1 /*
2 Copyright (C) 2021 Fredrik Johansson
3
4 This file is part of Arb.
5
6 Arb is free software: you can redistribute it and/or modify it under
7 the terms of the GNU Lesser General Public License (LGPL) as published
8 by the Free Software Foundation; either version 2.1 of the License, or
9 (at your option) any later version. See <http://www.gnu.org/licenses/>.
10 */
11
12 #include "arb_hypgeom.h"
13 #include "acb_hypgeom.h"
14
15 static void
evaluate_rect(acb_t res,const short * term_prec,slong len,const acb_t x,slong prec)16 evaluate_rect(acb_t res, const short * term_prec, slong len, const acb_t x, slong prec)
17 {
18 slong i, j, m, r, n1, n2;
19 acb_ptr xs;
20 acb_t s, t;
21 arb_struct c[17];
22
23 m = n_sqrt(len) + 1;
24 m = FLINT_MIN(m, 16);
25 r = (len + m - 1) / m;
26
27 xs = _acb_vec_init(m + 1);
28 acb_init(s);
29 acb_init(t);
30 _acb_vec_set_powers(xs, x, m + 1, prec);
31
32 acb_zero(res);
33
34 for (i = r - 1; i >= 0; i--)
35 {
36 n1 = m * i;
37 n2 = FLINT_MIN(len, n1 + m);
38
39 for (j = n1; j < n2; j++)
40 {
41 if (j == 0)
42 {
43 arb_init(c);
44 arb_one(c);
45 }
46 else
47 {
48 if (!_arb_hypgeom_gamma_coeff_shallow(arb_midref(c + j - n1), arb_radref(c + j - n1), j, term_prec[j]))
49 flint_abort();
50 }
51 }
52
53 arb_dot(acb_realref(s), NULL, 0, acb_realref(xs), 2, c, 1, n2 - n1, prec);
54 arb_dot(acb_imagref(s), NULL, 0, acb_imagref(xs), 2, c, 1, n2 - n1, prec);
55
56 #if 0
57 acb_set_round(t, xs + m, term_prec[n1]);
58 acb_mul(res, res, t, term_prec[n1]);
59 acb_add(res, res, s, term_prec[n1]);
60 #else
61 acb_mul(res, res, xs + m, term_prec[n1]);
62 acb_add(res, res, s, term_prec[n1]);
63 #endif
64 }
65
66 _acb_vec_clear(xs, m + 1);
67 acb_clear(s);
68 acb_clear(t);
69 }
70
71 /* Bound requires: |u| <= 20, N <= 10000, N != (1443, 2005, 9891). */
72 static void
error_bound(mag_t err,const acb_t u,slong N)73 error_bound(mag_t err, const acb_t u, slong N)
74 {
75 mag_t t;
76 mag_init(t);
77
78 acb_get_mag(t, u);
79
80 if (N >= 1443 || mag_cmp_2exp_si(t, 4) > 0)
81 {
82 mag_inf(err);
83 }
84 else
85 {
86 mag_pow_ui(err, t, N);
87 mag_mul_2exp_si(err, err, arb_hypgeom_gamma_coeffs[N].exp);
88
89 if (mag_cmp_2exp_si(t, -1) > 0)
90 mag_mul(err, err, t);
91 else
92 mag_mul_2exp_si(err, err, -1);
93
94 mag_mul_2exp_si(err, err, 3);
95
96 if (mag_cmp_2exp_si(err, -8) > 0)
97 mag_inf(err);
98 }
99
100 mag_clear(t);
101 }
102
103 static double
want_taylor(double x,double y,slong prec)104 want_taylor(double x, double y, slong prec)
105 {
106 if (y < 0.0) y = -y;
107 if (x < 0.0) x = -x;
108
109 if ((prec < 128 && y > 4.0) || (prec < 256 && y > 5.0) ||
110 (prec < 512 && y > 8.0) || (prec < 1024 && y > 9.0) || y > 10.0)
111 {
112 return 0;
113 }
114
115 if (x * (1.0 + 0.75 * y) > 8 + 0.15 * prec)
116 {
117 return 0;
118 }
119
120 return 1;
121 }
122
123 int
acb_hypgeom_gamma_taylor(acb_t res,const acb_t z,int reciprocal,slong prec)124 acb_hypgeom_gamma_taylor(acb_t res, const acb_t z, int reciprocal, slong prec)
125 {
126 acb_t s, u;
127 int success;
128 double dua, dub, du2, log2u;
129 slong i, r, n, wp, tail_bound, goal;
130 short term_prec[ARB_HYPGEOM_GAMMA_TAB_NUM];
131 mag_t err;
132
133 if (!acb_is_finite(z) ||
134 arf_cmp_2exp_si(arb_midref(acb_imagref(z)), 4) >= 0 ||
