1642   __kmp_suspend_initialize_thread(th);
1643 
1644   __kmp_lock_suspend_mx(th);
1645 
1646   if (!flag || flag != th->th.th_sleep_loc) {
1647     // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
1648     // different location; wake up at new location
1649     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1650   }
1651 
1652   // First, check if the flag is null or its type has changed. If so, someone
1653   // else woke it up.
1654   if (!flag) { // Thread doesn't appear to be sleeping on anything
1655     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1656                  "awake: flag(%p)\n",
1657                  gtid, target_gtid, (void *)NULL));
1658     __kmp_unlock_suspend_mx(th);
1659     return;
1660   } else if (flag->get_type() != th->th.th_sleep_loc_type) {
1661     // Flag type does not appear to match this function template; possibly the
1662     // thread is sleeping on something else. Try null resume again.
1663     KF_TRACE(
1664         5,
1665         ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), "
1666          "spin(%p) type=%d ptr_type=%d\n",
1667          gtid, target_gtid, flag, flag->get(), flag->get_type(),
1668          th->th.th_sleep_loc_type));
1669     __kmp_unlock_suspend_mx(th);
1670     __kmp_null_resume_wrapper(th);
1671     return;
1672   } else { // if multiple threads are sleeping, flag should be internally
1673     // referring to a specific thread here
1674     if (!flag->is_sleeping()) {
1675       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1676                    "awake: flag(%p): %u\n",
1677                    gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1678       __kmp_unlock_suspend_mx(th);
1679       return;
1680     }
1681   }
1682   KMP_DEBUG_ASSERT(flag);
1683   flag->unset_sleeping();
1684   TCW_PTR(th->th.th_sleep_loc, NULL);
1685   th->th.th_sleep_loc_type = flag_unset;
1686 
1687   KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1688                "sleep bit for flag's loc(%p): %u\n",
1689                gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1690 
1691 #ifdef DEBUG_SUSPEND
1692   {
1693     char buffer[128];
1694     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1695     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1696                  target_gtid, buffer);
1697   }
1698 #endif
1699   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1700   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1701   __kmp_unlock_suspend_mx(th);
1702   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1703                 " for T#%d\n",
1704                 gtid, target_gtid));
1705 }
1706 
1707 template <bool C, bool S>
__kmp_resume_32(int target_gtid,kmp_flag_32<C,S> * flag)1708 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1709   __kmp_resume_template(target_gtid, flag);
1710 }
1711 template <bool C, bool S>
__kmp_resume_64(int target_gtid,kmp_flag_64<C,S> * flag)1712 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1713   __kmp_resume_template(target_gtid, flag);
1714 }
1715 template <bool C, bool S>
__kmp_atomic_resume_64(int target_gtid,kmp_atomic_flag_64<C,S> * flag)1716 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
1717   __kmp_resume_template(target_gtid, flag);
1718 }
__kmp_resume_oncore(int target_gtid,kmp_flag_oncore * flag)1719 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1720   __kmp_resume_template(target_gtid, flag);
1721 }
1722 
1723 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1724 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
1725 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1726 template void
1727 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1728 
1729 #if KMP_USE_MONITOR
__kmp_resume_monitor()1730 void __kmp_resume_monitor() {
1731   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1732   int status;
1733 #ifdef KMP_DEBUG
1734   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1735   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1736                 KMP_GTID_MONITOR));
1737   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1738 #endif
1739   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1740   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1741 #ifdef DEBUG_SUSPEND
1742   {
1743     char buffer[128];
1744     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1745     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1746                  KMP_GTID_MONITOR, buffer);
1747   }
1748 #endif
1749   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1750   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1751   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1752   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1753   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1754                 " for T#%d\n",
1755                 gtid, KMP_GTID_MONITOR));
1756 }
1757 #endif // KMP_USE_MONITOR
1758 
__kmp_yield()1759 void __kmp_yield() { sched_yield(); }
1760 
__kmp_gtid_set_specific(int gtid)1761 void __kmp_gtid_set_specific(int gtid) {
1762   if (__kmp_init_gtid) {
1763     int status;
1764     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1765                                  (void *)(intptr_t)(gtid + 1));
1766     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1767   } else {
