1 /*
2    Copyright (C) 1993-2018 Free Software Foundation, Inc.
3    This file is largely based on the GNU C Library and contains:
4 
5    * System V style searching functions
6      - Contributed by Bernd Schmidt <crux@Pool.Informatik.RWTH-Aachen.DE>, 1997.
7    * Hash table management functions
8      - Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
9 
10    The GNU C Library is free software; you can redistribute it and/or
11    modify it under the terms of the GNU Lesser General Public
12    License as published by the Free Software Foundation; either
13    version 2.1 of the License, or (at your option) any later version.
14 
15    The GNU C Library is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18    Lesser General Public License for more details.
19 
20    You should have received a copy of the GNU Lesser General Public
21    License along with the GNU C Library; if not, see
22    <http://www.gnu.org/licenses/>.
23 */
24 
25 /* Tree search for red/black trees.
26    The algorithm for adding nodes is taken from one of the many "Algorithms"
27    books by Robert Sedgewick, although the implementation differs.
28    The algorithm for deleting nodes can probably be found in a book named
29    "Introduction to Algorithms" by Cormen/Leiserson/Rivest.  At least that's
30    the book that my professor took most algorithms from during the "Data
31    Structures" course... Totally public domain.  */
32 
33 /* Red/black trees are binary trees in which the edges are colored either red
34    or black.  They have the following properties:
35    1. The number of black edges on every path from the root to a leaf is
36       constant.
37    2. No two red edges are adjacent.
38    Therefore there is an upper bound on the length of every path, it's
39    O(log n) where n is the number of nodes in the tree.  No path can be longer
40    than 1+2*P where P is the length of the shortest path in the tree.
41    Useful for the implementation:
42    3. If one of the children of a node is NULL, then the other one is red
43       (if it exists).
44 
45    In the implementation, not the edges are colored, but the nodes.  The color
46    interpreted as the color of the edge leading to this node.  The color is
47    meaningless for the root node, but we color the root node black for
48    convenience.  All added nodes are red initially.
49 
50    Adding to a red/black tree is rather easy.  The right place is searched
51    with a usual binary tree search.  Additionally, whenever a node N is
52    reached that has two red successors, the successors are colored black and
53    the node itself colored red.  This moves red edges up the tree where they
54    pose less of a problem once we get to really insert the new node.  Changing
55    N's color to red may violate rule 2, however, so rotations may become
56    necessary to restore the invariants.  Adding a new red leaf may violate
57    the same rule, so afterwards an additional check is run and the tree
58    possibly rotated.
59 
60    Deleting is hairy.  There are mainly two nodes involved: the node to be
61    deleted (n1), and another node that is to be unchained from the tree (n2).
62    If n1 has a successor (the node with a smallest key that is larger than
63    n1), then the successor becomes n2 and its contents are copied into n1,
64    otherwise n1 becomes n2.
65    Unchaining a node may violate rule 1: if n2 is black, one subtree is
66    missing one black edge afterwards.  The algorithm must try to move this
67    error upwards towards the root, so that the subtree that does not have
68    enough black edges becomes the whole tree.  Once that happens, the error
69    has disappeared.  It may not be necessary to go all the way up, since it
70    is possible that rotations and recoloring can fix the error before that.
71 
72    Although the deletion algorithm must walk upwards through the tree, we
73    do not store parent pointers in the nodes.  Instead, delete allocates a
74    small array of parent pointers and fills it while descending the tree.
