xref: /freebsd/sys/contrib/openzfs/module/zfs/abd.c (revision 783d3ff6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23  * Copyright (c) 2019 by Delphix. All rights reserved.
24  */
25 
26 /*
27  * ARC buffer data (ABD).
28  *
29  * ABDs are an abstract data structure for the ARC which can use two
30  * different ways of storing the underlying data:
31  *
32  * (a) Linear buffer. In this case, all the data in the ABD is stored in one
33  *     contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
34  *
35  *         +-------------------+
36  *         | ABD (linear)      |
37  *         |   abd_flags = ... |
38  *         |   abd_size = ...  |     +--------------------------------+
39  *         |   abd_buf ------------->| raw buffer of size abd_size    |
40  *         +-------------------+     +--------------------------------+
41  *              no abd_chunks
42  *
43  * (b) Scattered buffer. In this case, the data in the ABD is split into
44  *     equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
45  *     to the chunks recorded in an array at the end of the ABD structure.
46  *
47  *         +-------------------+
48  *         | ABD (scattered)   |
49  *         |   abd_flags = ... |
50  *         |   abd_size = ...  |
51  *         |   abd_offset = 0  |                           +-----------+
52  *         |   abd_chunks[0] ----------------------------->| chunk 0   |
53  *         |   abd_chunks[1] ---------------------+        +-----------+
54  *         |   ...             |                  |        +-----------+
55  *         |   abd_chunks[N-1] ---------+         +------->| chunk 1   |
56  *         +-------------------+        |                  +-----------+
57  *                                      |                      ...
58  *                                      |                  +-----------+
59  *                                      +----------------->| chunk N-1 |
60  *                                                         +-----------+
61  *
62  * In addition to directly allocating a linear or scattered ABD, it is also
63  * possible to create an ABD by requesting the "sub-ABD" starting at an offset
64  * within an existing ABD. In linear buffers this is simple (set abd_buf of
65  * the new ABD to the starting point within the original raw buffer), but
66  * scattered ABDs are a little more complex. The new ABD makes a copy of the
67  * relevant abd_chunks pointers (but not the underlying data). However, to
68  * provide arbitrary rather than only chunk-aligned starting offsets, it also
69  * tracks an abd_offset field which represents the starting point of the data
70  * within the first chunk in abd_chunks. For both linear and scattered ABDs,
71  * creating an offset ABD marks the original ABD as the offset's parent, and the
72  * original ABD's abd_children refcount is incremented. This data allows us to
73  * ensure the root ABD isn't deleted before its children.
74  *
75  * Most consumers should never need to know what type of ABD they're using --
76  * the ABD public API ensures that it's possible to transparently switch from
77  * using a linear ABD to a scattered one when doing so would be beneficial.
78  *
79  * If you need to use the data within an ABD directly, if you know it's linear
80  * (because you allocated it) you can use abd_to_buf() to access the underlying
81  * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
82  * which will allocate a raw buffer if necessary. Use the abd_return_buf*
83  * functions to return any raw buffers that are no longer necessary when you're
84  * done using them.
85  *
86  * There are a variety of ABD APIs that implement basic buffer operations:
87  * compare, copy, read, write, and fill with zeroes. If you need a custom
88  * function which progressively accesses the whole ABD, use the abd_iterate_*
89  * functions.
90  *
91  * As an additional feature, linear and scatter ABD's can be stitched together
92  * by using the gang ABD type (abd_alloc_gang_abd()). This allows for
93  * multiple ABDs to be viewed as a singular ABD.
94  *
95  * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
96  * B_FALSE.
97  */
98 
99 #include <sys/abd_impl.h>
100 #include <sys/param.h>
101 #include <sys/zio.h>
102 #include <sys/zfs_context.h>
103 #include <sys/zfs_znode.h>
104 
105 /* see block comment above for description */
106 int zfs_abd_scatter_enabled = B_TRUE;
107 
108 void
abd_verify(abd_t * abd)109 abd_verify(abd_t *abd)
110 {
111 #ifdef ZFS_DEBUG
112 	ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
113 	ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
114 	    ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
115 	    ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG |
116 	    ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS | ABD_FLAG_ALLOCD));
117 	IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
118 	IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
119 	if (abd_is_linear(abd)) {
120 		ASSERT3U(abd->abd_size, >, 0);
121 		ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL);
122 	} else if (abd_is_gang(abd)) {
123 		uint_t child_sizes = 0;
124 		for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
125 		    cabd != NULL;
126 		    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
127 			ASSERT(list_link_active(&cabd->abd_gang_link));
128 			child_sizes += cabd->abd_size;
129 			abd_verify(cabd);
130 		}
131 		ASSERT3U(abd->abd_size, ==, child_sizes);
132 	} else {
133 		ASSERT3U(abd->abd_size, >, 0);
134 		abd_verify_scatter(abd);
135 	}
136 #endif
137 }
138 
139 static void
abd_init_struct(abd_t * abd)140 abd_init_struct(abd_t *abd)
141 {
142 	list_link_init(&abd->abd_gang_link);
143 	mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
144 	abd->abd_flags = 0;
145 #ifdef ZFS_DEBUG
146 	zfs_refcount_create(&abd->abd_children);
147 	abd->abd_parent = NULL;
148 #endif
149 	abd->abd_size = 0;
150 }
151 
152 static void
abd_fini_struct(abd_t * abd)153 abd_fini_struct(abd_t *abd)
154 {
155 	mutex_destroy(&abd->abd_mtx);
156 	ASSERT(!list_link_active(&abd->abd_gang_link));
157 #ifdef ZFS_DEBUG
158 	zfs_refcount_destroy(&abd->abd_children);
159 #endif
160 }
161 
162 abd_t *
abd_alloc_struct(size_t size)163 abd_alloc_struct(size_t size)
164 {
165 	abd_t *abd = abd_alloc_struct_impl(size);
166 	abd_init_struct(abd);
167 	abd->abd_flags |= ABD_FLAG_ALLOCD;
168 	return (abd);
169 }
170 
171 void
abd_free_struct(abd_t * abd)172 abd_free_struct(abd_t *abd)
173 {
174 	abd_fini_struct(abd);
175 	abd_free_struct_impl(abd);
176 }
177 
178 /*
179  * Allocate an ABD, along with its own underlying data buffers. Use this if you
180  * don't care whether the ABD is linear or not.