1768     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1769   }
1770 }
1771 
__kmp_gtid_get_specific()1772 int __kmp_gtid_get_specific() {
1773   int gtid;
1774   if (!__kmp_init_gtid) {
1775     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1776                   "KMP_GTID_SHUTDOWN\n"));
1777     return KMP_GTID_SHUTDOWN;
1778   }
1779   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1780   if (gtid == 0) {
1781     gtid = KMP_GTID_DNE;
1782   } else {
1783     gtid--;
1784   }
1785   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1786                 __kmp_gtid_threadprivate_key, gtid));
1787   return gtid;
1788 }
1789 
__kmp_read_cpu_time(void)1790 double __kmp_read_cpu_time(void) {
1791   /*clock_t   t;*/
1792   struct tms buffer;
1793 
1794   /*t =*/times(&buffer);
1795 
1796   return (double)(buffer.tms_utime + buffer.tms_cutime) /
1797          (double)CLOCKS_PER_SEC;
1798 }
1799 
__kmp_read_system_info(struct kmp_sys_info * info)1800 int __kmp_read_system_info(struct kmp_sys_info *info) {
1801   int status;
1802   struct rusage r_usage;
1803 
1804   memset(info, 0, sizeof(*info));
1805 
1806   status = getrusage(RUSAGE_SELF, &r_usage);
1807   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1808 
1809 #if !KMP_OS_WASI
1810   // The maximum resident set size utilized (in kilobytes)
1811   info->maxrss = r_usage.ru_maxrss;
1812   // The number of page faults serviced without any I/O
1813   info->minflt = r_usage.ru_minflt;
1814   // The number of page faults serviced that required I/O
1815   info->majflt = r_usage.ru_majflt;
1816   // The number of times a process was "swapped" out of memory
1817   info->nswap = r_usage.ru_nswap;
1818   // The number of times the file system had to perform input
1819   info->inblock = r_usage.ru_inblock;
1820   // The number of times the file system had to perform output
1821   info->oublock = r_usage.ru_oublock;
1822   // The number of times a context switch was voluntarily
1823   info->nvcsw = r_usage.ru_nvcsw;
1824   // The number of times a context switch was forced
1825   info->nivcsw = r_usage.ru_nivcsw;
1826 #endif
1827 
1828   return (status != 0);
1829 }
1830 
__kmp_read_system_time(double * delta)1831 void __kmp_read_system_time(double *delta) {
1832   double t_ns;
1833   struct timeval tval;
1834   struct timespec stop;
1835   int status;
1836 
1837   status = gettimeofday(&tval, NULL);
1838   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1839   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1840   t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1841   *delta = (t_ns * 1e-9);
1842 }
1843 
__kmp_clear_system_time(void)1844 void __kmp_clear_system_time(void) {
1845   struct timeval tval;
1846   int status;
1847   status = gettimeofday(&tval, NULL);
1848   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1849   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1850 }
1851 
__kmp_get_xproc(void)1852 static int __kmp_get_xproc(void) {
1853 
1854   int r = 0;
1855 
1856 #if KMP_OS_LINUX
1857 
1858   __kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r));
1859 
1860 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \
1861     KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_WASI || KMP_OS_AIX
1862 
1863   __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1864 
1865 #elif KMP_OS_DARWIN
1866 
1867   // Bug C77011 High "OpenMP Threads and number of active cores".
1868 
1869   // Find the number of available CPUs.
1870   kern_return_t rc;
1871   host_basic_info_data_t info;
1872   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1873   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1874   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1875     // Cannot use KA_TRACE() here because this code works before trace support
1876     // is initialized.
1877     r = info.avail_cpus;
1878   } else {
1879     KMP_WARNING(CantGetNumAvailCPU);
1880     KMP_INFORM(AssumedNumCPU);
1881   }
1882 
1883 #else
1884 
1885 #error "Unknown or unsupported OS."
1886 
1887 #endif
1888 
1889   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1890 
1891 } // __kmp_get_xproc
1892 
__kmp_read_from_file(char const * path,char const * format,...)1893 int __kmp_read_from_file(char const *path, char const *format, ...) {
1894   int result;
1895   va_list args;
1896 
1897   va_start(args, format);
1898   FILE *f = fopen(path, "rb");
1899   if (f == NULL) {
1900     va_end(args);
1901     return 0;
1902   }
1903   result = vfscanf(f, format, args);
1904   fclose(f);
1905   va_end(args);
1906 
1907   return result;
1908 }
1909 
__kmp_runtime_initialize(void)1910 void __kmp_runtime_initialize(void) {
1911   int status;
1912   pthread_mutexattr_t mutex_attr;
1913   pthread_condattr_t cond_attr;
1914 
1915   if (__kmp_init_runtime) {
1916     return;
1917   }
1918 
1919 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1920   if (!__kmp_cpuinfo.initialized) {
1921     __kmp_query_cpuid(&__kmp_cpuinfo);
1922   }
1923 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1924 
1925   __kmp_xproc = __kmp_get_xproc();
1926 
1927 #if !KMP_32_BIT_ARCH
1928   struct rlimit rlim;
1929   // read stack size of calling thread, save it as default for worker threads;
1930   // this should be done before reading environment variables
1931   status = getrlimit(RLIMIT_STACK, &rlim);
1932   if (status == 0) { // success?