75    Since we know that the length of a path is O(log n), where n is the number
76    of nodes, this is likely to use less memory.  */
77 
78 /* Tree rotations look like this:
79       A                C
80      / \              / \
81     B   C            A   G
82    / \ / \  -->     / \
83    D E F G         B   F
84                   / \
85                  D   E
86 
87    In this case, A has been rotated left.  This preserves the ordering of the
88    binary tree.  */
89 
90 /* includes */
91 #include "pmacct.h"
92 #include "crc32.h"
93 
94 /* Possibly "split" a node with two red successors, and/or fix up two red
95    edges in a row.  ROOTP is a pointer to the lowest node we visited, PARENTP
96    and GPARENTP pointers to its parent/grandparent.  P_R and GP_R contain the
97    comparison values that determined which way was taken in the tree to reach
98    ROOTP.  MODE is 1 if we need not do the split, but must check for two red
99    edges between GPARENTP and ROOTP.  */
100 static void
pm_maybe_split_for_insert(pm_node * rootp,pm_node * parentp,pm_node * gparentp,int p_r,int gp_r,int mode)101 pm_maybe_split_for_insert (pm_node *rootp, pm_node *parentp, pm_node *gparentp,
102 			int p_r, int gp_r, int mode)
103 {
104   pm_node root = DEREFNODEPTR(rootp);
105   pm_node *rp, *lp;
106   pm_node rpn, lpn;
107   rp = RIGHTPTR(root);
108   rpn = RIGHT(root);
109   lp = LEFTPTR(root);
110   lpn = LEFT(root);
111 
112   /* See if we have to split this node (both successors red).  */
113   if (mode == 1
114       || ((rpn) != NULL && (lpn) != NULL && RED(rpn) && RED(lpn)))
115     {
116       /* This node becomes red, its successors black.  */
117       SETRED(root);
118       if (rpn)
119 	SETBLACK(rpn);
120       if (lpn)
121 	SETBLACK(lpn);
122 
123       /* If the parent of this node is also red, we have to do
124 	 rotations.  */
125       if (parentp != NULL && RED(DEREFNODEPTR(parentp)))
126 	{
127 	  pm_node gp = DEREFNODEPTR(gparentp);
128 	  pm_node p = DEREFNODEPTR(parentp);
129 	  /* There are two main cases:
130 	     1. The edge types (left or right) of the two red edges differ.
131 	     2. Both red edges are of the same type.
132 	     There exist two symmetries of each case, so there is a total of
133 	     4 cases.  */
134 	  if ((p_r > 0) != (gp_r > 0))
135 	    {
136 	      /* Put the child at the top of the tree, with its parent
137 		 and grandparent as successors.  */
138 	      SETRED(p);
139 	      SETRED(gp);
140 	      SETBLACK(root);
141 	      if (p_r < 0)
142 		{
143 		  /* Child is left of parent.  */
144 		  SETLEFT(p,rpn);
145 		  SETNODEPTR(rp,p);
146 		  SETRIGHT(gp,lpn);
147 		  SETNODEPTR(lp,gp);
148 		}
149 	      else
150 		{
151 		  /* Child is right of parent.  */
152 		  SETRIGHT(p,lpn);
153 		  SETNODEPTR(lp,p);
154 		  SETLEFT(gp,rpn);
155 		  SETNODEPTR(rp,gp);
156 		}
157 	      SETNODEPTR(gparentp,root);
158 	    }
159 	  else
160 	    {
161 	      SETNODEPTR(gparentp,p);
162 	      /* Parent becomes the top of the tree, grandparent and
163 		 child are its successors.  */
164 	      SETBLACK(p);
165 	      SETRED(gp);
166 	      if (p_r < 0)
167 		{
168 		  /* Left edges.  */
169 		  SETLEFT(gp,RIGHT(p));
170 		  SETRIGHT(p,gp);
171 		}
172 	      else
173 		{
174 		  /* Right edges.  */
175 		  SETRIGHT(gp,LEFT(p));
176 		  SETLEFT(p,gp);
177 		}
178 	    }
179 	}
180     }
181 }
182 
183 /* Find or insert datum into search tree.