181  */
182 abd_t *
abd_alloc(size_t size,boolean_t is_metadata)183 abd_alloc(size_t size, boolean_t is_metadata)
184 {
185 	if (abd_size_alloc_linear(size))
186 		return (abd_alloc_linear(size, is_metadata));
187 
188 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
189 
190 	abd_t *abd = abd_alloc_struct(size);
191 	abd->abd_flags |= ABD_FLAG_OWNER;
192 	abd->abd_u.abd_scatter.abd_offset = 0;
193 	abd_alloc_chunks(abd, size);
194 
195 	if (is_metadata) {
196 		abd->abd_flags |= ABD_FLAG_META;
197 	}
198 	abd->abd_size = size;
199 
200 	abd_update_scatter_stats(abd, ABDSTAT_INCR);
201 
202 	return (abd);
203 }
204 
205 /*
206  * Allocate an ABD that must be linear, along with its own underlying data
207  * buffer. Only use this when it would be very annoying to write your ABD
208  * consumer with a scattered ABD.
209  */
210 abd_t *
abd_alloc_linear(size_t size,boolean_t is_metadata)211 abd_alloc_linear(size_t size, boolean_t is_metadata)
212 {
213 	abd_t *abd = abd_alloc_struct(0);
214 
215 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
216 
217 	abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
218 	if (is_metadata) {
219 		abd->abd_flags |= ABD_FLAG_META;
220 	}
221 	abd->abd_size = size;
222 
223 	if (is_metadata) {
224 		ABD_LINEAR_BUF(abd) = zio_buf_alloc(size);
225 	} else {
226 		ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size);
227 	}
228 
229 	abd_update_linear_stats(abd, ABDSTAT_INCR);
230 
231 	return (abd);
232 }
233 
234 static void
abd_free_linear(abd_t * abd)235 abd_free_linear(abd_t *abd)
236 {
237 	if (abd_is_linear_page(abd)) {
238 		abd_free_linear_page(abd);
239 		return;
240 	}
241 	if (abd->abd_flags & ABD_FLAG_META) {
242 		zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
243 	} else {
244 		zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
245 	}
246 
247 	abd_update_linear_stats(abd, ABDSTAT_DECR);
248 }
249 
250 static void
abd_free_gang(abd_t * abd)251 abd_free_gang(abd_t *abd)
252 {
253 	ASSERT(abd_is_gang(abd));
254 	abd_t *cabd;
255 
256 	while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) {
257 		/*
258 		 * We must acquire the child ABDs mutex to ensure that if it
259 		 * is being added to another gang ABD we will set the link
260 		 * as inactive when removing it from this gang ABD and before
261 		 * adding it to the other gang ABD.
262 		 */
263 		mutex_enter(&cabd->abd_mtx);
264 		ASSERT(list_link_active(&cabd->abd_gang_link));
265 		list_remove(&ABD_GANG(abd).abd_gang_chain, cabd);
266 		mutex_exit(&cabd->abd_mtx);
267 		if (cabd->abd_flags & ABD_FLAG_GANG_FREE)
268 			abd_free(cabd);
269 	}
270 	list_destroy(&ABD_GANG(abd).abd_gang_chain);
271 }
272 
273 static void
abd_free_scatter(abd_t * abd)274 abd_free_scatter(abd_t *abd)
275 {
276 	abd_free_chunks(abd);
277 	abd_update_scatter_stats(abd, ABDSTAT_DECR);
278 }
279 
280 /*
281  * Free an ABD.  Use with any kind of abd: those created with abd_alloc_*()
282  * and abd_get_*(), including abd_get_offset_struct().
283  *
284  * If the ABD was created with abd_alloc_*(), the underlying data
285  * (scatterlist or linear buffer) will also be freed.  (Subject to ownership
286  * changes via abd_*_ownership_of_buf().)
287  *
288  * Unless the ABD was created with abd_get_offset_struct(), the abd_t will
289  * also be freed.
290  */
291 void
abd_free(abd_t * abd)292 abd_free(abd_t *abd)
293 {
294 	if (abd == NULL)
295 		return;
296 
297 	abd_verify(abd);
298 #ifdef ZFS_DEBUG
299 	IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL);
300 #endif
301 
302 	if (abd_is_gang(abd)) {
303 		abd_free_gang(abd);
304 	} else if (abd_is_linear(abd)) {
305 		if (abd->abd_flags & ABD_FLAG_OWNER)
306 			abd_free_linear(abd);
307 	} else {
308 		if (abd->abd_flags & ABD_FLAG_OWNER)
309 			abd_free_scatter(abd);
310 	}
311 
312 #ifdef ZFS_DEBUG
313 	if (abd->abd_parent != NULL) {
314 		(void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
315 		    abd->abd_size, abd);
316 	}
317 #endif
318 
319 	abd_fini_struct(abd);
320 	if (abd->abd_flags & ABD_FLAG_ALLOCD)
321 		abd_free_struct_impl(abd);
322 }
323 
324 /*
325  * Allocate an ABD of the same format (same metadata flag, same scatterize
326  * setting) as another ABD.