1933     __kmp_stksize = rlim.rlim_cur;
1934     __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1935   }
1936 #endif /* KMP_32_BIT_ARCH */
1937 
1938   if (sysconf(_SC_THREADS)) {
1939 
1940     /* Query the maximum number of threads */
1941     __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1942 #ifdef __ve__
1943     if (__kmp_sys_max_nth == -1) {
1944       // VE's pthread supports only up to 64 threads per a VE process.
1945       // So we use that KMP_MAX_NTH (predefined as 64) here.
1946       __kmp_sys_max_nth = KMP_MAX_NTH;
1947     }
1948 #else
1949     if (__kmp_sys_max_nth == -1) {
1950       /* Unlimited threads for NPTL */
1951       __kmp_sys_max_nth = INT_MAX;
1952     } else if (__kmp_sys_max_nth <= 1) {
1953       /* Can't tell, just use PTHREAD_THREADS_MAX */
1954       __kmp_sys_max_nth = KMP_MAX_NTH;
1955     }
1956 #endif
1957 
1958     /* Query the minimum stack size */
1959     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1960     if (__kmp_sys_min_stksize <= 1) {
1961       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1962     }
1963   }
1964 
1965   /* Set up minimum number of threads to switch to TLS gtid */
1966   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1967 
1968   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1969                               __kmp_internal_end_dest);
1970   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1971   status = pthread_mutexattr_init(&mutex_attr);
1972   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1973   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1974   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1975   status = pthread_mutexattr_destroy(&mutex_attr);
1976   KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1977   status = pthread_condattr_init(&cond_attr);
1978   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1979   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1980   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1981   status = pthread_condattr_destroy(&cond_attr);
1982   KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1983 #if USE_ITT_BUILD
1984   __kmp_itt_initialize();
1985 #endif /* USE_ITT_BUILD */
1986 
1987   __kmp_init_runtime = TRUE;
1988 }
1989 
__kmp_runtime_destroy(void)1990 void __kmp_runtime_destroy(void) {
1991   int status;
1992 
1993   if (!__kmp_init_runtime) {
1994     return; // Nothing to do.
1995   }
1996 
1997 #if USE_ITT_BUILD
1998   __kmp_itt_destroy();
1999 #endif /* USE_ITT_BUILD */
2000 
2001   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
2002   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
2003 
2004   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
2005   if (status != 0 && status != EBUSY) {
2006     KMP_SYSFAIL("pthread_mutex_destroy", status);
2007   }
2008   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
2009   if (status != 0 && status != EBUSY) {
2010     KMP_SYSFAIL("pthread_cond_destroy", status);
2011   }
2012 #if KMP_AFFINITY_SUPPORTED
2013   __kmp_affinity_uninitialize();
2014 #endif
2015 
2016   __kmp_init_runtime = FALSE;
2017 }
2018 
2019 /* Put the thread to sleep for a time period */
2020 /* NOTE: not currently used anywhere */
__kmp_thread_sleep(int millis)2021 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
2022 
2023 /* Calculate the elapsed wall clock time for the user */
__kmp_elapsed(double * t)2024 void __kmp_elapsed(double *t) {
2025   int status;
2026 #ifdef FIX_SGI_CLOCK
2027   struct timespec ts;
2028 
2029   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
2030   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
2031   *t =
2032       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
2033 #else
2034   struct timeval tv;
2035 
2036   status = gettimeofday(&tv, NULL);
2037   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
2038   *t =
2039       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
2040 #endif
2041 }
2042 
2043 /* Calculate the elapsed wall clock tick for the user */
__kmp_elapsed_tick(double * t)2044 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
2045 
2046 /* Return the current time stamp in nsec */
__kmp_now_nsec()2047 kmp_uint64 __kmp_now_nsec() {
2048   struct timeval t;
2049   gettimeofday(&t, NULL);
2050   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
2051                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
2052   return nsec;
2053 }
2054 
2055 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2056 /* Measure clock ticks per millisecond */
__kmp_initialize_system_tick()2057 void __kmp_initialize_system_tick() {
2058   kmp_uint64 now, nsec2, diff;
2059   kmp_uint64 delay = 1000000; // ~450 usec on most machines.