184    KEY is the key to be located, ROOTP is the address of tree root,
185    COMPAR the ordering function.  */
__pm_tsearch(const void * key,void ** vrootp,pm_compar_fn_t compar)186 void * __pm_tsearch (const void *key, void **vrootp, pm_compar_fn_t compar)
187 {
188   pm_node q, root;
189   pm_node *parentp = NULL, *gparentp = NULL;
190   pm_node *rootp = (pm_node *) vrootp;
191   pm_node *nextp;
192   int r = 0, p_r = 0, gp_r = 0; /* No they might not, Mr Compiler.  */
193 
194   // static_assert (alignof (max_align_t) > 1, "malloc must return aligned ptrs");
195 
196   if (rootp == NULL)
197     return NULL;
198 
199   /* This saves some additional tests below.  */
200   root = DEREFNODEPTR(rootp);
201   if (root != NULL)
202     SETBLACK(root);
203 
204   nextp = rootp;
205   while (DEREFNODEPTR(nextp) != NULL)
206     {
207       root = DEREFNODEPTR(rootp);
208       r = (*compar) (key, root->key);
209       if (r == 0)
210 	return root;
211 
212       pm_maybe_split_for_insert (rootp, parentp, gparentp, p_r, gp_r, 0);
213       /* If that did any rotations, parentp and gparentp are now garbage.
214 	 That doesn't matter, because the values they contain are never
215 	 used again in that case.  */
216 
217       nextp = r < 0 ? LEFTPTR(root) : RIGHTPTR(root);
218       if (DEREFNODEPTR(nextp) == NULL)
219 	break;
220 
221       gparentp = parentp;
222       parentp = rootp;
223       rootp = nextp;
224 
225       gp_r = p_r;
226       p_r = r;
227     }
228 
229   q = (struct pm_node_t *) malloc (sizeof (struct pm_node_t));
230   if (q != NULL)
231     {
232       /* Make sure the malloc implementation returns naturally aligned
233 	 memory blocks when expected.  Or at least even pointers, so we
234 	 can use the low bit as red/black flag.  Even though we have a
235 	 static_assert to make sure alignof (max_align_t) > 1 there could
236 	 be an interposed malloc implementation that might cause havoc by
237 	 not obeying the malloc contract.  */
238       assert (((uintptr_t) q & (uintptr_t) 0x1) == 0);
239       SETNODEPTR(nextp,q);		/* link new node to old */
240       q->key = key;			/* initialize new node */
241       SETRED(q);
242       SETLEFT(q,NULL);
243       SETRIGHT(q,NULL);
244 
245       if (nextp != rootp)
246 	/* There may be two red edges in a row now, which we must avoid by
247 	   rotating the tree.  */
248 	pm_maybe_split_for_insert (nextp, rootp, parentp, r, p_r, 1);
249     }
250 
251   return q;
252 }
253 
254 /* Find datum in search tree.
255    KEY is the key to be located, ROOTP is the address of tree root,
256    COMPAR the ordering function.  */
pm_tfind(const void * key,void ** vrootp,pm_compar_fn_t compar)257 void *pm_tfind (const void *key, void **vrootp, pm_compar_fn_t compar)
258 {
259   pm_node root;
260   pm_node *rootp = (pm_node *) vrootp;
261 
262   if (rootp == NULL)
263     return NULL;
264 
265   root = DEREFNODEPTR(rootp);
266 
267   while (DEREFNODEPTR(rootp) != NULL)
268     {
269       root = DEREFNODEPTR(rootp);
270       int r;
271 
272       r = (*compar) (key, root->key);
273       if (r == 0)
274 	return root;
275 
276       rootp = r < 0 ? LEFTPTR(root) : RIGHTPTR(root);
277     }
278   return NULL;
279 }
280 
281 /* Delete node with given key.