327  */
328 abd_t *
abd_alloc_sametype(abd_t * sabd,size_t size)329 abd_alloc_sametype(abd_t *sabd, size_t size)
330 {
331 	boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
332 	if (abd_is_linear(sabd) &&
333 	    !abd_is_linear_page(sabd)) {
334 		return (abd_alloc_linear(size, is_metadata));
335 	} else {
336 		return (abd_alloc(size, is_metadata));
337 	}
338 }
339 
340 /*
341  * Create gang ABD that will be the head of a list of ABD's. This is used
342  * to "chain" scatter/gather lists together when constructing aggregated
343  * IO's. To free this abd, abd_free() must be called.
344  */
345 abd_t *
abd_alloc_gang(void)346 abd_alloc_gang(void)
347 {
348 	abd_t *abd = abd_alloc_struct(0);
349 	abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER;
350 	list_create(&ABD_GANG(abd).abd_gang_chain,
351 	    sizeof (abd_t), offsetof(abd_t, abd_gang_link));
352 	return (abd);
353 }
354 
355 /*
356  * Add a child gang ABD to a parent gang ABDs chained list.
357  */
358 static void
abd_gang_add_gang(abd_t * pabd,abd_t * cabd,boolean_t free_on_free)359 abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
360 {
361 	ASSERT(abd_is_gang(pabd));
362 	ASSERT(abd_is_gang(cabd));
363 
364 	if (free_on_free) {
365 		/*
366 		 * If the parent is responsible for freeing the child gang
367 		 * ABD we will just splice the child's children ABD list to
368 		 * the parent's list and immediately free the child gang ABD
369 		 * struct. The parent gang ABDs children from the child gang
370 		 * will retain all the free_on_free settings after being
371 		 * added to the parents list.
372 		 */
373 #ifdef ZFS_DEBUG
374 		/*
375 		 * If cabd had abd_parent, we have to drop it here.  We can't
376 		 * transfer it to pabd, nor we can clear abd_size leaving it.
377 		 */
378 		if (cabd->abd_parent != NULL) {
379 			(void) zfs_refcount_remove_many(
380 			    &cabd->abd_parent->abd_children,
381 			    cabd->abd_size, cabd);
382 			cabd->abd_parent = NULL;
383 		}
384 #endif
385 		pabd->abd_size += cabd->abd_size;
386 		cabd->abd_size = 0;
387 		list_move_tail(&ABD_GANG(pabd).abd_gang_chain,
388 		    &ABD_GANG(cabd).abd_gang_chain);
389 		ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
390 		abd_verify(pabd);
391 		abd_free(cabd);
392 	} else {
393 		for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain);
394 		    child != NULL;
395 		    child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) {
396 			/*
397 			 * We always pass B_FALSE for free_on_free as it is the
398 			 * original child gang ABDs responsibility to determine
399 			 * if any of its child ABDs should be free'd on the call
400 			 * to abd_free().
401 			 */
402 			abd_gang_add(pabd, child, B_FALSE);
403 		}
404 		abd_verify(pabd);
405 	}
406 }
407 
408 /*
409  * Add a child ABD to a gang ABD's chained list.
410  */
411 void
abd_gang_add(abd_t * pabd,abd_t * cabd,boolean_t free_on_free)412 abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
413 {
414 	ASSERT(abd_is_gang(pabd));
415 	abd_t *child_abd = NULL;
416 
417 	/*
418 	 * If the child being added is a gang ABD, we will add the
419 	 * child's ABDs to the parent gang ABD. This allows us to account
420 	 * for the offset correctly in the parent gang ABD.
421 	 */
422 	if (abd_is_gang(cabd)) {
423 		ASSERT(!list_link_active(&cabd->abd_gang_link));
424 		return (abd_gang_add_gang(pabd, cabd, free_on_free));
425 	}
426 	ASSERT(!abd_is_gang(cabd));
427 
428 	/*
429 	 * In order to verify that an ABD is not already part of
430 	 * another gang ABD, we must lock the child ABD's abd_mtx
431 	 * to check its abd_gang_link status. We unlock the abd_mtx
432 	 * only after it is has been added to a gang ABD, which
433 	 * will update the abd_gang_link's status. See comment below
434 	 * for how an ABD can be in multiple gang ABD's simultaneously.
435 	 */
436 	mutex_enter(&cabd->abd_mtx);
437 	if (list_link_active(&cabd->abd_gang_link)) {
438 		/*
439 		 * If the child ABD is already part of another
440 		 * gang ABD then we must allocate a new
441 		 * ABD to use a separate link. We mark the newly
442 		 * allocated ABD with ABD_FLAG_GANG_FREE, before
443 		 * adding it to the gang ABD's list, to make the
444 		 * gang ABD aware that it is responsible to call
445 		 * abd_free(). We use abd_get_offset() in order
446 		 * to just allocate a new ABD but avoid copying the
447 		 * data over into the newly allocated ABD.
448 		 *
449 		 * An ABD may become part of multiple gang ABD's. For
450 		 * example, when writing ditto bocks, the same ABD
451 		 * is used to write 2 or 3 locations with 2 or 3
452 		 * zio_t's. Each of the zio's may be aggregated with
453 		 * different adjacent zio's. zio aggregation uses gang
454 		 * zio's, so the single ABD can become part of multiple
455 		 * gang zio's.