2060   kmp_uint64 nsec = __kmp_now_nsec();
2061   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
2062   while ((now = __kmp_hardware_timestamp()) < goal)
2063     ;
2064   nsec2 = __kmp_now_nsec();
2065   diff = nsec2 - nsec;
2066   if (diff > 0) {
2067     double tpus = 1000.0 * (double)(delay + (now - goal)) / (double)diff;
2068     if (tpus > 0.0) {
2069       __kmp_ticks_per_msec = (kmp_uint64)(tpus * 1000.0);
2070       __kmp_ticks_per_usec = (kmp_uint64)tpus;
2071     }
2072   }
2073 }
2074 #endif
2075 
2076 /* Determine whether the given address is mapped into the current address
2077    space. */
2078 
__kmp_is_address_mapped(void * addr)2079 int __kmp_is_address_mapped(void *addr) {
2080 
2081   int found = 0;
2082   int rc;
2083 
2084 #if KMP_OS_LINUX || KMP_OS_HURD
2085 
2086   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
2087      address ranges mapped into the address space. */
2088 
2089   char *name = __kmp_str_format("/proc/%d/maps", getpid());
2090   FILE *file = NULL;
2091 
2092   file = fopen(name, "r");
2093   KMP_ASSERT(file != NULL);
2094 
2095   for (;;) {
2096 
2097     void *beginning = NULL;
2098     void *ending = NULL;
2099     char perms[5];
2100 
2101     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2102     if (rc == EOF) {
2103       break;
2104     }
2105     KMP_ASSERT(rc == 3 &&
2106                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2107 
2108     // Ending address is not included in the region, but beginning is.
2109     if ((addr >= beginning) && (addr < ending)) {
2110       perms[2] = 0; // 3th and 4th character does not matter.
2111       if (strcmp(perms, "rw") == 0) {
2112         // Memory we are looking for should be readable and writable.
2113         found = 1;
2114       }
2115       break;
2116     }
2117   }
2118 
2119   // Free resources.
2120   fclose(file);
2121   KMP_INTERNAL_FREE(name);
2122 #elif KMP_OS_FREEBSD
2123   char *buf;
2124   size_t lstsz;
2125   int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2126   rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2127   if (rc < 0)
2128     return 0;
2129   // We pass from number of vm entry's semantic
2130   // to size of whole entry map list.
2131   lstsz = lstsz * 4 / 3;
2132   buf = reinterpret_cast<char *>(KMP_INTERNAL_MALLOC(lstsz));
2133   rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2134   if (rc < 0) {
2135     KMP_INTERNAL_FREE(buf);
2136     return 0;
2137   }
2138 
2139   char *lw = buf;
2140   char *up = buf + lstsz;
2141 
2142   while (lw < up) {
2143     struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2144     size_t cursz = cur->kve_structsize;
2145     if (cursz == 0)
2146       break;
2147     void *start = reinterpret_cast<void *>(cur->kve_start);
2148     void *end = reinterpret_cast<void *>(cur->kve_end);
2149     // Readable/Writable addresses within current map entry
2150     if ((addr >= start) && (addr < end)) {
2151       if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2152           (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2153         found = 1;
2154         break;
2155       }
2156     }
2157     lw += cursz;
2158   }
2159   KMP_INTERNAL_FREE(buf);
2160 
2161 #elif KMP_OS_DARWIN
2162 
2163   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2164      using vm interface. */
2165 
2166   int buffer;
2167   vm_size_t count;
2168   rc = vm_read_overwrite(
2169       mach_task_self(), // Task to read memory of.
2170       (vm_address_t)(addr), // Address to read from.
2171       1, // Number of bytes to be read.
2172       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2173       &count // Address of var to save number of read bytes in.
2174   );
2175   if (rc == 0) {
2176     // Memory successfully read.