282    KEY is the key to be deleted, ROOTP is the address of the root of tree,
283    COMPAR the comparison function.  */
pm_tdelete(const void * key,void ** vrootp,pm_compar_fn_t compar)284 void *pm_tdelete (const void *key, void **vrootp, pm_compar_fn_t compar)
285 {
286   pm_node p, q, r, retval;
287   int cmp;
288   pm_node *rootp = (pm_node *) vrootp;
289   pm_node root, unchained;
290   /* Stack of nodes so we remember the parents without recursion.  It's
291      _very_ unlikely that there are paths longer than 40 nodes.  The tree
292      would need to have around 250.000 nodes.  */
293   int stacksize = 40;
294   int sp = 0;
295   pm_node **nodestack = alloca (sizeof (pm_node *) * stacksize);
296 
297   if (rootp == NULL)
298     return NULL;
299   p = DEREFNODEPTR(rootp);
300   if (p == NULL)
301     return NULL;
302 
303   root = DEREFNODEPTR(rootp);
304   while ((cmp = (*compar) (key, root->key)) != 0)
305     {
306       if (sp == stacksize)
307 	{
308 	  pm_node **newstack;
309 	  stacksize += 20;
310 	  newstack = alloca (sizeof (pm_node *) * stacksize);
311 	  nodestack = memcpy (newstack, nodestack, sp * sizeof (pm_node *));
312 	}
313 
314       nodestack[sp++] = rootp;
315       p = DEREFNODEPTR(rootp);
316       if (cmp < 0)
317 	{
318 	  rootp = LEFTPTR(p);
319 	  root = LEFT(p);
320 	}
321       else
322 	{
323 	  rootp = RIGHTPTR(p);
324 	  root = RIGHT(p);
325 	}
326       if (root == NULL)
327 	return NULL;
328     }
329 
330   /* This is bogus if the node to be deleted is the root... this routine
331      really should return an integer with 0 for success, -1 for failure */
332   retval = p;
333 
334   /* We don't unchain the node we want to delete. Instead, we overwrite
335      it with its successor and unchain the successor.  If there is no
336      successor, we really unchain the node to be deleted.  */
337 
338   root = DEREFNODEPTR(rootp);
339 
340   r = RIGHT(root);
341   q = LEFT(root);
342 
343   if (q == NULL || r == NULL)
344     unchained = root;
345   else
346     {
347       pm_node *parentp = rootp, *up = RIGHTPTR(root);
348       pm_node upn;
349       for (;;)
350 	{
351 	  if (sp == stacksize)
352 	    {
353 	      pm_node **newstack;
354 	      stacksize += 20;
355 	      newstack = alloca (sizeof (pm_node *) * stacksize);
356 	      nodestack = memcpy (newstack, nodestack, sp * sizeof (pm_node *));
357 	    }
358 	  nodestack[sp++] = parentp;
359 	  parentp = up;
360 	  upn = DEREFNODEPTR(up);
361 	  if (LEFT(upn) == NULL)
362 	    break;
363 	  up = LEFTPTR(upn);
364 	}
365       unchained = DEREFNODEPTR(up);
366     }
367 
368   /* We know that either the left or right successor of UNCHAINED is NULL.
369      R becomes the other one, it is chained into the parent of UNCHAINED.  */
370   r = LEFT(unchained);
371   if (r == NULL)
372     r = RIGHT(unchained);
373   if (sp == 0)
374     SETNODEPTR(rootp,r);
375   else
376     {
377       q = DEREFNODEPTR(nodestack[sp-1]);
378       if (unchained == RIGHT(q))
379 	SETRIGHT(q,r);
380       else
381 	SETLEFT(q,r);
382     }
383 
384   if (unchained != root)
385     root->key = unchained->key;
386   if (!RED(unchained))
387     {
388       /* Now we lost a black edge, which means that the number of black
389 	 edges on every path is no longer constant.  We must balance the
390 	 tree.  */
391       /* NODESTACK now contains all parents of R.  R is likely to be NULL
392 	 in the first iteration.  */
393       /* NULL nodes are considered black throughout - this is necessary for
394 	 correctness.  */
395       while (sp > 0 && (r == NULL || !RED(r)))
396 	{
397 	  pm_node *pp = nodestack[sp - 1];
398 	  p = DEREFNODEPTR(pp);
399 	  /* Two symmetric cases.  */
400 	  if (r == LEFT(p))
401 	    {
402 	      /* Q is R's brother, P is R's parent.  The subtree with root
403 		 R has one black edge less than the subtree with root Q.  */
404 	      q = RIGHT(p);
405 	      if (RED(q))
406 		{
407 		  /* If Q is red, we know that P is black. We rotate P left
408 		     so that Q becomes the top node in the tree, with P below
409 		     it.  P is colored red, Q is colored black.