456 		 *
457 		 * The ASSERT below is to make sure that if
458 		 * free_on_free is passed as B_TRUE, the ABD can
459 		 * not be in multiple gang ABD's. The gang ABD
460 		 * can not be responsible for cleaning up the child
461 		 * ABD memory allocation if the ABD can be in
462 		 * multiple gang ABD's at one time.
463 		 */
464 		ASSERT3B(free_on_free, ==, B_FALSE);
465 		child_abd = abd_get_offset(cabd, 0);
466 		child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
467 	} else {
468 		child_abd = cabd;
469 		if (free_on_free)
470 			child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
471 	}
472 	ASSERT3P(child_abd, !=, NULL);
473 
474 	list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd);
475 	mutex_exit(&cabd->abd_mtx);
476 	pabd->abd_size += child_abd->abd_size;
477 }
478 
479 /*
480  * Locate the ABD for the supplied offset in the gang ABD.
481  * Return a new offset relative to the returned ABD.
482  */
483 abd_t *
abd_gang_get_offset(abd_t * abd,size_t * off)484 abd_gang_get_offset(abd_t *abd, size_t *off)
485 {
486 	abd_t *cabd;
487 
488 	ASSERT(abd_is_gang(abd));
489 	ASSERT3U(*off, <, abd->abd_size);
490 	for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL;
491 	    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
492 		if (*off >= cabd->abd_size)
493 			*off -= cabd->abd_size;
494 		else
495 			return (cabd);
496 	}
497 	VERIFY3P(cabd, !=, NULL);
498 	return (cabd);
499 }
500 
501 /*
502  * Allocate a new ABD, using the provided struct (if non-NULL, and if
503  * circumstances allow - otherwise allocate the struct).  The returned ABD will
504  * point to offset off of sabd. It shares the underlying buffer data with sabd.
505  * Use abd_free() to free.  sabd must not be freed while any derived ABDs exist.
506  */
507 static abd_t *
abd_get_offset_impl(abd_t * abd,abd_t * sabd,size_t off,size_t size)508 abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size)
509 {
510 	abd_verify(sabd);
511 	ASSERT3U(off + size, <=, sabd->abd_size);
512 
513 	if (abd_is_linear(sabd)) {
514 		if (abd == NULL)
515 			abd = abd_alloc_struct(0);
516 		/*
517 		 * Even if this buf is filesystem metadata, we only track that
518 		 * if we own the underlying data buffer, which is not true in
519 		 * this case. Therefore, we don't ever use ABD_FLAG_META here.
520 		 */
521 		abd->abd_flags |= ABD_FLAG_LINEAR;
522 
523 		ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off;
524 	} else if (abd_is_gang(sabd)) {
525 		size_t left = size;
526 		if (abd == NULL) {
527 			abd = abd_alloc_gang();
528 		} else {
529 			abd->abd_flags |= ABD_FLAG_GANG;
530 			list_create(&ABD_GANG(abd).abd_gang_chain,
531 			    sizeof (abd_t), offsetof(abd_t, abd_gang_link));
532 		}
533 
534 		abd->abd_flags &= ~ABD_FLAG_OWNER;
535 		for (abd_t *cabd = abd_gang_get_offset(sabd, &off);
536 		    cabd != NULL && left > 0;
537 		    cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) {
538 			int csize = MIN(left, cabd->abd_size - off);
539 
540 			abd_t *nabd = abd_get_offset_size(cabd, off, csize);
541 			abd_gang_add(abd, nabd, B_TRUE);
542 			left -= csize;
543 			off = 0;
544 		}
545 		ASSERT3U(left, ==, 0);
546 	} else {
547 		abd = abd_get_offset_scatter(abd, sabd, off, size);
548 	}
549 
550 	ASSERT3P(abd, !=, NULL);
551 	abd->abd_size = size;
552 #ifdef ZFS_DEBUG
553 	abd->abd_parent = sabd;
554 	(void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
555 #endif
556 	return (abd);
557 }
558 
559 /*
560  * Like abd_get_offset_size(), but memory for the abd_t is provided by the
561  * caller.  Using this routine can improve performance by avoiding the cost
562  * of allocating memory for the abd_t struct, and updating the abd stats.
563  * Usually, the provided abd is returned, but in some circumstances (FreeBSD,
564  * if sabd is scatter and size is more than 2 pages) a new abd_t may need to
565  * be allocated.  Therefore callers should be careful to use the returned
566  * abd_t*.
567  */
568 abd_t *
abd_get_offset_struct(abd_t * abd,abd_t * sabd,size_t off,size_t size)569 abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size)
570 {
571 	abd_t *result;
572 	abd_init_struct(abd);
573 	result = abd_get_offset_impl(abd, sabd, off, size);
574 	if (result != abd)
575 		abd_fini_struct(abd);
576 	return (result);
577 }
578 
579 abd_t *
abd_get_offset(abd_t * sabd,size_t off)580 abd_get_offset(abd_t *sabd, size_t off)
581 {
582 	size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
583 	VERIFY3U(size, >, 0);
584 	return (abd_get_offset_impl(NULL, sabd, off, size));
585 }
586 
587 abd_t *
abd_get_offset_size(abd_t * sabd,size_t off,size_t size)588 abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
589 {
590 	ASSERT3U(off + size, <=, sabd->abd_size);
591 	return (abd_get_offset_impl(NULL, sabd, off, size));
592 }
593 
594 /*
595  * Return a size scatter ABD containing only zeros.