2177     found = 1;
2178   }
2179 
2180 #elif KMP_OS_NETBSD
2181 
2182   int mib[5];
2183   mib[0] = CTL_VM;
2184   mib[1] = VM_PROC;
2185   mib[2] = VM_PROC_MAP;
2186   mib[3] = getpid();
2187   mib[4] = sizeof(struct kinfo_vmentry);
2188 
2189   size_t size;
2190   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2191   KMP_ASSERT(!rc);
2192   KMP_ASSERT(size);
2193 
2194   size = size * 4 / 3;
2195   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2196   KMP_ASSERT(kiv);
2197 
2198   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2199   KMP_ASSERT(!rc);
2200   KMP_ASSERT(size);
2201 
2202   for (size_t i = 0; i < size; i++) {
2203     if (kiv[i].kve_start >= (uint64_t)addr &&
2204         kiv[i].kve_end <= (uint64_t)addr) {
2205       found = 1;
2206       break;
2207     }
2208   }
2209   KMP_INTERNAL_FREE(kiv);
2210 #elif KMP_OS_OPENBSD
2211 
2212   int mib[3];
2213   mib[0] = CTL_KERN;
2214   mib[1] = KERN_PROC_VMMAP;
2215   mib[2] = getpid();
2216 
2217   size_t size;
2218   uint64_t end;
2219   rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2220   KMP_ASSERT(!rc);
2221   KMP_ASSERT(size);
2222   end = size;
2223 
2224   struct kinfo_vmentry kiv = {.kve_start = 0};
2225 
2226   while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2227     KMP_ASSERT(size);
2228     if (kiv.kve_end == end)
2229       break;
2230 
2231     if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2232       found = 1;
2233       break;
2234     }
2235     kiv.kve_start += 1;
2236   }
2237 #elif KMP_OS_WASI
2238   found = (int)addr < (__builtin_wasm_memory_size(0) * PAGESIZE);
2239 #elif KMP_OS_DRAGONFLY || KMP_OS_SOLARIS || KMP_OS_AIX
2240 
2241   (void)rc;
2242   // FIXME(DragonFly, Solaris, AIX): Implement this
2243   found = 1;
2244 
2245 #else
2246 
2247 #error "Unknown or unsupported OS"
2248 
2249 #endif
2250 
2251   return found;
2252 
2253 } // __kmp_is_address_mapped
2254 
2255 #ifdef USE_LOAD_BALANCE
2256 
2257 #if KMP_OS_DARWIN || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||    \
2258     KMP_OS_OPENBSD || KMP_OS_SOLARIS
2259 
2260 // The function returns the rounded value of the system load average
2261 // during given time interval which depends on the value of
2262 // __kmp_load_balance_interval variable (default is 60 sec, other values
2263 // may be 300 sec or 900 sec).
2264 // It returns -1 in case of error.
__kmp_get_load_balance(int max)2265 int __kmp_get_load_balance(int max) {
2266   double averages[3];
2267   int ret_avg = 0;
2268 
2269   int res = getloadavg(averages, 3);
2270 
2271   // Check __kmp_load_balance_interval to determine which of averages to use.
2272   // getloadavg() may return the number of samples less than requested that is
2273   // less than 3.
2274   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2275     ret_avg = (int)averages[0]; // 1 min
2276   } else if ((__kmp_load_balance_interval >= 180 &&
2277               __kmp_load_balance_interval < 600) &&
2278              (res >= 2)) {
2279     ret_avg = (int)averages[1]; // 5 min
2280   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2281     ret_avg = (int)averages[2]; // 15 min
2282   } else { // Error occurred
2283     return -1;
2284   }
2285 
2286   return ret_avg;
2287 }
2288 
2289 #else // Linux* OS
2290 
2291 // The function returns number of running (not sleeping) threads, or -1 in case
2292 // of error. Error could be reported if Linux* OS kernel too old (without
2293 // "/proc" support). Counting running threads stops if max running threads
2294 // encountered.
__kmp_get_load_balance(int max)2295 int __kmp_get_load_balance(int max) {
2296   static int permanent_error = 0;
2297   static int glb_running_threads = 0; // Saved count of the running threads for
2298   // the thread balance algorithm
2299   static double glb_call_time = 0; /* Thread balance algorithm call time */
2300 
2301   int running_threads = 0; // Number of running threads in the system.
2302 
2303   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2304   struct dirent *proc_entry = NULL;
2305 
2306   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2307   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2308   struct dirent *task_entry = NULL;
2309   int task_path_fixed_len;
2310 
2311   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2312   int stat_file = -1;
2313   int stat_path_fixed_len;
2314 
2315 #ifdef KMP_DEBUG
2316   int total_processes = 0; // Total number of processes in system.
2317 #endif
2318 
2319   double call_time = 0.0;
2320 
2321   __kmp_str_buf_init(&task_path);
2322   __kmp_str_buf_init(&stat_path);
2323 
2324   __kmp_elapsed(&call_time);
2325 
2326   if (glb_call_time &&
2327       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2328     running_threads = glb_running_threads;
2329     goto finish;
2330   }
2331 
2332   glb_call_time = call_time;
2333 
2334   // Do not spend time on scanning "/proc/" if we have a permanent error.
2335   if (permanent_error) {
2336     running_threads = -1;
2337     goto finish;
2338   }
2339 
2340   if (max <= 0) {
2341     max = INT_MAX;
2342   }
2343 
2344   // Open "/proc/" directory.
2345   proc_dir = opendir("/proc");
2346   if (proc_dir == NULL) {
2347     // Cannot open "/proc/". Probably the kernel does not support it. Return an
2348     // error now and in subsequent calls.
2349     running_threads = -1;
2350     permanent_error = 1;
2351     goto finish;
2352   }
2353 
2354   // Initialize fixed part of task_path. This part will not change.
2355   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2356   task_path_fixed_len = task_path.used; // Remember number of used characters.
2357 
2358   proc_entry = readdir(proc_dir);
2359   while (proc_entry != NULL) {
2360 #if KMP_OS_AIX
2361     // Proc entry name starts with a digit. Assume it is a  process' directory.