410 		     This action does not change the black edge count for any
411 		     leaf in the tree, but we will be able to recognize one
412 		     of the following situations, which all require that Q
413 		     is black.  */
414 		  SETBLACK(q);
415 		  SETRED(p);
416 		  /* Left rotate p.  */
417 		  SETRIGHT(p,LEFT(q));
418 		  SETLEFT(q,p);
419 		  SETNODEPTR(pp,q);
420 		  /* Make sure pp is right if the case below tries to use
421 		     it.  */
422 		  nodestack[sp++] = pp = LEFTPTR(q);
423 		  q = RIGHT(p);
424 		}
425 	      /* We know that Q can't be NULL here.  We also know that Q is
426 		 black.  */
427 	      if ((LEFT(q) == NULL || !RED(LEFT(q)))
428 		  && (RIGHT(q) == NULL || !RED(RIGHT(q))))
429 		{
430 		  /* Q has two black successors.  We can simply color Q red.
431 		     The whole subtree with root P is now missing one black
432 		     edge.  Note that this action can temporarily make the
433 		     tree invalid (if P is red).  But we will exit the loop
434 		     in that case and set P black, which both makes the tree
435 		     valid and also makes the black edge count come out
436 		     right.  If P is black, we are at least one step closer
437 		     to the root and we'll try again the next iteration.  */
438 		  SETRED(q);
439 		  r = p;
440 		}
441 	      else
442 		{
443 		  /* Q is black, one of Q's successors is red.  We can
444 		     repair the tree with one operation and will exit the
445 		     loop afterwards.  */
446 		  if (RIGHT(q) == NULL || !RED(RIGHT(q)))
447 		    {
448 		      /* The left one is red.  We perform the same action as
449 			 in maybe_split_for_insert where two red edges are
450 			 adjacent but point in different directions:
451 			 Q's left successor (let's call it Q2) becomes the
452 			 top of the subtree we are looking at, its parent (Q)
453 			 and grandparent (P) become its successors. The former
454 			 successors of Q2 are placed below P and Q.