596  */
597 abd_t *
abd_get_zeros(size_t size)598 abd_get_zeros(size_t size)
599 {
600 	ASSERT3P(abd_zero_scatter, !=, NULL);
601 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
602 	return (abd_get_offset_size(abd_zero_scatter, 0, size));
603 }
604 
605 /*
606  * Allocate a linear ABD structure for buf.
607  */
608 abd_t *
abd_get_from_buf(void * buf,size_t size)609 abd_get_from_buf(void *buf, size_t size)
610 {
611 	abd_t *abd = abd_alloc_struct(0);
612 
613 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
614 
615 	/*
616 	 * Even if this buf is filesystem metadata, we only track that if we
617 	 * own the underlying data buffer, which is not true in this case.
618 	 * Therefore, we don't ever use ABD_FLAG_META here.
619 	 */
620 	abd->abd_flags |= ABD_FLAG_LINEAR;
621 	abd->abd_size = size;
622 
623 	ABD_LINEAR_BUF(abd) = buf;
624 
625 	return (abd);
626 }
627 
628 /*
629  * Get the raw buffer associated with a linear ABD.
630  */
631 void *
abd_to_buf(abd_t * abd)632 abd_to_buf(abd_t *abd)
633 {
634 	ASSERT(abd_is_linear(abd));
635 	abd_verify(abd);
636 	return (ABD_LINEAR_BUF(abd));
637 }
638 
639 /*
640  * Borrow a raw buffer from an ABD without copying the contents of the ABD
641  * into the buffer. If the ABD is scattered, this will allocate a raw buffer
642  * whose contents are undefined. To copy over the existing data in the ABD, use
643  * abd_borrow_buf_copy() instead.
644  */
645 void *
abd_borrow_buf(abd_t * abd,size_t n)646 abd_borrow_buf(abd_t *abd, size_t n)
647 {
648 	void *buf;
649 	abd_verify(abd);
650 	ASSERT3U(abd->abd_size, >=, n);
651 	if (abd_is_linear(abd)) {
652 		buf = abd_to_buf(abd);
653 	} else {
654 		buf = zio_buf_alloc(n);
655 	}
656 #ifdef ZFS_DEBUG
657 	(void) zfs_refcount_add_many(&abd->abd_children, n, buf);
658 #endif
659 	return (buf);
660 }
661 
662 void *
abd_borrow_buf_copy(abd_t * abd,size_t n)663 abd_borrow_buf_copy(abd_t *abd, size_t n)
664 {
665 	void *buf = abd_borrow_buf(abd, n);
666 	if (!abd_is_linear(abd)) {
667 		abd_copy_to_buf(buf, abd, n);
668 	}
669 	return (buf);
670 }
671 
672 /*
673  * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
674  * not change the contents of the ABD and will ASSERT that you didn't modify
675  * the buffer since it was borrowed. If you want any changes you made to buf to
676  * be copied back to abd, use abd_return_buf_copy() instead.
677  */
678 void
abd_return_buf(abd_t * abd,void * buf,size_t n)679 abd_return_buf(abd_t *abd, void *buf, size_t n)
680 {
681 	abd_verify(abd);
682 	ASSERT3U(abd->abd_size, >=, n);
683 #ifdef ZFS_DEBUG
684 	(void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
685 #endif
686 	if (abd_is_linear(abd)) {
687 		ASSERT3P(buf, ==, abd_to_buf(abd));
688 	} else {
689 		ASSERT0(abd_cmp_buf(abd, buf, n));
690 		zio_buf_free(buf, n);
691 	}
692 }
693 
694 void
abd_return_buf_copy(abd_t * abd,void * buf,size_t n)695 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
696 {
697 	if (!abd_is_linear(abd)) {
698 		abd_copy_from_buf(abd, buf, n);
699 	}
700 	abd_return_buf(abd, buf, n);
701 }
702 
703 void
abd_release_ownership_of_buf(abd_t * abd)704 abd_release_ownership_of_buf(abd_t *abd)
705 {
706 	ASSERT(abd_is_linear(abd));
707 	ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
708 
709 	/*
710 	 * abd_free() needs to handle LINEAR_PAGE ABD's specially.
711 	 * Since that flag does not survive the
712 	 * abd_release_ownership_of_buf() -> abd_get_from_buf() ->
713 	 * abd_take_ownership_of_buf() sequence, we don't allow releasing
714 	 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
715 	 */
716 	ASSERT(!abd_is_linear_page(abd));
717 
718 	abd_verify(abd);
719 
720 	abd->abd_flags &= ~ABD_FLAG_OWNER;
721 	/* Disable this flag since we no longer own the data buffer */
722 	abd->abd_flags &= ~ABD_FLAG_META;
723 
724 	abd_update_linear_stats(abd, ABDSTAT_DECR);
725 }
726 
727 
728 /*
729  * Give this ABD ownership of the buffer that it's storing. Can only be used on
730  * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
731  * with abd_alloc_linear() which subsequently released ownership of their buf
732  * with abd_release_ownership_of_buf().
733  */
734 void
abd_take_ownership_of_buf(abd_t * abd,boolean_t is_metadata)735 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
736 {
737 	ASSERT(abd_is_linear(abd));
738 	ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
739 	abd_verify(abd);
740 
741 	abd->abd_flags |= ABD_FLAG_OWNER;
742 	if (is_metadata) {
743 		abd->abd_flags |= ABD_FLAG_META;
744 	}
745 
746 	abd_update_linear_stats(abd, ABDSTAT_INCR);
747 }
748 
749 /*
750  * Initializes an abd_iter based on whether the abd is a gang ABD
751  * or just a single ABD.