2362     if (isdigit(proc_entry->d_name[0])) {
2363 #else
2364     // Proc entry is a directory and name starts with a digit. Assume it is a
2365     // process' directory.
2366     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2367 #endif
2368 
2369 #ifdef KMP_DEBUG
2370       ++total_processes;
2371 #endif
2372       // Make sure init process is the very first in "/proc", so we can replace
2373       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2374       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2375       // true (where "=>" is implication). Since C++ does not have => operator,
2376       // let us replace it with its equivalent: a => b == ! a || b.
2377       KMP_DEBUG_ASSERT(total_processes != 1 ||
2378                        strcmp(proc_entry->d_name, "1") == 0);
2379 
2380       // Construct task_path.
2381       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2382       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2383                         KMP_STRLEN(proc_entry->d_name));
2384       __kmp_str_buf_cat(&task_path, "/task", 5);
2385 
2386       task_dir = opendir(task_path.str);
2387       if (task_dir == NULL) {
2388         // Process can finish between reading "/proc/" directory entry and
2389         // opening process' "task/" directory. So, in general case we should not
2390         // complain, but have to skip this process and read the next one. But on
2391         // systems with no "task/" support we will spend lot of time to scan
2392         // "/proc/" tree again and again without any benefit. "init" process
2393         // (its pid is 1) should exist always, so, if we cannot open
2394         // "/proc/1/task/" directory, it means "task/" is not supported by
2395         // kernel. Report an error now and in the future.
2396         if (strcmp(proc_entry->d_name, "1") == 0) {
2397           running_threads = -1;
2398           permanent_error = 1;
2399           goto finish;
2400         }
2401       } else {
2402         // Construct fixed part of stat file path.
2403         __kmp_str_buf_clear(&stat_path);
2404         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2405         __kmp_str_buf_cat(&stat_path, "/", 1);
2406         stat_path_fixed_len = stat_path.used;
2407 
2408         task_entry = readdir(task_dir);
2409         while (task_entry != NULL) {
2410           // It is a directory and name starts with a digit.
2411 #if KMP_OS_AIX
2412           if (isdigit(task_entry->d_name[0])) {
2413 #else
2414           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2415 #endif
2416 
2417             // Construct complete stat file path. Easiest way would be:
2418             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2419             //  task_entry->d_name );
2420             // but seriae of __kmp_str_buf_cat works a bit faster.
2421             stat_path.used =
2422                 stat_path_fixed_len; // Reset stat path to its fixed part.
2423             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2424                               KMP_STRLEN(task_entry->d_name));
2425             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2426 
2427             // Note: Low-level API (open/read/close) is used. High-level API
2428             // (fopen/fclose)  works ~ 30 % slower.
2429             stat_file = open(stat_path.str, O_RDONLY);
2430             if (stat_file == -1) {
2431               // We cannot report an error because task (thread) can terminate
2432               // just before reading this file.
2433             } else {
2434               /* Content of "stat" file looks like:
2435                  24285 (program) S ...
2436 
2437                  It is a single line (if program name does not include funny
2438                  symbols). First number is a thread id, then name of executable
2439                  file name in paretheses, then state of the thread. We need just
2440                  thread state.
2441 
2442                  Good news: Length of program name is 15 characters max. Longer
2443                  names are truncated.
2444 
2445                  Thus, we need rather short buffer: 15 chars for program name +
2446                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2447 
2448                  Bad news: Program name may contain special symbols like space,
2449                  closing parenthesis, or even new line. This makes parsing
2450                  "stat" file not 100 % reliable. In case of fanny program names
2451                  parsing may fail (report incorrect thread state).
2452 
2453                  Parsing "status" file looks more promissing (due to different
2454                  file structure and escaping special symbols) but reading and
2455                  parsing of "status" file works slower.
2456                   -- ln
2457               */
2458               char buffer[65];
2459               ssize_t len;
2460               len = read(stat_file, buffer, sizeof(buffer) - 1);
2461               if (len >= 0) {
2462                 buffer[len] = 0;
2463                 // Using scanf:
2464                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2465                 // looks very nice, but searching for a closing parenthesis
2466                 // works a bit faster.
2467                 char *close_parent = strstr(buffer, ") ");
2468                 if (close_parent != NULL) {
2469                   char state = *(close_parent + 2);
2470                   if (state == 'R') {
2471                     ++running_threads;
2472                     if (running_threads >= max) {
2473                       goto finish;
2474                     }
2475                   }
2476                 }
2477               }
2478               close(stat_file);
2479               stat_file = -1;
2480             }
2481           }
2482           task_entry = readdir(task_dir);
2483         }
2484         closedir(task_dir);
2485         task_dir = NULL;
2486       }
2487     }
2488     proc_entry = readdir(proc_dir);
2489   }
2490 
2491   // There _might_ be a timing hole where the thread executing this
2492   // code get skipped in the load balance, and running_threads is 0.