455 			 P becomes black, and Q2 gets the color that P had.
456 			 This changes the black edge count only for node R and
457 			 its successors.  */
458 		      pm_node q2 = LEFT(q);
459 		      if (RED(p))
460 			SETRED(q2);
461 		      else
462 			SETBLACK(q2);
463 		      SETRIGHT(p,LEFT(q2));
464 		      SETLEFT(q,RIGHT(q2));
465 		      SETRIGHT(q2,q);
466 		      SETLEFT(q2,p);
467 		      SETNODEPTR(pp,q2);
468 		      SETBLACK(p);
469 		    }
470 		  else
471 		    {
472 		      /* It's the right one.  Rotate P left. P becomes black,
473 			 and Q gets the color that P had.  Q's right successor
474 			 also becomes black.  This changes the black edge
475 			 count only for node R and its successors.  */
476 		      if (RED(p))
477 			SETRED(q);
478 		      else
479 			SETBLACK(q);
480 		      SETBLACK(p);
481 
482 		      SETBLACK(RIGHT(q));
483 
484 		      /* left rotate p */
485 		      SETRIGHT(p,LEFT(q));
486 		      SETLEFT(q,p);
487 		      SETNODEPTR(pp,q);
488 		    }
489 
490 		  /* We're done.  */
491 		  sp = 1;
492 		  r = NULL;
493 		}
494 	    }
495 	  else
496 	    {
497 	      /* Comments: see above.  */
498 	      q = LEFT(p);
499 	      if (RED(q))
500 		{
501 		  SETBLACK(q);
502 		  SETRED(p);
503 		  SETLEFT(p,RIGHT(q));
504 		  SETRIGHT(q,p);
505 		  SETNODEPTR(pp,q);
506 		  nodestack[sp++] = pp = RIGHTPTR(q);
507 		  q = LEFT(p);
508 		}
509 	      if ((RIGHT(q) == NULL || !RED(RIGHT(q)))
510 		  && (LEFT(q) == NULL || !RED(LEFT(q))))
511 		{
512 		  SETRED(q);
513 		  r = p;
514 		}
515 	      else
516 		{
517 		  if (LEFT(q) == NULL || !RED(LEFT(q)))
518 		    {
519 		      pm_node q2 = RIGHT(q);
520 		      if (RED(p))
521 			SETRED(q2);
522 		      else
523 			SETBLACK(q2);
524 		      SETLEFT(p,RIGHT(q2));
525 		      SETRIGHT(q,LEFT(q2));
526 		      SETLEFT(q2,q);
527 		      SETRIGHT(q2,p);
528 		      SETNODEPTR(pp,q2);
529 		      SETBLACK(p);
530 		    }
531 		  else
532 		    {
533 		      if (RED(p))
534 			SETRED(q);
535 		      else
536 			SETBLACK(q);
537 		      SETBLACK(p);
538 		      SETBLACK(LEFT(q));
539 		      SETLEFT(p,RIGHT(q));
540 		      SETRIGHT(q,p);
541 		      SETNODEPTR(pp,q);
542 		    }
543 		  sp = 1;
544 		  r = NULL;
545 		}
546 	    }
547 	  --sp;
548 	}
549       if (r != NULL)
550 	SETBLACK(r);
551     }
552 
553   free (unchained);
554   return retval;
555 }
556 
557 /* Walk the nodes of a tree.
558    ROOT is the root of the tree to be walked, ACTION the function to be
559    called at each node.  LEVEL is the level of ROOT in the whole tree.
560    RET, the return level from ACTION, says if continue (TRUE) or break
561    (FALSE), ie. due to budgeted traversal */
pm_trecurse(const void * vroot,pm_action_fn_t action,int level,void * extra)562 static void pm_trecurse (const void *vroot, pm_action_fn_t action, int level, void *extra)
563 {
564   int ret = TRUE;
565   pm_const_node root = (pm_const_node) vroot;
566 
567   if (LEFT(root) == NULL && RIGHT(root) == NULL) {
568     ret = (*action) (root, leaf, level, extra);
569   }
570   else {
571     ret = (*action) (root, preorder, level, extra);
572     if (!ret) goto exit_lane;
573 
574     if (LEFT(root) != NULL)
575       pm_trecurse (LEFT(root), action, level + 1, extra);
576 
577     ret = (*action) (root, postorder, level, extra);
578     if (!ret) goto exit_lane;
579 
580     if (RIGHT(root) != NULL)
581       pm_trecurse (RIGHT(root), action, level + 1, extra);
582 
583     ret = (*action) (root, endorder, level, extra);
584     if (!ret) goto exit_lane;
585   }
586 
587   exit_lane:
588 
589   return;
590 }
591 
592 /* Walk the nodes of a tree.