752  */
753 static inline abd_t *
abd_init_abd_iter(abd_t * abd,struct abd_iter * aiter,size_t off)754 abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off)
755 {
756 	abd_t *cabd = NULL;
757 
758 	if (abd_is_gang(abd)) {
759 		cabd = abd_gang_get_offset(abd, &off);
760 		if (cabd) {
761 			abd_iter_init(aiter, cabd);
762 			abd_iter_advance(aiter, off);
763 		}
764 	} else {
765 		abd_iter_init(aiter, abd);
766 		abd_iter_advance(aiter, off);
767 	}
768 	return (cabd);
769 }
770 
771 /*
772  * Advances an abd_iter. We have to be careful with gang ABD as
773  * advancing could mean that we are at the end of a particular ABD and
774  * must grab the ABD in the gang ABD's list.
775  */
776 static inline abd_t *
abd_advance_abd_iter(abd_t * abd,abd_t * cabd,struct abd_iter * aiter,size_t len)777 abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter,
778     size_t len)
779 {
780 	abd_iter_advance(aiter, len);
781 	if (abd_is_gang(abd) && abd_iter_at_end(aiter)) {
782 		ASSERT3P(cabd, !=, NULL);
783 		cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd);
784 		if (cabd) {
785 			abd_iter_init(aiter, cabd);
786 			abd_iter_advance(aiter, 0);
787 		}
788 	}
789 	return (cabd);
790 }
791 
792 int
abd_iterate_func(abd_t * abd,size_t off,size_t size,abd_iter_func_t * func,void * private)793 abd_iterate_func(abd_t *abd, size_t off, size_t size,
794     abd_iter_func_t *func, void *private)
795 {
796 	struct abd_iter aiter;
797 	int ret = 0;
798 
799 	if (size == 0)
800 		return (0);
801 
802 	abd_verify(abd);
803 	ASSERT3U(off + size, <=, abd->abd_size);
804 
805 	abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
806 
807 	while (size > 0) {
808 		IMPLY(abd_is_gang(abd), c_abd != NULL);
809 
810 		abd_iter_map(&aiter);
811 
812 		size_t len = MIN(aiter.iter_mapsize, size);
813 		ASSERT3U(len, >, 0);
814 
815 		ret = func(aiter.iter_mapaddr, len, private);
816 
817 		abd_iter_unmap(&aiter);
818 
819 		if (ret != 0)
820 			break;
821 
822 		size -= len;
823 		c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
824 	}
825 
826 	return (ret);
827 }
828 
829 #if defined(__linux__) && defined(_KERNEL)
830 int
abd_iterate_page_func(abd_t * abd,size_t off,size_t size,abd_iter_page_func_t * func,void * private)831 abd_iterate_page_func(abd_t *abd, size_t off, size_t size,
832     abd_iter_page_func_t *func, void *private)
833 {
834 	struct abd_iter aiter;
835 	int ret = 0;
836 
837 	if (size == 0)
838 		return (0);
839 
840 	abd_verify(abd);
841 	ASSERT3U(off + size, <=, abd->abd_size);
842 
843 	abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
844 
845 	while (size > 0) {
846 		IMPLY(abd_is_gang(abd), c_abd != NULL);
847 
848 		abd_iter_page(&aiter);
849 
850 		size_t len = MIN(aiter.iter_page_dsize, size);
851 		ASSERT3U(len, >, 0);
852 
853 		ret = func(aiter.iter_page, aiter.iter_page_doff,
854 		    len, private);
855 
856 		aiter.iter_page = NULL;
857 		aiter.iter_page_doff = 0;
858 		aiter.iter_page_dsize = 0;
859 
860 		if (ret != 0)
861 			break;
862 
863 		size -= len;
864 		c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
865 	}
866 
867 	return (ret);
868 }
869 #endif
870 
871 struct buf_arg {
872 	void *arg_buf;
873 };
874 
875 static int
abd_copy_to_buf_off_cb(void * buf,size_t size,void * private)876 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
877 {
878 	struct buf_arg *ba_ptr = private;
879 
880 	(void) memcpy(ba_ptr->arg_buf, buf, size);
881 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
882 
883 	return (0);
884 }
885 
886 /*
887  * Copy abd to buf. (off is the offset in abd.)
888  */
889 void
abd_copy_to_buf_off(void * buf,abd_t * abd,size_t off,size_t size)890 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
891 {
892 	struct buf_arg ba_ptr = { buf };
893 
894 	(void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
895 	    &ba_ptr);
896 }
897 
898 static int
abd_cmp_buf_off_cb(void * buf,size_t size,void * private)899 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
900 {
901 	int ret;
902 	struct buf_arg *ba_ptr = private;
903 
904 	ret = memcmp(buf, ba_ptr->arg_buf, size);
905 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
906 
907 	return (ret);
908 }
909 
910 /*
911  * Compare the contents of abd to buf. (off is the offset in abd.)
912  */
913 int
abd_cmp_buf_off(abd_t * abd,const void * buf,size_t off,size_t size)914 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
915 {
916 	struct buf_arg ba_ptr = { (void *) buf };
917 
918 	return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
919 }
920 
921 static int
abd_copy_from_buf_off_cb(void * buf,size_t size,void * private)922 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
923 {
924 	struct buf_arg *ba_ptr = private;
925 
926 	(void) memcpy(buf, ba_ptr->arg_buf, size);
927 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
928 
929 	return (0);
930 }
931 
932 /*
933  * Copy from buf to abd. (off is the offset in abd.)