2493   // Assert in the debug builds only!!!
2494   KMP_DEBUG_ASSERT(running_threads > 0);
2495   if (running_threads <= 0) {
2496     running_threads = 1;
2497   }
2498 
2499 finish: // Clean up and exit.
2500   if (proc_dir != NULL) {
2501     closedir(proc_dir);
2502   }
2503   __kmp_str_buf_free(&task_path);
2504   if (task_dir != NULL) {
2505     closedir(task_dir);
2506   }
2507   __kmp_str_buf_free(&stat_path);
2508   if (stat_file != -1) {
2509     close(stat_file);
2510   }
2511 
2512   glb_running_threads = running_threads;
2513 
2514   return running_threads;
2515 
2516 } // __kmp_get_load_balance
2517 
2518 #endif // KMP_OS_DARWIN
2519 
2520 #endif // USE_LOAD_BALANCE
2521 
2522 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2523       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) ||                 \
2524       KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 ||            \
2525       KMP_ARCH_ARM || KMP_ARCH_VE || KMP_ARCH_S390X || KMP_ARCH_PPC_XCOFF)
2526 
2527 // we really only need the case with 1 argument, because CLANG always build
2528 // a struct of pointers to shared variables referenced in the outlined function
2529 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2530                            void *p_argv[]
2531 #if OMPT_SUPPORT
2532                            ,
2533                            void **exit_frame_ptr
2534 #endif
2535 ) {
2536 #if OMPT_SUPPORT
2537   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2538 #endif
2539 
2540   switch (argc) {
2541   default:
2542     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2543     fflush(stderr);
2544     exit(-1);
2545   case 0:
2546     (*pkfn)(&gtid, &tid);
2547     break;
2548   case 1:
2549     (*pkfn)(&gtid, &tid, p_argv[0]);
2550     break;
2551   case 2:
2552     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2553     break;
2554   case 3:
2555     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2556     break;
2557   case 4:
2558     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2559     break;
2560   case 5:
2561     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2562     break;
2563   case 6:
2564     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2565             p_argv[5]);
2566     break;
2567   case 7:
2568     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2569             p_argv[5], p_argv[6]);
2570     break;
2571   case 8:
2572     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2573             p_argv[5], p_argv[6], p_argv[7]);
2574     break;
2575   case 9:
2576     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2577             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2578     break;
2579   case 10:
2580     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2581             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2582     break;
2583   case 11:
2584     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2585             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2586     break;
2587   case 12:
2588     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2589             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2590             p_argv[11]);
2591     break;
2592   case 13:
2593     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2594             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2595             p_argv[11], p_argv[12]);
2596     break;
2597   case 14:
2598     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2599             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2600             p_argv[11], p_argv[12], p_argv[13]);
2601     break;
2602   case 15:
2603     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2604             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2605             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2606     break;
2607   }
2608 
2609   return 1;
2610 }
2611 
2612 #endif
2613 
2614 #if KMP_OS_LINUX
2615 // Functions for hidden helper task
2616 namespace {
2617 // Condition variable for initializing hidden helper team
2618 pthread_cond_t hidden_helper_threads_initz_cond_var;
2619 pthread_mutex_t hidden_helper_threads_initz_lock;
2620 volatile int hidden_helper_initz_signaled = FALSE;
2621 
2622 // Condition variable for deinitializing hidden helper team
2623 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2624 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2625 volatile int hidden_helper_deinitz_signaled = FALSE;
2626 
2627 // Condition variable for the wrapper function of main thread
2628 pthread_cond_t hidden_helper_main_thread_cond_var;
2629 pthread_mutex_t hidden_helper_main_thread_lock;
2630 volatile int hidden_helper_main_thread_signaled = FALSE;
2631 
2632 // Semaphore for worker threads. We don't use condition variable here in case
2633 // that when multiple signals are sent at the same time, only one thread might
2634 // be waken.