593    ROOT is the root of the tree to be walked, ACTION the function to be
594    called at each node.  */
pm_twalk(const void * vroot,pm_action_fn_t action,void * extra)595 void pm_twalk (const void *vroot, pm_action_fn_t action, void *extra)
596 {
597   pm_const_node root = (pm_const_node) vroot;
598 
599   if (root != NULL && action != NULL)
600     pm_trecurse (root, action, 0, extra);
601 }
602 
603 /* The standardized functions miss an important functionality: the
604    tree cannot be removed easily.  We provide a function to do this.  */
pm_tdestroy_recurse(pm_node root,pm_free_fn_t freefct)605 static void pm_tdestroy_recurse (pm_node root, pm_free_fn_t freefct)
606 {
607   if (LEFT(root) != NULL)
608     pm_tdestroy_recurse (LEFT(root), freefct);
609   if (RIGHT(root) != NULL)
610     pm_tdestroy_recurse (RIGHT(root), freefct);
611   (*freefct) ((void *) root->key);
612   /* Free the node itself.  */
613   free (root);
614 }
615 
__pm_tdestroy(void * vroot,pm_free_fn_t freefct)616 void __pm_tdestroy (void *vroot, pm_free_fn_t freefct)
617 {
618   pm_node root = (pm_node) vroot;
619 
620   if (root != NULL)
621     pm_tdestroy_recurse (root, freefct);
622 }
623 
624 /* For the used double hash method the table size has to be a prime. To
625    correct the user given table size we need a prime test.  This trivial
626    algorithm is adequate because
627    a)  the code is (most probably) called a few times per program run and
628    b)  the number is small because the table must fit in the core  */
pm_isprime(unsigned int number)629 static int pm_isprime(unsigned int number)
630 {
631   unsigned int div;
632 
633   /* no even number will be passed */
634   for (div = 3; div <= number / div; div += 2) {
635     if (number % div == 0) return 0;
636   }
637 
638   return 1;
639 }
640 
641 /* Before using the hash table we must allocate memory for it.
642    Test for an existing table are done. We allocate one element
643    more as the found prime number says. This is done for more effective
644    indexing as explained in the comment for the hsearch function.
645    The contents of the table is zeroed, especially the field used
646    becomes zero.  */
pm_hcreate(size_t nel,struct pm_htable * htab)647 int pm_hcreate(size_t nel, struct pm_htable *htab)
648 {
649   /* Test for correct arguments.  */
650   if (htab == NULL) return 0;
651 
652   /* There is still another table active. Return with error. */
653   if (htab->table != NULL) return 0;
654 
655   /* We need a size of at least 3.  Otherwise the hash functions we
656      use will not work.  */
657   if (nel < 3) nel = 3;
658 
659   /* Change nel to the first prime number in the range [nel, UINT_MAX - 2],
660      The '- 2' means 'nel += 2' cannot overflow.  */
661   for (nel |= 1; ; nel += 2) {
662     if (UINT_MAX - 2 < nel) return 0;
663 
664     if (pm_isprime (nel)) break;
665   }
666 
667   htab->size = nel;
668   htab->filled = 0;
669 
670   /* allocate memory and zero out */
671   htab->table = (_pm_HENTRY *) calloc (htab->size + 1, sizeof (_pm_HENTRY));
672   if (htab->table == NULL) return 0;
673 
674   /* everything went alright */
675   return 1;
676 }
677 
678 /* After using the hash table it has to be destroyed. The used memory can
679    be freed and the local static variable can be marked as not used.  */
pm_hdestroy(struct pm_htable * htab)680 void pm_hdestroy(struct pm_htable *htab)
681 {
682   size_t idx;
683 
684   /* Test for correct arguments.  */
685   if (htab == NULL) return;
686 
687   for (idx = 0; idx < htab->size; idx++) __pm_hdelete(&htab->table[idx]);
688 
689   /* Free used memory.  */
690   free (htab->table);
691 
692   /* the sign for an existing table is an value != NULL in htable */
693   htab->table = NULL;
694 }
695 
696 /* This is the search function. It uses double hashing with open addressing.