934  */
935 void
abd_copy_from_buf_off(abd_t * abd,const void * buf,size_t off,size_t size)936 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
937 {
938 	struct buf_arg ba_ptr = { (void *) buf };
939 
940 	(void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
941 	    &ba_ptr);
942 }
943 
944 static int
abd_zero_off_cb(void * buf,size_t size,void * private)945 abd_zero_off_cb(void *buf, size_t size, void *private)
946 {
947 	(void) private;
948 	(void) memset(buf, 0, size);
949 	return (0);
950 }
951 
952 /*
953  * Zero out the abd from a particular offset to the end.
954  */
955 void
abd_zero_off(abd_t * abd,size_t off,size_t size)956 abd_zero_off(abd_t *abd, size_t off, size_t size)
957 {
958 	(void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
959 }
960 
961 /*
962  * Iterate over two ABDs and call func incrementally on the two ABDs' data in
963  * equal-sized chunks (passed to func as raw buffers). func could be called many
964  * times during this iteration.
965  */
966 int
abd_iterate_func2(abd_t * dabd,abd_t * sabd,size_t doff,size_t soff,size_t size,abd_iter_func2_t * func,void * private)967 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
968     size_t size, abd_iter_func2_t *func, void *private)
969 {
970 	int ret = 0;
971 	struct abd_iter daiter, saiter;
972 	abd_t *c_dabd, *c_sabd;
973 
974 	if (size == 0)
975 		return (0);
976 
977 	abd_verify(dabd);
978 	abd_verify(sabd);
979 
980 	ASSERT3U(doff + size, <=, dabd->abd_size);
981 	ASSERT3U(soff + size, <=, sabd->abd_size);
982 
983 	c_dabd = abd_init_abd_iter(dabd, &daiter, doff);
984 	c_sabd = abd_init_abd_iter(sabd, &saiter, soff);
985 
986 	while (size > 0) {
987 		IMPLY(abd_is_gang(dabd), c_dabd != NULL);
988 		IMPLY(abd_is_gang(sabd), c_sabd != NULL);
989 
990 		abd_iter_map(&daiter);
991 		abd_iter_map(&saiter);
992 
993 		size_t dlen = MIN(daiter.iter_mapsize, size);
994 		size_t slen = MIN(saiter.iter_mapsize, size);
995 		size_t len = MIN(dlen, slen);
996 		ASSERT(dlen > 0 || slen > 0);
997 
998 		ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
999 		    private);
1000 
1001 		abd_iter_unmap(&saiter);
1002 		abd_iter_unmap(&daiter);
1003 
1004 		if (ret != 0)
1005 			break;
1006 
1007 		size -= len;
1008 		c_dabd =
1009 		    abd_advance_abd_iter(dabd, c_dabd, &daiter, len);
1010 		c_sabd =
1011 		    abd_advance_abd_iter(sabd, c_sabd, &saiter, len);
1012 	}
1013 
1014 	return (ret);
1015 }
1016 
1017 static int
abd_copy_off_cb(void * dbuf,void * sbuf,size_t size,void * private)1018 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
1019 {
1020 	(void) private;
1021 	(void) memcpy(dbuf, sbuf, size);
1022 	return (0);
1023 }
1024 
1025 /*
1026  * Copy from sabd to dabd starting from soff and doff.
1027  */
1028 void
abd_copy_off(abd_t * dabd,abd_t * sabd,size_t doff,size_t soff,size_t size)1029 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
1030 {
1031 	(void) abd_iterate_func2(dabd, sabd, doff, soff, size,
1032 	    abd_copy_off_cb, NULL);
1033 }
1034 
1035 static int
abd_cmp_cb(void * bufa,void * bufb,size_t size,void * private)1036 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
1037 {
1038 	(void) private;
1039 	return (memcmp(bufa, bufb, size));
1040 }
1041 
1042 /*
1043  * Compares the contents of two ABDs.
1044  */
1045 int
abd_cmp(abd_t * dabd,abd_t * sabd)1046 abd_cmp(abd_t *dabd, abd_t *sabd)
1047 {
1048 	ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
1049 	return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
1050 	    abd_cmp_cb, NULL));
1051 }
1052 
1053 /*
1054  * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
1055  *
1056  * @cabds          parity ABDs, must have equal size
1057  * @dabd           data ABD. Can be NULL (in this case @dsize = 0)
1058  * @func_raidz_gen should be implemented so that its behaviour
1059  *                 is the same when taking linear and when taking scatter
1060  */
1061 void
abd_raidz_gen_iterate(abd_t ** cabds,abd_t * dabd,size_t off,size_t csize,size_t dsize,const unsigned parity,void (* func_raidz_gen)(void **,const void *,size_t,size_t))1062 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, size_t off,
1063     size_t csize, size_t dsize, const unsigned parity,
1064     void (*func_raidz_gen)(void **, const void *, size_t, size_t))
1065 {
1066 	int i;
1067 	size_t len, dlen;
1068 	struct abd_iter caiters[3];
1069 	struct abd_iter daiter;
1070 	void *caddrs[3], *daddr;
1071 	unsigned long flags __maybe_unused = 0;
1072 	abd_t *c_cabds[3];
1073 	abd_t *c_dabd = NULL;
1074 
1075 	ASSERT3U(parity, <=, 3);
1076 	for (i = 0; i < parity; i++) {
1077 		abd_verify(cabds[i]);
1078 		ASSERT3U(off + csize, <=, cabds[i]->abd_size);
1079 		c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], off);
1080 	}
1081 
1082 	if (dsize > 0) {
1083 		ASSERT(dabd);
1084 		abd_verify(dabd);
1085 		ASSERT3U(off + dsize, <=, dabd->abd_size);
1086 		c_dabd = abd_init_abd_iter(dabd, &daiter, off);
1087 	}
1088 
1089 	abd_enter_critical(flags);
1090 	while (csize > 0) {
1091 		len = csize;
1092 		for (i = 0; i < parity; i++) {
1093 			IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL);
1094 			abd_iter_map(&caiters[i]);
1095 			caddrs[i] = caiters[i].iter_mapaddr;
1096 			len = MIN(caiters[i].iter_mapsize, len);
1097 		}
1098 
1099 		if (dsize > 0) {
1100 			IMPLY(abd_is_gang(dabd), c_dabd != NULL);
1101 			abd_iter_map(&daiter);
1102 			daddr = daiter.iter_mapaddr;
1103 			len = MIN(daiter.iter_mapsize, len);
1104 			dlen = len;
1105 		} else {
1106 			daddr = NULL;
1107 			dlen = 0;
1108 		}
1109 
1110 		/* must be progressive */
1111 		ASSERT3U(len, >, 0);
1112 		/*
1113 		 * The iterated function likely will not do well if each
1114 		 * segment except the last one is not multiple of 512 (raidz).
