1 /*
2     Copyright (C) 2014 Fredrik Johansson
3 
4     This file is part of Arb.
5 
6     Arb is free software: you can redistribute it and/or modify it under
7     the terms of the GNU Lesser General Public License (LGPL) as published
8     by the Free Software Foundation; either version 2.1 of the License, or
9     (at your option) any later version.  See <http://www.gnu.org/licenses/>.
10 */
11 
12 #include "acb_poly.h"
13 
_acb_poly_acb_invpow_cpx(acb_ptr res,const acb_t N,const acb_t c,slong trunc,slong prec)14 void _acb_poly_acb_invpow_cpx(acb_ptr res, const acb_t N, const acb_t c, slong trunc, slong prec)
15 {
16     slong i;
17     acb_t logN;
18 
19     acb_init(logN);
20     acb_log(logN, N, prec);
21     acb_mul(res + 0, logN, c, prec);
22     acb_neg(res + 0, res + 0);
23     acb_exp(res + 0, res + 0, prec);
24 
25     for (i = 1; i < trunc; i++)
26     {
27         acb_mul(res + i, res + i - 1, logN, prec);
28         acb_div_si(res + i, res + i, -i, prec);
29     }
30 
31     acb_clear(logN);
32 }
33 
34 void
_acb_poly_powsum_series_naive(acb_ptr z,const acb_t s,const acb_t a,const acb_t q,slong n,slong len,slong prec)35 _acb_poly_powsum_series_naive(acb_ptr z,
36     const acb_t s, const acb_t a, const acb_t q, slong n, slong len, slong prec)
37 {
38     slong k, i;
39     int q_one, s_int;
40     acb_t ak, logak, t, qpow, negs;
41 
42     acb_init(ak);
43     acb_init(logak);
44     acb_init(t);
45     acb_init(qpow);
46     acb_init(negs);
47 
48     _acb_vec_zero(z, len);
49     acb_one(qpow);
50     acb_neg(negs, s);
51 
52     q_one = acb_is_one(q);
53     s_int = arb_is_int(acb_realref(s)) && arb_is_zero(acb_imagref(s));
54 
55     for (k = 0; k < n; k++)
56     {
57         acb_add_ui(ak, a, k, prec);
58 
59         if (len == 1)
60         {
61             acb_pow(t, ak, negs, prec);
62         }
63         else
64         {
65             acb_log(logak, ak, prec);
66 
67             if (s_int)
68             {
69                 acb_pow(t, ak, negs, prec);
70             }
71             else
72             {
73                 acb_mul(t, logak, negs, prec);
74                 acb_exp(t, t, prec);
75             }
76         }
77 
78         if (!q_one)
79         {
80             acb_mul(t, t, qpow, prec);
81             if (k < n - 1)
82                 acb_mul(qpow, qpow, q, prec);
83         }
84 
85         acb_add(z, z, t, prec);
86 
87         for (i = 1; i < len; i++)
88         {
89             acb_mul(t, t, logak, prec);
90             acb_div_si(t, t, -i, prec);
91             acb_add(z + i, z + i, t, prec);
92         }
93     }
94 
95     acb_clear(ak);
96     acb_clear(logak);
97     acb_clear(t);
98     acb_clear(qpow);
99     acb_clear(negs);
100 }
101 
102