135 arf_cmp_2exp_si(arb_midref(acb_realref(z)), 10) >= 0)
136 {
137 return 0;
138 }
139
140 dua = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_UP);
141 dub = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_UP);
142 dub = fabs(dub);
143
144 if (!want_taylor(dua, dub, prec))
145 return 0;
146
147 if (dua >= 0.0)
148 r = (slong) (dua + 0.5);
149 else
150 r = -(slong) (-dua + 0.5);
151
152 acb_init(s);
153 acb_init(u);
154 mag_init(err);
155
156 success = 0;
157
158 /* Argument reduction: u = z - r */
159 acb_sub_si(u, z, r, 2 * prec + 10);
160 dua -= r;
161
162 goal = acb_rel_accuracy_bits(u);
163
164 /* not designed for wide intervals (yet) */
165 if (goal < 8)
166 {
167 success = 0;
168 goto cleanup;
169 }
170
171 goal = FLINT_MIN(goal, prec - MAG_BITS) + MAG_BITS;
172 goal = FLINT_MAX(goal, 5);
173 goal = goal + 5;
174 wp = goal + 4 + FLINT_BIT_COUNT(FLINT_ABS(r));
175
176 if (wp > ARB_HYPGEOM_GAMMA_TAB_PREC)
177 {
178 success = 0;
179 goto cleanup;
180 }
181
182 if (!want_taylor(r, dub, goal))
183 {
184 success = 0;
185 goto cleanup;
186 }
187
188 du2 = dua * dua + dub * dub;
189
190 if (du2 > 1e-8)
191 {
192 log2u = 0.5 * mag_d_log_upper_bound(du2) * 1.4426950408889634074 * (1 + 1e-14);
193 }
194 else
195 {
196 slong aexp, bexp;
197
198 aexp = arf_cmpabs_2exp_si(arb_midref(acb_realref(u)), -wp) >= 0 ? ARF_EXP(arb_midref(acb_realref(u))) : -wp;
199 bexp = arf_cmpabs_2exp_si(arb_midref(acb_imagref(u)), -wp) >= 0 ? ARF_EXP(arb_midref(acb_imagref(u))) : -wp;
200 log2u = FLINT_MAX(aexp, bexp) + 1;
201 }
202
203 term_prec[0] = wp;
204 n = 0;
205
206 for (i = 1; i < ARB_HYPGEOM_GAMMA_TAB_NUM; i++)
207 {
208 tail_bound = arb_hypgeom_gamma_coeffs[i].exp + i * log2u + 5;
209
210 if (tail_bound <= -goal)
211 {
212 n = i;
213 break;
214 }
215
216 term_prec[i] = FLINT_MIN(FLINT_MAX(wp + tail_bound, 2), wp);
217
218 if (term_prec[i] > arb_hypgeom_gamma_coeffs[i].nlimbs * FLINT_BITS)
219 {
220 success = 0;
221 goto cleanup;
222 }
223 }
224
225 if (n != 0)
226 error_bound(err, u, n);
227
228 if (n == 0 || mag_is_inf(err))
229 {
230 success = 0;
231 goto cleanup;
232 }
233
234 evaluate_rect(s, term_prec, n, u, wp);
235 acb_add_error_mag(s, err);
236
237 if (r == 0 || r == 1)
238 {
239 if (r == 0)
240 acb_mul(s, s, u, wp);
241
242 if (reciprocal)
243 {
244 acb_set_round(res, s, prec);
245 }
246 else
247 {
248 acb_one(u);
249 acb_div(res, u, s, prec);
250 }
251 }
252 else if (r >= 2)
253 {
254 acb_add_ui(u, u, 1, wp);
255 acb_hypgeom_rising_ui_rec(u, u, r - 1, wp);
256
257 if (reciprocal)
258 acb_div(res, s, u, prec);
259 else
260 acb_div(res, u, s, prec);
261 }
262 else
263 {
264 /* gamma(x) = (-1)^r / (rgamma(1+x-r)*rf(1+r-x,-r)*(x-r)) */
265 /* 1/gamma(x) = (-1)^r * rgamma(1+x-r) * rf(1+r-x,-r) * (x-r) */
266
267 acb_neg(res, z);
268 acb_add_si(res, res, 1 + r, wp);
269 acb_hypgeom_rising_ui_rec(res, res, -r, wp);
270 acb_mul(u, res, u, wp);
271
272 if (reciprocal)
273 {
274 acb_mul(res, s, u, prec);
275 }
276 else
277 {
278 acb_mul(u, s, u, wp);
279 acb_inv(res, u, prec);
280 }
281
282 if (r % 2)
283 acb_neg(res, res);
284 }
285
286 success = 1;
287
288 cleanup:
289 acb_clear(s);
290 acb_clear(u);
291 mag_clear(err);
292
293 return success;
294 }
295
296