2635 sem_t hidden_helper_task_sem;
2636 } // namespace
2637 
2638 void __kmp_hidden_helper_worker_thread_wait() {
2639   int status = sem_wait(&hidden_helper_task_sem);
2640   KMP_CHECK_SYSFAIL("sem_wait", status);
2641 }
2642 
2643 void __kmp_do_initialize_hidden_helper_threads() {
2644   // Initialize condition variable
2645   int status =
2646       pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2647   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2648 
2649   status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2650   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2651 
2652   status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2653   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2654 
2655   status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2656   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2657 
2658   status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2659   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2660 
2661   status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2662   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2663 
2664   // Initialize the semaphore
2665   status = sem_init(&hidden_helper_task_sem, 0, 0);
2666   KMP_CHECK_SYSFAIL("sem_init", status);
2667 
2668   // Create a new thread to finish initialization
2669   pthread_t handle;
2670   status = pthread_create(
2671       &handle, nullptr,
2672       [](void *) -> void * {
2673         __kmp_hidden_helper_threads_initz_routine();
2674         return nullptr;
2675       },
2676       nullptr);
2677   KMP_CHECK_SYSFAIL("pthread_create", status);
2678 }
2679 
2680 void __kmp_hidden_helper_threads_initz_wait() {
2681   // Initial thread waits here for the completion of the initialization. The
2682   // condition variable will be notified by main thread of hidden helper teams.
2683   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2684   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2685 
2686   if (!TCR_4(hidden_helper_initz_signaled)) {
2687     status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2688                                &hidden_helper_threads_initz_lock);
2689     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2690   }
2691 
2692   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2693   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2694 }
2695 
2696 void __kmp_hidden_helper_initz_release() {
2697   // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2698   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2699   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2700 
2701   status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2702   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2703 
2704   TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2705 
2706   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2707   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2708 }
2709 
2710 void __kmp_hidden_helper_main_thread_wait() {
2711   // The main thread of hidden helper team will be blocked here. The
2712   // condition variable can only be signal in the destructor of RTL.
2713   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2714   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2715 
2716   if (!TCR_4(hidden_helper_main_thread_signaled)) {
2717     status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2718                                &hidden_helper_main_thread_lock);
2719     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2720   }
2721 
2722   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2723   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2724 }
2725 
2726 void __kmp_hidden_helper_main_thread_release() {
2727   // The initial thread of OpenMP RTL should call this function to wake up the
2728   // main thread of hidden helper team.
2729   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2730   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2731 
2732   status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2733   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2734 
2735   // The hidden helper team is done here
2736   TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2737 
2738   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2739   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2740 }
2741 
2742 void __kmp_hidden_helper_worker_thread_signal() {
2743   int status = sem_post(&hidden_helper_task_sem);
2744   KMP_CHECK_SYSFAIL("sem_post", status);
2745 }
2746 
2747 void __kmp_hidden_helper_threads_deinitz_wait() {
2748   // Initial thread waits here for the completion of the deinitialization. The
2749   // condition variable will be notified by main thread of hidden helper teams.
2750   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2751   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2752 
2753   if (!TCR_4(hidden_helper_deinitz_signaled)) {
2754     status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2755                                &hidden_helper_threads_deinitz_lock);
2756     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2757   }
2758 
2759   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2760   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2761 }
2762 
2763 void __kmp_hidden_helper_threads_deinitz_release() {
2764   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2765   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2766 
2767   status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2768   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2769 
2770   TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2771 
2772   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2773   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2774 }
2775 #else // KMP_OS_LINUX
2776 void __kmp_hidden_helper_worker_thread_wait() {
2777   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2778 }
2779 
2780 void __kmp_do_initialize_hidden_helper_threads() {
2781   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2782 }
2783 
2784 void __kmp_hidden_helper_threads_initz_wait() {
2785   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2786 }
2787 
2788 void __kmp_hidden_helper_initz_release() {
2789   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2790 }
2791 
2792 void __kmp_hidden_helper_main_thread_wait() {
2793   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2794 }
2795 
2796 void __kmp_hidden_helper_main_thread_release() {
2797   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2798 }
2799 
2800 void __kmp_hidden_helper_worker_thread_signal() {
2801   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2802 }
2803 
2804 void __kmp_hidden_helper_threads_deinitz_wait() {
2805   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2806 }
2807 
2808 void __kmp_hidden_helper_threads_deinitz_release() {
2809   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2810 }
2811 #endif // KMP_OS_LINUX
2812 
2813 bool __kmp_detect_shm() {
2814   DIR *dir = opendir("/dev/shm");
2815   if (dir) { // /dev/shm exists
2816     closedir(dir);
2817     return true;
2818   } else if (ENOENT == errno) { // /dev/shm does not exist
2819     return false;
2820   } else { // opendir() failed
2821     return false;
2822   }
2823 }
2824 
2825 bool __kmp_detect_tmp() {
2826   DIR *dir = opendir("/tmp");
2827   if (dir) { // /tmp exists
2828     closedir(dir);
2829     return true;
2830   } else if (ENOENT == errno) { // /tmp does not exist
2831     return false;
2832   } else { // opendir() failed
2833     return false;
2834   }
2835 }
2836 
2837 // end of file //
2838