697    The argument item.key has to be a pointer to an zero terminated, most
698    probably strings of chars. The function for generating a number of the
699    strings is simple but fast. It can be replaced by a more complex function
700    like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
701    We use an trick to speed up the lookup. The table is created by hcreate
702    with one more element available. This enables us to use the index zero
703    special. This index will never be used because we store the first hash
704    index in the field used where zero means not used. Every other value
705    means used. The used field can be used as a first fast comparison for
706    equality of the stored and the parameter value. This helps to prevent
707    unnecessary more expensive calls of memcmp.  */
pm_hsearch(pm_HENTRY item,pm_ACTION action,pm_HENTRY ** retval,struct pm_htable * htab)708 int pm_hsearch(pm_HENTRY item, pm_ACTION action, pm_HENTRY **retval, struct pm_htable *htab)
709 {
710   unsigned int hval;
711   unsigned int idx;
712 
713   /* Compute an value for the given string. Perhaps use a better method. */
714   hval = cache_crc32(item.key, item.keylen);
715 
716   /* First hash function: simply take the modul but prevent zero. */
717   idx = hval % htab->size + 1;
718   if (htab->table[idx].used) {
719     /* Further action might be required according to the action value. */
720     if (htab->table[idx].used == hval && item.keylen == htab->table[idx].entry.keylen
721         && (!memcmp(item.key, htab->table[idx].entry.key, item.keylen))) {
722       if (action == DELETE) {
723 	__pm_hdelete(&htab->table[idx]);
724 	(*retval) = NULL;
725       }
726       else {
727         (*retval) = &htab->table[idx].entry;
728       }
729 
730       return 1;
731     }
732 
733     /* Second hash function, as suggested in [Knuth] */
734     unsigned int hval2 = 1 + hval % (htab->size - 2);
735     unsigned int first_idx = idx;
736     do {
737       /* Because SIZE is prime this guarantees to step through all available indeces */
738       if (idx <= hval2) idx = htab->size + idx - hval2;
739       else idx -= hval2;
740 
741       /* If we visited all entries leave the loop unsuccessfully.  */
742       if (idx == first_idx) break;
743 
744       /* If entry is found use it. */
745       if (htab->table[idx].used == hval && item.keylen == htab->table[idx].entry.keylen
746 	  && (!memcmp(item.key, htab->table[idx].entry.key, item.keylen))) {
747 	if (action == DELETE) {
748 	  __pm_hdelete(&htab->table[idx]);
749 	  (*retval) = NULL;
750 	}
751 	else {
752 	  (*retval) = &htab->table[idx].entry;
753 	}
754 
755 	return 1;
756       }
757     }
758     while (htab->table[idx].used);
759   }
760 
761   /* An empty bucket has been found. */
762   if (action == INSERT) {
763     /* If table is full and another entry should be entered return with error.  */
764     if (htab->filled == htab->size) {
765       *retval = NULL;
766       return ERR;
767     }
768 
769     htab->table[idx].used  = hval;
770     htab->table[idx].entry = item;
771     ++htab->filled;
772     *retval = &htab->table[idx].entry;
773 
774     return 1;
775   }
776 
777   *retval = NULL;
778   return 0;
779 }
780 
pm_hmove(struct pm_htable * new_htab,struct pm_htable * old_htab,struct pm_htable * saved_htab)781 void pm_hmove(struct pm_htable *new_htab, struct pm_htable *old_htab, struct pm_htable *saved_htab)
782 {
783   memcpy(saved_htab, old_htab, sizeof(struct pm_htable));
784   memcpy(old_htab, new_htab, sizeof(struct pm_htable));
785 }
786 
__pm_hdelete(_pm_HENTRY * item)787 void __pm_hdelete(_pm_HENTRY *item)
788 {
789   item->used = 0;
790 
791   item->entry.keylen = 0;
792   free(item->entry.key);
793   item->entry.key = NULL;
794 
795   if (item->entry.data) {
796     free(item->entry.data);
797     item->entry.data = NULL;
798   }
799 }
800