1115 		 */
1116 		ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1117 
1118 		func_raidz_gen(caddrs, daddr, len, dlen);
1119 
1120 		for (i = parity-1; i >= 0; i--) {
1121 			abd_iter_unmap(&caiters[i]);
1122 			c_cabds[i] =
1123 			    abd_advance_abd_iter(cabds[i], c_cabds[i],
1124 			    &caiters[i], len);
1125 		}
1126 
1127 		if (dsize > 0) {
1128 			abd_iter_unmap(&daiter);
1129 			c_dabd =
1130 			    abd_advance_abd_iter(dabd, c_dabd, &daiter,
1131 			    dlen);
1132 			dsize -= dlen;
1133 		}
1134 
1135 		csize -= len;
1136 	}
1137 	abd_exit_critical(flags);
1138 }
1139 
1140 /*
1141  * Iterate over code ABDs and data reconstruction target ABDs and call
1142  * @func_raidz_rec. Function maps at most 6 pages atomically.
1143  *
1144  * @cabds           parity ABDs, must have equal size
1145  * @tabds           rec target ABDs, at most 3
1146  * @tsize           size of data target columns
1147  * @func_raidz_rec  expects syndrome data in target columns. Function
1148  *                  reconstructs data and overwrites target columns.
1149  */
1150 void
abd_raidz_rec_iterate(abd_t ** cabds,abd_t ** tabds,size_t tsize,const unsigned parity,void (* func_raidz_rec)(void ** t,const size_t tsize,void ** c,const unsigned * mul),const unsigned * mul)1151 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
1152     size_t tsize, const unsigned parity,
1153     void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
1154     const unsigned *mul),
1155     const unsigned *mul)
1156 {
1157 	int i;
1158 	size_t len;
1159 	struct abd_iter citers[3];
1160 	struct abd_iter xiters[3];
1161 	void *caddrs[3], *xaddrs[3];
1162 	unsigned long flags __maybe_unused = 0;
1163 	abd_t *c_cabds[3];
1164 	abd_t *c_tabds[3];
1165 
1166 	ASSERT3U(parity, <=, 3);
1167 
1168 	for (i = 0; i < parity; i++) {
1169 		abd_verify(cabds[i]);
1170 		abd_verify(tabds[i]);
1171 		ASSERT3U(tsize, <=, cabds[i]->abd_size);
1172 		ASSERT3U(tsize, <=, tabds[i]->abd_size);
1173 		c_cabds[i] =
1174 		    abd_init_abd_iter(cabds[i], &citers[i], 0);
1175 		c_tabds[i] =
1176 		    abd_init_abd_iter(tabds[i], &xiters[i], 0);
1177 	}
1178 
1179 	abd_enter_critical(flags);
1180 	while (tsize > 0) {
1181 		len = tsize;
1182 		for (i = 0; i < parity; i++) {
1183 			IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL);
1184 			IMPLY(abd_is_gang(tabds[i]), c_tabds[i] != NULL);
1185 			abd_iter_map(&citers[i]);
1186 			abd_iter_map(&xiters[i]);
1187 			caddrs[i] = citers[i].iter_mapaddr;
1188 			xaddrs[i] = xiters[i].iter_mapaddr;
1189 			len = MIN(citers[i].iter_mapsize, len);
1190 			len = MIN(xiters[i].iter_mapsize, len);
1191 		}
1192 
1193 		/* must be progressive */
1194 		ASSERT3S(len, >, 0);
1195 		/*
1196 		 * The iterated function likely will not do well if each
1197 		 * segment except the last one is not multiple of 512 (raidz).
1198 		 */
1199 		ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1200 
1201 		func_raidz_rec(xaddrs, len, caddrs, mul);
1202 
1203 		for (i = parity-1; i >= 0; i--) {
1204 			abd_iter_unmap(&xiters[i]);
1205 			abd_iter_unmap(&citers[i]);
1206 			c_tabds[i] =
1207 			    abd_advance_abd_iter(tabds[i], c_tabds[i],
1208 			    &xiters[i], len);
1209 			c_cabds[i] =
1210 			    abd_advance_abd_iter(cabds[i], c_cabds[i],
1211 			    &citers[i], len);
1212 		}
1213 
1214 		tsize -= len;
1215 		ASSERT3S(tsize, >=, 0);
1216 	}
1217 	abd_exit_critical(flags);
1218 }
1219